常用金属材料锻造温度范围

合集下载

金属塑性成形

金属塑性成形

第四章金属塑性成形在工业生产中,金属塑性成形方法是指:金属材料通过压力加工,使其产生塑性变形,从而获得所需要工件的尺寸、形状以及性能的一种工艺方法。

常用的金属塑性成形方法如下:自由锻造:手工自由锻、机器自由锻锻造成形模型锻造:锤上模锻、压力机上模锻金属塑性成形冲压成形、挤压成形、拉拔成形、轧锻成形金属材料经过塑性成形后,其内部组织更加致密、均匀,承受载荷能力及耐冲击能力有所提高。

因此凡承受重载荷及冲击载荷的重要零件,如机床主轴、传动轴、齿轮、曲轴、连杆、起重机吊钩等多以锻件为毛坯。

用于塑性成形的金属必须具有良好的塑性,以便加工时易于产生永久性变形而不断裂。

钢、铜、铝等金属材料具有良好的塑性,可进行锻压加工;铸铁的塑性很差,在外力作用下易裂碎,不用于锻压。

在金属塑性成形方法中,锻造、冲压两种成形方法合称锻压,主要用于生产各种机器零件的毛坯或成品。

挤压、拉拔、轧锻三种成形方法是以生产金属材料为主,如型材、管材、线材、板料等,也用于制造某些零件,如轧锻齿轮、挤压活塞销等。

第一节锻造锻造是金属热加工成形的一种主要加工方法,通常采用中碳钢和低合金钢作锻件材料,锻造加工一般在金属加热后进行,使金属坯料具有良好的可变形性,以保证锻造加工顺利进行。

基本生产工艺过程如下:下料→坯料加热→锻造成形→冷却→热处理→清理→检验。

一、锻坯的加热和锻件的冷却1.加热的目的锻坯加热是为了提高其塑性和降低变形抗力,以便锻造时省力,同时在产生较大的塑性变形时不致破裂。

一般地说,金属随着加热温度的升高,塑性增加,变形抗力降低,可锻性得以提高。

但是加热温度过高又容易产生一些缺陷,因此,锻坯的加热温度应控制在一定的温度范围之内。

2.锻造温度范围各种金属材料在锻造时允许的最高加热温度,称为该材料的始锻温度。

加热温度过高会产生组织晶粒粗大和晶间低熔点物质熔化,导致过热和过烧现象。

碳钢的始锻温度一般应低于其熔点100~200︒C,合金钢的始锻温度较碳钢低。

第3章 锻造的加热规范

第3章 锻造的加热规范

3.4.1 装炉温度
装炉温度可按温度应力和坯料断面最大允许温差[Δt] 来确定。根据对加热温度应力的理论分析,计算式为 [Δt]=1.4×[σ]βE 式中,[Δt]是圆柱体坯料表面与中心的最大允许温差 (℃);[σ]是许用应力(MPa),可按相应温度下的抗拉 强度计算;β是线膨胀系数(℃-1);E是弹性模量(MPa)。
1.钢锭和大钢坯的加热规范
(1) 冷锭加热规范 冷锭加热的关键在低温阶段,在此阶段必须
限制装炉温度和加热速度。 (2) 热锭加热规范 热锭的加热规范主要取决于它的断面尺寸, 而与化学成分无关。
3Z21.TIF
3Z22.TIF
图3-23
5.5t 25Cr2MoVA热锭加热规范
3.5 金属的少无氧化加热
损率有所下降,这是因为在高碳钢中反应生成了较多CO而降低
了氧化铁的生成量。
图3-4
氧化皮形成过程示意图
表3-2 采用不同加热方法时钢的一次烧损率
表3-3 大钢锭加热时表面的烧损
图3-5
加热温度对氧化的影响
图3-6
加热时间对氧化的影响
2.脱碳
(1) 炉气成分 炉气成分中的H2O、CO2、O2都能引起脱碳。
最大可能的加热速度是指炉子本身可能达到的最大加热速度。其取决于 炉子结构、燃料种类、燃烧情况、坯料的形状尺寸及其在炉中的摆放方 法等。 坯料允许的加热速度是指为保证坯料加热质量及完整性所允许的最大加 热速度,受加热时产生的温度应力的限制,与坯料的导温性、力学性能 及坯料尺寸有关。 根据加热时坯料表面与中心的最大允许温差而确定的圆柱体坯料最大 允许加热速度可按下式计算,即
图3-11
MB5镁铝二元合金相图
图3-12
MB5合金的塑性图

钢的锻造温度范围

钢的锻造温度范围

钢的锻造温度范围锻造热力规范是指锻造时所选用的一些热力学参数,包括锻造温度、变形程度、应变速率、应力状态(锻造方法)、加热加冷却速度等。

这些参数直接影响着金属材料的可锻性及锻件的组织和性能,合理选择上述几个热力学参数,是制订锻造工艺的重要环节。

确定锻造热力学参数的主要依据是钢或合金的状态图、塑性图、变形抗力图及再结晶图等。

用这些资料所确定的热力学参数还需要通过各种试验或生产实践来进行验证和修改。

在确定锻造热力学参数时,并不是在任何情况下,都需要上述的所有资料。

当对锻件的组织和性能没有严格要求时,往往只要有塑性图及变形抗力图就够了。

若对锻件的晶粒大小有严格要求,而且在机械性能方面也有硬性规定时,除状态图、塑性图和变形抗力图之外,还需要参考再结晶图以及能说明所采用热力规范是否能保证产品机械性能的资料。

锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。

确定锻造温度的基本原则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗力,并得到所要求的组织和性能。

锻造温度范围应尽可能宽一些,以减少锻造火次,提高生产率。

碳钢的锻造温度范围如图10(铁-碳状态图)中的阴影线所示。

在铁碳合金中加入其他合金元素后,将使铁-碳状态图的形式发生改变。

一些元素(如Cr,V,W,Mo,Ti,Si等)缩小r相区,升高A3和A1点;而另一些元素(如Ni,Mn等)扩大r相区,降低A3和A1点。

所有合金元素均使S点和E点左移。

由此可见,合金结构钢和合金工具钢也可参照铁-碳状态图来初步确定锻造温度范围,但相变点(如熔点,A3,A1,A Cm等)则需改用各具体钢号的相变点。

1.始锻温度始锻温度应理解为钢或合金在加热炉内允许的最高加热温度。

从加热炉内取出毛坯送到锻压设备上开妈锻造之前,根据毛坯的大小、运送毛坯的方法以及加热炉与锻压设备之间距离的远近,毛坯有几度到几十度的温降。

因此,真正开始锻造的温度稍低,在始锻之前,应尽量减小毛坯的温降。

铝合金的锻造温度和加热规范

铝合金的锻造温度和加热规范

铝合金的锻造温度和加热规范来源:机械专家网 发布时间:2007-12-08合金种类 合金牌号锻造温度/℃ 加热温度+10℃/-20℃ 保温时间min·mm -1 始锻 终锻 锻铝LD2480 380 480 1.5 LD5,LD6,LD7,LD8,LD9 470 360 470 LD10460 360 460 硬铝LY1,LY11,LY16,LY17 470 360 470 LY2,LY12 460 360 460 超硬铝LC4,LC9 450 380 450 3.0 防锈铝 LF3 470 380 470 1.5 LF2,LF21 470360 470 LF6470 400 400 钛合金锻造工艺的现状与发展 - 维普资讯 钛合金(TA 、TC 、TB )阐述热处理工艺钛的热处理方法一.钛的基本热处理:工业纯钛是单相α 型组织,虽然在890℃以上有α-β 的多型体转变,但由于 相变特点决定了它的强化效应比较弱,所以不能用调质等热处理提高工业纯钛的 机械强度。

工业纯钛唯一的热处理就是退火。

它的主要退火方法有三种:1 再结 晶退火 2 消应力退火 3 真空退火。

前两种的目的都是消除应力和加工硬化效应,以恢复塑性和成型能力。

工业纯钛在材料生产过程中加工硬度效应很大。

图2-26 所示为经不同冷加 工后,TA2 屈服强度的升高,因此在钛材生产过程中,经冷、热加工后,为了恢复塑性,得到稳定的细晶粒组织和均匀的机械性能,应进行再结晶退火。

工业纯 钛的再结晶温度为550-650℃,因此再结晶退火温度应高于再结晶温度,但低于 α-β 相的转变温度。

在650-700℃退火可获得最高的综合机械性能(因高于700℃ 的退火将引起晶粒粗大,导致机械性能下降)。

退火材料的冷加工硬化一般经 10-20 分钟退火就能消除。

这种热处理一般在钛材生产单位进行。

为了减少高温 热处理的气体污染并进一步脱除钛材在热加工过程中所吸收的氢气,目前一般钛 材生产厂家都要求真空气氛下的退火处理。

锻造温度

锻造温度
1050
850
8CrV1120源自8005CrNiMo,W1,W2
1100
800
5W2CrSiV,4W2CrSiV,3W2CrSiV,WCrV,W3CrV
1050
850
3W4CrSiV,3W4Cr2V,V,CrMn2SiWMoV,Cr4W2MoV
1100
850
8V
1100
800
4Cr5W2SiV
1150
1200
800
1200
0.3~0.8
15Cr2MnNi2TiA
1180
850
1180
0.3~0.8
16Cr2MnTiA
1200
800
1200
0.3~0.8
18Cr2Ni4WA
1180
850
1180
0.3~0.8
13Ni5A,21Ni5A
1180
850
1180
0.3~0.8
20CrNi3A
1180
850
锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗力,并得到所要求的组织和性能。锻造温度范围应尽可能宽一些,以减少锻造火次,提高生产率。
碳钢的锻造温度范围如图10(铁-碳状态图)中的阴影线所示。在铁碳合金中加入其他合金元素后,将使铁-碳状态图的形式发生改变。一些元素(如Cr,V,W,Mo,Ti,Si等)缩小r相区,升高A3和A1点;而另一些元素(如Ni,Mn等)扩大r相区,降低A3和A1点。所有合金元素均使S点和E点左移。由此可见,合金结构钢和合金工具钢也可参照铁-碳状态图来初步确定锻造温度范围,但相变点(如熔点,A3,A1,ACm等)则需改用各具体钢号的相变点。

锻造温度对等温正火组织的影响

锻造温度对等温正火组织的影响

2020年 第11期 热加工22H热处理eatTreatment锻造温度对等温正火组织的影响郝丰林1,蒋勇21.江苏双环齿轮有限公司 江苏淮安 2232002.苏州工业园区久禾工业炉有限公司 江苏苏州 215021摘要:通过对始锻温度、终锻温度的调整,保证终锻温度,在保温箱中余热保温去应力,工件正火后金相组织合格。

通过分析,始锻温度设置不合理、锻造工序过长,从而造成终锻温度偏低,是一遍正火组织不合格的主要原因,并提出了生产预防措施。

关键词:始锻温度;终锻温度;正火;应力1 合理选择锻造温度的重要性锻造温度的高低对于锻造后的组织影响很大,同时对于后续的预处理也有很大的影响[1]。

始锻温度过高,不但氧化、脱碳严重,还会引起过热、过烧,极易造成材料的组织粗大,甚至形成稳定化过热的粗大组织。

这种组织具有遗传性,采用正常的预处理很难消除。

粗大晶粒将使锻件的塑性和韧性降低,疲劳性能明显下降。

终锻温度偏低,组织难以回复再结晶,便会形成纤维组织和带状组织,甚至出现贝氏体、马氏体等非平衡组织,带来组织遗传,使后期热处理晶粒长大不均匀,同样会造成晶粒粗大。

另外,还必须控制锻造过程的一次变形量,以免在临界变形量范围内形成粗大的晶粒组织。

终锻温度过低,甚至使坯料在锻造过程中开裂,或在坯料内部产生较大的残余应力,致使锻件在冷却过程或后续工序中产生开裂。

锻造温度范围是指始锻温度和终锻温度间的一段温度间隔[2]。

在锻造温度范围内金属具有良好的可锻性(足够的塑性、低的变形抗力等)和合适的金相组织。

从提高塑性和降低变形抗力出发,希望尽可能提高金属的加热温度,但从保证产品质量,避免加热中产生缺陷出发,加热温度太高又不好。

为了减少火次,节约能源并提高劳动生产效率,希望终锻温度低些,力求扩大温度范围。

但是终锻温度过低,也会产生缺陷。

这些因素都是相互矛盾和制约的,因此确定终锻温度应全面考虑。

锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与高的使用寿命。

锻造工艺学-3-锻造的热规范

锻造工艺学-3-锻造的热规范

9
3-2 加热时产生的缺陷及防止措施
表层缺陷:氧化、脱碳、裂纹 内部缺陷:过热、过烧、裂纹
10
一、氧化
钢在加热时,表面上的合金元素与炉气中的氧化 性气体(O2,CO2,H2O和SO2)发生化学反应,形成氧 化皮。
氧化实质上是一种扩散过程:铁以离子状态从内 部向表面扩散,氧以原子状态吸附到钢坯表面,并向 内部扩散。
35
3-3 金属的加热规范
36
几个概念:
1)装炉温度 2)加热速度 3)均热保温 4)加热时间 5)始锻温度、终锻温度、锻造温度范围
37
3-4 锻造温度范围的确定
基本原则: 合理的锻造温度范围,应保证金属具有良好的塑
性和较低的变形抗力。并在此条件下尽量扩大锻造温 度范围,以减少加热火次。 ● 具体锻造温度范围应根据铁碳相图来确定
30
2、组织应力(相变应力)
具有相变的材料在加热过程中,表层先相变,心 部后相变,且相变前后组织的比容发生变化,由此引 起的应力叫组织应力。
31
加热过程中随着温度升高,表层先相变,由珠光 体转变为奥氏体,比容减小,表层受拉心部受压。此 时组织应力与温度应力反向,使总的应力数值减小。
随着温度的继续升高,心部相变,此时组织应力 心部受拉表层受压。组织应力方向与温度应力相同, 使总的应力数值增大,但此时钢料已接近高温,一般 不会造成开裂。
击韧性,因此要尽量避免产生魏氏组织。
43
44
终锻温度:
低碳钢:奥氏体、铁素体双相区 中碳钢:奥氏体单相区 高碳钢:奥氏体、渗碳体双相区
注意:高碳钢终端温度为何选在奥氏体、渗碳 体双相区?
45
3-5 锻后冷却
一、冷却方法
● 空冷 ● 坑冷(箱冷) ● 炉冷 各种冷却方法的根本区别在于冷却速度的不同

20号钢锻造温度与热延伸率_概述及解释说明

20号钢锻造温度与热延伸率_概述及解释说明

20号钢锻造温度与热延伸率概述及解释说明1. 引言1.1 概述本文的研究重点是关于钢锻造温度与热延伸率之间的关系。

钢锻造在现代工业中具有广泛应用,其温度控制对于保证产品质量和性能至关重要。

同时,热延伸率也是一个关键参数,直接影响材料的变形行为和加工性能。

通过了解钢锻造温度和热延伸率之间的联系,我们可以更好地理解这两个因素对钢材加工过程和性能的影响,并提供相应的科学依据和优化方案。

这对于改进现有工艺、降低生产成本及提高材料利用率具有重要意义。

1.2 文章结构本文包括引言、正文、结论与展望以及结束语四个部分。

引言部分主要介绍了文章的背景、目的和组织结构;正文部分将就钢锻造温度的定义、热延伸率概念与意义以及影响钢锻造温度的因素进行详细探讨;接着,我们将深入分析钢锻造温度与热延伸率之间的关系,在实验结果分析、理论解释与模型推导以及工业应用案例探讨三个方面展开讨论;最后,我们将总结结论,并对尚存在的研究不足和未来的研究方向进行展望;文章以结束语作为收尾。

1.3 目的本文旨在系统探究钢锻造温度与热延伸率之间的关系,并进一步分析其影响机理和工业应用。

通过概述这一主题并解释说明其重要性,希望能够提供给读者一个全面的了解框架和知识体系。

同时,我们也希望通过本文的研究内容,为相关领域的科学家、工程师和决策者提供有价值的参考,促进相关技术和工艺水平的进步。

2. 正文:2.1 钢锻造温度的定义:钢锻造温度是指在进行钢铁材料锻造过程中所需的加热温度。

这个温度是通过对具体材料和工艺要求的分析研究得出的,一般会考虑到材料性能、形变抗力以及设备的热衰减等因素。

钢锻造温度直接影响着成品的质量、力学性能以及加工效率。

2.2 热延伸率的概念与意义:热延伸率是一个描述钢材经过高温作用后的尺寸变化情况的参数。

它表示了材料在受热时其线膨胀或收缩程度。

热延伸率反映了材料对于温度变化的敏感程度,对于预测和控制材料在高温下形变过程中产生的尺寸变化具有重要意义。

金工实习:锻压部分

金工实习:锻压部分

锻压部分目录第一节锻压概述(指导人员用) (2)一、锻压概念 (2)二、锻造对零件力学性的影响 (2)第二节金属的加热与锻件的冷却 (4)一、金属的加热 (4)二、锻件的冷却 (8)三、锻件的热处理 (8)第三节自由锻造 (9)一、自由锻的特点 (9)二、自由锻的基本工序 (9)第四节模型锻造 (16)一、模锻 (16)二、胎模锻 (16)第五节板料冲压 (18)一、冲压生产概述 (18)二、板料冲压的主要工序 (18)三、冲压主要设备 (19)第六节自由锻造的工具和设备(实践操作用) (22)一、机器自由锻及其设备 (22)二、手工自由锻 (25)锻造实习安全技术守则 (27)第一节 锻压概述(指导人员用)一、锻压概念锻压是在外力作用下使金属材料产生塑性变形,从而获得具有一定形状和尺寸的毛坯或零件的加工方法。

它是机械制造中的重要加工方法。

锻压包括锻造和冲压。

锻造又可分为自由锻造和模型锻造两种方式。

自由锻还可分为手工锻和机器锻两种。

用于锻压的材料应具有良好的塑性,以便锻压时产生较大的塑性变形而不致被破坏。

在常用的金属材料中,铸铁无论是在常温或加热状态下,其塑性都很差,不能锻压。

低中碳钢、铝、铜等有良好的塑性,可以锻压。

在生产中,不同成分的钢材应分别存放,以防用错。

在锻压车间里,常用火花鉴别法来确定钢的大致成分。

锻造生产的工艺过程为:下料—加热—锻造—热处理—检验。

在锻造中、小型锻件时,常以经过轧制的圆钢或方钢为原材料,用锯床、剪床或其它切割方法将原材料切成一定长度,送至加热炉中加热到一定温度后,在锻锤或压力机进行锻造。

塑性好、尺寸小的锻件,锻后可堆放在干燥的地面冷却;塑性差、尺寸大的锻件、应在灰砂或一定温度的炉子中缓慢冷却,以防变形或裂缝。

多数锻件锻后要进行退火或正火热处理,以消除锻件中内的应力和改善金属组织。

热处理后的锻件,有的要进行清理,去除表面油垢及氧化皮,以便检查表面缺陷。

锻件毛坯经质量检查合格后要进行机械加工。

大学金属工艺的金属塑性加工的相关问题的讲解

大学金属工艺的金属塑性加工的相关问题的讲解

金属纤维组织
图3-6铸锭热变形前后的组织
纤维组织的特点
变形程度越大,纤维组织越明显。 常用锻造比γ表示变形程度。坯料拔长时的锻造比为: γ=F0/F 式中F0为坯料拔长前的横截面积;F为坯料拔长后的横截面积。 纤维组织使金属在性能上具有方向性。 纵向(平行于纤维方向)上的塑性、韧性提高, 横向(垂直于纤维方向)上的塑性、韧性则降低。 纤维组织的稳定性很高,不能用热处理或其它方法加以消除 不能用热处理或其它方法加以消除, 不能用热处理或其它方法加以消除 只有经过锻压使金属变形,才能改变其方向和形状。
知识点:
第二章
锻造
1、自由锻和模锻。 2、胎模锻。 3、余块、机械加工余量。 4、模锻--焊接成形。
锻造:在加压设备及工(模)具作用下,铸锭产生局部或全部的塑
性变形,以获得一定几何尺寸、形状和质量的锻件的加工方法。
第一节 锻造方法
一、自由锻
(1)、 (1)、自由锻是利用冲击力或压力使金属在上、下砧之间产生塑性变
位错移动:高位能的位错处原子, 位错移动 在比理论值小的切应力下滑移。从 一个位置滑移到另一个位置。
未变形
弹性变形
弹塑性变形
塑性变形
图3-2
位错运动引起塑性变形示意图
位 错 移 动 的 结 果: 塑 性 变 形。
晶内变形:金属由大量微小晶粒组成的 晶内变形 多晶体,由组成多晶体的许多单个晶粒 产生变形。其综合效果是塑性变形。 其综合效果是塑性变形。 其综合效果是塑性变形
A 锻造比: 锻造比:Y镦= A0 >1
拔长、镦粗、冲孔、弯曲、扭转、错移、 拔长、镦粗、冲孔、弯曲、扭转、错移、切割
使坯料高度减小,截面积增大的工序。 使坯料高度减小,截面积增大的工序。

钢的锻造温度范围

钢的锻造温度范围

图11 45Mn2钢的过热 图12 30CrMnSiA钢的塑
魏氏组织×100
性图及变形抗力图
由于生产条件不同,各工厂所用的锻造温度范围也不完全相同。合
金结构钢的锻造温度范围见表4。合金结构钢钢锭锻造温度范围见表5。
合金工具钢、弹簧钢和滚珠轴承钢的锻造温度范围见表6。
表4 合金结构钢的锻造温度和加热规范
≤900
4
1240 1260
6.5 1160 800
35CrMnSi40CrMnSiMoV
35~38CrMoAl
1050~ 1100~
≤900
4
1200 1200
6.5 1160 800
25~30Ni
12~37CrNi3 12~20Cr2Ni4
40CrNiMo 35CrNi3W 35CrNi3WV 30~40CrNiW 45CrNiWV 18~25Cr2Ni4W 14CrMnSiNi2Mo
在确定锻造热力学参数时,并不是在任何情况下,都需要上述的所 有资料。当对锻件的组织和性能没有严格要求时,往往只要有塑性图及 变形抗力图就够了。若对锻件的晶粒大小有严格要求,而且在机械性能 方面也有硬性规定时,除状态图、塑性图和变形抗力图之外,还需要参 考再结晶图以及能说明所采用热力规范是否能保证产品机械性能的资 料。
此外,锻件终锻温度与变形程度有关。若最后的锻造变形程度很 小,变形量不大,不需要大的锻压力,即使终锻温度低一些也不会产生 裂纹。故对精整工序、校正工序,终锻温度允许经规定值低50~80℃。
当亚共析钢在A3和A1温度区间锻造时,由于温度低于A3,所以铁素 体从奥氏体中析出,在铁素体和奥氏体两相共存情况下继续进行锻造变 形时,将形成铁素体与奥氏体的带状组织,只是铁素体比奥氏体更细 长,而奥氏体在进一步冷却时(低于A1温度)转变为珠光体,所以室温 下见到铁素体与珠光体沿主要伸长方向呈带状分布。这种带状组织可以 通过重结晶退火(或正火)予以消除。

铝的锻造热力规范

铝的锻造热力规范

鋁的鍛造熱力規範1.锻造温度范围确定铝合金的锻造温度范围主要依据的是塑性图、变形抗力图等。

图13至图15分别为LF21,LD5,LC4三种不同铝合金的塑性图。

图16为LD5合金的变形抗力图。

由图13至图15可看出,高塑性合金LF21在300~500℃温度范围内具有较高的塑性,且对变形速度不敏感,无论在锤上或压力机上锻造,极限变形程度均可达80%以上;对于中塑性合金LD5,其塑性温度范围为350~500℃。

变形速度虽不影响其塑性温度范围,但影响其塑性极限,在锤上变形时,它的极限变形程度为60%~65%,而在压力机上变形时,极限变形程度达到80%;低塑性合金LC4对变形速度更加敏感,在锤上变形的塑性温度范围是350~430℃,在压力机上的是350~450℃,在锤上锻造的极限变形程度是60%,在压力机上可以达到70%~80%。

图13 铝合金LF21的塑性图图14 铝合金LD5的塑性图图15 铝合金LC4的塑性图图16 LD5合金的应力-应变曲线应变速率:1-10-2s-1;2-1s-1; 3-10s-1;4-100s-1;5—200s-1对于高强度铝合金,因为它们的合金化程度高,生成的化合物相十分复杂,在坯料中心或显微组织的晶界上,往往偏析有低熔点共晶,故始锻温度必须保证低于共晶熔化温度,若稍有偏高,就很容易引起过烧。

例如超硬铝LC4,它的合金元素总含量为10.4%,约为LD2锻铝的5倍。

它的强化相主要是MgZn2和Al2CuMg化合物,Al与MgZn2形成低熔点共晶,其熔化温度是470℃,因此始锻温度较低,一般取为430℃。

另外,有些铝合金若始锻温度偏高,容易引起强度性能下降。

例如LD10合金,始锻温度高于470℃时,强度性能约下降24MPa;LF6合金始锻温度从360℃提高到420℃,强度性能下降15MPa。

这是由于再结晶晶粒长大的缘故。

图16 表示出了温度对变形抗力的明显作用,LD5合金的锻造温度从450℃下降到300℃时,其变形抗力(或所需压力)就增加1倍。

布氏硬度和洛氏硬度对照表15

布氏硬度和洛氏硬度对照表15

硬度知识一、硬度简介:硬度表示材料抵抗硬物体压入其表面的能力。

它是金属材料的重要性能指标之一。

一般硬度越高,耐磨性越好。

常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。

1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。

2.洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。

它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。

根据试验材料硬度的不同,分三种不同的标度来表示:∙HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。

∙HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。

∙HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。

3 维氏硬度(HV)以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值(kgf/mm2)。

注:洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。

洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf),最后根据压痕深度计算硬度值。

标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf);标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,然后加压至980.7N(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。

铝合金的锻造温度和加热规范

铝合金的锻造温度和加热规范

铝合金的锻造温度和加热规范来源:机械专家网 发布时间:2007-12-08合金种类 合金牌号锻造温度/℃ 加热温度+10℃/-20℃ 保温时间min·mm -1 始锻 终锻 锻铝LD2480 380 480 1.5 LD5,LD6,LD7,LD8,LD9 470 360 470 LD10460 360 460 硬铝LY1,LY11,LY16,LY17 470 360 470 LY2,LY12 460 360 460 超硬铝LC4,LC9 450 380 450 3.0 防锈铝 LF3 470 380 470 1.5 LF2,LF21 470360 470 LF6470 400 400 钛合金锻造工艺的现状与发展 - 维普资讯 钛合金(TA 、TC 、TB )阐述热处理工艺钛的热处理方法一.钛的基本热处理:工业纯钛是单相α 型组织,虽然在890℃以上有α-β 的多型体转变,但由于 相变特点决定了它的强化效应比较弱,所以不能用调质等热处理提高工业纯钛的 机械强度。

工业纯钛唯一的热处理就是退火。

它的主要退火方法有三种:1 再结 晶退火 2 消应力退火 3 真空退火。

前两种的目的都是消除应力和加工硬化效应,以恢复塑性和成型能力。

工业纯钛在材料生产过程中加工硬度效应很大。

图2-26 所示为经不同冷加 工后,TA2 屈服强度的升高,因此在钛材生产过程中,经冷、热加工后,为了恢复塑性,得到稳定的细晶粒组织和均匀的机械性能,应进行再结晶退火。

工业纯 钛的再结晶温度为550-650℃,因此再结晶退火温度应高于再结晶温度,但低于 α-β 相的转变温度。

在650-700℃退火可获得最高的综合机械性能(因高于700℃ 的退火将引起晶粒粗大,导致机械性能下降)。

退火材料的冷加工硬化一般经 10-20 分钟退火就能消除。

这种热处理一般在钛材生产单位进行。

为了减少高温 热处理的气体污染并进一步脱除钛材在热加工过程中所吸收的氢气,目前一般钛 材生产厂家都要求真空气氛下的退火处理。

锻造工艺知识大全

锻造工艺知识大全

锻造工艺知识大全1. 什么是锻造利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法。

1.1.锻造按成形方法可分为:1.1.1开式锻造(即自由锻)利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需的部件,主要有手工锻造和机械锻造两种。

自由锻是将加热好的金属坯料放在锻造设备的上,下砥铁之间,施加冲击力或压力,直接使坯料产生塑性变形,从而获得所需锻件的一种加工方法. 自由锻由于锻件形状简单,操作灵活,适用于单件,小批量及重型锻件的生产。

自由锻分手工自由锻和机器自由锻,手工自由锻生产效率低,劳动强度大,仅用于修配或简单,小型,小批锻件的生产,在现代工业生产中,机器自由锻已成为锻造生产的主要方法,在重型机械制造中,它具有特别重要的作用.1.1.2闭模式锻造金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,可分为模锻(即模锻全称为模型锻造,将加热后的坯料放置在固定于模锻设备上的锻模内锻造成形的。

模锻的锻模结构有单模堂锻模和多模膛锻模)、冷镦(即常温下进行冲压使被冲压件按照锻模膛的形状冲压出来)、旋转锻(即成型金属件在旋转的状态下被锻打挤压成型而成)、挤压(通过对成型件以用力的挤压的方式来获得所需要的形状方式)。

1.2.按变形温度锻造又可分为:1.2.1热锻(在加工温度高于坯料金属的再结晶温度的条件下进行锻造)1.2.2温锻(在加工温度低于再结晶温度的条件下进行锻造)1.2.3冷锻(在加工温度于常温下进行锻造)锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、钛、铜等及其合金。

材料的原始状态有棒料、铸锭、金属粉末和液态金属等。

金属在变形前的横断面积与变形后的模断面积之比称为锻造比。

正确地选择锻造比对提高产品质量、降低成本有很大关系。

2. 锻造加工方式的优点2.1 改善金属的组织、提高力学性能金属材料经压力加工后,其组织、性能都得到改善和提高,塑性加工能消除金属铸锭内部的气孔、缩孔和树枝状晶等缺陷,并由于金属的塑性变形和再结晶,可使粗大晶粒细化,得到致密的金属组织,从而提高金属的力学性能。

紫铜锻造温度-概述说明以及解释

紫铜锻造温度-概述说明以及解释

紫铜锻造温度-概述说明以及解释1.引言1.1 概述紫铜是一种常用的金属材料,常被用于锻造工艺中。

在紫铜锻造的过程中,控制锻造温度是非常关键的。

锻造温度的选择会直接影响到紫铜的塑性和强度,从而影响到最终制品的质量和性能。

因此,本文将重点探讨紫铜锻造温度的重要性以及如何确定最佳的锻造温度。

通过深入研究紫铜锻造温度,可以为提高紫铜锻造工艺的效率和质量提供重要参考。

1.2 文章结构文章的结构主要包括引言、正文和结论三个部分。

引言部分将概述文章的主题,介绍紫铜锻造温度的重要性和研究现状,并阐明文章的目的和写作意图。

正文部分将详细叙述紫铜锻造的基本原理,介绍合适的锻造温度对紫铜锻造的影响,并探讨确定最佳锻造温度的方法。

结论部分将总结紫铜锻造温度的重要性,提出未来研究方向,并对文章进行总结和归纳。

1.3 目的本文旨在探讨紫铜锻造温度对于锻造工艺的重要性。

通过深入分析紫铜锻造的基本原理和合适的锻造温度对紫铜工件性能的影响,我们旨在为制定最佳的锻造工艺参数提供参考。

同时,将探讨确定最佳锻造温度的方法,为实际生产操作提供具体指导。

通过本文的研究,希望能够全面了解紫铜锻造温度的重要性,为进一步的研究和工程应用提供理论支持和实践指导。

2.正文2.1 紫铜锻造的基本原理紫铜是一种常见的金属材料,具有优良的导电性和导热性,因此在各种工业领域广泛应用。

在紫铜锻造过程中,通过对金属进行加热和变形,可以改变其内部结构和形状,从而得到所需的工件。

在紫铜锻造中,金属材料经过加热后变得柔软,容易形变。

通过施加外力,可以使金属产生塑性变形,从而实现锻造工艺。

在锻造过程中,金属会受到拉伸、挤压、弯曲等力的作用,从而改变其形状和结构。

紫铜锻造的基本原理包括金属的加热、变形和冷却三个阶段。

首先,金属被加热至适当的温度,使其达到易于塑性变形的状态。

然后,在适当的温度下施加外力进行变形,通过锻打、滚压等工艺实现金属的形状改变。

最后,工件被冷却至环境温度,使其恢复原来的硬度和强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档