微晶玻璃的制备与应用
微晶玻璃及其用途0906-17
微晶玻璃及其用途0906-17
微晶玻璃及其用途0906-17
微晶玻璃介绍
微晶玻璃(Microcrystalline glass),又称玻璃钢,是一种高性能
玻璃,它具有高熔点、高硬度、高抗损伤性、高粘结性,是一种具有优异
性能的玻璃。
微晶玻璃一般由一种或多种氧化物组成,以硅酸铝硅酸锰为
基本构成元素,具有铝、锰、钛等金属的氧化物成分。
微晶玻璃制造工艺
微晶玻璃的重要原料是硅酸铝、硅酸锰、硅酸钛等金属元素的氧化物,一般经过精细加工组成成分,采用烧结工艺制造出来。
根据加工工艺不同,可以将微晶玻璃分为微晶玻璃颗粒、碎片和微晶玻璃块三种形式。
微晶玻璃的性能特点
1.高熔点:微晶玻璃的熔点可达1600℃,远远高于普通玻璃,具有
良好的高温耐受能力。
2.高硬度:由于微晶玻璃中含有较多的金属元素,具有较高的硬度,
受损伤比普通玻璃小。
3.高抗温性:因为微晶玻璃具有自身的特殊性,具有比普通玻璃更高
的耐热性能,在高温条件下表现良好,可以长时间在高温环境下工作。
4.高抗化学腐蚀性:微晶玻璃表面具有自身的化学结构,能有效抵御
化学侵蚀,耐酸碱性腐蚀能力强,非常适合接触各种有害物质的环境。
微晶玻璃及其制备方法和应用[发明专利]
专利名称:微晶玻璃及其制备方法和应用
专利类型:发明专利
发明人:黎展宏,戴佳卫,欧阳辰鑫,刘再进,宫汝华,何根,梁雅琼,沈于乔
申请号:CN201911268661.1
申请日:20191211
公开号:CN112939472B
公开日:
20220426
专利内容由知识产权出版社提供
摘要:本发明涉及玻璃领域,具体公开了微晶玻璃及其制备方法和应用。
以微晶玻璃的总重量为基准,微晶玻璃包含:52‑65重量%的SiO2,12‑27重量%的Al2O3,5‑19重量%的Na2O,0‑3.5重量%的K2O,2‑7重量%的MgO,3‑10重量%的Li2O,0.5‑5重量%的ZrO2,0‑4.5重量%的TiO2;所述微晶玻璃包含具有球形晶相的微晶部分和玻璃相部分,析晶度为10‑25重量%,所述球形晶相包含二硅酸锂、β‑石英、β‑石英固溶体、Mg2TiO4和偏硅酸锂中的至少一种。
所述微晶玻璃具有高透光率、高强度、优异的抗冲击能力和优异的抗跌落性能,特别适用作显示器件保护玻璃。
申请人:四川旭虹光电科技有限公司,华为技术有限公司
地址:621000 四川省绵阳市经开区涪滨路北段177号
国籍:CN
代理机构:北京润平知识产权代理有限公司
更多信息请下载全文后查看。
微晶玻璃合成方法
微晶玻璃合成方法
微晶玻璃是一种新兴的材料,具有良好的透明性、耐热性和硬度,广泛应用于光电、光学和电子领域。
以下是微晶玻璃合成方法:
1. 溶胶-凝胶法
该方法是将适当比例的硅源和其他金属氧化物以适当的溶剂中溶解,形成溶胶,经凝胶反应后形成凝胶体。
通过高温热处理,可将凝胶体转化为微晶玻璃。
2. 气相沉积法
气相沉积法是将金属氧化物的气相混合,经催化剂的作用,在合适的条件下形成固体颗粒,最终形成微晶玻璃。
3. RF磁控溅射法
该方法将金属靶材表面加热后,利用载气将金属原子或分子离子化,然后通过电场引导原子或分子沉积到基板上,形成微晶玻璃。
4. 熔融过程
该方法是利用传统的熔融工艺,将原料熔融后快速冷却,形成微晶玻璃。
这种方
法不仅操作简单,而且可以制备大量的微晶玻璃。
微晶玻璃的制备范文
微晶玻璃的制备范文微晶玻璃是一种具有微观晶体结构特征的玻璃材料,它拥有优良的物理和化学性能,被广泛应用于光电子、光学、信息技术、生物医学等领域。
以下将详细介绍微晶玻璃的制备过程。
首先,选择适合的原料是制备微晶玻璃的关键。
通常选择的原料包括二氧化硅(SiO2)、氧化镁(MgO)、氧化锌(ZnO)和氧化铝(Al2O3)。
这些原料的选择旨在实现微晶玻璃的结构多样性和性能优化。
其次,将原料按照一定比例混合,并进行球磨处理。
球磨的目的是使原料达到细小颗粒尺寸,提高反应效率和均匀性。
球磨通常采用高能球磨机进行,工作液体一般使用纯水或有机溶剂。
然后,经过球磨后的原料需要进行干燥处理。
干燥的目的是去除原料中的水分,以避免烧结过程中产生气泡和裂纹。
常用的干燥方法包括真空干燥、烘箱干燥等,具体方法选择取决于原料的特性和工艺要求。
在原料制备完成后,进行烧结过程。
烧结是将原料在高温下进行结合,形成微晶玻璃的主要步骤。
烧结过程需要精确控制温度、时间和气氛。
通常采用持续升温、保温和冷却的方式进行。
首先,将原料放在烧结窑中,开始进行升温。
升温速率需要控制良好,过快的升温速率会导致烧结体积收缩不均匀,产生内应力和气孔;升温过慢则会增加工艺时间和能源消耗。
当达到合适的烧结温度后,需要保持一定时间的保温。
保温时间的长短会影响到微晶玻璃的晶粒尺寸和分布。
通常情况下,较长的保温时间可以获得更大和更均匀的晶粒。
保温完成后,开始进行冷却。
冷却的方式对最终微晶玻璃的性能和结构也有一定的影响。
通常采用缓慢冷却的方式,以避免烧结体局部受到热应力过大而破裂。
最后,经过烧结和冷却过程后,获得的微晶玻璃将通过研磨和抛光等工艺进行加工,得到最终的成品。
总之,微晶玻璃的制备是一个复杂而严谨的过程,需要精确控制原料的成分、混合比例和烧结条件。
通过优化制备工艺和材料组成,可以获得具有优良性能的微晶玻璃,满足不同领域的需求。
微晶玻璃分类
微晶玻璃分类微晶玻璃是一种具有特殊纹理和光泽的玻璃材料。
它具有高质量的透明度和耐磨性,被广泛应用于建筑、家居装饰、电子产品和汽车等领域。
本文将从微晶玻璃的制备工艺、特点和应用方面进行分类介绍。
一、微晶玻璃的制备工艺微晶玻璃是通过特殊的制备工艺制成的。
首先,将玻璃坯料加热至高温状态,然后迅速冷却。
这一过程使得玻璃内部的晶体结构发生变化,形成微晶体。
随后,对玻璃进行进一步的热处理和加工,使其表面呈现出独特的纹理和光泽。
二、微晶玻璃的特点1. 纹理独特:微晶玻璃具有独特的纹理和光泽,能够使其与普通玻璃材料相区别。
2. 高透明度:微晶玻璃具有较高的透明度,能够有效传递光线,增加室内采光亮度。
3. 耐磨性强:微晶玻璃的表面硬度较高,具有较强的耐磨性,不易被刮花。
4. 耐腐蚀性好:微晶玻璃能够抵抗多种化学物质的腐蚀,具有较好的耐候性。
5. 防紫外线:微晶玻璃能够有效阻挡紫外线的侵入,对室内物品起到保护作用。
三、微晶玻璃的应用1. 建筑领域:微晶玻璃常用于建筑的外墙、隔断、天花板等装饰材料。
其独特的纹理和光泽可以增加建筑的美观度和现代感。
2. 家居装饰:微晶玻璃可以用于制作家具、橱柜、灯具等家居装饰品。
其高透明度和耐磨性能使得家居空间更加明亮和耐用。
3. 电子产品:微晶玻璃常用于电子产品的显示屏、触摸屏等部件。
其高透明度和防紫外线特性可以提升电子产品的显示效果和使用寿命。
4. 汽车领域:微晶玻璃广泛应用于汽车的前挡风玻璃、车窗等部件。
其耐磨性和防紫外线特性可以保护驾乘人员的安全和健康。
微晶玻璃是一种具有独特纹理和光泽的玻璃材料,具有高透明度和耐磨性的特点。
它广泛应用于建筑、家居装饰、电子产品和汽车等领域,为这些领域的产品增添了美观度和实用性。
随着科技的不断发展,微晶玻璃的制备工艺和应用领域也在不断创新和拓展,为人们的生活带来了更多便利与美好。
微晶玻璃及其应用
浇铸法工艺流程:
配料
混合
玻璃熔制
浇铸
研磨抛光
微晶玻璃
晶化
脱模
带颗粒纹 理产品
优点:可浇铸成异形性,对生产一些异形板有很大优势,产品致密 度高,无气孔,抗压强度大。 缺点:对模具质量要求高,模具损耗大,生产成本高。
溶胶凝胶法:
将金属有机盐作为原料,溶解到乙醇中,,并以醋酸为催化 剂;在恒温下加热,一段时间后,随部分溶剂挥发,有积金属盐不 断水解并缩聚,溶液的浓度和粘度不断增大,并形成一种不可流动 的凝胶状态,然后再逐步进行热处理,最后获得微晶玻璃。
枝晶结构是由晶体在某一晶格方向上加速生长造成的。枝晶的总轮 廓与通常晶体形貌相似,在枝晶结构中保留了很高比例的残余玻璃 相。枝晶在三维方向上连续贯通,形成骨架。由于氢氟酸对亚硅酸 锂的侵蚀速度要比铝硅酸盐玻璃相更快,亚硅酸锂枝晶有容易被银 感光成核,可将复杂的图案转移到微晶玻璃上。
高度晶化微晶玻璃的晶粒尺寸可以控制在几十纳米以内,得到超细 颗粒结构。在锂铝硅透明微晶玻璃中,由于充分核话,基础玻璃中 形成大量的钛酸锆晶核,β-石英固溶体晶相在晶核上外延生长,形 成平均晶粒尺寸约60nm均匀的超细颗粒结构。由于晶粒尺寸远小于 可见光波长,并且β-石英固溶体的双折射率较低,该微晶玻璃透光 率很高。 类硅酸盐矿物在二维方向上结晶能够产生一种互锁的积木结构,是 可切削微晶玻璃的典型显微结构。由于云母晶相较软,而且能使切 削工具尖端引起的裂纹钝化、偏转和分支而产生碎片剥落,不会产 生灾难性破坏,因此即使晶相体积分数仅40%也具有良好的可切削 性,此外,云母相的连续性也使此类微晶玻璃具有很高的电阻率和 介电强度。
烧结法的制备流程为;
配料
混合
玻璃熔制
水淬
微晶玻璃生产技术
微晶玻璃生产技术
无缺
1.微晶玻璃的定义
微晶玻璃,又称抛光玻璃,是一种用于公共建筑物,室内装饰,家居
用途的玻璃产品。
具有高光泽,优良的视觉效果,耐久耐磨,经久耐用的
特性,广泛应用于建筑物的表面装饰。
2.微晶玻璃的原理
微晶玻璃的特殊表面处理技术可以消除光泽差的现象,减少玻璃用户
使用时的反光现象,从而提高微晶玻璃的使用质量。
微晶玻璃的表面经过
抛光处理,由原来的小疤痕变成细小的坑洼,具有良好的表面光泽度及视
觉效果。
3.微晶玻璃的制作方法
a.物料准备
使用玻璃原材料,例如浮法玻璃、夹胶玻璃、厚板玻璃,切割成符合
要求的尺寸大小。
b.抛光处理
将玻璃产品放入到抛光机中,进行抛光处理,手动和机械抛光均可,
能够去除表面的小疤痕、凹凸、微孔,使其视觉效果更佳。
c.清洗处理
抛光处理后的玻璃产品,需要进行清洗处理,以便减少污渍和清洁度,并可以增加玻璃的光泽度。
d.烘干处理
抛光处理后,玻璃产品需要进行烘干处理,以便去除产品表面的水份,并进行冷却,以免玻璃受热而损坏。
e.检验处理。
微晶玻璃的制备原理及其工艺过程
微晶玻璃的制备原理及其工艺过程一、微晶玻璃的制备原理微晶玻璃的制备主要通过两种方式实现:一种是熔融法,另一种是溶胶-凝胶法。
在熔融法中,玻璃材料首先被加热熔化,然后通过凝固过程形成微晶结构;在溶胶-凝胶法中,玻璃材料首先被溶解在溶剂中形成胶体溶液,然后通过凝胶过程形成微晶结构。
下面分别介绍这两种方法的制备原理。
1. 熔融法熔融法是最常用的微晶玻璃制备方法之一,其制备原理如下:首先将玻璃材料加热至熔化状态,然后通过控制降温速度和结晶条件,使其形成微晶结构。
具体步骤为:首先选取合适的玻璃成分,按一定比例混合搅拌;然后将混合了的玻璃粉末或块料加热至一定温度,使其熔化成液体;接着控制降温速度,使液态玻璃逐渐凝固结晶,形成微晶结构。
2. 溶胶-凝胶法溶胶-凝胶法是一种通过溶液的化学反应形成凝胶,然后通过加热干燥凝胶形成玻璃的方法。
其制备原理如下:首先将玻璃原料溶解在溶剂中形成胶体溶液;然后通过化学反应或加热使胶体溶液发生凝胶化反应,形成凝胶;最后将凝胶干燥成固体微晶玻璃。
二、微晶玻璃的制备工艺过程微晶玻璃的制备工艺过程包括以下步骤:原料准备、配料混合、熔炼、成型、退火、抛光等。
下面逐步介绍微晶玻璃的制备工艺过程。
1. 原料准备首先需要选取适合的玻璃成分,通常包括硼、硅、氧、钠、铝等元素。
这些原料按照一定比例进行称量,然后通过干燥、筛分等工艺处理,以确保原材料的质量和粒度符合要求。
2. 配料混合将称量好的原料按照配方比例混合搅拌,使各种元素均匀分布。
混合的过程一般在干燥室内进行,以防止水分对玻璃成分的影响。
3. 熔炼混合好的玻璃成分被加热至高温,使其熔融成液体。
熔炼温度一般在1200℃以上,根据不同的成分可以有所调整。
在熔炼过程中,需要不断搅拌,以确保成分混合均匀。
4. 成型熔融玻璃液通过拉拔、注射、压铸等方式成型,形成所需形状的微晶玻璃坯料。
成型过程需要控制温度、压力等参数,确保成型的精度和质量。
5. 退火成型后的微晶玻璃坯料进行退火处理,即将其加热至一定温度,然后缓慢冷却。
微晶玻璃生产工艺设计
微晶玻璃生产工艺设计微晶玻璃是一种具有微晶结构的新型材料,常用于制造高透明度和高强度的玻璃制品。
在微晶玻璃的生产工艺设计中,需要考虑材料的制备、成型和后处理等环节。
以下是一份关于微晶玻璃生产工艺设计的例子,供参考。
1.材料的制备:微晶玻璃的主要成分是二氧化硅(SiO2),同时还需要添加一些助熔剂、融化剂和晶种等。
首先,按照配比将原料粉末加入球磨罐中进行混合和湿法球磨,使得原料粉末细化并均匀混合。
然后,将球磨后的混合粉末过筛,筛掉粒径过大的颗粒。
最后,将过筛后的粉末进行干法球磨,进一步细化颗粒。
2.成型:微晶玻璃的成型可以采用多种工艺,如热压、烧结和熔控法等。
其中,热压法是常用的一种成型工艺。
首先,将制备好的微晶玻璃粉末放入模具中,利用预设的温度和压力进行加热和压制。
加热过程中,微晶玻璃粉末会熔化并与模具表面接触,在压力的作用下形成所需形状的玻璃制品。
然后,将压制完成的玻璃制品放入高温炉中进行退火处理,消除应力和提高玻璃的晶化程度。
3.后处理:微晶玻璃成型后,还需要进行一些加工和处理操作,以获得最终的制品。
首先,对成型后的微晶玻璃制品进行表面抛光处理,以去除可能存在的表面缺陷和残留的模具印记。
然后,根据需要,对微晶玻璃制品进行二次退火处理,以进一步改善制品的晶化程度和机械强度。
最后,进行最终的质量检验和包装,将制品进行分类、包装和标识,以便于出售和存储。
除了以上所述的关键工艺环节,还需要考虑一些其他的因素。
例如,制备过程中的温度和压力控制、原料的纯度和配比、设备的选择和维护等。
同时,还需建立质量控制体系,对每个生产环节进行监控和检测,以确保微晶玻璃制品的质量和性能符合要求。
总之,微晶玻璃的生产工艺设计涉及材料的制备、成型和后处理等环节。
通过合理的工艺设计和严格的质量控制,可以实现高质量的微晶玻璃制品的生产。
li2o-al2o3-sio2系微晶玻璃的制备及其在准等熵压缩中的应用
Li2O-Al2O3-SiO2 (LAS)系微晶玻璃是一种具有优异力学性能和高温稳定性的先进陶瓷材料。
通过准等熵压缩方法,可以制备出具有纳米级微观结构和高度均匀性的LAS微晶玻璃。
以下是制备LAS微晶玻璃的一种可能方法:1.配料:按照所需的化学成分,将相应的氧化物(如Li2O、Al2O3和SiO2)混合在一起。
2.熔炼:将混合物在高温下熔炼,形成均匀的玻璃溶液。
3.热处理:将玻璃溶液进行热处理,以促进晶核的形成和微晶的发育。
4.晶化处理:通过控制热处理条件,使微晶在纳米尺度上均匀分布。
5.等熵压缩:采用准等熵压缩技术,使微晶玻璃在高压下保持其内部结构的稳定性。
这有助于提高材料的强度和韧性。
6.后处理:对压缩后的样品进行适当的后处理,以去除表面缺陷和改善机械性能。
在准等熵压缩过程中,应控制压力、温度和时间等参数,以确保微晶玻璃的纳米级微观结构和高度均匀性得以保持。
此外,为了实现有效的压缩和优化材料的性能,应选择合适的压缩路径和速率。
LAS微晶玻璃在准等熵压缩中的应用可能涉及以下几个方面:1.结构材料:由于其优异的力学性能和高温稳定性,LAS微晶玻璃可用于制造高温和高强度结构材料。
2.功能材料:由于其特殊的电学和光学性能,LAS微晶玻璃也可用于制造功能材料,如光电器件和电子器件。
3.复合材料:通过与其他材料复合,LAS微晶玻璃可以提高材料的综合性能,如耐腐蚀性和耐磨性。
4.生物医学材料:由于其生物相容性和良好的机械性能,LAS微晶玻璃也可用于制造生物医学材料,如人工关节和牙科修复材料。
总之,通过准等熵压缩方法制备的LAS微晶玻璃具有许多优点,因此在结构和功能材料方面具有广泛的应用前景。
微晶玻璃
微晶玻璃的生产制备1.微晶玻璃概述新型微晶材料的开发研制最先起于美国,亚洲的日本紧随其后,成为目前世界上新型微晶材料的生产大国,此后西欧和亚太地区的经济发达国家不甘落后,也加紧开发研制。
而我国则起步于上世纪的八十年代初,经过二十年的开发,微晶材料的生产工艺基本上已趋于成熟,进入了实用阶段。
它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。
微晶玻璃是新型微晶材料的一种,它是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。
更具体说,它是在高达1500℃高温条件下,从含特殊成份的玻璃液中析出的特殊晶相及硅灰石晶体和玻璃相结合致密整体结晶材料。
其颜色多种多样。
生产方法可分为烧结法、压延法、浇铸法。
产品按配方可分为两大类,一类是矿渣类。
所用原料为矿渣、石英砂、长石、石灰石、萤石、白云石、滑石等;第二类为泥沙类。
所用原料为泥沙、石英砂、长石、纯碱、石灰石、白云石、重晶石、萤石等。
由于微晶玻璃是硅灰石相和玻璃相相结合的致密整体结晶材料,颜色上是以金属氧化物为着色剂,因而其表面特征既有陶瓷的特征,又与天然石材极其相似,加之材料形状多为板材,因而许多人又将其称作为微晶板材、微晶石材、微晶玉石、玻璃陶瓷、结晶化玻璃或人造石材等等。
由于其结构极为致密并用作表面装饰材料。
因此,又有人将其归为实体面材。
与建筑陶瓷及天然石材制品相比,由于微晶玻璃具有特定性能的晶相析出。
因而,在机械强度、表面硬度、热膨胀性能、耐酸碱及抗腐蚀等方面具有一些独特的优点。
1.1微晶玻璃的分类微晶玻璃可按不同的标准分类,从外观看,有透明微晶玻璃和不透明微晶玻璃;按微晶化原理可分为光敏微晶玻璃和热敏微晶玻璃;按照性能分为耐高温、耐热冲击、高强度、耐磨、易机械加工、易化学蚀刻、耐腐蚀、低膨胀、零膨胀、低介电损失、强介电性、强磁性和生物相容等种类;按基础玻璃组成可分为硅酸盐、铝硅酸盐、硼硅酸盐、硼酸盐及磷酸盐等五大类;按所用材料则分为技术微晶玻璃和矿渣微晶玻璃两类。
微晶玻璃生产工艺流程
微晶玻璃生产工艺流程微晶玻璃是一种具有高透明度、高硬度和高耐磨性的特殊玻璃材料,广泛应用于光电子、光学仪器、电子显示器等领域。
下面将详细介绍微晶玻璃的生产工艺流程。
1. 原材料准备微晶玻璃的主要原材料包括二氧化硅(SiO2)、氧化铝(Al2O3)、氧化锌(ZnO)等。
首先需要准备这些原材料,确保其质量符合要求,并按照一定比例进行配比。
2. 材料混合将准备好的原材料按照配比加入到混合设备中,通过搅拌等方式进行均匀混合。
混合时间和速度需要控制得当,确保各种原材料能够充分混合,并形成均匀的颗粒状物料。
3. 粉体制备将混合好的物料送入球磨机中进行粉碎处理。
球磨机内部装有一定数量和大小的钢球,物料在球与球之间不断碰撞和摩擦,从而实现粉碎的目的。
粉体制备的时间和条件需要根据具体情况进行调整,确保得到细腻均匀的粉体。
4. 粉体成型将粉体通过压制机进行成型。
常用的成型方式包括干压成型和注浆成型。
干压成型是将粉体放置在模具中,然后用高压机械对其进行压制,使其形成坯体。
注浆成型是将粉体与一定比例的液体(如水或有机溶剂)混合,形成可流动的糊状物料,然后通过注射设备将糊状物料注入到模具中。
5. 坯体处理经过成型后得到的坯体需要进行一系列处理步骤来提高其致密性和机械强度。
这些处理步骤包括: - 预烧:将坯体放入预烧窑中,在一定温度下进行加热处理。
预烧可以去除坯体中残留的有机物和水分,并改善坯体的结构。
- 烧结:将预烧好的坯体放入高温炉中进行加热处理。
在高温下,坯体中的颗粒会发生结合和熔融,从而形成致密的微晶玻璃材料。
- 磨削:将烧结好的坯体进行磨削,使其表面光滑且尺寸精确。
磨削可以通过机械或化学方法进行。
6. 表面处理经过磨削后的微晶玻璃坯体需要进行表面处理,以提高其光学性能和使用寿命。
常用的表面处理方式有: - 镀膜:将坯体放入真空镀膜设备中,通过物理或化学方法在其表面形成一层薄膜。
镀膜可以改善微晶玻璃的透光性、耐磨性和耐腐蚀性。
一种析晶可控的硼铝酸盐微晶玻璃及其制备方法和应用
硼铝酸盐微晶玻璃是一种具有析晶可控性的玻璃材料。它由硼酸盐和铝酸盐组成,通过适当的热处理方法可以控制析晶的程度和分布。在析晶过程中,玻璃中的某些区域形成了微小的晶体结构,这些微晶对于材料的性能和特性具有重要影响。
制备方法
硼铝酸盐微晶玻璃的制备通常包括以下步骤:
1.材料选择:选择合适的硼酸盐和铝酸盐作为原料。这些原料应具有高纯度和适当的化学组成,以保证制备的玻璃具有良好的品质。
4.光学器件:硼铝酸盐微晶玻璃具有良好的透光性和光学特性,可以用于制备光学器件,如透镜、光纤等。
5.其他域:硼铝酸盐微晶玻璃还可用于制备陶瓷涂层、防弹材料、燃料电池等领域。由于其析晶可控性,可以根据不同的应用需求,设计出具有特殊性能的材料。
应用
硼铝酸盐微晶玻璃具有多种应用领域:
1.激光器材料:硼铝酸盐微晶玻璃具有良好的光学性能和激光特性,可作为激光器材料应用于激光器的制造领域。
2.生物医学领域:硼铝酸盐微晶玻璃具有生物相容性和生物活性,可以用于制备生物陶瓷、人工骨等医学器械和假体材料。
3.电子器件:硼铝酸盐微晶玻璃具有良好的电学性能和热稳定性,可以作为电子器件的基底材料或封装材料。
2.原料混合:将硼酸盐和铝酸盐按照一定比例混合均匀,可以通过磨碎、混合等方法进行。
3.熔融:将混合好的原料放入高温炉中进行熔融,使其形成均匀的玻璃状液体。
4.成型:将熔融的玻璃状液体倒入预先制作好的模具中,使其冷却成型。成型方法可以采用浇铸、压制、注射模塑等方式。
5.热处理:利用适当的热处理工艺,使玻璃材料发生析晶过程。热处理的温度、时间和冷却速度等参数需要根据具体的玻璃组成和所需的析晶程度进行调控。
关于微晶玻璃的制备工艺及应用探讨
建材发展导向2018年第18期981 微晶玻璃的制备工艺目前,微晶玻璃的制备工艺主要包括三种,分别是在熔融法的基础上对玻璃进行热处理,所得到的微晶玻璃方法叫做熔融法;通过溶胶-凝胶法,利用干凝胶对玻璃进行热处理,所得到的微晶玻璃方法叫做溶胶-凝胶法;通过对原料进行混压、干燥,得到的微晶玻璃方法叫做烧结法。
1.1 熔融法制作微晶玻璃最早的方法是熔融法,该方法一直沿用至今,各种生产玻璃的方法如压延法、浮法等都可以生产微晶玻璃。
熔融法要求基础玻璃具备析晶能力,一般情况下,将适当的形核剂加入到玻璃原料中,混合均匀后在1400~1600℃高温下熔制成型,这样当对玻璃进行退火,玻璃完成形核持续加温,最终使晶核转化为微晶体。
通过熔融法制作微晶玻璃,一般都要经过形核和晶化这两个步骤。
但有些析晶能力比较强的玻璃在加热阶段就能够完成核化,这种情况下,将其加热至晶化温度便能得到微晶玻璃。
对于给定成分的玻璃选择合适的晶核剂非常重要。
贵金属、贵金属氧化物、硫化物、氟化物等都可以作为制备过程中的晶核剂。
晶核剂要具备这几点性能之一:其一,在玻璃熔融过程中具有分散性高,能诱导主晶相的异相成核。
其二,促进基础玻璃行程亚稳分相,降低晶核形成的壁垒。
其三,具有两种价态的氧化物,如V 2O 5、Fe 2O 3、Cr 2O 3等,可以成为价电子的接受者,使得玻璃中的能量产生变化引发核化。
1.2 溶胶-凝胶法相关学者对于溶胶-凝胶法的研究起步较晚,因此这种方式在制备微晶玻璃中并不常见。
溶胶-凝胶法从金属的有机化合物溶液出发,在溶液中通过化合物的水解、聚合,把溶液制成溶于金属氧化物或氢氧化物为粒子的溶液,进一步反应使之凝胶化,对凝胶进行干燥处理进而得到干凝胶,再将其通过热处理,使之成为预想的固体材料。
1.3 烧结法烧结法属于传统制作方法,最早是在1962年提出的,其制作工艺类似陶瓷的制作工艺。
具体工艺流程是:配料→熔制→水淬→粉碎→过筛→成形→烧结→加工。
微晶玻璃实验报告(3篇)
第1篇一、实验目的1. 了解微晶玻璃的制备过程及原理;2. 掌握微晶玻璃的性能测试方法;3. 分析微晶玻璃在不同工艺条件下的性能变化。
二、实验原理微晶玻璃是一种介于玻璃和陶瓷之间的新型材料,具有玻璃和陶瓷的双重特性。
其制备原理是在特定条件下,通过热处理使基础玻璃发生晶化,从而形成具有一定晶体结构的微晶玻璃。
三、实验材料与设备1. 实验材料:硅酸盐玻璃、氟化物、碱金属氧化物等;2. 实验设备:高温炉、电热炉、天平、滴定仪、X射线衍射仪、扫描电镜等。
四、实验步骤1. 制备微晶玻璃:(1)按照一定比例称取硅酸盐玻璃、氟化物、碱金属氧化物等原料;(2)将原料放入高温炉中,加热至熔融状态;(3)将熔融的原料倒入模具中,迅速冷却至室温;(4)将冷却后的微晶玻璃放入电热炉中,进行晶化处理。
2. 性能测试:(1)X射线衍射分析:分析微晶玻璃的晶体结构;(2)扫描电镜分析:观察微晶玻璃的表面形貌和晶体形态;(3)机械性能测试:测试微晶玻璃的弯曲强度、压缩强度等;(4)热性能测试:测试微晶玻璃的热膨胀系数、热稳定性等;(5)化学性能测试:测试微晶玻璃的耐酸、耐碱、耐腐蚀性能。
五、实验结果与分析1. X射线衍射分析:实验结果显示,微晶玻璃中主要晶体相为石英、长石等,晶体结构较为完整。
2. 扫描电镜分析:微晶玻璃表面光滑,晶体形态较为规则,尺寸在微米级别。
3. 机械性能测试:微晶玻璃的弯曲强度和压缩强度均较高,表明其具有良好的力学性能。
4. 热性能测试:微晶玻璃的热膨胀系数较低,具有良好的热稳定性。
5. 化学性能测试:微晶玻璃具有良好的耐酸、耐碱、耐腐蚀性能。
六、结论通过本实验,我们成功制备了微晶玻璃,并对其性能进行了分析。
实验结果表明,微晶玻璃具有以下特点:1. 晶体结构完整,晶体形态规则;2. 具有较高的力学性能和热稳定性;3. 具有良好的耐酸、耐碱、耐腐蚀性能。
微晶玻璃作为一种新型材料,具有广泛的应用前景,如光学、电子、建筑、化工等领域。
微晶玻璃的制备与应用
渣微晶玻璃, 可切削性 云母微晶玻璃及生物活性 磷酸盐微晶玻璃 、 钙铁硅微晶玻璃 。
收 稿 日期 : 0 —1 2 1 0—1 0 l
作者简升 : 宋开新 2 岁 . 男.5 硕士研究生。
维普资讯 1 8来自山东 陶瓷 第2 5卷
到双 碱效 应【 1。 0 J
目前微晶玻璃的制备方法主要有 : 熔融法、 烧 结法 、 胶—凝 胶 法 , 溶 它有 成 形 工 艺灵 活 , 能够 通 过扎制 、 压制 、 吹制和拉制等方法高速成形。
21 熔 融 法 .
成核和晶体生长后, 经过近四五十年的研究与发 展, 这种新型的材料的制备和应用得到 了快速的 发 展 。作 为建筑 材料 , 其性 能 集玻 璃 、 陶瓷 、 材 石 的优点与一身 ; 作为功能材料和结构材料, 在光 、 电 、 、 、 等微 电子技 术 、 生 化 磁 生物 医 学 、 国防尖 端 技 术 、 械制 造等领 域得 到 了广泛的 应用 , 且具 机 并
中难 于实 现。
该方法吸 引人之处是其制 备温度远低于传 统方 法 , 时可 以避 免 某 些组 分 挥 发 、 同 侵蚀 容 器 、 少 减
污染 : 其组成 完 全 可 以按 照 原 始 配 方和 化 学 计 量 准确 获得 , 在分 子水平上 直 接获 得均匀 的 材料 : 可
扩 展组 成范 围, 制备传统方法不能制备 的材料。 其 缺 点 是 : 然 低 温 节能 , 必 要 的起 始物 成 本 虽 但 高, 必然抵消了低温带来的节能效益; 长时间的热 处理 比传统的熔制来讲更耗能量 , 另外要得到没 有絮凝的均匀溶胶也是件困难的事: 凝胶在烧结 过 程 中有较大 的收缩 , 品易 变形 【-J 制 11。 12
微晶玻璃的制备方法与应用
X X X X 大学材料制备原理课程论文题目微晶玻璃的制备方法与应用学院材料科学与工程学院专业班级无机072学生姓名2010 年 6 月11 日微晶玻璃的制备方法与应用摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。
由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。
本文来主要介绍微晶玻璃的制备方法及其应用。
关键词:微晶玻璃;制备;应用1.引言微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。
微晶玻璃由玻璃相与结晶相组成。
两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。
这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。
微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。
是具有发展前途的21世纪的新型材料。
2.制备方法微晶玻璃的制备方法根据其所用原材料的种类、特性、对材料的性能要求而变化,主要的有熔融法、烧结法、溶胶—凝胶法、二次成型工艺、强韧化技术等。
2.1 熔融法熔融后急冷,退火后在经一定的热处理制度进行成核和晶化以获得晶粒细小、含量多、结构均匀的微晶玻璃制品。
热处理制度的确定是微晶玻璃生产的关键技术。
作为初步的近似估计,最佳成核温度介于Tg 和比它高50℃的温度之间。
晶化温度上限应低于主晶相在一个适当的时间内重熔的温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微晶玻璃的种类、制备及应用摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。
由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。
本文分析了微晶玻璃在材料科学中的作用,并着重介绍了微晶玻璃的种类、制备方法及其应用。
关键词:微晶玻璃;种类;制备;应用Type、preparation and application of glass ceramicsAbstract: microcrystalline glass is a kind of the base glass to strictly control the crystallization behavior and made of crystal and glass phase homogeneous distribution of materials. Because of its high mechanical strength, thermal expansion can be adjusted, good thermal shock resistance, chemical corrosion resistance, low dielectric loss, good insulation and excellent comprehensive properties, has been widely used in many fields. This paper analyses the role of microcrystalline glass in materials science, and emphatically introduces the category, glass ceramics and preparation method and application thereof.Keywords: glass ceramics; species; preparation; application一、引言微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。
微晶玻璃由玻璃相与结晶相组成。
两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。
这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。
微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。
是具有发展前途的21世纪的新型材料。
二、微晶玻璃在材料科学中的作用微晶玻璃的出现不仅给我们提供了一种性能优越、应用广泛的新材料,而且给我们提供了玻璃晶化行为研究的新领域。
不论是对玻璃晶化机理研究,还是对晶化过程控制研究都是极为重要的。
对于这类基础研究来说,玻璃是一种非常适合的介质。
因为液体的玻璃黏度很大,其中晶体生长的扩散过程和原子的重排都进行得很缓慢,而且温度的降低能使黏度急剧增加,因此快速冷却可以使析晶过程停止,从而实现对整个过程进行控制,便于我们制得所需性能的材料,这种性能特点对晶体材料的研究也具有价值。
微晶玻璃性能的可设计性,是其他许多材料所不可比拟的。
微晶玻璃的性能是由晶相与玻璃相的化学组成以及它们的结构、分布和所占比例多少决定的。
调整上述各种因素就可生产出各种预定性能的材料,其中晶相是最主要的影响因素。
微晶玻璃能以极广的玻璃组成制成玻璃态,而且还能掺入多种物质,从而形成不同的主晶相,得到所需的性能。
在几种主要系统微晶玻璃中,硅酸盐系统微晶玻璃可通过改变组分得到强介电性或强磁性材料;铝硅酸盐系统微晶玻璃中随着主晶相的改变可制得耐高温、低膨胀、高强度、耐磨的材料;硼酸盐和硼硅酸盐微晶玻璃可制备强磁性、耐腐蚀、膨胀系数可调、封接性好的材料。
具有可设计性能的微晶玻璃为功能材料的研制和发展提供了一个新的方向,而且研究微晶玻璃的晶相所取得的成果,对新型无机材料的研究也有很大的借鉴作用,如对研究高性能的压电陶瓷、接点陶瓷、介电陶瓷等新型材料、新型的非线性光学材料等就很有帮助。
因为可使材料含有已知晶体的组合体,并且还有可能发展出全新的晶相,这对矿物学的研究具有十分重要的意义。
随着社会的发展和进步,新材料和高科技的发展都迫切需要研制与开发一系列新型材料。
而随着微晶玻璃研究水平的发展,人们对微晶玻璃的性能和质量提出了更高的要求,于是具有一项或几项功能的新型功能微晶玻璃应运而生,正日益成为高新技术领域的生力军,成为材料科学研究的一个热点。
目前微晶玻璃正向着扩展材料的组成、调节微观结构和开拓新工艺等方向发展。
目的是开发出具有更多优异性能与功能的新材料。
在这一方面,过去的研究较多集中于传统的氧化物微晶玻璃,目前已开始研究开发新的氧化物系统,如含稀土元素氧化物、氧化物与非氧化物的混合型材料及非氧化物材料等,除通过改变组分外,也可采用控制微观结构的方法来获得所需要的性能。
微晶玻璃研究的另一个重要方面是对各种工业废渣和尾矿的利用,这对于保护生态环境,降低产品成本意义重大。
同时满足了材料科学的发展更注重生态和环保的要求,体现了以人为本的观念。
因此,微晶玻璃对材料科学的发展具有极大的促进作用。
三、微晶玻璃的种类微晶玻璃的组成在很大程度上决定着其结构和性能。
按照其组成,微晶玻璃主要分为四类:硅酸盐微晶玻璃、铝硅酸盐微晶玻璃、氟硅酸盐微晶玻璃和磷酸盐微晶玻璃。
(一)硅酸盐微晶玻璃简单硅酸盐微晶玻璃主要由碱金属和碱土金属的硅酸盐晶相组成,这些晶相的性能也决定了微晶玻璃的性能。
研究最早的光敏微晶玻璃和矿渣微晶玻璃即属于这类微晶玻璃。
光敏微晶玻璃中析出的主要晶相为二硅酸锂(Li2Si205),这种晶体具有沿某些晶面或晶格方向生长而成的树枝状形貌,实质上是一种骨架结构。
二硅酸钾晶体比玻璃基体更容易被氢氟酸腐蚀,基于这种独特的性能,光敏微晶玻璃可以进行酸刻蚀加工成图案尺寸精度高的电子器件,如磁头基板、射流元件等。
矿渣微晶玻璃中析出的晶体主要为硅灰石(CaSiO3)和透辉石(CaMg(SiO3)2)。
据研究,透辉石具有交织型结构,比硅灰石具有更高的强度、耐磨耐腐蚀性。
采用工业废渣为原料制造的矿渣微晶玻璃不仅具有性能优异、成本低廉、用途广泛等优点,而且对于“三废”利用,综合治理环境污染等各方面都极为重要,因而引起了广大研究者的普遍重视。
(二)铝硅酸盐微晶破璃铝硅酸盐微晶玻璃包括Li20-Al203-Si02系统、MgO-Al203-Si02系统Na20-Al203-Si02系统、ZnO-Al203-Si02系统1.Li20-Al203-Si02系统Li20-Al203-Si02系统是一个重要的系统,因为从这个系统可以得到低膨胀系数的微晶玻璃。
当引入4%(TiO2+Zr02)作晶核剂时,玻璃中能够析出大量的钛酸锆晶核。
在850 ℃左右热处理时,这些晶核上能够析出直径小于可见光(λ<0.4 μm)的β-石英固熔体,这种超细晶粒结构使材料透明。
由于这种微晶玻璃的膨胀系数低于7×10-7(0-500 ℃),因此具有优良的抗热震性。
β-石英是介稳的晶体,当晶化温度为1000-1200 ℃时就可转变为β-锂辉石。
由于析出的晶粒尺寸为12 μm,材料不透明。
β-锂辉石晶体本身有显著的热膨胀各向异性,必须在转变过程中控制晶粒的尺寸。
2.MgO-Al203-Si02系统这类系统的微晶玻璃具有优良的高频电性能、高的机械强度(250-300 MPa)、良好的抗热震性热稳定性,己成为高性能雷达天线保护罩的标准材料。
这些优越的性能主要是因为微晶玻璃中析出主晶相为青石(2MgO·Al203·5Si02)。
青石的热膨系数呈各向异性,随着温度的升高,C轴方向膨但a轴方向收缩而导致零体积膨胀,它通过TiO2晶核剂可以从铝硅酸镁玻璃中析出。
由于晶化过中还可能会出现其它的晶相,如方石英、斜顽辉石、橄榄石,因此必须选用合适的热处理制度,防止复杂的相变过程中产主应力而开裂。
3.Na20-Al203-Si02系统在此类系统中引入一定量的TiO2,可以获得以霞石(NaAlSi04)为主晶相的微晶玻璃。
由于这类微玻璃具有很高的热膨胀系数(100×10-7 /℃),可以在材料表面涂一层膨胀系数较低的釉以强化材料。
表面釉采用铅-钙-碱的铝硼酸盐型,其膨胀系为65×10-7 /℃,比微晶玻璃小30%左右,则表面形成压应力,釉的抗弯强度可增加二个数量级。
配方中加入Ba,可析出钡长石(BaAl2Si206)晶体,其膨胀系数(30×10-7 /℃)小于霞石,因此可改善微晶玻璃的抗热震性。
4.ZnO-Al203-Si02系统玻璃组成或热处理制度不一样,析出的晶体类型也不一样。
在850 ℃以下,只析出透锌石(ZnO·Al203·8Si02),而在950-1000 ℃析出锌尖晶石(ZnO·Al203)和硅锌矿(2ZnO·Si02)。
由于不同晶体热膨胀系数差异较大,如透锌长石的热膨胀系数为零,锌尖晶石从零变到较大的热膨胀系数为72.3×10-7 /℃(10-300 ℃)。
因此,可以通过调整组成来使热膨胀系数的正值。
(三)氟硅酸盐微晶玻璃氟硅酸盐微晶玻璃包括片状氟金云母晶体型、链状氟硅酸盐晶体型1.片状氟金云母晶体型片状氟金云母晶体沿(001)面容易解理,而且晶体在材料内紊乱分布,使得断裂时裂纹得以绕曲或分叉,而不致于扩展,破裂仅发生于局部,从而可以用普通刀具对微晶玻璃进行各种加工。
云母晶体的相互交织将玻璃基体分隔成许多封闭或半封闭的多面体,增加了碱金属离子的迁移阻力。
同时,由于云母晶体本身是一种优良的电介质材料,因此云母型微晶玻璃具有优良的介电性能,其介电强度可达40 kv/mm。
根据析出的主晶相,片状金云母型微晶玻璃可分为氟金云母型、四硅云母型和水胀云母型。
氟金云母型(KMg3AISi3O10F2)片状微晶玻璃被称为可切削微晶玻璃,其商品Macor己生产20多年,在其中引入B2O3。
有利于在更低的温度下形成玻璃,同时又可降低粘度,促进云母晶体择优横向生长。