金属材料热处理基础知识
机械基础03-3.3金属材料的热处理
第三节金属材料的热处理一、概论:1.热处理:热处理是将固态金属或合金采用适当的方式进行加热、保温和冷却以获得所需要的组织结构与性能的工艺。
2.热处理的目的:①提高零件的使用性能;②充分发挥钢材的潜力;③延长零件的使用寿面;④改善工件的工艺性能,提高加工质量,减小刀具的磨损。
3.钢的热处理方法:退火、正火、淬火、回火及表面热处理等五种。
4.热处理使钢性能发生变化的原因:由于铁有同素异转变,从而使钢在加热和冷却过程中,发生了组织与结构变化。
二、退火:1.概念:将钢加热到适当温度,保持一定时间,然后缓慢冷却(一般随炉冷却)的热处理工艺称为退火。
2.退火的主要目的是:①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工;②细化晶粒,均匀钢的组织及成分,改善钢的性能或为以后的热处理作组织上的准备;③消除钢中的残余内应力,以防止变形帮开裂。
3.退火的方法:①完全退火的应用:中碳钢及低、中碳合金结构钢的锻件、铸件、热轧型材等。
②球化退火的应用:适用于共析钢及过共析钢。
如碳素工具钢,合金工具钢、轴承钢等。
③去应力退火的应用:消除塑性变形、焊接、切削加工、铸造等形成的残余内应力。
三、正火1.概念:将钢加热到一定温度,保温适当的时间,在空气中冷却的工艺方法。
2.应用:①善低碳钢和低碳合金钢的切削加工性;②正火可细化晶粒;③消除过共析钢中的网状渗碳体,改善钢的力学性能,并为球化退火作组织准备;④代替中碳钢和低碳合金结构钢的退火。
四、淬火1.概念:将钢加热到Ac3或Ac1以上某一温度,保温一定时间,然后以适当速度冷却,获得马氏体或下马贝氏组织的热处理工艺称为淬火;2.目的:主要获得马氏体,提高钢的强度和硬度。
3.钢的淬氏性和淬硬性4.淬火缺陷:①氧化与脱碳②过热和过烧③变形与开裂④硬度不足五、回火1.概念:将钢淬火后,再加热到Ac1点以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。
2.回火目的:①消除内应力;②获得所需要的力学性能;③稳定组织和尺寸。
金属材料及热处理基础知识
VS
金属材料可以根据其晶体结构、相组 成、显微组织等特征进行分类。例如 ,根据晶体结构,金属材料可分为面 心立方晶格、体心立方晶格和密排六 方晶格等。根据相组成,金属材料可 分为单相合金和多相合金。根据显微 组织,金属材料可分为奥氏体、铁素 体、马氏体等。
金属材料的性质与用途
金属材料的性质包括物理性质、化学性质和机械性能等。物理性质包括密度、熔点、导热性、导电性 和磁性等。化学性质包括耐腐蚀性、抗氧化性和抗疲劳性等。机械性能包括强度、硬度、韧性、塑性 和耐磨性等。
金属材料及热处理基础知识
2023-11-08
contents
目录
• 金属材料概述 • 金属材料的结构与性能 • 金属材料热处理原理及工艺 • 常用金属材料及其热处理 • 金属材料及热处理的应用与发展 • 金属材料及热处理案例分析
01
金属材料概述
金属材料的定义与分类
金属材料是指具有金属特性的材料, 通常包括纯金属和合金。纯金属是由 同种元素组成的金属材料,如铁、铜 、铝等。合金是由两种或两种以上的 金属元素组成的金属材料,如不锈钢 、钛合金等。
热处理缺陷及防止措施
热处理过程中可能出现多种缺陷,如裂 纹、变形、氧化、脱碳等。
裂纹是热处理过程中最常见的缺陷之一 ,它主要是由于加热或冷却速度过快、和冷却速度、选
择合适的加热温度等。
变形是热处理过程中常见的缺陷之一, 它主要是由于加热或冷却过程中产生的 应力引起的。防止变形的措施包括采用 多阶段加热或冷却、合理安排工件的放
性能。
退火
将金属材料加热到适当温度后缓慢 冷却,以消除内应力、提高韧性等 。
正火
将金属材料加热到适当温度后保温 一定时间,然后空冷,使金属材料 内部结构更均匀、硬度更高。
金属热处理基本知识
金属热处理基本知识金属热处理是一种通过加热和冷却来改变金属结构和性能的工艺,广泛应用于工业制造过程中。
本文将介绍金属热处理的基本知识,包括常见的热处理方法、热处理的目的以及热处理对金属材料性能的影响。
一、常见的热处理方法1. 固溶处理固溶处理是一种通过加热金属至其固溶温度,然后迅速冷却以增加金属的硬度和强度的方法。
常见的固溶处理方法包括淬火和时效处理。
淬火是将金属加热至固溶温度,然后迅速冷却以形成固溶体,从而提高金属的硬度和强度。
时效处理是在淬火后,将金属加热至适当温度保持一段时间,以达到固溶体中的晶粒溶解和析出硬化相的目的,提高金属的综合性能。
2. 马氏体转变马氏体转变是一种通过加热金属至马氏体起始温度,然后迅速冷却以在金属中形成马氏体组织的方法。
马氏体转变可以显著提高金属的强度和硬度,同时还可以改善其耐磨性能和韧性。
常见的马氏体转变方法包括淬火和回火。
淬火是将金属加热至马氏体起始温度,然后迅速冷却以形成马氏体,进而提高金属的硬度和强度。
回火是在淬火后,将金属加热至适当温度保持一段时间,使马氏体转变为较为稳定的组织,从而提高金属的韧性。
3. 回火处理回火处理是一种通过加热金属至适当温度,然后保温一段时间以改善金属的组织和性能的方法。
回火处理可以降低金属的硬度和强度,提高其韧性和延展性。
不同的回火处理参数可以得到不同的金属组织和性能。
常见的回火处理方法包括低温回火、中温回火和高温回火,分别适用于不同的金属材料和应用需求。
二、热处理的目的金属热处理的主要目的是改善金属材料的组织和性能,以满足特定的工艺和使用要求。
具体来说,热处理可以实现以下几个方面的目标:1. 提高金属的硬度和强度:通过热处理,可以使金属中的晶体细化,晶体界面增多,从而提高金属的硬度和强度。
2. 改善金属的韧性和延展性:热处理可以消除金属中的内应力和缺陷,减少晶界的孔洞,从而提高金属的韧性和延展性。
3. 提高金属的耐磨性和耐蚀性:通过调整金属的组织和相态,热处理可以增加金属的耐磨性和耐蚀性,提高其在恶劣环境下的使用寿命。
金属材料和热处理基本概念及基础知识-热处理工艺
淬透性一般可用淬火临界直径、截面硬度分布曲 线和端淬硬度分布曲线等表示。由于钢中化学成分的 波动,表示钢淬透性硬度曲线有一个波动范围,被称 为淬透性带。 钢材的淬透性与淬硬性是两个完全不同的概念。 淬火硬度高的不一定淬透性好,而硬度低的钢材也可 能具有高的淬透性。 一般机械制造行业大多以心部获得50% 马氏体为 淬火临界直径标准,对于重要机加及军工行业则以心 部获得90 %马氏体作为临界直径标准,以保证零件整 个截面都获得较高力学性能。
2.加热与保温时间
五、钢的回火与回火工艺
将淬火钢重新加热到A1以下某一温度,保温后冷 却到室温的热处理工艺称回火。
1、回火的目的
• ⑴ 降低淬火钢的脆性,消除或减少淬火钢的内应力。 • ⑵ 提高钢的塑性和韧性,获得所要求的性能。
• ⑶ 稳定工件尺寸,降低硬度,便于切削加工。
第四节 钢的表面淬火
将钢加热到临界点以上(某些退火也可在临界点以下) 保温一定时间,随炉缓慢冷却,以获得接近平衡状态组织的 热处理工艺。主要用于铸、锻、焊件毛坯的热处理。
• 1、退火的目的 • 1)降低钢件硬度,便于切削加工。 • 2)消除工件内应力,稳定尺寸。
• 3)细化晶粒,改善组织,提高钢的机械性能。 • 4)为最终热处理做好组织准备。
一、钢的渗碳 渗碳是将钢件加热到奥氏体状态下,于富碳介质 中长时间加热,使碳原子渗入表层,增加钢件表层的 含碳量,然后通过淬火获得高硬度的马氏体组织,达 到提高强度、耐磨性及疲劳强度的目的。 渗碳一般用含碳0.1~0.25%的低碳钢。 渗碳—淬火+低温回火
1、渗碳方法
⑴ 气体渗碳(煤油、苯、甲醇+丙酮) 渗碳介质的分解—吸收—扩散三个基本过程。 主要应控制好加热温度(930 º C)和保温时间。 温度越高,渗速越大,扩散层越厚,但晶粒越大,使 钢变脆。保温时间取决于渗层厚度,但时间越长,扩 散速度减慢。钢件渗碳几小时到几十小时,可得到 0.5~2mm的渗碳层深度。 ⑵ 固体渗碳 ⑶ 液体渗碳
金属材料及热处理基础知识.ppt
2 .洛氏硬度
以顶角为120度的金刚石圆锥体或直径1.588mm的淬火 钢球作为压头,以一定的压力使其压入材料表面,测量压痕 深度来确定其硬度,即为洛氏硬度。被测材料硬度,可直接 在硬度计刻盘读出。
洛氏硬度常用的有三种,分别以HRA、HRB、HRC来表示。 洛氏硬度符号、试验条件和应用表
下贝氏体:无方向性的针状铁素体上弥散分布着细小颗粒的 渗碳体
7、魏氏组织
魏氏组织是在比较大的过冷度下形成的。奥氏体过冷到这 一温度区内,便会形成魏氏组织。魏氏组织铁索体是以切变机 理形成的其生长往往都是由晶界网状铁索体分枝,许多铁赢体 片平行地向晶粒内部长大。铁素体片之间的奥氏体随后变成珠 光体。魏氏组织会降低钢的塑性和韧性,尤其是冲击韧性。
3.维氏硬度 测定维氏硬度的原理基本上和布氏硬度相同,区别在于压头
采用锥面夹角为136度的金刚石正四棱锥体,压痕是四方锥形。 维氏硬度值用HV表示。
压痕面
4. 里氏硬度
原理:当材料被一个冲击体撞击时,较硬材料使冲击体产生 的反弹速度大于较软者。
5. 硬度与强度值的对应关系 由于硬度值综合反映了材料在局部范围内对塑性变形等 的抵抗能力,故它与强度值也有一定关系。 工程上:
冷却速度对晶粒大小的影响
快速冷却,形核点多,晶粒细小 冷却速度慢,均匀长大,晶粒粗大
1.2.2 铁碳合金的基本组织 铁 碳含量>2%--弱而脆
铁碳合金
铁素体—碳熔于α铁或δ铁中的固溶体 F
钢 奥氏体—碳熔于γ铁中的固溶体 A 强而韧 碳含量 0.02%-2%
渗碳体—铁碳金属化合物含碳6.67% Fe3C
许用应力 o
n
安全系数
金属材料及热处理的基本知识
金属材料及热处理的基本知识金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。
金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。
其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。
为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。
钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。
另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。
在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。
早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。
白口铸铁的柔化处理就是制造农具的重要工艺。
公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。
中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。
随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。
三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。
这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。
中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。
但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。
1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。
金属材料及热处理基本知识
• 硬度
• 定义:是指材料抵抗局部塑性变形或表面损伤的能力。
• 试验:通常有以下几种试验形式:布氏硬度HB、洛氏硬度HR、维氏硬度HV、里 氏硬度HL。
• 应用:
• 布氏硬度试验是指用一定直径的(球体钢球或硬质合金球)以相应的试验 压力压入被测材料或零件表面,经规定保持时间后卸除试验力,通过测量 表面压痕直径计算硬度的一种压痕硬度试验方法。
• σ相:是在研究Fe-Cr合金变脆时发现的一种合金相 。
• 从铁碳合金状态图中可知:
含碳量为0.77%的铁碳合金只发生共析转变,其组织是100%珠光体,称为 共析钢;
含碳量>0.77%的铁碳合金称为过共析钢,其组织是珠光体P+渗碳体Fe3C ;
含碳量<0.77%的铁碳合金称为亚共析钢,其组织是铁素体F+珠光体P。组 织中铁素体F的含量越多,表明碳含量越低,则材料的塑性和韧性就越好,但强 度和硬度就随之降低。
• 苛性脆化 由于介质内具有含量很高的苛性钠(NaOH)促使钢材腐蚀加 剧而引起的脆化现象(一般都发生在受压元件的铆接等处)。
苛性脆化 的破坏形式是在肉眼可看到的主裂纹上有大量肉眼看不
到的分支细裂纹。元件发生苛性脆化时,裂纹附近的钢材仍具有良好的塑 性及脆性性能。
• 应力腐蚀脆性断裂 断裂。
由拉应力与腐蚀介质联合作用而引起的低应力脆性
• 含碳量0.2%的铁碳合金的结晶过程:
液态金属随着温度的降低开始结晶,冷却至AB线以下时析出б-Fe;至HJB线 (14950C)发生包晶反应,液相和б-Fe一起转变,形成奥氏体;继续冷至GS线 ,奥氏体开始向铁素体转变,同时引起母相奥氏体(A)中碳浓度的变化。随着 温度降低,奥氏体(A)中的含碳量沿GS线逐渐增加而趋近于S点,即合金冷却 至7270C时,奥氏体(A)中的含碳量增为0.77%,故当合金再冷却至稍低于7270C 时,其组织中剩余的奥氏体(A)便按共析反应而转变为珠光体,最终的显微组 织为F+P。
金属材料与热处理基本知识
一、金属材料的力学性能金属材料的力学性能是指金属材料在外力作用下所反映出来的性能。
金属常用的力学性能有:1.弹性金属材料在受到外力作用时发生变形,外力消除后其变形逐渐消失的性质称为弹性。
①刚性是指材料或构件在外力作用下抵抗弹性变形的能力。
②刚度:k=F/y2.塑性金属材料在受到外力作用时,产生显著的变形而不断裂的性能称为塑性。
①伸长率δ②断面收缩率ψ3.强度金属材料在外力作用下,抵抗变形和破坏的能力称为强度。
由于各种机器零件或构件因载荷作用形式和作用性质不同,金属材料所表现出的强度大小也不同。
金属材料的强度指标:(1)屈服强度σs 在拉伸试验中,载荷不增加而试样仍能继续伸长时的应力称为屈服强度。
(2)抗拉强度σb 材料在拉断前所能承受的最大应力称为抗拉强度。
(3)疲劳强度σ-1 材料试样在疲劳试验过程中,在承受无数次(或给定次)对称循环应力作用仍不断裂的最大应力称为疲劳强度。
4.硬度金属表面抵抗硬物压入的能力称为硬度。
最常用的硬度指标:(1)布氏硬度HBS(HBW) 布氏硬度是使用一定直径的球体(淬火钢球或硬质合金球),以规定的试验力压入试样表面,经规定保持时间后卸除试验力,然后用测量表面压痕直径来计算硬度。
使用淬火钢球作硬度试验得到的硬度用HBS表示;使用硬质合金球作硬度试验得到的硬度用HBW表示。
(2)洛氏硬度HRC 洛氏硬度C标尺试验采用120°金刚石圆锥体加1471N总试验力测量的硬度值。
5.冲击韧性金属材料抵抗冲击载荷而不破坏的能力称为冲击韧性,其大小用冲击韧度αK表示。
二、钢的分类、用途与牌号(一)钢的分类1.按是否特意加入合金元素分类:(1)碳素钢不含有特意加入合金元素的钢,称为碳素钢。
(2)合金钢在碳素钢的基础上,为改善钢的性能,在冶炼时有目的地加入一种或数种合金元素的钢,称为合金钢。
2.按含碳量分类(1)低碳钢C ≤0.25%;(2)中碳钢0.25%<C <0.60%;(3)高碳钢C ≥0.60%;3.按质量分类(1)普通钢S ≤0.050%,P ≤0.045%(2)优质钢S ≤0.035%,P ≤0.035%(3)高级优质钢S ≤0.025%,P ≤0.025%4.按合金元素总量分类(1)低合金钢合金元素总含量<5%(2)中合金钢合金元素总含量5%~10%(3)高合金钢合金元素总含量>10%5.按用途分类(1)结构钢主要用于制造各种机械零件和工程构件的钢。
金属材料热处理的重要知识
一:珠光体类型组织有哪几种?他们形成条件、组织形态和性能方面有何不同?答:珠光体分为片状主珠光体和粒状珠光体两种组织形态,前者渗碳体呈片状,后者呈粒状。
它们的形成条件,组织和性能不同。
1、片状珠光体的形成,同其他相变一样,也是通过形核好和长大两个基本过程进行的。
由Fe-Fe3C相图可知,Wc=0.77%的奥氏体在近于平衡的缓慢冷却条件下形成的珠光体是由渗碳体和铁素体组成的片层相间的组织。
在较高奥氏体化温度下形成的均匀奥氏体于A1-500℃之间温度等温时也能形成片状珠光体。
根据片间距的大小,可将珠光体分为三类。
在A1-650℃较高温度范围内形成的珠光体比较粗,在片间距为0.6-1.0um,称为珠光体,通常在光学显微镜下极易分辨出铁素体和渗碳体层片状组织形态。
在650-600℃温度范围内形成的珠光体,其片间距较细,约为0.25-0.3um,只有在高倍光学显微镜下才能分辨出铁素体和渗碳体的片层形态,这种细片状珠光体有称作索氏体。
在600-550℃更低温度下形成的珠光体,其片间距极细,只有0.1-0.15um。
在光学显微镜下无法分辨其层片特征而呈黑色,只有在电子显微镜下才能区分出来。
这种极细的珠光体又称为托氏体。
片状珠光体的力学性能主要取决于珠光体的片间距。
共析钢珠光体的硬度和断裂强度均随片间距的缩小而增大。
片状珠光体的塑性也随片间距的减小而增大。
2、粒状珠光体组织是渗碳体呈颗粒状分布在连续的铁素体基体中。
粒状珠光体组织即可以有过冷奥氏体直接分解而成,也可由片状珠光体球化而成,还可以由淬火组织回火形成。
与片状珠光体相比,粒状珠光体的硬度和强度较低,塑性和韧性较好。
二:贝氏体类型组织有哪几种?它们在形成条件、组织形态和性能方面有何不同?答:在贝氏体区较高温度范围内(600-350℃)形成的贝氏体叫上贝氏体,在较低温度范围内(350℃-Ma)形成的贝氏体叫下贝氏体。
上贝氏体形成温度较高,铁素体晶粒和碳化物颗粒较粗大,碳化物呈短杆状平行分布在铁素体板条之间,铁素体和碳化物分布有明显的方向性。
金属材料与热处理(全)精选全文
2、常用的细化晶粒的方法:
A、增加过冷度
B、变质处理 C、振动处理。
三、同素异构转变
1、金属在固态下,随温度的改变有一种晶格转变为另一晶格的现象称为 同素异构转变。
2、具有同素异构转变的金属有:铁、钴、钛、锡、锰等。同一金属的同素 异构晶体按其稳定存在的温度,由低温到高温依次用希腊字母α,β,γ, δ等表示。
用HBS(HBW)表示,S表示钢球、W表示硬质合金球 当F、D一定时,布氏硬度与d有关,d越小,布氏硬度值越大,硬度越高。 (2)布氏硬度的表示方法:符号HBS之前的数字为硬度值符号后面按以下顺 序用数字表示条件:1)球体直径;2)试验力;3)试验力保持的时间 (10~15不标注)。
应用范围:主要适于灰铸铁、有色金属、各种软钢等硬度不高的材料。
2、洛氏硬度
(1)测试原理:
采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后即 除主试验力,以测量的压痕深度来计算洛氏硬度值。
表示符号:HR
(2)标尺及其适用范围:
每一标尺用一个字母在洛氏硬度符号HR后面加以注明。常用的洛氏硬度标 尺是A、B、C三种,其中C标尺应用最为广泛。
见表:P21 2-2
§2-2金属的力学性能
学习目的:★了解疲劳强度的概念。 ★ 掌握布氏硬度、洛氏硬度、维氏硬度的概念、硬
度测试及表示的方法。 ★掌握冲击韧性的测定方法。 教学重点与难点 ★布氏硬度、洛氏硬度、维氏硬度的概念、硬度测
试及表示的方法。
§2-2金属的力学性能 教学过程:
复习:强度、塑性的概念及测定的方法。
2、 非晶体:在物质内部,凡原子呈无序堆积状态的(如普通玻璃、松 香、树脂等)。 非晶体的原子则是无规律、无次序地堆积在一起的。
金属材料热处理常识
一、纯金属的构造固体物质可分为晶体和非晶体。
在非晶体内,原子在空间是杂乱而无序的排列,例如,玻璃就是这神非晶体。
在晶体内,原子(或分子)在空间是按一定的几何规律排列的,它构成的空间格子,称为晶格,所有固体金属都属于晶体。
晶格是金属结晶构造的最小单元,许多有规则的晶格,可组成形状不规则的晶粒。
这些我们用肉眼是看不到的,只有在显微镜下才能看到晶粒的大小和和形状。
1.纯金属的晶体结构纯金属的晶格主要有3种类型:体心立方晶格、面心立方晶格和密排六方晶格。
这3种晶格的形状如图2-31所示。
1)体心立方晶格(图2-31(a))从晶格中取出一个单位立方体,它由2个原子组成,8个顶角各有一个原子,但每个顶角上的原子是8个单位立方体所共有。
在立方体中心,还有一个原子。
常温下的纯铁(又称ɑ铁)以及钼、钨、钒等是体心立方晶格。
2)面心立方晶格(图2-31(b))从晶体中取出一个单位立方体,它由14个原子,8个顶角各有一个原子,但每个顶角上的原子是8个单位立方体所共有。
在立方体的6个平面中心,也各有一个原子,每个平面中心原子是两个单位立方体所共有的。
铜、镍和温度在910℃-1390℃时的纯铁(又称γ铁)等,是有这种面心立方晶格。
3)密排六方晶格(图2-31(c))从晶体中取出一个单位六方柱体,它由6个原子组成,12个顶角各有一个原子,每个顶角上原子是6个棱柱体所共有。
上下两个正六方面的中心,各有一个原子,每个原子是两个相邻六棱柱体所共有。
在六方柱体的中心,还有3个原子。
锌、镁等是有这种晶格。
2.液体金属的结晶过程金属液体凝固为固体的过程,称做结晶(或一次结晶)。
当液态金属冷却到熔点以后,金属内部就有一些原子开始稳定下来,成为结晶的核心(简称晶核)。
温度继续下降,一方面在已经产生的晶核附近,原子按一定的几何规律凝结排列,长大为晶粒;另一方面又出现许多新的晶核,并陆续长大,直到全部液态金属完全凝固为止。
这种金属的结晶过程,如图2-32所示。
金属热处理基础知识
金属热处理基础知识金属热处理是通过控制金属材料在高温下的加热、保温和冷却过程,以调整其组织和性能的一种工艺。
在金属热处理过程中,我们需要了解一些基础知识,包括常见的热处理工艺、影响金属性能的因素以及常见的热处理设备。
一、常见的热处理工艺1. 固溶处理固溶处理是指将固溶体加热至高温,使其中存在的合金元素完全溶解,然后在适当的温度下保温一段时间,最后通过快速冷却来获得均匀的组织。
固溶处理通常用于合金强化、改善材料的韧性和疲劳性能等方面。
2. 然后冷却处理淬火是一种快速冷却工艺,通过将金属材料迅速从高温加热状态冷却至室温或低温,以使金属材料的组织发生相变,从而获得所需的性能。
淬火可以有效提高金属材料的硬度、抗拉强度和磨损性能。
3. 回火处理回火是指在淬火后,将材料重新加热到较低的温度,保温一段时间后冷却,以减轻淬火带来的材料脆性和应力。
回火可以降低材料的硬度,提高其韧性和可加工性。
二、影响金属性能的因素1. 温度温度是热处理过程中最重要的因素之一。
不同的金属和热处理工艺需要不同的温度范围,过高或过低的温度都会对金属的性能产生负面影响。
2. 时间保温时间是指在加热过程中保持金属材料在一定温度范围内的时间。
适当的保温时间可以使金属内部的相变和晶粒生长完成,从而得到所需的性能。
3. 冷却速度冷却速度会影响金属的组织和性能。
快速冷却可以获得细小且均匀的组织,从而提高金属的强度和硬度。
相反,缓慢冷却则可以使金属的组织更加柔韧。
三、常见的热处理设备1. 炉子炉子是最常见的热处理设备之一,在炉子内加热金属材料可以实现固溶、淬火和回火等工艺。
2. 水槽水槽是用于淬火的设备,在高温加热后,将金属迅速浸入冷却介质(通常是水或油)中,以实现材料的淬火工艺。
3. 回火炉回火炉用于回火处理工艺,将经过淬火处理的材料加热到适当的温度,保温一段时间后进行冷却。
4. 空气冷却器空气冷却器通常用于对材料进行较慢的冷却过程,可以通过控制冷却速度来调整材料的性能。
金属材料及热处理基础知识
目录
• 金属材料概述 • 金属材料的热处理 • 金属材料的力学性能 • 金属材料的腐蚀与防护 • 金属材料的选择与应用
01
金属材料概述
金属材料的定义与分类
金属材料的定义
金属材料是指以金属 元素或以金属元素为 主要成分,具有金属 特性的材料统称为金 属材料。
金属材料的分类
区域受到腐蚀的现象。
金属腐蚀的原理与影响因素
总结词
金属腐蚀的原理是金属原子失去电子成为正离子,而环境中的阴离子获得电子成为原子或负离子。影响因素包括 环境因素和金属本身的因素。
详细描述
金属腐蚀的原理是金属原子失去电子成为正离子,而环境中的阴离子获得电子成为原子或负离子。这个过程通常 涉及到电化学反应。影响因素包括环境因素和金属本身的因素。环境因素如湿度、温度、氧气、二氧化碳、污染 物等,而金属本身的因素包括合金成分、微观结构、表面状态等。
详细描述
热处理是金属材料加工过程中的一个重要环节,主要通过控制温度和时间来改变 金属材料的内部结构,从而改善其物理、化学和机械性能。根据不同的加热温度 和冷却方式,热处理可以分为多种类型,如退火、正火、淬火和回火等。
热处理的基本原理
总结词
热处理的基本原理是利用金属在加热和冷却过程中的相变现象,通过控制相变 过程来改变材料的内部组织结构,从而达到改善其性能的目的。
• 详细描述:退火是将金属加热到适当温度后保温一段时间,然后缓慢冷却至室温的过程,主要用于消除内应力、降低硬 度、提高塑性和韧性等。正火是将金属加热到适当温度后保温一段时间,然后空冷至室温的过程,主要用于细化晶粒、 提高强度和韧性等。淬火是将金属加热到适当温度后迅速冷却至室温的过程,主要用于提高金属的硬度和耐磨性等。回 火则是将淬火后的金属加热到适当温度后保温一段时间,然后冷却至室温的过程,主要用于消除淬火产生的内应力、稳 定组织结构和提高韧性等。
金属材料与热处理知识(整理版)
硬度金属抵抗更硬物体压入表面的能力,称为硬度。
硬度是反映金属材料局部塑性变形的抵抗能力。
根据试验方法和测量范围的不同,硬度可分为布氏、洛氏、维氏等几种。
1、布氏硬度(HB)布氏硬度是用淬火硬化后的钢球(直径有:2.5、5、10毫米三种)作为压印器,以一定的压力P压入被测金属材料表面,这时在被测金属材料表面留下压坑。
根据压坑面积的大小,可用下式计算出布氏硬度值,用符号HB表示为HB=P/F(公斤/毫米2)式中P——钢球所加的负荷(公斤);F——压坑面积(毫米2)。
布氏硬度是用单位压坑面积所受负荷的大小来表示的。
一般硬度值都不需要经过计算,在生产中用放大镜测出压坑直径,再根据压印器钢球直径D和压力负荷P直接查表,便可得出HB的值。
布氏硬度在标注时不写单位,如HB=212。
测量不同金属材料时所用的压印器和负荷等标准,也可以查表。
用布氏硬度法测得的硬度值准确,因为压坑大,不会由于表面不平或组织不均匀而引起误差。
但压坑太大有损表面,所以布氏硬度一般不宜作成品检验,只适合测量硬度不高的原材料,如毛坯、铸件、锻件、有色金属及合金等。
2、洛氏硬度(HR)洛氏硬度法是用金刚石做的呈120°的圆锥体,或直径为1.58毫米的淬火钢球,作为压印器,在一定的负荷下压入金属表面,根据压坑的深浅来测量金属材料的硬度,(根据压坑深度)可把硬度数值从表盘上直接读出来。
根据测量硬度范围不同,洛氏硬度可分为HRA、HRB、HRC三种。
它们的适用范围与压印器、负荷的选定可根据下表查出,洛氏硬度的选用标准洛氏硬度没有单位,测量方法简单,压坑小,不影响零件表面质量,测量硬度范围广,但不如布氏硬度精确度高。
HRA适宜测量高硬度材料;HRB适宜测量有色金属及硬度低的材料;HRC适宜测量淬火、回火后的金属材料。
3、维氏硬度(HV)维氏硬度试验的原理与布氏硬度法相似,只不过它的压印器是136°的四棱锥金刚石,以一定的负荷压入平整的试样表面,然后测出四棱锥压坑的对角线长度d,算出压坑面积F,用单位面积所受负荷的大小来表示维氏硬度值,即HV= P/F(公斤/厘米2)维氏硬度测量精确、硬度测量范围大,尤其能很好地测量薄试样的硬度。
金属材料与热处理资料
易切削钢也是结构钢的一种。其特
点是易于切削加工。这种材料适用于自 动机床上加工。它是向钢中加入一种或 几种易生成脆性夹杂物的元素(硫和磷 等),使钢中形成有利于断屑的夹杂物, 从而改善了钢的切削加工性能。
一.合金钢牌号的表示方法
合金结构钢的牌号是采用“二位数字+化学元素 符号+数字”的方法来表示的。前面的数字表示 钢的碳的平均质量分数的万分之几,合金元素直 接用化学元素符号表示,后面的数字表示合金元 素平均质量分数的百分之几。凡合金元素平均质 量分数ωMe <1.5%时,牌号中只标明元素, 一般不标明质量分数;如果平均质量分数ωMe ≥1.5%、2.5%、3.5%……则相应地以2、 3、4……等表示。如果为高级优质钢,则在钢 号后加“A”。例如:
四、钢的表面处理
在生产实际中,许多零件和工具为了 防止其使用时,表面产生腐蚀及增加表 面的美观,常对其进行适当的处理,使 零件和工具的表面生成一层均匀而致密 的氧化膜。这不仅提高了表面的抗蚀性 能,而且氧化膜所具有的光泽也增加了 美观。目前常用的表面处理方法有氧化、 发黑和磷化等。
合金钢
合金钢就是在碳素钢的基础上,为了改 善钢的性能,在冶炼时有目的地加入一 些元素的钢,加入的元素称合金元素。 合金钢常用的合金元素有锰、硅、铬、 镍、钨、钒、钛、硼、稀土等。
(2)渗氮是使化学介质分解出的活性氮 原子,渗入工件表层形成氮化层的热处 理工艺方法。渗氮后的工件表面生成的 渗氮物,由于结构致密,硬度高,所以 能抵抗化学介质的侵蚀并具有比渗碳更 高的表面硬度、耐磨性、热硬性和疲劳 强度,不再需要淬火强化。
目前,常用的渗氮方法是气体渗氮, 气体渗氮用钢以中碳合金钢为主,使用 最广泛的钢为38CrMoAlA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热处理定义:钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。
热处理目的:1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。
2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。
加热温度、保温时间和冷却方式是热处理最重要的三个基本工艺因素。
退火1、定义:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺。
2、目的:降低硬度,均匀化学成分、改善切削加工性能和冷塑性变形性能、消除或减少内应力、为零件最终热处理准备合适的内部组织。
3、分类球化退火:为使工件中的碳化物球状化而进行的退火。
去应力退火:为去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余应力而进行退火。
正火1、定义:将钢材或钢件加热到一定温度,保温适当时间,使之完全奥氏体化,然后在空气中冷却,以得到珠光体组织的热处理工艺。
2、目的:改善切削性能,消除毛坯内应力,细化晶粒、提高硬度、获得比较均匀的组织和性能。
退火和正火的区别退火和正火属于预备热处理工艺,对于含碳量相同的工件,正火后的强度和硬度要高于的退火的。
例如:含碳量大于0.7%的碳钢和合金钢,为降低硬度便于切削加工采用退火处理;含碳量低于0.3%的低碳钢和低合金钢,为避免硬度过低切削时粘刀,而采用正火适当提高硬度。
一般用于锻件、铸件和焊接件。
退火一般安排在毛坯制造之后,粗加工之前进行。
渗碳1、定义:为提高工件表层的含碳量并在其中形成一定的碳含量梯度,在渗碳炉中将低碳钢在渗碳介质中加热、保温,使碳原子渗入工件表面,然后进行淬火的化学热处理工艺。
2、目的:使低碳钢的表面层含碳量增加到0.85~1.10%,然后再经淬火、低温回火处理以消除应力和稳定组织,使钢件表面层具有高硬度(HRc56~62),增加耐磨性及疲劳强度等。
而心部仍保持原有的塑性和韧性。
3、应用:渗碳一般用于15Cr、20Cr等含碳量低的钢种,渗碳层的深度是根据零件的要求不同,一般为0.2~2mm。
设计时可根据工件尺寸和心部强度要求来选择材料和渗碳层深度。
渗碳层深的选择要根据实际需要进行设计,以节约成本。
层深的增加意味着渗碳时间的延长,齿轮一般是根据经验公式来设计层深。
淬火1、定义:将钢加热到临界温度以上,保温一定时间使其奥氏体化,以大于临界冷却速度进行冷却的工艺。
2、淬火目的:提高硬度和耐磨性:刀具、量具、磨具提高强韧性:轴类、杆件、销、受力件提高弹性:各类弹簧提高耐蚀和耐热性:耐热钢和不锈钢3、淬火分类按加热温度:完全淬火、不完全淬火、循环加热淬火按加热介质及热源条件:盐浴加热淬火、火焰加热淬火、感应加热淬火、高频脉冲淬火、接触电加热淬火等按淬火部位:整体淬火、局部淬火、表面淬火等按冷却方式:单液淬火、双液淬火、分级淬火、等温淬火、预冷淬火等4、工艺过程:冷却速度是钢在淬火过程中最主要的因素,它直接影响淬火产物和性能。
一方面冷却速度要大于临界冷却速度,以保证全部得到马氏体组织;另一方面冷却应尽量缓慢,以减少内应力,避免工件变形和开裂。
为了解决上述矛盾,可以采用不同的冷却介质和冷却方法,使淬火工件在奥氏体最不稳定的温度范围内(650℃~550℃)快冷,超过临界冷却速度,以防珠光体类型转变发生;而在马氏体转变区域范围内(300℃~100℃),则冷却减慢,以减少淬火工件产生的应力。
5、不同淬火温度下的内部组织在完全淬火时,钢的淬火组织主要是由马氏体组成在不完全淬火时亚共析钢得到马氏体和铁素体组成的组织当奥氏体中含碳质量分数大于0.5%时,淬火组织为马氏体和残余奥氏体。
过共析钢得到马氏体和渗碳体的组织。
亚共析钢用不完全淬火是不正常的,因为这样不能达到最高硬度。
而过共析钢采用不完全淬火则是正常的,这样可使钢获得最高的硬度和耐磨性。
在适宜的加热温度下,淬火后得到的马氏体呈细小的针状;若加热温度过高,其形成粗针状马氏体,使材料变脆甚至可能在钢中出现裂纹。
表面淬火1、定义:是成本最低的表面硬化处理方法,工艺简单而灵活,适合局部处理,特别适合于提高耐磨性的场合。
由于只加热表面层,心部强度保持着表淬前的状态。
3、目的:提高材料的硬度、强度和耐磨性,而心部保持良好的塑性和韧性。
表面淬火后零件表面将产生很大的残余压应力,因而使材料的疲劳强度大大提高。
但需要注意的是,表淬区域的起始点和终结点处于残余拉应力状态下,此处的疲劳强度因此大大降低。
设计时要考虑残余拉应力不可留在齿根处、轴的过渡圆角处等零件应力集中部位,以免工作应力与残余拉应力叠加造成零件裂纹或断裂。
3、工艺过程:表面淬火一般工艺是高频感应加热、中频感应加热或火焰加热,喷水冷却,然后进行低温回火。
4、应用:淬硬深度一般是:高频淬火1~2mm;中频淬火2~6mm。
一般用于中碳以上结构钢和合金钢主轴、齿轮等零件。
当工件淬火后,表面硬度高,除磨削外,一般不能进行其它切削加工。
因此工序应尽量靠后,一般安排在半精加工之后,磨削加工之前。
回火1、定义:回火是将淬火后的钢件加热到指定的回火温度,经过一定时间的保温后,空冷到室温的热处理操作。
回火时引起马氏体和残余奥氏体的分解。
2、目的:⑴减少或消除淬火内应力, 防止变形或开裂。
⑵获得所需要的力学性能。
淬火钢一般硬度高,脆性大,回火可调整硬度、韧性。
⑶稳定尺寸。
⑷对于某些高淬透性的钢,空冷即可淬火,如采用回火软化既能降低硬度,又能缩短软化周期。
3、分类:钢淬火后都需要进行回火处理,回火温度取决于最终所要求的组织和性能(工厂常根据硬度的要求),通常按加热温度的高低,回火可分为以下三类。
(1)低温回火:加热温度为150℃~250℃。
低温回火组织为回火马氏体,马氏体内析出碳化物形成回火马氏体,残余奥氏体也转变为回火马氏体。
回火马氏体易受侵蚀,组织呈暗色针状。
回火马氏体具有高的强度和硬度,而韧性和塑性较淬火马氏体有明显改善。
其目的主要是降低淬火钢中的内应力,减少钢的脆性,同时保持钢的高硬度和耐磨性。
常用于高碳钢制的切削工具、量具和滚动轴承件及渗碳处理后的零件等。
(2)中温回火:加热温度为350℃~500℃。
中温回火组织为回火屈氏体,它是由铁素体和粒状渗碳体组成的极细密混合物。
回火屈氏体有较好的强度,最高的弹性,较好的韧性。
其目的主要是获得高的弹性极限,同时有高的韧性。
主要用于各种弹簧热处理。
(3)高温回火:加热温度为500℃~650℃。
高温回火组织的回火索氏体,它是由粒状渗碳体和等轴形铁素体组成混合物。
回火索氏体具有强度、韧性和塑性较好的综合机械性能。
其目的主要是获得既有一定的强度、硬度,又有良好的冲击韧性的综合机械性能。
通常把淬火后加高温回火的热处理称做调质处理。
主要用于处理中碳结构钢,即要求高强度和高韧性的机械零件,如轴、连杆、齿轮等。
4、淬火钢回火时的组织转变阶段随温度升高,淬火组织将发生五个阶段变化:(1)马氏体中碳原子偏聚(100℃以下)(2)马氏体的分解(100~250℃)(3)残余奥氏体的转变(200~300℃)(4)碳化物析出和转变(250~400℃)(5)α相状态变化及碳化物聚集长大(>400 ℃)调质1、定义:工件淬火并高温回火的复合热处理工艺,。
2、目的:使材料获得较好的强度、塑性和韧性等方面的综合机械性能,用于各种中碳结构钢和中碳合金钢。
调质一般安排在粗加工之后,半精加工之前,并为以后热处理作准备。
大部分的零件都是通过调质处理来提高材料的综合机械性能,即提高拉伸强度、屈服强度、断面收缩率、延伸率、冲击功。
3、应用:调质处理能大大提高材料的拉伸和屈服强度,提高屈强比和冲击功,使材料具有强度和塑韧性的良好配合。
一般来讲调质钢应该为中碳钢( C = 0.3%~0.6%);碳钢中像30、35、40、45、50等钢种则既可以调质处理又可以正回火使用;而对高碳钢和低碳钢则不宜采用调质工艺4、工艺过程:首先需要将零件加热到材料的Acl点以上30~50℃(800.950℃),保温一定时间,然后在油中或水中冷却。
冷却后立即入炉进行回火(500~650℃),以降低淬火应力、调整组织成份,进而达到机械性能要求。
马氏体:钢中马氏体的主要特性是高硬度和高强度。
铁素体:铁素体的塑性、韧性很好,但强度、硬度较低。
其力学性能几乎与纯铁相同。
奥氏体:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好,易锻压成形。
渗碳体:渗碳体中碳的质量分数为6.69%,熔点为1227℃,硬度很高,塑性和韧性极低,脆性大。
渗碳体是钢中的主要强化相,其数量、形状、大小及分布状况对钢的性能影响很大。
珠光体:存在于钢的退火或正火组织中,粒状珠光体:在铁素体基体上分布着粒状渗碳体的两相机械混合物称为粒状珠光体。
粒状珠光体一般经球化退火而得到,也可以通过淬火加回火处理得到。
各种组织的硬度性能指标范围如下:珠光体10~20HRC索氏体22~25HRC屈氏体36~42HRC马氏体62~65HRC回火马氏体约60HRC回火屈氏体40~48HRC回火索氏体25~35HRC。
氮化处理原则上讲任何钢种都可以进行氮化处理,但是最常用的氮化钢是45(HV>300)、40Cr(HV>400)、42CrMo(HV>500)等氮化是在氮化炉中进行,因此变形小,氮化硬度要根据材质而定。
氮化后一般可不加工,设计时应尽可能采用整体氮化处理,因为氮化层本身对使用来说只有益处,没必要加工处理掉。
对必须进行局部氮化的零件需要做局部保护,氮化后去掉或加工掉保护层,但是如此一来,需要额外的工作很多,增加了制造的复杂性和成本。
此外,氮化前必须进行调质处理,以提高心部的机械性能,为氮化做组织准备。
氮化工艺最大的特点是热处理变形小,硬化层浅,特别适用于与调质工艺相结合提高零件的疲劳强度、表面耐磨性、耐蚀性和改善零件的摩擦状态,防止胶合。
适用于在周期载荷下工作的零件,比如轴等。
钢的淬透性1、淬透性:钢在淬火时能够获得马氏体的能力。
其大小是用规定条件下淬硬层深度来表示。
钢材本身的固有属性,与外部因素无关2、淬硬层深度:由工件表面到半马氏体区的深度。
工件的淬透深度取决于钢材淬透性, 还与冷却介质、工件尺寸等外部因素有关。
3、影响淬透性的因素:临界冷却速度,取决于材料化学成分。
一般而言,碳钢的淬透性差,合金钢的淬透性好,且合金元素含量越高,淬透性越好硬度硬度是指金属材料抵抗比它硬的物体压入其表面的能力。
硬度越高,表明金属抵抗塑性变形的能力越大。
它是重要的力学性能指标之一,它与强度、塑性指标之间有着内在的联系。
常用的硬度试验方法有:布氏硬度试验——主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。