围岩控制中锚杆支护效果分析
锚杆支护作用原理
锚杆支护作用原理
锚杆支护是一种常用的地下工程支护方法,其作用原理基于以下几个方面。
1. 承载荷载:锚杆通过固定在岩体内部形成的锚固力,能够承受地下工程所受到的荷载。
锚杆的材料通常具有较高的强度和刚度,能够有效地分担工程荷载,保证工程的安全性。
2. 抵抗岩体变形:地下工程常常面临着岩体的变形和位移,而锚杆可以通过锚固作用,将围岩与锚杆连接起来,从而抵抗岩体的变形。
锚杆与岩体之间形成的摩擦力和粘结力可以有效地限制围岩的位移,保持地下工程的稳定性。
3. 分散应力:锚杆在岩体中形成的锚固力可以通过锚杆的延伸长度将应力传递到岩体的较深层次,进而分散应力,减小地下工程周围的应力集中。
这样可以有效地减少岩体破坏的可能性,增加地下工程的承载能力。
综上所述,锚杆支护通过承载荷载、抵抗岩体变形和分散应力等作用原理,能够保证地下工程的安全性和稳定性。
预应力锚杆设计分析
预应力锚杆设计分析预应力锚杆作为一种重要的地下工程支护结构,在岩土工程中被广泛应用。
它通过施加预应力,有效地提高了锚固区的岩土稳定性,控制了结构的变形和裂缝发展。
本文将对预应力锚杆的设计与分析进行探讨。
预应力锚杆是一种将钢绞线或高强度钢丝插入到地层中的地下结构物,通过张拉产生预应力,从而对围岩提供支护力。
它的工作原理是通过调整锚杆的长度、直径、布置方式和预应力大小,以适应不同的地质条件和工程需求。
锚杆材料的选择:根据工程需要选择具有足够强度和耐久性的材料,如高强度钢绞线或高强度钢丝。
锚杆长度的确定:根据岩土体的性质、埋深、地下水状况以及施工条件等因素来确定。
锚杆布置方式的选择:根据围岩的形状和地质条件,选择合适的锚杆布置方式,如矩形、三角形或环形布置。
预应力大小的确定:根据围岩的稳定性和工程要求,确定合适的预应力大小。
预应力锚杆的分析方法主要包括静力分析和动力分析。
静力分析主要考虑锚杆的静载特性,如抗拔力和抗剪力;动力分析主要考虑地震、爆炸等动载条件下的响应。
常用的分析方法包括有限元法、有限差分法、离散元法等。
在某隧道工程中,由于围岩稳定性较差,设计采用了预应力锚杆支护。
通过合理的选材、确定锚杆长度和布置方式以及选择合适的预应力大小,有效地控制了围岩的变形和裂缝发展,保证了施工安全。
预应力锚杆作为一种有效的地下工程支护结构,在岩土工程中得到了广泛应用。
通过对预应力锚杆的设计与分析,我们可以更好地了解其工作原理和性能特点,为工程实践提供指导。
在未来的研究中,我们还需要进一步探讨预应力锚杆的设计优化方法,提高其支护效果和经济效益。
预应力锚杆支护是一种利用高强度钢杆件和端部锚固机制,对围岩进行加固的支护方式。
其基本原理是在岩体中钻孔,将钢杆件插入孔内,利用端部锚固机制对岩体进行锚固,使岩体形成稳定的支撑结构,提高岩体的整体强度和稳定性。
预应力锚杆支护的常用参数包括杆体直径、杆体长度、锚固长度、锚固力、预应力等。
复合顶板沿空巷道的围岩控制效果分析
态的实测分析, 明了该条件下巷道 围岩控 制的有效性和 支护参数 的合理 性 , 表 为类似 复杂条件下 的巷道 支护
提 供 了依 据 。
关键词 : 复合顶板 ; 沿空巷道 ; 网支护 锚 中图分类号 : D3 2 T 2 文献标识码 : B
海孜 矿 1 0槽 煤 为 主 采 煤 层 , 层 倾 角 1 ~ 煤 O 2 。平 均 1 。煤 层 厚 度 2 5 3 0m, 作 面 顶 板 O, 5, . ~ . 工 为 下 软 上 硬 的 难 控 顶 板 , 紧靠 煤 层 为 一 厚 度 在 即 2 0 0 0lm, 中 间 为厚 度 2 0mm 左 右 煤 线 0 ~1 0 l 且 l 0 的泥 岩复 合 顶板 , 上 为厚 度 1 t 其 0E 的砂 岩坚 硬 顶 F 板。 因此 , 该煤 层条 件下 巷道 围岩 的控 制 , 其是 巷 尤 道 一侧 为小煤 柱沿 空巷 道 的情况 下 , 于工 作面 的 对 安 全生产 和该 条件 煤层 的 高效开 采具 有重 要意 义 。 1 地质条 件 30 0 2工 作 面 所 采 煤 层 为 1 0精 煤 , 质 中 硬 , 煤 煤 厚 2 5 3 0E , 层倾 角 1  ̄1 。平 均 1 。 . ~ . t煤 F 0 8, 2。工 作 面直接 顶 为厚 2 0 0 0mm 的泥 岩顶板 , 间 O ~1 0 其 夹有 厚度 2 0mm 的煤线 , 接顶 之上 为厚 度1 t 0 直 0E F 的砂 岩坚 硬顶板 , 作 面地质 构造 简单 。溜 子道 沿 工 空掘 进 , 空 区边缘 与 上 工作 面 留有 3 5E 的小 采 ~ F t 煤柱 , 沿底 掘进 , 巷道 断 面如 图 1 示 。 所
规 格 90mm 宽 的菱形 铁丝 网 。 0
隧道施工中的围岩锚杆支护技术和施工要点探讨
隧道施工中的围岩锚杆支护技术和施工要点探讨在隧道工程中,围岩锚杆支护技术是一项重要的工程措施。
它能够稳定围岩,保障隧道施工的安全和顺利进行。
本文将对隧道施工中的围岩锚杆支护技术和施工要点进行探讨。
一、围岩锚杆支护技术的介绍围岩锚杆支护技术是指在隧道施工过程中,使用锚杆固定围岩,增加其稳定性和承载力的一种方法。
该技术通常在施工工序中,通过钻孔将锚杆插入岩体内,并注入砂浆将锚杆与岩体连接,从而达到支护作用。
围岩锚杆支护技术的优点主要有以下几个方面:1. 提高围岩的稳定性:通过锚杆与岩体的连接,能够有效地增加围岩的稳定性,防止其塌方和滑动等不稳定现象的发生。
2. 增加围岩的承载力:围岩锚杆的使用能够增加围岩的承载力,使其能够承受更大的荷载,提高隧道的使用寿命。
3. 提高施工效率:围岩锚杆支护技术可以在较短的时间内完成施工,因此可以提高施工效率,节约时间和成本。
二、围岩锚杆支护技术的施工要点在进行围岩锚杆支护技术施工时,需要注意以下几个要点:1. 岩体质量评估:在进行围岩锚杆支护技术前,需要对岩体的质量进行评估。
通过岩体钻孔取样和岩体勘探等方式,判断岩体的结构和强度等信息,以便选择合适的锚杆规格和施工工艺。
2. 锚杆的选择和布设:根据岩体质量评估的结果,选择合适的锚杆规格,并合理布设锚杆。
锚杆的布设应考虑围岩的力学特性和工程的实际情况,保证锚杆与岩体的连接牢固。
3. 施工工艺控制:在进行围岩锚杆支护技术的施工过程中,需要严格控制施工工艺。
施工人员应按照规范要求进行孔洞钻进、锚杆安装和注浆等操作,确保施工质量和工艺效果。
4. 质量检测和验收:施工完成后,应进行质量检测和验收。
通过检测围岩的稳定性、锚杆与岩体的连接质量和注浆效果等指标,确保围岩锚杆支护技术的有效性和可靠性。
三、围岩锚杆支护技术在隧道施工中的应用围岩锚杆支护技术在隧道施工中应用广泛,特别适用于以下几种情况:1. 多裂缝、弱结构围岩:对于具有多裂缝和弱结构的围岩,采用围岩锚杆支护技术可以加强其稳定性,防止裂缝扩展和塌方。
巷道围岩稳定性及控制技术
组合拱理论在一定程度上揭示了锚杆支护的作用机理,但在分析过程中没有深入考虑围岩-支护的相互作用,只是将各支护结构的最大支护力简单相加,从而得到复合支护结构总的最大支护力,缺乏对被加固岩体本身力学行为的进一步分析探讨,计算也与实际情况存在一定差距,一般不能作为准确的定量设计,但可作为锚杆加固设计和施工的重要参考。
三、巷道支护机理
围岩强度强化理论
中国矿业大学候朝炯教授等在已有研究的基础上,提出巷道锚杆支护围岩强度强化理论。该理论基本内容如下: (1)锚杆支护的实质时锚杆与锚固区域的岩体相互作用组成锚固拱,形成统一的承载结构; (2)锚杆支护可提高锚固体的力学参数,如弹性模量、粘聚力、以及内摩擦角等参数,改善被锚固岩体的力学性能; (3)巷道围岩存在破碎区、塑性区以及弹性区,锚杆锚固区内岩体的峰值强度、峰后强度及残余强度均能得到强化; (4)锚杆支护可以改变围岩应力状态,增加围压,并且提高围岩承载能力,改善巷道支护状况; (5)围岩锚固体强度提高后,可减小巷道周围的破碎区、塑性区范围和巷道表面位移,控制围岩破碎区、塑性区的发展,从而有利于巷道围岩的稳定。 围岩强度强化理论强调巷道松散围岩的峰后特性,及锚杆对峰后强度围岩的力学性能的改善作用,它揭示了锚杆支护对提高围岩峰值强度和残余强度的作用。
(四)、巷道支护理论学说
三、巷道支护机理
悬吊理论
该理论认为:锚杆支护的作用就是将巷道顶板较软岩层悬吊在上部较稳定的岩层上,以增强较软弱岩层的稳定性。它所依据的是这样一种认识:井下巷道开挖后,巷道上方的岩层会发生弯曲下沉。如果不及时进行支护,层状直接顶会与老顶发生分离并会发生冒落。在这种情况下,顶板锚杆通过其张力将直接顶“钉”在具有自承能力的老顶上,锚杆需要承受被悬吊岩层的自重。
煤矿井下锚杆支护知识、原理和锚杆(索)计算及支护设计公式
锚杆支护一、锚杆支护的原理锚杆支护就是以维护和利用围岩的自承能力为基点,及时地进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分。
通过锚入围岩内部的杆体,改变巷道围岩的本身的力学状态,在巷道周围形成一个整体而又稳定的承载环,和围岩共同作用,达到维护巷道的目的。
这一支护形式与传统的棚式支护相比属于主动积极加固巷道围岩的支护形式。
二、锚杆在支护中的作用1、锚杆的悬吊作用悬吊作用是指用锚杆将软弱的直接顶板吊挂在其上的坚固老顶之上。
如图1所示,或者是用锚杆将因巷道开挖而引起松动的岩块连接在松动区外的完整坚固岩石上,使松动岩块不至冒落。
2、锚杆的组合梁理论在层状岩层的巷道顶板中,通过锚入一系列的锚杆,将锚杆长度以内的薄层岩石锚成岩石组合梁,从而提高其承载力。
利用锚杆的拉力将层状岩层组合起来形成组合梁结构进行支护,这就是锚杆组合梁作用。
组合梁作用的本质在于通过锚杆的预拉应力将原视为叠合梁的岩层挤紧,增大岩层间的摩擦力;同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。
锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。
3、锚杆锲固作用锚杆的悬吊作用锚杆的组合作用是指在围岩中存在一组或多组不同产状的不连续面的情况下,由于锚杆穿过这些不连续面,防止或减少了围岩沿不连续面的移动。
如图3。
44、挤压加固拱作用形成以锚杆头和紧固端为顶点的锥形体压缩区。
如将锚杆沿拱形锚杆的楔固作用p бb p 锚杆的楔固作用-б p (бbp巷道周边按一定间距径向排列,在预应力作用下,每根锚杆周围形成的锥形体压缩区彼此重叠联结,在围岩中形成一连续压缩带。
它不仅能保持自身的稳定,而且能承受地压,组织上部围岩的松动和变形。
显然,对锚杆施加预紧力是形成加固拱的前提。
5、锚杆的减跨作用如果把不稳定的顶板岩层看成是支撑在两帮的叠合梁,由于可视悬吊在老顶上的锚杆为支点,安设了锚杆就相当于在该处打了点柱增加了支点而减少了顶板的跨度,从而降低了顶板岩层的弯曲应力和挠度,维持了顶板与岩石的稳定性,使岩石不易变形和破坏。
(完整版)锚杆支护理论
锚杆支护理论锚杆支护理论研究的目的是弄清楚锚杆、锚索与围岩之间的相互作用关系,从而为锚杆支护设计提供理论基础。
第一节锚杆支护构件的作用锚杆支护由锚杆杆体、托板和螺母、锚固剂、钢带及金属网等构件组成,锚杆支护的作用是由这些构件共同完成的。
一、锚杆杆体的作用对于锚杆杆体本身来说,由于杆体长度方向的尺寸远大于其他两个方向的尺寸,所以力学上属于杆体.这种构件主要可以提供两方面的作用,一是抗拉,二是抗剪。
至于杆体的抗弯能力和抗压能力是非常小,可忽略不计。
1、锚杆的抗拉作用锚杆杆体所能承受的拉断载荷计算:式中P—锚杆拉断载荷,N;d—锚杆直径,mm;—锚杆钢材抗拉强度.2、锚杆的抗剪作用锚杆杆体所能承受的剪切载荷计算:式中Q-锚杆剪切载荷,N;d-锚杆直径,mm;—锚杆钢材剪切强度。
二、锚杆托板的作用一是通过给螺母施加一定的扭矩使托板压紧巷道表面,给锚杆提供预紧力,并使预紧力扩散到锚杆周围的煤岩体中,从而改善围岩应力状态,抑制围岩离层、结构面滑动和节理裂隙的张开,实现锚杆的主动、及时支护作用;二是围岩变形使载荷作用于托板上,通过托板将载荷传递到锚杆杆体,增大锚杆的工作阻力,充分发挥锚杆控制围岩变形的作用。
托板力学性能应与锚杆杆体的性能匹配,才能充分发挥锚杆的支护作用.托板强度不足、安装质量差、受较大偏载都会显著降低锚杆的作用。
对于端部锚固锚杆,托板是锚杆尾部接触围岩的构件,通过托板给锚杆施加预紧力,传递围岩载荷至锚杆杆体,托板本身失效,以及托板下方的围岩松散脱落,导致托板与表面不紧贴,都会使锚杆失去支护作用.托板对全长锚固锚杆的受力分布有明显的影响。
无托板时锚杆轴力在巷道表面处为零,在一定深度达到最大值,剪力在轴力最大处为零;有托板时,由于锚杆施加的预紧力和围岩通过托板作用在锚杆杆体上的力,使得锚杆轴力在巷道表面处达到一定值,而且使锚杆轴力最大的位置向孔口移动,更接近巷道表面。
三、锚固剂的作用锚固剂的作用是将钻孔孔壁岩石与杆体粘结在一起,使锚杆发挥支护作用。
深部大倾角软岩煤巷锚网支护失效分析及优化
为3 . 0 i n, 尽量少 出矸 石 , 顶板 较 碎或 有 滴 淋水 处 采
用密 集 支 护 ( 锚 杆 问排 距 不 大 于 7 0 0 mm ×7 0 0
mm) , ⑥ 特殊 地 段 ( 复合顶板 、 断层 带 、 顶 板 破 碎 或
位, 巷 道顶 板发 生 明显 离 层 而 没 能及 时采 取 二 次 加
固, 直 至巷 道严 重变 形 , 支 护失 效 。 ( 3 ) 巷 道施 工为 了赶进 度 , 偷 工 减料 , 锯 短锚 杆 和锚 索现 象 时常发 生 ; 施 工 锚 索 中发 现煤 层 顶 板 岩
层性 质有 明显 变化 时 , 没有及 时采 取措 施 。
质构造 影 响 , 岩 石裂 隙发 育 , 层 问滑 移 构 造较 多 , 也 易形成 导水 通道 , 直 接 顶 泥 岩 在水 的弱 化 侵 蚀 作用 下 强度 降低 , 易 发生 蠕变 , 巷道 变形 加剧 。巷 道交付 使 用后 , 顶 板离 层仪 设置 不合 理 , 矿 压 观测点 设置 不 到位 , 不 能及 时观测 和分 析 ; 巷 道巡 视制 度执 行不 到
6 0 0 mm
l 2 钢 筋
顶部8 根 锚杆
西2 Omi l l ×2 2 0 0 mm
( 2 ) 根 据施 工进 度 , 及 时进 行 矿 压 观测 与 分 析 ,
必要 时加 密观测 , 发现状 况 及时处 理 , 防患 于未 然 。
( 3 ) 保 证施 工 质 量 。工 期 紧 , 但 工 程 质 量 不 能 打折 扣 ; 地质 条 件 变 化 时 , 要 及 时 反 馈 变 更 支 护 设 计、 采 取 加 固措 施 , 严禁 偷工 减料 现象 的发 生 。 ( 4 ) 针 对 高帮锚 杆 支 护容 易 失 效 的弊 端 作 出 以 下 改善 : ①改 变原 来设 计按 间距 均匀 分布 的做 法 , 将 顶 部和 帮部 锚杆 分 开设 计 , 保 证 高帮 拐 角 处 顶 帮各 有 一根锚 杆 ; ② 将 梯 子 梁 钢 筋 规格 由 1 0 变为 1 2 ; ③ 采深 超 过 一5 0 0 m 锚杆 间排 距 均 改 为 7 0 0 m m×
关于锚杆本构及其数值模拟分析总结与思考
纯拉:
纯拉
何礼理
纯剪 拉剪
PILE
耦合
(1)塑性之前(OA 段),杆体拉力随着 拉应变的增加而线性增长; (2)屈服后,杆体 轴力保持不变(AB 段);(3)当杆体的应变大于拉断破坏 应 变时,锚杆拉断,杆体拉力变为(BC 段)。
6
纯剪:
(1)在杆体受到的剪力达到抗剪极限 能力之前,其剪力随着剪 切位移的增 加而线性增加(OA 段); (2)当杆体达到剪切 极限受力状态 时,杆体产生剪断破坏。
拉剪耦合:
纯剪: 拉剪耦合:
栾恒杰
拉剪
曹艳伟
PILE
6
耦合
蒋宇静
二、 关于 FLAC3D 中材料及结构单元二次开发的思考
(1) 深部巷道二次开发锚杆、锚索、锚网索支护稳定性控制模型 上述文献[1-9]对 FLAC3D 锚杆单元抗拉、抗剪、拉剪耦合方面二次开发及破断理论进行了详 细阐述,并在模拟实际工程取得良好效果。支护与围岩形成的相互协调的承载共同体是巷道围 岩控制的核心,但是目前文章[1-18]仅仅是对锚杆、锚索支护结构单元自身进行研究,一是缺乏 对恒阻吸能、恒阻大变形锚杆单元结构进行二次开发;二是缺乏二次开发锚杆单元与原结构单 元在静态围岩应力场对比、动态应力场演变规律量化分析、函数拟合,静态围岩位移场对比、 动态位移场演变规律量化分析、函数拟合;三是缺乏二次开发锚网索单元耦合与原结构单元在 静态围岩应力场对比、动态应力场演变规律量化分析、函数拟合,静态围岩位移场对比、动态 位移场演变规律量化分析、函数拟合,从而形成动、静应力作用下深部巷道二次开发结构单元 锚杆、锚索、锚网索支护稳定性控制模型。 围岩应力场稳定是巷道稳定的基础,国内外研究学者对围岩应力场演变进行了深入研究, 其研究现状如下: Antonio, B.[19]对深部隧道围岩应力场进行深入研究,通过围岩应力和位移变化揭示应力场 演变规律;Mohammad, R.Z.[20]研究了深部隧道围岩内弹塑性分区,对塑性损伤区给出了应力和 位移的解析解;Srisharan, S.[21]将深部煤矿巷道围岩简化为等效连续体,并使用离散元法对围岩
锚杆锚索支护的相关知识
锚杆锚索支护的相关知识锚杆锚索支护的相关知识第一节锚杆支护技术一、锚杆支护的原理锚杆支护就是以维护和利用围岩的自承能力为基点,及时地进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分。
通过锚入围岩内部的杆体,改变巷道围岩的本身的力学状态,在巷道周围形成一个整体而又稳定的承载环,和围岩共同作用,达到维护巷道的目的。
这一支护形式与传统的棚式支护相比属于主动积极加固巷道围岩的支护形式。
二、锚杆在支护中的作用1、悬吊作用锚杆将软弱岩层挂在上面坚固稳定的岩层上。
2、组合梁作用在层状岩层的巷道顶板中,通过锚入一系列的锚杆,将锚杆长度以内的薄层岩石锚成岩石组合梁,从而提高其承载力。
3、围岩补强作用巷道深部围岩中岩石处于三轴受压状态,而靠近巷道周边的岩石则处于二轴受力状态,后者的强度大大小于前者,故易于破坏而丧失稳定性。
巷道周围打锚杆后,有些岩石又部分恢复了三轴受力状态增大了它本身的强度;另外锚杆还可以增加岩层弱面的剪断阻力,使巷道周边围岩不易破坏和失稳,这就叫作围岩补强作用。
4、挤压连接作用锚杆将巷道锚栓挤紧,对岩石施加预应力,以平衡岩石内所产生的张拉力,阻止裂隙的继续扩大,而且对于松散岩石也能起到挤压连接作用。
5、挤压加固拱作用松散岩石在预应力作用下围绕每根锚杆的周围会形成一个两头带圆锥的筒形挤压区或压缩应力区,在系统排列的锚杆群中,这些挤压区或压缩应力区便组成了一个具有相当宽厚的均匀压缩加固带,它相当于一种承载结构而支承相当大的载荷。
三、锚杆支护巷道有关规定:1、锚杆支护优先选用树脂锚杆,锚杆的长度应根据巷道的类别、围岩情况、矿压情况和断面情况等确定,并不得小于1600mm。
2、非金属锚杆必须符合防静电、阻燃的要求,并取得煤安标志。
3、开拓大巷、采区准备巷锚杆直径不小于18mm,长度不小于1800mm。
4、15#煤非采空区巷道顶锚杆直径不小于20mm,长度不小于2200mm,帮锚杆直径不小于18mm,长度不小于2000mm,15#煤层采空区巷道帮锚杆直径不小于20mm,长度不小于2400mm,15#煤松散煤层巷道和切巷帮锚杆直径不小于20mm,长度不小于2400mm,单一煤层巷道顶锚杆直径不小于18mm,长度不小于1800mm,二次动压巷道帮锚杆长度不小于2400mm。
巷道围岩稳定性及控制技术
(4)锚杆支护可以改变围岩应力状态,增加围压,并且提高围岩承载能力,改善 巷道支护状况;
(5)围岩锚固体强度提高后,可减小巷道周围的破碎区、塑性区范围和巷道表面 位移,控制围岩破碎区、塑性区的发展,从而有利于巷道围岩的稳定。
对于煤层巷道,研究表明,以围岩的节理裂隙间距与分层厚度表示岩 体完整性是最合适的,且工作面的直接顶初次垮落步距与巷道顶板围岩的 节理裂隙间距以及分层厚度有密切的关系,如图所示。
因此,将直接顶初次垮落步距作为反映煤层巷道岩体完整性的一个综 合因素,它能反映顶板结构和构造对巷道围岩稳定性的影响。
二、巷道围岩稳定性评价
组合拱理论在一定程度上揭示了锚杆支护的组合拱理论在一定程度上揭示了锚杆支护的作用机理但在分析过程中没有深入考虑围岩作用机理但在分析过程中没有深入考虑围岩支护的相互作用支护的相互作用只是将各支护结构的最大支护只是将各支护结构的最大支护力简单相加从而得到复合支护结构总的最大支力简单相加从而得到复合支护结构总的最大支护力缺乏对被加固岩体本身力学行为的进一步护力缺乏对被加固岩体本身力学行为的进一步分析探讨分析探讨计算也与实际情况存在一定差距计算也与实际情况存在一定差距一一般不能作为准确的定量设计般不能作为准确的定量设计但可作为锚杆加固但可作为锚杆加固设计和施工的重要参考
① 1945~1950年,机械式锚杆研究与应用;
② 1950~1960年,广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; ③ 1960~1970年,树脂锚杆推出并在矿井得到应用; ④ 1970~1980年,发明管缝式锚杆、胀管式锚杆并应用,研究新的设计方法, 长锚索产生; ⑤ 1980~1990年,混合锚头锚杆、桁架锚杆、特种锚杆等得到广泛应用,树脂锚 固材料得到改进; ⑥ 1990~2000年,以螺纹钢锚杆为代表的锚杆加之长锚索得到了广泛应用; ⑦ 2000~至今,以高强、高预应力锚杆及锚索得到了广泛应用。
土木工程知识点-锚杆支护的优越性是什么?
土木工程知识点-锚杆支护的优越性是什么?
1 支护效果好锚杆支护在支护原理上符合现代岩石力学和围岩控制理论,属于主动支护,锚杆安装以后在围岩内部对围岩进行加固,迅速形成一个围岩支护的整体承载结构,因而能够调动和利用围岩自身的稳定性,充分发挥围岩自身的承载能力,所以锚杆支护有利于保护巷道围岩的稳定,改善巷道维护状况。
2 劳动强度低、效率高与传统架棚式支护相比,由于锚杆支护所采用的支护材料较少、重量较轻、巷道掘进时,极大地减少了支护材料的运输量,劳动强度也大为降低,有利于提高掘进工效。
工作面回采时,也省去了支架的回撤工作,既降低了工人劳动强度,又提高了安全系数。
锚杆施工操作简单,紧跟掘进面,有利于实现快速掘进支护机械化。
3 经济效益明显采用锚杆支护和减少支护材料投入,降低直接支护成本。
由于锚杆支护不占用巷道工作断面,因而在支护设计上,可相应减少巷道断面,节省大量材料。
还能减少巷道维修量,节约维护费用。
总之锚杆无论在支护材料费用方面还是运输和维护费用方面都有着其他支护材料无可比拟
的优势,锚杆支护技术在这些方面能够降低成本,显著提高经济效益有人认为建立新形式的标准化始走向建筑和谐的唯一道路,并且能用建筑技术加以成功地控制.而我的观点不同,我要强调的是建筑最宝贵的性质是它的多样化和联想到自然界有机生命的生长.我认为着才是真正建筑风格的唯一目标.如果阻碍朝这一方向发展,建筑就会枯萎和死亡.要使建筑结构适合于环境,要注意到气候,地位和四周的自然风光,在结合目的来考虑的一切因
素中,创造出一个自由的统一的整体,这就是建筑的普遍课题,建筑师的才智就要在这个可提到完满解决上体现。
深井巷道锚杆支护机理与围岩控制技术研究
中图分类号 T D 3 5 3 . 6
随着 矿井开采 深度 的增加 , 深部巷道 围岩逐渐 呈 现 出软岩变形特 点 , 即使岩石抗压强度很高 , 也可 能成
破坏作用 。在巷道两 帮发生 应力集 中时 , 两 帮岩石 处
于极不利 的单轴 受力状 态 , 另一方 面深部 岩石处 于三
为实际意义上 的深井高应力区软岩。巷道 围岩在高 应 力的作用下进入软岩岩性状态 , 岩石 的蠕变速度 、 蠕 变 时间都在增大 。同时 , 地质构造也越来 越复杂 , 巷道 压 力越来越 大。在 采动影 响 的情况 下 , 巷道 周 围的岩 体
能力 , 而塑性 区 尚具 有承 载能力 。塑性 区 的出现 改变 了 围岩的应力状 态 , 这种变 化对 支护来讲具 有两个 力 学效应 : ( 1 ) 围岩 中切 向应力 和径 向应 力 降低 , 减 小 了作 用于支护体上的荷载。 ( 2 ) 应力集 中区 向深 层偏 移 , 减 少 了应力 集 中 的
塑性区和松动破坏 区截然 不 同, 松 动破坏 区没有 承载
类 比, 结合其它矿井 的实践经验 , 回采巷道锚杆 支护参
数 确 定 如下 :
( 1 ) 采 区两道运和 回风顺槽 ; 断 面形状 为梯形 , 其净 宽 2 . 8 m, 净高 2 . 4 m 。巷道 顶板 和两 帮都 使用 钢
煤, 老顶为厚 1 5 m 的细砂岩。 2 . 2 巷道 支护 参数优 化设 计 依据巷道围岩 破坏范 围 的理论 计算值 , 辅 以工程
中, 致使这一 区域 岩层屈 服而进 入塑性 工作状 态 。进
入塑性状态的围岩成为塑性 区。塑性 区的出现 , 使应
力集 中区从岩壁 向纵深偏 移 , 当应 力集 中的强度 超过 围岩屈服时 , 又将出现新的塑性 区。如此逐 渐推进 , 使 塑性区不 断 向纵深 发 展。假若 不 采取 适 当 的支护 措 施, 所监控 的塑性 区将 随变 形加 大而 出现松 动破 坏 。
锚杆支护原理
锚杆支护一、锚杆支护原理1、锚杆的悬吊作用悬吊作用是指用锚杆将软弱的直接顶板吊挂在其上的坚固老顶之上。
如图1所示,或者是用锚杆将因巷道开挖而引起松动的岩块连接在松动区外的完整坚固岩石上,使松动岩块不至冒落。
锚杆的悬吊作用2、锚杆的组合梁理论利用锚杆的拉力将层状岩层组合起来形成组合梁结构进行支护,这就是锚杆组合梁作用。
组合梁作用的本质在于通过锚杆的预拉应力将原视为叠合梁的岩层挤紧,增大岩层间的摩擦力;同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。
锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。
锚杆的组合作用3、锚杆锲固作用是指在围岩中存在一组或多组不同产状的不连续面的情况下,由于锚杆穿过这些不连续面,防止或减少了围岩沿不连续面的移动。
如图3。
锚杆的楔固作用p бbp锚杆的楔固作用-б p (бbp4、挤压加固拱作用形成以锚杆头和紧固端为顶点的锥形体压缩区。
如将锚杆沿拱形巷道周边按一定间距径向排列,在预应力作用下,每根锚杆周围形成的锥形体压缩区彼此重叠联结,在围岩中形成一连续压缩带。
它不仅能保持自身的稳定,而且能承受地压,组织上部围岩的松动和变形。
显然,对锚杆施加预紧力是形成加固拱的前提。
5、锚杆的减跨作用如果把不稳定的顶板岩层看成是支撑在两帮的叠合梁,由于可视悬吊在老顶上的锚杆为支点,安设了锚杆就相当于在该处打了点柱增加了支点而减少了顶板的跨度,从而降低了顶板岩层的弯曲应力和挠度,维持了顶板与岩石的稳定性,使岩石不易变形和破坏。
这就是锚杆的“减跨”作用,它实际上来源于锚杆的悬吊作用。
上述几种锚杆支护作用并非是孤立存在的,实际上是相互补充的综合作用,只不过在不同地质条件下,某种支护作用占的地位不同而已。
二、锚杆支护作用机理分析巷道开掘以后,由于受掘进工作面迎头及两帮的支撑,顶板下沉和变形很小。
此时安装锚杆,其主要作用是控制顶板浅部岩层的离层、滑动。
深井巷道围岩控制及支护研究
变形量 。 这一特点是由深井巷道围岩处于破裂状态和深井巷道围岩有 较大的破裂范围决定的。深井巷道矿压显现的另—个显著特点是 , 巷 图 1 巷道 断面和锚 索支护 图 道刚掘出时的变形速度很大。根据现场观测表明, 深井巷道刚开挖时 4 支 护材料 选择 的变形速度可达 5 0 m m / d以上。因此 , 深井巷道变形速度的上述规律 u型钢拱形可缩性支架。 拱形 U型钢可缩 『 生支架的优点是 : 1 ) 支 特别是对非均匀载荷 , 不稳定围岩和动压巷道有 良好的 表明 : 1 ) 巷道围岩破裂区的形成经历 了一个时间过程( 此时间过程 的 架受力均匀 , 长短与围岩破裂范 围即破裂区厚度有关 ) ; 2 )深井巷道围岩破裂的发 适应 陛。 2 ) 由于支架铰接处弯矩较小 , 从而使支架承载能力提高了 2 — 展速度在巷道刚开掘时较 陕, 以后逐渐衰减 , 直至破裂 区完全形成 ; 3 ) 3 倍。 3 ) 支架的可缩 『 生 较好 , 支护效果好 。 拱形 U型钢可缩 『 生 支架 的缺 变形趋于稳定的时间长和长期蠕变 ; 4 ) 巷道底臌量大。围岩破裂将使 点是 : 1 ) 在煤层开采厚度较小的情况下掘进巷道时 , 不利于保持巷道 巷道围岩稳定性降低 ; 破裂范围越大 , 巷道围岩稳定l 生越差 , 但破裂并 顶 板 的完整 『 生 和稳 定 性,在 工作 面与 巷道 连接处 比较难 以安 装 ; 2 ) 在 不意味着围岩失稳。围岩破裂意味着围g- g k 于残余强度状态 , 但仍然 非机械化掘进的条件下 , 拱形巷道断面施T也比较困难 。 具有一定承载能力。 例压力越大 , 残余强度越大 , 破裂围岩的承载能力 也越大。因此 , 远离巷道周边 , 在破裂区与塑『 生 区交界处 , 破裂 围岩可 以达到很高的承载能力 。而 围岩失稳 ( 如 冒顶 ) 属于力的平衡 问题. 它 取决于岩层重力与周围岩体 的摩檫力和支架阻力等是否处于平衡状 态。 综上所述, 应允许深井巷退围岩破裂 , 但必须将破裂控制在一定范 围内。 允许围岩破裂有利于充分利用围岩的 自承能力, 减小支架载荷。
锚杆、锚索支护存在的问题
本矿从2000年开始大力推广锚杆、锚索支护,锚杆、锚索支护便作为主要支护方式被推广应用:岩巷、半煤岩巷以锚网喷支护为主,煤巷以锚网带(梁)支护为主,特殊地点(如顶板破碎、交叉点等跨度较大断面)加打锚索,架棚仅作为一种补强手段。
锚杆、锚索支护效果好、成本低的优点得到较好体现,对新峪煤矿高产高效建设产生了巨大影响和作用。
然而,从目前看,所揭露的巷道围岩赋存条件复杂,具有不确定性,地质预报手段落后,不能完全满足锚杆、锚索支护设计的需要,加上施工过程中控制及锚杆、锚索支护的隐蔽性,锚杆、锚索支护的安全质量必须有足够的保证。
一、影响锚杆、锚索支护的质量的主要因素:1、锚杆、锚索支护设计不够科学。
锚杆、锚索支护设计时绝大多数采用工程类比法,支护形式和参数不尽合理,有可能支护强度太高,造成支护强度过剩,浪费了材料;再者在松、散、软等特殊地质条件下支护强度可能不足,出现片帮、冒顶事故。
2、锚杆、锚索支护材料的质量不能完全达到要求。
如钢材质量、加工的螺纹质量、树脂药卷质量均直接影响支护质量。
3、锚杆、锚索支护监测仪器与技术不能满足现场施工需要。
常用仪器的精确度、实用性不尽完善,不能完全真实反映锚杆、锚索支护效果。
4、现有技术条件下,施工因素是直接影响锚杆、锚索支护质量的关键环节。
施工人员对锚杆、锚索支护理论的系统认识不够,对锚杆安装质量不到位,不能完全按设计施工。
施工中常见的巷道成型差,锚杆托板不切岩面,造成锚杆失效;安装过程采用的机具、工艺不同,导致临近锚杆安装后预紧力不同,支护阻力增长不同均影响了支护效果。
5、由于高强预应力锚索和全螺纹锚杆的延伸率的不同,致使迎头在施工完锚杆后,补强锚索支护,造成局部锚杆被压出,托盘松动,预紧力丧失,作为锚杆、锚索支护的效果较差。
而锚索成为主要支护,造成锚索的破坏。
6、现场顶板锚索施工过程中,顶板多为倾斜方向,不平整,水平度较差,而锚索的安装方向多为铅直方向,造成锚索托梁安装方向与锚索的安装方向不一致,致使分解了锚索的承载力,并受剪切而破坏。
锚杆失效原因分析及其控制
锚杆失效原因分析及其控制摘要:建筑工程中,为了保证建筑物的稳定性,通常采用锚杆进行支护。
利用锚固段注浆体与岩土体之间的有效摩阻力实现一定的承载力,锚杆在各种地质条件及基础形式上运用广泛。
关键词:锚杆;锚杆失效;控制措施引言锚杆支护是一种先进的支护方式,目前在工程中大量推广使用,但锚杆支护在受现场地质条件、水文条件、设计、施工以及现场使用、管理不到位等因素影响下,都会造成锚杆支护失效。
这就需要在施工过程中对支护方式作出针对施工现场实际情况的调整和加强管理,以防止支护失效。
发挥锚杆支护先进性的同时需要解决其不足之处,在此与大家对锚杆支护作共同探讨,以找出其不足之处,探讨改进办法,不断创新和改进锚杆支护方式为目的。
一、锚杆失效的机理及分析1、锚杆质地因素锚杆质地的好坏直接影响到支护质量的优劣。
锚杆包括很多组成部分,其中锚杆杆体、锚固段、托板、螺母等是比较重要的几项,它们的规格、性能、强度与整个结构的协调匹配至关重要。
锚杆质地引起锚杆失效的情况主要有以下几种:(1)杆体断裂失锚。
锚杆杆体强度不够,不能承受围岩应力而断裂;采用车丝法加工丝扣时,破坏了杆体的结构,导致丝扣段产生应力集中而断裂。
(2)锚固段粘结失效失锚。
锚固段粘结失效主要是因为现场注浆操作时搅拌不充分或工序不当,造成粘结力下降;钻孔深度、直径与锚固段直径不匹配,杆体凝结面积小;钻孔内岩尘、水等杂质未清理干净,使锚固段粘结性能降低;注浆体质量差,粘结性能低。
(3)托板(托盘)失效失锚。
常见的锚杆托板(托盘)的失效有3种情况:托板(托盘)质地较差,碎裂失效;托板(托盘)尺寸、厚度达不到设计要求,强度降低变形失效;托板(托盘)与杆体脱离失锚。
(4)螺母失效失锚。
锚杆螺母失效主要表现为:螺母扭力太小、扭矩不够,托板不能紧贴岩面失锚。
2、施工质量因素的影响锚杆支护的施工工艺比较繁琐,人为因素很多,如钻孔、锚固段、锚杆直径得合理搭配,锚杆孔内粉末的处理程度,树脂药卷的搅拌时间,锚杆孔的设计角度,锚杆预应力的大小及初锚力的大小等。
浅析巷道围岩控制方法之锚注支护
浅析巷道围岩控制方法之锚注支护作者:刘林来源:《科技探索》2013年第09期中图分类号:TD353 文献标识码:A 文章编号:1007-0745(2013)09-0012-02摘要:近年来,我国经济得到了的飞速发展,作为主要能源的煤炭起到了决定性作用。
但伴随着煤炭产量的日益提高,煤炭资源逐渐减少,开采条件也日益复杂。
其中,在复杂开采条件下,保证正常、高效、安全生产,巷道围岩控制、支护问题也成为我们必须解决的首要难题。
通过研究分析与现场应用,提出了锚注支护在煤矿井下高应力、软岩条件、采动影响下巷道的有效支护方式。
关键词:复杂条件围岩控制巷道维护锚注支护1、概述目前,煤矿井下高应力区、软岩条件、采动影响下巷道支护方式、支护参数的确定是一个世界性难题,尤其是开掘在既是高应力区又是软岩中的巷道支护难度更大,现在国内外普遍采用加大支护密度,锚架联合支护、卸压等方式来增加支护强度,力求减少巷道使用过程中的破坏变形量,但效果不是很理想,在巷道服务年限内仍需要翻修多次。
采用注浆材料和注浆锚杆支护方式加固巷道围岩,增加围岩自身承载能力,在支护理论上是先进的,在材料、设备供应、施工工艺上已有成功的先例。
结合生产实际中的具体条件,可进一步引进试用,研究几种支护加固方式,摸索出适合煤矿井下高应力区、软岩条件、采动影响下巷道支护技术和方式,很有必要。
2、锚注支护原理浅析所谓锚注支护,就是利用锚杆注浆技术改变围岩松散破碎结构,提高其粘结力、内摩擦角和围岩的整体性,使围岩为锚杆提供可靠的着力基础,充分发挥锚杆对松散破碎软弱岩层的锚固作用。
注浆锚杆即是锚杆又能用其进行注浆。
注浆锚杆注浆支护加固机理如图1所示。
图1注浆锚杆注浆支护加固机理图围岩注浆后,一方面将松散破碎软弱岩块胶结成为一个整体,从而提高岩体的内摩擦角和内摩擦力,使岩体本身成为一种支护结构;另一方面,使普通端锚式锚杆成为全长锚固锚杆,使锚杆与围岩形成整体,充分发挥锚杆锚固作用,组成可靠有效的组合拱。
使用锚杆支护的作用
使用锚杆支护的作用随着锚杆支护工程实践的不断丰富使用,与不同条件的各种锚杆支护理论的相继被提出并逐步得到发展和完善,归纳起来,主要有以下三个作用。
1.1 悬吊作用锚杆支护的悬吊作用,突出的表现在直接顶较薄,老顶较坚固的情况下,锚杆将下部不稳定的岩层悬吊在上步稳固的岩层上,由锚杆承担软岩或危岩的重量,以达到井巷稳定的目的。
这一理论提出的较早,有一定的实用价值。
但是大量的工程实践证明,即使巷道上部没有稳固的岩层,锚杆亦能发挥支护作用。
例如,在全煤巷道中,锚杆就锚固在煤层中也能达到支护的目的,说明这一理论有局限性。
1.2 锚杆的组合梁作用为了解决悬吊理论的局限性,在层状地层中提出了组合梁理论。
组合梁理论适用于顶板由多层小厚度连续性岩层组成的巷道,其原理是在没有稳固岩层提供悬吊支点的薄层状岩层中,可利用锚杆的拉力将层状地层组合起来,形成组合梁结构进行支护。
并借助锚杆本身提供一定的抗剪能力,阻止其层间错动,是防止分层在压力作用下发生整体弯曲变形,呈现出组合状态,从而提高顶板的抗弯刚度及强度。
这一观点有一定的影响,但是工程实例较少,也没有进一步的依据资料供设计应用。
例如,岩层沿巷道纵向有裂缝时梁的连续性问题和梁的抗弯强度问题。
1.3 锚杆的减跨作用如果把不稳定的顶板岩层看成是支撑在两帮的叠合梁,由于可视悬吊在老顶上的锚杆为支点,安设了锚杆就相当于增加了支点,从而减小了顶板的跨度,使顶板岩层的弯曲应力和挠度得到降低,维持了顶板稳定。
这就是锚杆的减跨作用,这套理论实际上来源于锚杆的悬吊作用,但它同样未能提供用于锚杆支护参数设计的方法。
总之,使用锚杆支护,可发挥其加固拱作用和悬吊作用,使复合顶板内的各煤岩体与锚杆紧固成一个所谓的“组合梁”,从而提高顶板岩层的抗弯强度,减少各岩层层面滑移、离层和冒落的机率,从而保证巷道的稳定性。
代替了木支护,又适应了国家天然林保护工程实施以来所导致的木材无法采购的外部环境,并响应了国家所提出的节能减排的号召。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
围岩控制中锚杆支护效果分析
要】为了加固围岩的稳定性,锚杆支护作用原理目前提出的观点很多,有悬吊作用、组合梁作用、加固作用等研究锚杆支护作用对围岩的控制效果;这几种观点都是以围岩状态和利用锚杆杆体受拉为前提来解释锚杆支护的作用机理;通过对这几种理论的对比分析,说明以锚杆为主体来解释其作用机制对围岩加固的意义。
关键词】锚杆;围岩;作用机理
为了维持巷道的稳定性, 防止围岩发生垮落或过大的变形,巷道掘出后,一般都要进行支护。
随着采矿深度的增加和地压理论的发展, 20世纪初,美国创造了矿山巷道的锚杆支护方法。
这种支护方法经过几十年的发展,在世界普遍流行开来,并且被广泛地应用到隧道、边坡治理、地基加固等其它岩土工程领域。
在实践应用中不断发展,像锚网、锚网喷、锚带网、锚注等,较为先进的支护技术已被广泛采用, 它不但克服了传统支护方式的缺点,提高了巷道的稳定性,并节约了大量的木材、钢材, 具有省时、简便、经济、安全可靠等特点。
1、锚杆支护作用原理
1.1挤压加固作用
将锚杆沿拱形巷道周边按一定间距径向排列,在预应力作用下, 每根锚杆都形成以锚头和紧固部分为顶点的锥形体压缩区,每根锚杆周围形成的锥形体压缩区,彼此重叠联接,便在围岩中形成一个厚度为T的均匀连续压缩带,这就是挤压加固拱或称为次承载区。
该压缩带厚度T随着锚杆长度L增长,锚杆间排距缩小,锚杆端部约束加强以及岩体强度的
提高而变厚,同时,承载能力提高。
它不仅能保持自身的稳定,而且能够承受地压,防止上部围岩的松动和变形。
为了在围岩中形成一定厚度的挤压加固拱,一般情况下,锚杆长度应大于两倍锚杆间距。
预应力作用在于,一方面增大了岩体的粘结力,提高了岩体强度。
另一方面,通过锚头和垫板对围岩产生的压应力,改善了围岩的应力状态,从而使岩体强度提高。
1.2组合作用
锚杆支护的组合作用很好理解,平顶巷道的层状顶板,可看作是以巷道两帮为支点的叠合梁。
叠合梁层间抗剪力不足,在荷载作用下, 将发生较大的弯曲变形和层间错动。
若用锚杆穿过并把它们紧固, 各层之间便互相挤压,层间摩擦阻力增加,在外荷载作用下,层间不再发生离层错动, 抗弯抗剪强度增强,顶板便由叠合梁变成组合梁。
这样大大提高了顶板岩层的承载能力,锚杆本身还起到抗剪作用,能更加有效地阻止岩层的层间错动
1.3悬吊作用
锚杆支护的悬吊作用,突出地表现在直接顶较薄,老顶比较坚固的情况下,用锚杆将软弱岩层或危岩悬吊于完整坚固的岩体上,由锚杆承担软岩或危岩的重量,以达到井巷稳定的目的。
锚杆支护的作用并非各个独立,一般是同时并存综合作用,只是在不同的地质条件下某种作用占主导地位。
以上这些理论,各自在特定的岩体条件和锚固方式下反映了锚杆的加固作用。
但相应的力学模型过于粗糙,都是把锚喷加固的岩体加固圈人为地从厚岩体中脱离开来,因而与实际情况出入较大。
但由于其计算方法
简单明了,在目前设计中仍广泛采用。
2、围岩松动圈巷道锚杆支护理论
围岩松动圈巷道锚杆支护理论是基于煤矿生产中大量的地下工程都是在围岩破坏和发展中支护的客观实际状况而提出的,该理论在对围岩状态进行深入研究后,发现松动圈的厚度值是一个综合是一个综合性指标,它的大小反映了支护的难易程度,而且大量的相似模拟试验及现场实测表明,它与煤矿巷道的跨度及有无支护等关系不大,巷道支护的主要对象是围岩松动圈产生、发展过程中的碎胀变形力。
当采用锚杆支护时,锚杆受拉是由围岩松动圈的发生和发展而引起的。
在锚杆与围岩相互作用过程中,锚杆通过垫板与锚头对围岩提供支护抗力,阻止破裂岩石产生有害变形,使围岩保持稳定并将其变定在允许的范围内。
实际上,杆应力来源于围岩松动圈的产生和发展过程。
假如开巷后围岩只产生弹塑性变形,没有发生破坏,则围岩松动圈厚度将为零,碎胀变形亦为零。
由于弹塑性变形发生在锚杆安装之前,锚杆的最大应力将只是安装应力,考虑到这一应力往往较小,可认为锚杆在这种围岩状态下不起作用。
所以,在此种围岩状态下,不必要采用锚杆支护。
松动圈厚度大小与锚杆受力及锚杆的作用机理有直接关系,松动圈厚度值类别不同,锚杆支护作用机理不同。
3、效果分析
软岩及破碎围岩存在着三种不同的围岩压力类型, 即松动压力、变形压力和膨胀压力。
松动压力可以采用刚性支护来支撑围岩,而变形压力和膨胀压力则是巷道主要压力显现形式,它要求合理设计支护刚度,控制支护时间和支护施工顺序,即允许围岩有适当的变形,以利于能量释放,又
能将变形控制在一定范围之内,使之不发展松动压力。
锚杆支护的发展和实践应用,充分显示了它的实用性与优越性,结合以上实例,具体分析其支护技术效果如下:(1)普通锚杆支护施工方便,使用设备简单,易操作。
(2)锚杆能把各种断裂面所切割的岩块联合成整体,提高抗剪强度,又可给围岩表面施加正应力和围岩内部造成承载层,这是与其它形式支护的本质区别。
(3)松软岩层中采用一次成巷,围筑永久支护,往往收不到应有效果,而锚杆支护先柔后刚的特性,具有第二次支护的特点,一次支护可收到良好效果。
4、锚杆支护研究存在的问题及发展方向
在大量的工程实践中,早期沿用结构工程概念,对作用机理提出诸如悬吊理论、组合梁理论、成拱理论等简单的模型。
岩体工程概念促使岩土锚固理论上了一个新台阶。
通过大量的物理模型试验、数值仿真模拟、现场观测等手段,深入探讨了锚杆加固机理。
虽然锚固理论研究工作取得了一定进展,但也存在不少问题。
结合以上锚杆的研究现状,对锚杆的支护机理提出以下几点研究展望:
(1)对锚杆的横向作用进行深入研究:在工程设计中和锚杆支护机理研究中,强调锚杆的轴向作用,忽略横向效应的现象十分明显,应加强锚杆横向作用研究,以引起学者和工程技术人员的重视。
目前提出的抗剪锚杆的导轨作用观点,认为抗剪强度存在不足和锚固力偏低的不安全因素,给锚固工程带来危险,并对传统的锚杆支护机理提出质疑。
因此,必须对非连续岩体锚杆抗剪作用机理进一步加以研究。
(2)基于岩体锚固系统的锚固作用机理的研究。
目前,对锚固作用
机理已做了大量深入和拓宽延展研究工作,但大都是以锚杆为主体来解释其作用机制。
这种重在研究锚杆本身行为的思路一方面难以解释为什么锚杆有别于其它支护形式而能有效地控制围岩大变形,且用料极省;另一方面对为什么同一锚杆形式,不同岩性、不同锚固方式、不同粘结剂以及不同托盘其锚固效果却相差很大也很难解释。
针对目前以锚杆为主体来解释其作用机制存在的弊端,提出了岩体锚固系统的概念。
无论全锚或端锚系统都可视为由围岩体单元、锚杆单元、围岩体内部固定物单元、围岩体表面联接固定物单元四大要素构成。
这四个要素之间互相作用,共同完成加固围岩的功能并与周围如外部或深部围岩体环境进行力传递作用,这四个要素构成岩体锚固系统的结构,随系统结构的不同匹配组合,系统相应产生不同的功能如串联或并联功能。
系统的功能体现是四个要素之间相互作用匹配耦合的结果,任何一个要素的功能体现都是在规定其它要素功能的基础之上,它不可能超越系统的功能。
由岩体锚固系统很容易解释单一锚杆支护系统所不能解释的一些问题。
因此从岩体锚固系统出发,以岩体结构为研究中心,是岩体锚固作用机理的研究方向。
5、结论
在大量的工程实践中,早期沿用结构工程概念,对作用机理提出诸如悬吊理论、组合梁理论、成拱理论等简单的模型。
岩体工程概念促使岩土锚固理论上了一个新台阶。
但这些理论只反映了在特定条件和锚固方式下锚杆的加固作用,而且相应的力学模型还显粗糙,与实际情况出入较大。
而且都是以锚杆为主体来解释其作用机制,存在不少弊端。
就目前,从总体上看来,锚固技术的研究仍滞留在以锚杆为主体的研究水平上,尚
没有上升到把锚固技术看作一个系统来整体研究。