第5章概率与概率分布
概率第五章_大数定律与中心极限定理090505
P ( − Eξ ε ) = ξ ≥
P(ξ ≥ Eξ + ε ) + P (ξ ≤ Eξ − ε )
k
=
≤
k : xk ≥ E +
∑ξ ε p
k
+
k : xk ≤ E −
∑ξ ε p
pk +
k :xk ≥ E +
∑ξ ε
( x − Eξ ) 2
ε
2
k :xk ≤ E −
∑ξ ε
( x − Eξ ) 2
, 方差 Dξ n ( n = 1, 2,L),且 Dξi < l (i = 1, 2,L) 其中 l 与 i 无关的
1 Eξ = (1 + 2 + 3 + L + 6) 6
35 7 故 Eξ = Dξ = 12 2
4 2 = P (ξ = 5) + P(ξ = 6) + P (ξ = 1) + P (ξ = 2) = = 6 3 7 1 P( − 2 ) = P(ξ ≥ 5.5) + P(ξ ≤ 1.5) = P (ξ = 6) + P (ξ = 1) = ξ ≥
即
lim P ( − p < ε ) = 1 n →∞ n
ξ
此定理表明:当试验在不变的条件下重复进行很多次时, 随机事件的频率 频率在它的概率 概率附近摆动。 频率 概率 由贝努里大数定律可知,若事件A的概率很小很小时,则 它的频率也很小很小,即事件A很少发生或几乎不发生, 这种事件叫小概率事件。反之,若随机事件的概率很接近1, 则可认为在个别试验中这事件几乎一定发生。 同分布的两个或多个随机变量: 同分布的两个或多个随机变量 离散型: 它们的概率分布律相同. 离散型 它们的概率分布律相同 连续型: 它们的概率密度函数相同. 连续型 它们的概率密度函数相同 所以它们的期望与方差一定相同. 所以它们的期望与方差一定相同
概率与概率分布
掌握概率的概念、性质和法则 明确概率分布的含义,了解二项试验和分布
的基础知识。
概率与概率分布
第一节 概率的一般概念
概率论起源于17世纪,当时在人口统计、人 寿保险等工作中,要整理和研究大量的随机数据资 料,这就需要一种专门研究大量随机现象的规律性 的数学。
参赌者就想:如果同时掷两颗骰子 ,则点数 之和为9 和点数之和为10 ,哪种情况出现的可能 性较大?
概率与概率分布
一、频率和概率的定义
1. 频率 对随机现象进行观测时,若事件A在n次观测中出 现了m次,则m与n的比值,就是事件A出现的频 率(也称为相对频数)。用 W(A)表示事件A 的频率。 公式为:W(A)=m/n
概率与概率分布
2. 概率
概率是对随机事件出现可能性大小的客观量度。
事件A发生的概率记为P(A)。
概率与概率分布
二、概率的性质
1. 对于任何事件A,均有0≤P(A)≤1 2. 不可能事件的概率为零,P(V)=0 3. 必然事件的概率为1,P(U)=1
概率与概率分布
三、概率的加法和乘法
1. 概率的加法
互不相容事件:在一次试验中不可能同时出现的 事件。
事件之和:有限个互不相容事件中任意一个发生。 如:A+B=A或B发生。
假设把两枚硬币投1000次,得到的结果为下表:
正面的数量 0 1 2
总计
频数(f) 253 499 248 1000
百分比(%) 25.3 49.9 24.8 100.0
概率分布实质上是无限次抛掷的频数分布。尽 管我们永远不能观察到这个无限次抛掷的频数 分布,但我们知道这是的频数分布会无限接近 概率分布。
概率与概Байду номын сангаас分布
第五章概率与正态分布
正态分布曲线的特点
• 钟形轴对称曲线,对称轴是随机变量的平均数
。
• 正态分布曲线的位置和形状分别由平均数
和标准差 决定。
• 平均数大小决定图形向左移或右移。 • 标准差大小决定图形的陡峭程度,即纵线的最大
值。
y
0 1
5 1
x
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
图5.3 平均数不等,标准差相等的正态分布示意图
标准正态分布表中各变量的含义
表 5.4 标准正态分布表中各变量的说明
Z 横轴坐标
原始变量(Xi)取值转换后的标准
分数(Zi)
Y 纵轴高度
某一点取值(Zi)所对应的概率密
度(相对频次,Yi)
P (0,Zi)两点间 取值界于区间(0,Zi)的概率
曲线下的面积
• 已知下列Z值,查表求P值。
– (1)Z=-1与Z=1之间的概率 – (2)Z=-2与Z=2之间的概率 – (3)Z=-3与Z=3之间的概率 – (4)Z=-1.96与Z=1.96之间的概率 – (5)Z=-2.58与Z=2.58之间的概率
• 经验概率 对多次重复相同或相似试验所得到的数据进行分 析,获得事件发生的相对频率,作为对此事件 发生概率的一个估计。
P(A) a,N NFra bibliotek事件的概率
• 先验概率 • 当试验满足:试验中各种可能结果(基本事件)是
有限的,并且每种结果发生的可能性是不变时, 则某事件发生的概率等于该事件包含的基本事件 数除以试验中可能发生的基本事件总件数之商。 • 设N代表可能发生的基本事件总数,K代表事件A 包含的基本事件数,则A事件发生的概率为:
– 例:某公共汽车停车点上乘客候车的时间记为 随机变量Y
第五章概率与概率分布
P( A)
事件A发生的次数m 重复试验次数n
m n
英语字母出现频率
space 0.2 ; I 0.055 ; C 0.023 ; G 0.011 ; Q 0.001 ; E R U B Z 0.105 ; T 0.072 ; 0.054 ; S 0.052 ; 0.0225 ; M 0.021 ; 0.0105 ; V 0.008 ; 0.001 O H P K 0.0654 ; 0.047 ; 0.0175 ; 0.003 ; A D Y X 0.063 ; 0.035 ; 0.012 ; 0.002 ; N 0.059 L 0.029 W 0.012 J 0.001
一、概率(Probability)的定义
概率:0-1之间的数,衡量事件A发生可能 性(机会)的数值度量。记P(A) •Probability: A value between 0 and 1, inclusive, describing the relative possibility (chance or likelihood) an event will occur.
P ( A) A包 含 的 可 能 结 果 (偶 数 ) 全部可能结果 3 6
实际与理论分析不符时,实际中可能作弊。
如:河北银行人员为买奖券,盗2000万并没中大奖。
西安彩票中心人员中奖率极高,结果是作弊。
例:已知有148名学生统计表
专业
性别
男 女
金融学院 工商学院 经济学院 会计学院 15 15 22 14 30 12 25 15
摘自:概率论与数理统计简明教程1988》李贤平 卞国瑞 立鹏,高等教育出版社
吴
大量统计的结果,用于破解密码
美国正常人血型分布
练习题答案05
第五章 概率、概率分布与临床决策练 习 题一、最佳选择题1.若事件A 和事件B 互不相容,则一定有( )。
A. P (A +B )=P (A )+P (B )B. P (A +B )=P (AB )C. P (AB )= P (A ) P (B )D. P (A │B )= P (A )E. P (B │A )= P (B )2.若人群中某疾病发生的阳性数X 服从二项分布,则从该人群随机抽取n 个人,阳性数X 不小于k 人的概率为( )。
A. P (k )+ P (k +1)+…+ P (n )B. P (k +1)+ P (k +2)+…+ P (n )C. P (0)+ P (1)+…+ P (k )D. P (0)+ P (1)+…+ P (k -1)E. P (1)+ P (2)+…+ P (k -1)3.Poisson 分布的标准差σ和平均数λ的关系是( )。
A.λ=σ B. λ<σ C. λ=σ2 D. λ= E. λ>σ4.当n 很大,二项分布在下列条件下可用Poisson 分布近似( )。
A. λπ≈nB. λ≈n X /C. λππ≈-)1(nD. λππ≈-)1(E. λππ≈-n /)1(5.对于任何两个随机变量X1和X2,一定有( )。
A. E (X 1+X 2)=E (X 1)+E (X 2)B. V (X 1+X 2)=V (X 1)+ V (X 2)C. E (X 1+X 2)=E (X 1)·E (X 2)D. V (X 1+X 2)=V (X 1)·V (X 2)E. E (X 1+X 2)=E (X 1X 2)二、问答题1.简述概率的统计定义。
2.举例说明医学观察结果中的离散型随机变量和连续型随机变量。
3.举例说明医学现象中的先验概率和后验概率。
4.简述二项分布的应用条件。
5.简述Poisson 分布的性质特征。
6.简述概率和概率分布在临床决策中的运用。
概率论与数理统计第5章
p( x1 , x2 ,
, xn ) = p(x1 )p(x2 )
p(xn ) = ∏ p( xi )
i =1
n
14 September 2009
1.
若连续型总体 X 的密度函数为 p(x ), , X n )是取自总体 X 的样本, iid
(X 1 , X 2 ,
X1, X2, … , Xn
n 则 (X 1 , X 2 , , X n )的密度函数为 p( x1 , x2 , , xn ) = p(x1 )p(x2 ) p(xn ) = ∏ p( xi ) i =1
数理统计
学习基础:1、高等数学 2、概率论
前面的学习已知:随机变量及其所伴随的概率分布全面描述了 随机现象的统计规律性,所以要研究一个随机现象首先要 知道它的概率分布. 概率论中:许多问题的概率分布通常是已知的或假设为已知的然后 在此基础上进行一切计算与推理. 实际中:一个随机现象的概率分布可能完全不知道 或知道分布类型却不知道其中的参数.例如正态分布
则 (X 1 , X 2 ,
, X n )的密度函数为
p( x1 , x2 ,
, xn ) = p(x1 )p(x2 )
n
p(xn )
⎧n −λ ∑ xi ⎪ Π λe −λxi = λ ne i=1 = ⎨ i =1 ⎪ 0 ⎩
xi > 0, i = 1, 2, 其它
,n
例如 设某批产品共有N 个,其中的次品 数为M, 其次品率为 p = M / N 若 p 是未知的,则可用抽样方法来估计它. 从这批产品中任取一个产品,用随机变量 X来描述它是否是次品: 所取的产品是次品 ⎧ 1, X =⎨ ⎩ 0, 所取的产品不是次品 X 服从参数为p 的0-1分布,可用如下表示 方法: P(x) = p (1− p) ,
第五章 概率及概率分布
P A B P ( A) P ( B)
16
第一节 概率的一般概念
三、概率的加法和乘法 1、概率的加法 例如:抛掷一枚硬币,正面朝上和正面朝下的概率各为0.50, 问在实验中,硬币正面朝上或朝下的概率是多少? 答:硬币正面朝上或朝下的概率是1。 获得一、二、三等奖的概率分别为:0.002、0.005和0.993, 获奖的概率是多少? 答:获奖的概率为1。
17
第一节 概率的一般概念
三、概率的加法和乘法 2、概率的乘法 A事件出现的概率不影响B事件出现的概率,这两个事件为独 立事件。 两个独立事件积的概率,等于这两个事件概率的乘积。表示 两个事件同时出现的概率。 用公式可表示为:
P ( A B ) P ( A) P ( B)
18
第一节 概率的一般概念
npq 101/ 2 1/ 2 1.58
31
第二节 二项分布
四、二项分布的平均数和标准差 例如:有一份试卷,共有50道选择题,并且都为四选一,假 定一个学生一点都不会,只能凭猜测来回答。问凭猜测来回 答,平均能猜对几道题,猜对题目数的标准差为多少。 分析:因为完全不会做而只是靠猜测,因此属于二项分布的 运用条件。
8
第一节 概率的一般概念
一、概率的定义 (2)后验概率——
表5.1 抛掷硬币试验中正面朝上的频率 试验者 德摩根 蒲丰 皮尔逊 皮尔逊 抛硬币次数 2048 4040 12000 24000 正面朝上次数 1061 2048 6019 12012 正面朝上频率 0.5181 0.5069 0.5016 0.5005
职教学院 刘春雷 E-mail:lcl2156@
1
第五章
概率及概率分布
第一节 概率的一般概念 第二节 二项分布
概率论数理统计基础知识第五章
C
]
(A)Y ~ 2 (n). (B)Y ~ 2 (n 1). (C)Y ~ F (n,1). (D)Y ~ F (1, n).
【例】设 随机变量X和Y都服从标准正态分布,则[ C ]
(A)X+Y服从正态分布.
2 2 2
(B)X2 +Y2服从 2分布. Y
2
2 X (C)X 和Y 都服从 分布. (D)
(X ) ~ t ( n 1) S n
客、考点 10,正态总体的抽样分布
33/33
34/33
35/33
【例】设总体 X ~ N (0,1),X 1 , X 2 , X1 X 2
2 2 X3 X4
, X n 是简单随机
2 X i. i 4 n
样本 , 试问下列统计量服从什么分布? (1 ) ; (2 ) n 1X1
记:F分布是两个卡方分布的商
2. F 分布的上侧分位数
设 F ~ F (k1 , k2 ) ,对于给定的 a (0,1) ,称满足条件
P{F Fa (k1 , k2 )}
Fa ( k1 ,k2 )
f F ( x)dx a
的数 Fa (k1 , k2 ) 为F 分布的上侧a 分位数。
服从F分布.
§5.5 正态总体统计量的分布
一、单个正态总体情形 总体
X ~ N ( , 2 ) ,样本 X1 , X 2 , , Xn ,
1 n 样本均值 X X i n i 1
n 1 2 样本方差 S 2 ( X X ) i n 1 i 1
1. 定理1 若设总体X~N(μ,σ2), 则统计量
有一约束条件
(X
i 1
第五章概率分布
32
T分数优点: 1.没有负数,若出现小数时可以四舍五入,误差不
会很大。 2.它的取值范围比较符合百分制的记分习惯,易于
被人们接受。 3.由于偶然因素导致原始分数偏态,运用T分数可转
化为正态。
2019/12/11
33
例:某研究中随机抽取了180名学生的某一能 力测验分数,由于这些分数不是正态,需 要正态化。已有研究表明学生的总体能力 分布为正态,所以可以用正态化原理和T分 数公式将其正态化。
2.当总体分布为非正态而其方差又未知时, 若满足n>30这一条件,样本平均数的分布 近似为t分布。
2019/12/11
40
2. 2 值都是正值。 3. 2 分布的和也是 2 分布。 4. 如果df> 2,这时 2 分布的平均数:
2 d,f方差 22= 2df
5. 2 是连续型分布,但有些离散型的分布也 近似 2分布。
2019/12/11
42
• 2 分布为在统计分析中应用于计数数据的
假设检验以及样本方差与总体方差差异是 否显著的检验等。
2019/12/11
43
四、F分布
• 来自两个正态总体的独立样本,其方差之 比的样本分布为:
F
s / 22源自n1 11 s / 2
2
n2 1
2
• 来自同一总体,12 22 ,F比率:
2019/12/11
36
样本平均数的分布
2.总体分布非正态,但方差已知,当n大于30 时,其样本平均数的分布为渐进正态分布。
2019/12/11
37
(一)t分布的特点
1.平均数为0。 2.以平均值0左右对称的分布,左侧t为负值,右侧
为正值。 3.变量取值在-∞~+∞之间。 4.当样本容量趋于∞时,t分布为正态分布,方差为1;
概率分布及概率分布图
概率密度函数图
总结词
概率密度函数图是一种展示连续概率分布的图形,通过曲线的高低表示概率密度的大小。
详细描述
概率密度函数图是连续概率分布的图形表示,它通过曲线的高低表示概率密度的大小。在概率密度函数图中,曲 线下方的面积表示事件发生的概率。这种图形可以帮助我们了解连续随机变量的分布情况,并用于估计和预测未 来的事件。
02 离散概率分布
二项分布
01
02
03
定义
二项分布是描述在n次独 立重复的伯努利试验中成 功的次数的概率分布。
公式
$B(n, p) = C(n, k) p^k (1-p)^{n-k}$,其中C(n, k)是组合数,表示从n个 不同项中选取k个的方法 数。
应用场景
例如,抛硬币的结果(正 面或反面),或者给定数 量的独立事件中成功事件 的次数。
泊松分布
定义
泊松分布是描述在单位时间内(或单 位面积内)随机事件的次数,当这些 事件以小概率发生,并且这些事件之 间是独立的。
公式
应用场景
例如,放射性衰变或者网络中同时发 生的请求数。
$P(X=k) = frac{e^{lambda}lambda^k}{k!}$,其中 $lambda$是事件的平均发生率。
05 概率分布及概率分布图的 应用实例
在统计学中的应用
1 2 3
描述性统计
概率分布图可以用来描述数据的分布情况,如频 数分布图、直方图等,帮助我们了解数据的集中 趋势、离散程度等。
假设检验
在假设检验中,概率分布图可以用来表示样本数 据和理论分布之间的比较,帮助我们判断样本数 据是否符合预期的分布。
概率分布的种类
离散概率分布
描述离散随机变量的取值概率,如二项分布、泊 松分布等。
第5章 常用概率分布2
正态分布的参数
1
2
3
图9 标准差相同、均数不同的正态分布曲线
正态分布的参数
σ1 σ2 σ3 σ1<σ2<σ3
图10 均数相同、标准差不同的正态分布曲线
正态分布
二、正态概率密度曲线下的面积规律
正态曲线下面积总和为1;
正态曲线关于均数对称;对称的区域内面积相等; 对任意正态曲线,按标准差为单位,对应的面积相 等;
计算z值:
z1 x1
( 1.96 )
1.96
z2
x2
( 1.96 )
1.96
0.025 1.96
查附表1:确定概率 结论:95%
0.025 -1.96
正态分布
例 已知X服从均数为 、标准差 为的正态分布, 1 .96 试估计:(1)X取值在区间 上的概率; (2)X 取值在区间 上的概率。 2.58
记为N(0,1)。 标准正态分布是一条曲线。
标准正态分布曲线下的面积
μ±1范围内的面积为68.27% μ±1.96范围内的面积为95%
μ±2.58范围内的面积占99%
图12 正态曲线下的面积分布示意
标准正态分布曲线下的面积的计算
求z值,用z值查表,得到所求区间面积占总面
积的比例。 曲线下对称于0的区间,面积相等。 曲线下总面积为100%或1。
计算z值:
Z 130 123 .02 1.46 4.79
查附表1:确定概率
0.0721 0.0721 1.46
结论:7.21%
-1.46
概率论与数理统计第五章知识点
概率论与数理统计第五章知识点第五章的概率论与数理统计的知识点主要涉及到概率函数、统计推断、分布函数和多元正态分布等内容,这其中包括了多项式概率分布、超几何分布、二项分布、线性回归、假设检验、多重切线回归、卡方检验、小抽样检验、检验均值和协方差等内容。
首先,多项式概率分布是一种特殊的概率分布,它建立了在有限次试验中某个事件出现次数的概率,它由定义性的概率空间和一组完备的事件集合组成,并可以使用不同的统计技术来计算它们。
其次,超几何分布是一种分布,用于计算取样观测中某种特征发生次数的概率,它与多项式分布有着很大的不同,它建立了一个独立的取样模型,它是一种独立取样模型,它利用概率论中的概率空间来分析一个独立取样实验中观测到一个特征发生次数的概率。
再次,二项分布也是一种概率分布,它用来计算一系列试验中出现某种特征的次数的概率。
它是一种特殊的多项式分布,可以使用概率论的工具来应用二项式分布,以确定两个不同事件之间的概率。
此外,线性回归也是第五章概率论与数理统计中一个重要的概念,它是一种统计方法,用来预测一个变量的变化可能会导致另一个变量的变化。
线性回归的基本原理是拟合两个变量的关系,使回归线能够最佳地拟合所有数据,以找到其中的趋势。
另外,假设检验是一种重要的统计技术,在假设检验中,需要使用概率空间,以便计算假设检验中备择假设的概率,并判断假设是否成立。
另外,多重切线回归也是一种重要的统计方法,它是以多元关系作为因变量和因变量之间的关系来拟合数据,以确定多元回归线的最佳拟合方式,让其效果最好。
此外,卡方检验、小抽样检验和检验均值和协方差等也是第五章概率论与数理统计的重要内容。
其中,卡方检验是一种特殊的假设检验,用来判断一组数据的差异是否大于预期,以确定数据的分布情况。
而小抽样检验是一种统计方法,用于给出总体参数的精确估计,以帮助确定相关的总体统计量,用来估计总体参数。
最后,检验均值和协方差也是一种重要的统计方法,它可以帮助分析两个变量之间的关系,以确定两个变量之间的相关程度。
概率论5章
F ( x, y) A[ B arctanx][C arctany]
求常数A,B,C.
解: F ( , ) A[ B
F ( , y ) A[ B
2
][C
2
]1
2
][ C arctan y ] 0
F ( x, ) A[ B arctan x ][ C
x y
f ( x, y)dxdy
dx 8e
x 0 ( 2 x 4 y ) x dy 2e 2 x (e 4 y ) |0 dx 0
= 0 =
0
2e
2 x
(1 e
4 y
)dx 2e
0
2 x
dx 2e6 x dx
0
F ( , y ) lim F ( x, y ) 0
x
§5.1 二维随机变量及分布函数
二、联合分布函数 性质 ⑤ 随机点(X,Y)落在矩形区域
{( x, y) | x1 X x2 , y1 Y y2}
的概率
y y2
y1 0 x1 x2 x
P( x1 X x2 , y1 Y y2 ) F ( x2 , y2 ) F (x2 , y1 ) F (x1, y2 ) F (x1, y1 )
y0 0 y0 0
x
§5.4 边缘分布
一、边缘分布函数 1.边缘分布 设F(x,y)为二维随机变量(X,Y)的联合分布函数,称
P(X≤x)=P(X≤x,Y<+≦)
x , y
其中 -≦<μ1<+≦, -≦<μ2<+≦,σ1>0,σ2>0 ,|ρ|<1,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 概率与概率分布一、思考题、频率与概率有什么关系 、独立性与互斥性有什么关系、根据自己的经验体会举几个服从泊松分布的随机变量的实例。
、根据自己的经验体会举几个服从正态分布的随机变量的实例。
二、练习题、写出下列随机试验的样本空间:(1)记录某班一次统计学测试的平均分数。
(2)某人在公路上骑自行车,观察该骑车人在遇到第一个红灯停下来以前遇到的绿灯次数。
(3)生产产品,直到有10件正品为止,记录生产产品的总件数。
、某市有50%的住户订阅日报,有65%的住户订阅晚报,有85%的住户至少订两种报纸中的一种,求同时订这两种报纸的住户的百分比。
、设A 与B 是两个随机事件,已知A 与B 至少有个发生的概率是31,A 发生且B 不发生的概率是91,求B 发现的概率。
、设A 与B 是两个随机事件,已知P(A)=P(B)=31,P(A |B)= 61,求P(A |B ) 、有甲、乙两批种子,发芽率分别是和。
在两批种子中各随机取一粒,试求: (1)两粒都发芽的概率。
(2)至少有一粒发芽的概率。
(3)恰有一粒发芽的概率。
、某厂产品的合格率为96%,合格品中一级品率为75%,从产品中任取一件为一级品的概率是多少、某种品牌的电视机用到5000小时未坏的概率为43,用到10000小时未坏的概率为21。
现在有一台这种品牌的电视机已经用了5000小时未坏,它能用到10000小时的概率是多少、某厂职工中,小学文化程度的有10%,初中文化程度的有50%,高中及高中以上文化程度的有40%,25岁以下青年在小学、初中、高中及高中以上文化程度各组中的比例分别为20%,50%,70%。
从该厂随机抽取一名职工,发现年龄不到25岁,他具有小学、初中、高中及高中以上文化程度的概率各为多少、某厂有A ,B ,C ,D 四个车间生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。
已知这四个车间产品的次品率分别为,,和,从该厂任意抽取一件产品,发现为次品,且这件产品是由A ,B 车间生产的分布。
、考虑抛出两枚硬币的试验。
令X 表示观察到正面的个数,试求X 的概率分布。
、某人花2元钱买彩票,他抽中100元奖的概率是%,抽取10元奖的概率是1%,抽中1元奖的概率是20%,假设各种奖不能同时抽中,试求: (1)此人收益的概率分布。
(2)此人收益的期望值。
、设随机变量X 的概率密度为:F(x)=323θX ,0<x<θ(1) 已知P(X>1)=87,求θ的值。
(2) 求X 的期望值与方差。
、一张考卷上有5道题目,同时每道题列出4个备选答案,其中有一个答案是正确的。
某学生凭猜测能答对至少4道题的概率是多少设随机变量X 服从参数为的泊松分布,且已知P {X=1}= P {X=2},求P {X=4}。
、设随机变量X 服从参数为λ的泊松分布:P {X=k }=!k k λe λ-问K 取何值时P {X=k }最大(λ为整数时)、设X ~N (3,4),试求: (1)P {|X |>2}。
(2)P {X>3}。
、一工厂生产的电子管寿命X (以小时计算)服从期望值 =160的正态分布,若要求P {120<X<200}≥,允许标准差σ最大为多少、一本书排版后一校时出现错误处数X 服从正态分布N (200,400),试求: (1)出现错误处数不超过230的概率。
(2)出现错误处数在190~210之间的概率。
三、选择题1、一项试验中所有可能结果的集合称为( )。
A. 事件B.简单事件C. 样本空间D.基本事件 2、每次试验可能出现也可能不出现的事件称为( )。
A. 必然事件B.样本空间C. 随机事件D.不可能事件 3、随3枚硬币,用0表示反面,1表示正面,其样本空间Ω=( )。
A. {000,001,010,100,011,101,110,111} B. {1,2,3} C. {0,1} D. {01,10} 4、随机抽取一只灯泡,观察其使用寿命t ,其样本空间Ω=( )。
A. {t=0} B. {t<0} C. {t>0}D. {t } 5、观察一批产品的合格率p ,其样本空间为Ω=( )。
A. {0<p<1} B. {0} C. {p }D. {p }6、抛掷一枚硬币,观察其出现的是正面还是反面,并将事件A 定义为:事件A=出现正面,这一事件的概率记作P(A)。
则概率P(A)=1/2的含义是()。
A. 抛掷多次硬币,恰好有一半结果正面朝上B.抛掷两次硬币,恰好有一次结果正面朝上C. 抛掷多次硬币,恰好正面的次数接近一半D.抛掷一次硬币,出现的恰好是正面7、若某一事件取值的概率为1,则这一事件被称为()。
A. 随机事件B.必然事件C. 不可能事件D.基本事件8、抛掷一枚骰子,并考察其结果。
其点数为1点或2点或3点或4点或5点或6点的概率为()。
A. 1 6 C. 1/4 29、一家计算机软件开发公司的人事部分做了一项调查,发现在最近两年离职的公司职员中有40%是因为对工资不满意,有30%是因为对工作不满意,有15%是因为他们对工资和工作都不满意。
设A=员工离职是因为对工资不满意;B=员工离职时因为对工作不满意。
则两年内离职的员工中,离职原因是因为对工资不满意,或者对工作不满意,或者两者皆有的概率为()。
A. C. D.10、一家超市所作的一项调查表明,有80%的顾客到超市是来购买食品,60%的人是来购买其他商品,35%的人既购买食品也购买其他商品。
设A=顾客购买食品,B=顾客购买其他商品。
则某顾客来超市购买食品的条件下,也购买其他商品的概率为()。
A. C. D.11、一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况如表所示:正品数次品数合计供应商乙1028110设A=取出的一个为正品;B=取出的一个为供应商甲供应的配件。
从这200各配件中任取一个进行检查,取出的一个为正品的概率为()。
A. C. D.12、一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况如下表所示:正品数次品数合计供应商乙1028110设A=取出的一个为正品;B=取出的一个为供应商甲供应的配件。
从这200各配件中任取一个进行检查,取出的一个为供应商甲供应的配件的概率为()。
A. C. D.13、一家报纸的发行部已知在某社区有75%的住户订阅了该报纸的日报,而且还知道某个订阅日报的住户订阅其晚报的概率为50%。
设A=某住户订阅了日报;B=某个订阅了日报的住户订阅了晚报,则该住户既订阅日报又订阅晚报的概率为()A. C. D.14、某考生回答一道四选一的考题,假设他知道正确答案的概率为1/2,而他不知道正确答案时猜对的概率应该为1/4。
分别定义事件A=该考生答对了;B=该考生知道正确答案,考试结束后发现他答对了,那么他知道正确答案的概率为()。
A. 1 C. D.15、一部电梯在一周内发生故障的次数及相应的概率如下表所示:)0 1 2 3故障次数(X=xi表中α值为()A. C. D.16、一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数X及概率如下表所示:次品数(X=x)0 1 2 3i则该供应商次品数的期望值为()。
A. C. D.17、一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数X及概率如下表所示:)0 1 2 3次品数(X=xi则该供应商次品数的标准差为()。
A. C. D.18、指出下面关于n重贝努里试验的陈述中哪一个是错误的()。
A. 一次试验只有两个可能结果,即“成功”和“失败”B. 每次试验成功的概率p都是相同的C.试验是相互独立的D.在n次试验中,“成功”的次数对应一个连续型随机变量19、已知一批产品的次品率为4%,从中有放回地抽取5各。
则5个产品中有次品的概率为()。
A. C. D.20、指出下面的分布中哪一个不是离散型随机变量的概率分布()。
A. 0-1分布B.二项分布C. 泊松分布D.正态分布21、设X是参数为n=4和p=的二项随机变量,则P(X<2)=( )。
A. C. D.22、假定某公司职员每周的加班津贴服从均值为50元、标准差为10元的正态分布,那么全公司中每周的加班津贴会超过70元的职员比例为()。
A. C. D.23、假定某公司职员每周的加班津贴服从均值为50元、标准差为10元的正态分布,那么全公司中每周的加班津贴在40元~60元之间的职员比例为()。
A. C. D.24、设Z服从标准正态分布,则P(≤≤)=()。
A. C. D.25、设Z服从标准正态分布,则P(≤≤)=()。
A. C. D.26、设Z服从标准正态分布,则P(Z>)=()。
A. C. D.27、若投掷一枚骰子,考虑两个事件:A:骰子的点数为奇数;B:骰子的点数大于等于4,则条件概率P(A|B)=()。
3 6 2 428、推销员向客户推销某种产品成功的概率为。
他在一天中共向5名客户进行了推销,则成功谈成客户数不超过2人的概率为()。
A. C. D.29、一种电梯的最大承载重量为1000公斤,假设该电梯一次进入15人,如果每个人的体重(公斤)服从N(60,152),则超重的概率为()。
A. C. D.四、选择题答案五、教材练习题详细解答、Ω【0,100】(1)平均分数是范围在0~100之间的一个连续变量,=(2)已经遇到的绿灯次数是从0开始的任意自然数,=ΩN 。
(3)之前生产的产品中可能无次品也可能有任意多个次品,=Ω{10,11,12,13,…}。
、设订日报的集合为A ,订晚报的集合为B ,至少订一种报的集合为B A ,同时订两种报的集合为B A 。
P(B A )=P(A)+P(B)-P(B A )=+、P(B A )=31,P(B A )=91,P(B)=P(B A )-P(B A )=92、P(AB)=P(B)P(A |B)= 31⨯61=181P(B A )=P(B A )=1-P(AB)=1817P(B )=1-P(B)=32 P(B A )=P(A )+P(B )- P(B A )=187 P(A |B )= P(B A )/P(B)=127 、设甲发芽为事件A ,乙发芽为事件B 。
,(1)由于是两批种子,所以两个事件相互独立,因此有: P(AB)=P(A)P(B)=(2)P(B A )=P(A)+P(B)-P(AB)=(3)P(A B )+P(B A )=P(A)P(B )+P(B)P (A )= 、设合格为事件A ,合格品中一级品为事件B 。
P(AB)=P(A)P(B |A)=⨯、设前5000小时未坏为事件A ,后5000小时未坏为事件B 。
P(A)=43 , P(AB)=21, P(B |A)=)()(B P AB P =32、设职工文化程度小学为事件A ,职工文化程度初中为事件B ,职工文化程度高中为事件C ,职工年龄25岁以下为事件D 。