锚杆支护及其分类

合集下载

锚杆支护及其分类范文(二篇)

锚杆支护及其分类范文(二篇)

锚杆支护及其分类范文锚杆支护是一种常见的地下工程支护方式,它能够有效地增加地下结构的稳定性,防止地层塌方和地下水渗漏等问题。

本文将对锚杆支护及其分类进行详细的介绍,以便读者对此有更深入的了解。

一、什么是锚杆支护锚杆支护是通过在地下结构中插入一定数量和一定规格的锚杆,来增加地下结构的稳定性的一种支护方式。

锚杆是一种由钢筋、钢板或其他材料制成的杆状结构,通常是在地下结构中的固定位置上钻孔后插入,并通过胶结材料或其他方式与地层牢固地连接在一起。

锚杆支护具有施工简便、效果显著、经济实用等优点,广泛应用于地铁建设、隧道工程和矿山开采等领域。

二、锚杆支护的分类根据锚杆的用途和结构特点,可以将锚杆支护分为如下几类:1. 预应力锚杆支护预应力锚杆支护是通过在锚杆内施加预紧力,使锚杆对地下结构施加压力,增加地下结构的稳定性。

预应力锚杆支护一般适用于较大的土压力和水压力环境下,能够有效地提高地下结构的抗拔能力和抗震性能。

2. 自应力锚杆支护自应力锚杆支护是通过锚杆自身弹性变形产生的锚固力来增强地下结构的稳定性。

自应力锚杆支护适用于较小的土压力和水压力环境下,可以减少对周围环境的影响,提高地下结构的承载力和变形能力。

3. 刚性锚杆支护刚性锚杆支护是指锚杆与地层的连接方式能够保持较大刚性,能够有效地抵抗地层的水平位移和垂直位移。

刚性锚杆支护适用于地下结构受到强烈水平和垂直作用力的环境,能够提供较大的支护刚度和抗震性能。

4. 弹性锚杆支护弹性锚杆支护是指锚杆与地层的连接方式能够保持较大的弹性,能够吸收地层的变形能量并使其分散。

弹性锚杆支护一般适用于地下结构需要较大变形能力和吸能性能的环境,能够提供较好的支护效果和减震效果。

5. 钢绞线锚杆支护钢绞线锚杆支护是一种通过扭动钢绞线来施加锚固力的支护方式。

钢绞线锚杆支护适用于较大跨度和较深埋深的地下结构,能够有效地抵抗地下结构的水平和垂直变形,提高地下结构的稳定性和承载能力。

综上所述,锚杆支护是一种常见的地下工程支护方式,其在地下结构中的插入可以增加结构的稳定性,并能有效地防止地层塌方和地下水渗漏等问题。

锚杆支护及其分类(三篇)

锚杆支护及其分类(三篇)

锚杆支护及其分类锚杆支护实质上是把锚杆安装在巷道的围岩中,使层状的、软质的岩体以不同的形态得到加固,形成完整的支护结构,提供一定的支护抗力,共同阻抗其外部围岩的位移和变形。

(1)木锚杆。

我国使用的木锚杆有两种,即普通木锚杆和压缩木锚杆。

(2)钢筋或钢丝绳砂浆锚杆。

以水泥砂桨作为锚杆与围岩的粘结剂。

(3)倒楔式金属锚杆。

这种锚杆曾经是使用最为广泛的锚杆形式之一。

由于它加工简单,安装方便,具有一定的锚固力,因此这种锚杆在一定范围内至今还在使用。

(4)管缝式锚杆。

是一种全长摩擦锚固式锚杆。

这种锚杆具有安装简单、锚固可靠、初锚力大、长时锚固力随围岩移动而增长等特点。

(5)树脂锚杆。

用树脂作为锚杆的粘结剂,成本较高。

(6)快硬膨胀水泥锚杆。

采用普通硅酸盐水泥或矿渣硅酸盐水泥加入外加剂而成,具有速凝、早强、减水、膨胀等特点。

(7)双快水泥锚杆。

是由成品早强水泥和双快水泥按一定比例混合而成的。

具有快硬快凝、早强的特点。

锚杆支护及其分类(二)锚杆支护是一种常用的地下工程支护方法,其通过施工预埋的锚杆固结周围土体,增加土体的整体强度和稳定性,从而确保地下工程的安全和稳定。

随着地下工程的不断发展和改进,锚杆支护的种类也越来越多样化。

本文将对锚杆支护及其分类进行介绍。

一、锚杆支护的概述锚杆支护是指通过在地下工程的周围土体中施工预埋的锚杆,将地下工程与周围土体连接起来,增加土体的整体稳定性。

锚杆的作用是通过注浆固结的方式,将地下工程与土体形成一个整体,使其能够共同承受土体的荷载,并通过有效的力传递和分布,降低地下工程的变形。

锚杆支护通常适用于地下工程中较大的变形和较高的支护要求的情况,如基坑工程、隧道工程、矿山工程等。

二、锚杆支护的分类根据锚杆固结方式和应用范围的不同,锚杆支护可以分为以下几种类型。

1. 钢绞线锚杆钢绞线锚杆是一种常用的锚杆支护方式,其主要由预埋在土体中的锚杆、钢绞线和注浆材料组成。

钢绞线锚杆一般适用于土体较稳定,要求较高的支护要求的场所,如河堤工程、高边坡工程等。

锚杆支护原理及类型

锚杆支护原理及类型
• 锚杆的加固作用如图4-8所示。
(六)最大水平主应力理论
(六)最大水平主应力理论
• 最大水平应力理论论述了巷道围岩水平应力对巷 道稳定性的影响以及锚杆支护起到的作用,
• 它是以实测地应力及岩心实验室力学试验参数为 基础形成的一套锚杆支护设计方法,
• 运用有限差分法(采用莫尔一库仑强度淮则)对试 验巷道锚杆支护参数进行设计,
• 大松动圈(>150cm)
• 围岩表现出软岩的工程特征,围岩松动圈碎胀变形量大, 初期围岩收敛变形速度快,变形持续时间长,矿压显现大, 支护难度大。支护不成功时,巷道底板出现底鼓。在这种 条件下,如果用悬吊理论设计锚杆支护参数,常因设计锚 杆过长、过粗而失去其普遍应用的价值。
• 在单根锚杆作用下每根锚杆因受拉应力而对围岩产生挤压, 在锚杆两端周围形成一个两端圆锥形的受压区,合理的锚 杆群可使单根锚杆形成的压缩区彼此联系起来,形成一个 厚度为b的均匀压缩带。对于拱形巷道,压缩带将在围岩 破裂处形成拱形;对于矩形巷道,压缩带将在围岩破裂处 形成矩形结构,统称之为组合拱作用机理。
1. 围岩松动圈巷道支护理论
• 围岩松动圈巷道支护理论是在对围岩状态进行深 入研究后提出的,
• 通过研究,发现松动圈的存在是巷道围岩的固有 特性,它的范围大小(厚度值)目前可以用声波仪 或者多点位移计等手段进行测定。
• 松动圈理论认为:巷道支护的主要对象是围岩松 动圈产生、发展过程中产生的碎胀变形力,锚杆 受拉力的来源在于松动圈的发生、发展,并根据 围岩松动圈厚度值大小的不同将其分为小、中、 大三类,松动圈的类别不同,则锚杆支护机理也 就不同。
(2)巷道锚杆支护可以提高锚固体的力学参数,包括锚固 体破坏前和破坏后的力学参数(E、C、φ),改善锚固体 的力学性能。

锚杆支护

锚杆支护

第二章锚杆支护技术管理第一节总则第1条锚杆、锚喷支护(以下简称锚杆支护)是煤矿井巷工程一种重要的支护形式,它以快速、主动、有效的支护特性已得到广泛推广应用,并对加快巷道支护改革,提高支护效果起到了重要作用。

为进一步加快锚杆支护的推广应用,提高矿井的经济效益,特制定本规定。

第2条锚杆的种类根据新汶矿区开采的实际情况,规定允许使用的锚杆种类包括以下七种:1、等强全螺纹树脂锚杆(牌号:KMG335);2、等强全螺纹细牙高预紧力锚杆(牌号:KMG400、KMG500);3、无纵肋螺纹钢式树脂锚杆(牌号:KMG400、KMG500),适用于埋深大于600米的巷道;4、高强度高韧性抗冲击锚杆(牌号:KMG600),适用于埋深大于800米及地压较大的巷道。

5、缝管锚杆(只限于回采巷道护帮或断层破碎带临时支护);6、水力膨胀式管子锚杆;7、玻璃钢锚杆(允许在使用时间较短的,围岩稳定的切眼两帮及条件适宜的煤帮使用);8、经集团公司鉴定并经专业主管部门批准使用的新型锚杆。

第3条锚杆的锚固方式1、端锚:树脂锚固段长度≥350mm。

2、加长锚:树脂锚固段长度≥700mm。

3、全锚:树脂锚固段长度≥锚深的80%;水泥锚固段长度为锚深的100%。

一般情况下应采用加长锚;Ⅲ~Ⅴ类煤巷顶板和深部全岩巷道严禁使用端锚。

第4条锚杆支护材料规格、性能1、树脂锚杆金属杆体及其附件应符合中华人民共和国煤炭行业标准MT146.2-2002要求。

2、等强全螺纹树脂锚杆技术性能规定见下表(表一)。

表一3、等强全螺纹细牙高预紧力锚杆技术性能规定见下表(表二)表二4、无纵肋螺纹钢式树脂锚杆技术性能规定见下表(表三)表三5、高强度高韧性抗冲击锚杆技术性能规定见下表(表四)注:1)、无纵肋螺纹钢式树脂锚杆及高强度高韧性抗冲击锚杆成品杆体实验要求:a、除做屈服载荷实验外,应在杆体滚压螺纹部做抗弯试验。

b、抗弯试验要求:杆体直径的3倍为弯芯直径,按弯芯直径对杆体螺纹部进行弯曲实验,要求弯曲90°时,受弯部位不得脆断。

锚杆支护及其分类

锚杆支护及其分类

锚杆支护及其分类锚杆支护是一种常用的地下工程支护方法,主要用于加固和稳定岩土体或混凝土结构。

锚杆支护通过将锚杆固定在边坡或隧道壁面上,并与锚杆之间形成一定的势能传递机制,从而增加了地下工程结构的稳定性和承载能力。

锚杆支护广泛应用于隧道、地铁、矿山、水利工程等领域。

锚杆支护的分类主要有以下几种:1. 按照锚杆的材料分类:- 钢锚杆:由高强度钢材制成,常用的有螺纹钢锚杆、钢绞线锚杆等。

钢锚杆具有高强度、刚性好的特点,在岩体中能够承受较大的荷载,并且使用寿命较长。

- 玻璃钢锚杆:由玻璃纤维增强树脂复合材料制成,具有重量轻、耐腐蚀、绝缘性好等优点。

玻璃钢锚杆主要用于防水、防腐、耐化学腐蚀等特殊环境的支护。

2. 按照锚杆的结构分类:- 预应力锚杆:通过在锚杆中施加预压力,在锚杆与岩体之间形成预应力,从而提高了岩体的稳定性。

预应力锚杆适用于土体和岩体较薄、坚硬度较高的情况下。

- 小直径锚杆:直径一般小于25毫米,适用于边坡、隧道等较薄的岩土体加固。

由于直径小,安装较为便捷。

- 大直径锚杆:直径一般大于25毫米,适用于边坡、隧道等较厚的岩土体加固。

大直径锚杆具有较大的承载能力,能够有效地控制地下工程的沉降变形。

3. 按照锚杆与岩土体之间的传力方式分类:- 摩擦式锚杆支护:锚杆通过与岩土体之间的摩擦力来传递荷载,主要适用于相对较稳定的岩土体。

- 粘结式锚杆支护:通过在锚杆和岩土体之间填充粘结材料,将锚杆与岩土体黏结在一起,形成一体化结构,能够有效地提高支护效果。

粘结式锚杆支护适用于岩土体较松软、变形较大的情况下。

4. 按照锚杆的安装方式分类:- 自钻式锚杆:锚杆可以通过在钻杆内部装有钻头或冲击器来自行进入地层,无需进行锚杆孔预先钻孔,适用于岩体条件较好的情况下。

- 预钻孔式锚杆:在需要支护的地方预先钻孔,然后将锚杆插入钻孔中,通过加固材料填充锚杆孔,使锚杆与岩土体固定在一起。

预钻孔式锚杆适用于岩体复杂、坚硬度较高的情况下。

《锚杆支护技术》课件

《锚杆支护技术》课件
安全性。
输标02入题
加强锚杆支护技术的实验研究,通过模拟实际工程条 件下的锚杆受力状态和岩土变形情况,揭示锚杆与岩 土体之间的相互作用机制。
01
03
结合现代信息技术和数值计算方法,开发智能化的监 测系统和数值模拟软件,实现锚杆支护技术的信息化
和智能化。
04
探索新型的锚杆材料和加工工艺,提高锚杆的承载能 力和耐久性,以满足更高要求的岩土加固工程需求。
施工简便
锚杆支护施工工艺相对简单, 不需要大型机械设备,可以大
幅缩短工期。
锚杆支护技术的局限性
地质条件限制
锚杆支护的效果受地质条件影响较大 ,对于复杂的地质结构,可能需要更 精确的设计和施工方法。
材料要求高
锚杆支护对材料的要求较高,需要高 质量的钢材和特殊的锚固剂,增加了 材料成本。
施工质量影响大
锚杆的工作原理主要基于摩擦力和粘结力。通过锚杆与岩土体之间的摩擦力和粘 结力,将岩土体紧密地连接在一起,形成一个整体,提高岩土体的承载能力和稳 定性。
锚杆的受力分析
锚杆的受力分析主要包括拉拔力和剪切力两个方面。拉拔力 是指锚杆受到的垂直于杆轴向的力,剪切力是指锚杆受到的 沿着杆轴向的力。
在锚杆支护技术中,需要根据岩土体的性质和工程要求,对 锚杆的受力进行详细的分析和计算,以确保锚杆能够满足工 程需求,并保证工程的安全性和稳定性。
锚杆支护技术具有施工简便、快速、安全可靠 等优点,适用于各种复杂地形和地质条件的岩 土加固工程。
锚杆支护技术在实际应用中需根据工程地质条 件、环境因素和工程要求进行合理的设计和施 工,以达到最佳的加固效果。
对未来研究的建议与展望
进一步研究锚杆支护技术的理论体系,完善锚杆设计 计算方法和施工工艺,提高锚杆支护技术的可靠性和

锚杆支护及其分类模版

锚杆支护及其分类模版

锚杆支护及其分类模版锚杆支护是指利用锚杆作为支护材料,在地下工程中对岩石或土层进行加固和支撑的一种技术措施。

锚杆支护广泛应用于各类地下工程中,如隧道、地铁、矿山等。

本文将介绍锚杆支护的基本原理、常用分类以及相关模板。

一、锚杆支护的基本原理1. 摩擦阻力原理:利用摩擦力实现锚杆与周围结构之间的传力,使锚杆与岩体或土层相互作用,从而达到支撑和加固的目的。

2. 抗拔力原理:通过预应力将锚杆与周围结构连接在一起,形成一个整体,从而提高锚杆的抗拔能力,避免结构发生变形或坍塌。

二、锚杆支护的分类根据不同的支护目的和工程环境,锚杆支护可分为以下几种分类:1. 按锚杆材料分类(1)钢锚杆支护:采用钢材作为锚杆材料,具有高强度、抗拉性能好等特点,适用于对强度要求较高的地下工程。

(2)玻璃钢锚杆支护:采用玻璃纤维增强塑料(FRP)作为锚杆材料,具有耐腐蚀、重量轻等优点,适用于化学药品储存等腐蚀环境。

(3)预应力锚杆支护:在锚杆安装过程中施加预应力,使锚杆与周围结构紧密连接,提高抗拉性能。

2. 按锚杆布置方式分类(1)单排锚杆支护:锚杆按一定间距单排布置,适用于较坚固的岩石地层或土层。

(2)双排锚杆支护:锚杆按两行布置,形成锚杆墙状结构,适用于地层较松散的情况,提供更强的抗拉性能。

(3)环形锚杆支护:锚杆按环形布置,适用于隧道或井筒等需要全面支撑的工程。

3. 按施工方法分类(1)静力锚杆支护:锚杆通过静力搭接或螺纹连接,不需要特殊的施工设备和工艺。

(2)动力锚杆支护:采用液压或油缸等动力设备施加力量,将锚杆与周围结构连接在一起。

三、锚杆支护模板1. 锚杆支护设计方案模板项目名称:锚杆支护设计方案1. 工程概况:(1)支护目的:填写支护目的,如抗拔、支撑等。

(2)工程位置:填写工程地点,包括坐标、地质条件等。

(3)工程规模:填写工程规模,如长度、直径等。

2. 锚杆参数:(1)锚杆类型:填写所采用的锚杆类型,如钢锚杆、预应力锚杆等。

锚杆支护技术管理

锚杆支护技术管理

锚杆支护技术管理第一节总则第1条锚杆、锚喷支护(以下简称锚杆支护)是煤矿井巷工程一种重要的支护形式,它以快速、主动、有效的支护特性已得到广泛推广应用。

第2条锚杆的种类根据xx矿区开采的实际情况,规定允许使用的锚杆种类包括以下 6 种:1、MSGLD-335 等强螺纹钢式树脂锚杆;2、MSGLW-500 无纵肋螺纹钢式树脂锚杆,适用于埋深大于 600 米的巷道;3、MSGLW-600 无纵肋螺纹钢式树脂锚杆(原高强度高韧性抗冲击锚杆)适用于埋深大于 800 米及地压较大的巷道;4、MSGLD-400/600(X)等强螺纹钢式树脂锚杆(原热轧细牙等强螺纹钢式树脂锚杆),屈服强度 400MPa 适用于埋深不大于 800 米的巷道或埋深大于800 米的巷道两帮;屈服强度 600MPa 及其以上适用于埋深大于 800 米及地压较大的巷道;5、缝管锚杆(只限于回采巷道护帮或断层破碎带临时支护);6、玻璃钢锚杆(允许在使用时间较短的,围岩稳定的切眼两帮及条件适宜的煤帮使用);7、使用本规定以外规格型号的锚杆,必须经过论证、安全性能检验和鉴定,并制定安全措施,报集团公司备案后进行试验。

第3条锚杆的锚固方式1、端锚:锚杆的锚固长度不大于钻孔长度的1/3。

2、加长锚:树脂锚固段长度介于端锚和全锚之间。

3、全锚:锚杆的锚固长度不小于钻孔长度的90%;水泥锚固段长度为钻孔长度的100%。

一般情况下应采用加长锚;Ⅲ~Ⅴ类煤巷顶板和深部全岩巷道、有冲击地压危险的巷道严禁使用端锚;推广应用全长锚固技术。

第4条锚杆支护材料规格、性能1、树脂锚杆金属杆体及其附件应符合中华人民共和国煤炭行业标准MT146.2-2011 要求。

规格说明:MS G L 口—口/口×口(X)(热轧细牙)杆体长度,mm杆体公称直径,mm材料屈服强度,MPaD 代表等强;W 代表无纵肋螺纹钢式杆体树脂锚杆2、MSGLD-335 等强螺纹钢式树脂锚杆成套外形见图 1,杆体外形见图2,技术性能及外形尺寸规定见表 1、表 2。

锚杆支护

锚杆支护

锚杆支护一、锚杆的种类和结构①锚杆的种类可分为机械锚固型和全面胶结型。

机械锚固型:金属楔缝式、倒楔式、管缝式锚杆。

②胶结型:砂浆锚杆、树脂锚杆。

③机械锚固型的特点:通过眼底端的锚头和另一端的紧固部分使锚杆体受张拉从而抑制围岩的变形和松动、下沉。

④胶结型的特点:通过杆体与孔壁间的胶结材料,使锚杆在钻孔内与岩石粘结在一起,对岩体产生锚固作用。

分全图式锚固和部分锚固。

⑤实践证明,胶结型比机械型较为优越。

2、金属楔缝式锚杆①由杆体、楔子、垫板、螺帽组成,杆体用直径18—22mm的3号钢制作,一端加工成宽2—5mm,长150――200mm纵向楔缝,另一端在100—150mm长范围内车成螺旋。

楔子由软钢或铸铁制作,垫板用6—10mm 钢板制成。

规格150mm×150mm 或200mm×200mm。

②特点及适用范围锚杆结构简单,加工容易,但对钻孔深度及孔径的精确性要求严格。

硬岩中锚固力大,软岩中锚固力小,不宜采用。

3、金属倒楔式锚杆①结构:锚入端用铸铁焊烧的固定楔,大头朝孔底,另有一铸铁活动倒楔,安装时倒楔的小头朝向孔底,用锤敲击杆体锚杆就锚固在岩体中,其它同上。

②应用较广泛4、其它还有木锚杆、压缩木木锚杆、竹锚杆等机械等。

5、钢筋砂浆锚杆①直径10—16mm螺纹钢筋、垫板、螺帽。

利用水泥、粒径小于3mm中细砂加水拌全而成,砂浆标号不低于200号,配合比水泥:砂=1:2—3。

水灰比0.38—0.42,以手捏成团出浆,松手后砂浆不散为宜。

②先用注浆泵内注满砂浆,然后插入钢筋,上垫板,螺帽。

③利用砂浆与钢筋、砂浆与孔壁的粘结力锚固岩层。

6、钢丝绳砂浆锚杆①利用废旧钢丝绳替钢筋插入锚杆孔内,再注入砂浆。

废旧钢丝绳要经截断、火烧、破股、除锈和平直等工进行处理。

②上述两种砂浆锚杆,加工方便,成本低,锚固力大,持久性强。

但砂浆凝固之前锚杆无承载力。

途径:砂浆中加氯化钙(水泥重量的1%)等。

7、树脂锚杆:①组成:螺纹钢、托盘、螺帽、w护板、锚固剂等。

《锚杆支护技术》课件

《锚杆支护技术》课件

总结
锚杆支护技术在工程中扮演着重要的角色,能够提高结构的稳定性和安全性。 未来,锚杆支护技术将继续发展,并在更多领域得到应用。
《锚杆支护技术》PPT课 件
# 锚杆支护技术
什么是锚杆支护技术?
锚杆支护技术是一种用于加固和支持结构的工程技术,通过将锚杆固定在岩体或土体中来增强结构的稳定性和 承载能力。 锚杆支护技术具有灵活性和可调性,适用于各种地质条件和工程需求。
锚杆支护的分类
按杆型分类: 1. 爆破锚杆:通过爆破方法将锚杆安装在岩体中。 2. 视轨锚杆:利用视轨和滑块将锚杆与岩体或土体连接。 3. 螺杆锚杆:通过旋转螺杆将锚杆与岩体紧密结合。
按锚杆材料分类: 1. 钢筋锚杆:由高强度的钢筋组成。 2. 计划锚杆:由预应力钢绞线组成。 3. 组合锚杆:由不同材料组合而成。
按锚杆作用方式分类: 1. 弯曲锚杆:用于抵抗岩体的弯曲破坏。 2. 拉伸锚杆:用于抵抗岩体的拉伸破坏。 3. 剪切锚杆:用于抵抗岩体的剪切破坏。
锚杆支护的施工步骤
施工步骤: 1. 锚杆前处理:清理锚杆安装区域并检查地质条件。 2. 锚杆钻孔:使用钻机在岩体或土体中钻孔以安装锚杆。 3. 锚杆注浆:通过注浆作用将锚杆与岩体或土体结合。 4. 锚杆加勾:根据设计要求将锚杆进行加勾,增加连接性和支撑能力。
锚杆支护的质量控制
锚杆的质量标准需满足相应规范和设计要求,并通过质量检测机构进行评估。 质量控制方法包括:杆身质量检测、注浆质量检测、加勾质量检测等。
锚杆支护技术在工程中的应用
锚杆支护技术在各种工程中广泛应用: 1. 地下洞室工程:用于加固洞室的岩体,增强结构的稳定性和安全性。 2. 公路隧道工程:用于增加隧道的支撑能力,防止岩体垮塌和滑坡。 3. 水电工程:用于加固水电站的堤坝和开挖面,提高结构的: 1. 提高结构的稳定性和承载能力。 2. 适用于各种不同地质条件和工程需求。 3. 施工速度快,成本相对较低。

锚杆支护结构类型

锚杆支护结构类型
(4)支护反力强度方面:预应力锚杆支护反力强度可达到0.2~2MPa,完全 可以和任何刚性支护媲美。表8-26
预应力锚杆(索)
五、预应力锚杆质量控制
1、;软岩锚固宜采用压力分散型或拉力分散 型锚杆。
(2)确定锚杆倾角应避开锚杆与水平面的夹角为-100~100这一范围。
一般规定
5、软岩、收敛变形较大的围岩地段,可采用预应力 锚杆,预应力锚杆的预应力应不小于100kPa。预应 力锚杆的锚固端必须锚固在稳定岩层内。 6、岩体破碎、成孔困难的围岩,宜采用自进式锚杆。
预应力锚杆(索)
一、预应力锚杆(索)组成
由外锚头、锚杆体和内锚固段组成,统称预应力锚固体系。外锚头视锚杆张 拉吨位的不同,繁简差异很大,实现张拉和锁定的装置。锚杆体(锚索体) 也称自由段或张拉段,是形成预应力的主要构件。锚固段又称为内锚头或内 锚固段,是预应力锚杆孔内锁定端,现场也称为锚根。
二、外锚头的结构类型
结构型式有锥筒垫板式结构外锚头和锚板式结构外锚头,前者用于螺纹钢筋 锚固体系,后者用于镦头锚固体系和夹片式锚固体系。
三、内锚头的结构类型
内锚头是预应力锚杆得以实现预应力张拉的重要部件,并且对预应力的长期 保存有重要意义。
预应力锚杆(索)
内锚头按其结构形式分:机械式内锚头与胶结式内锚头;按内锚固段围岩受 力状态分:拉力型、压力型、剪力型以及荷载集中型与荷载分散型。
自钻式注浆锚杆
这种锚杆将钻孔、注浆及锚固等功能一体化,适于钻孔过程易塌孔,而且必 须采用套管跟进的复杂地层。
隧道及边坡工程中常用锚杆
楔管式锚杆
由开口异径管,上、下楔,定位销,挡环和垫板组成。 优点为: 效应快,安装后即能发挥锚固作用; 对围岩能主动提供轴向和环向压应力,锚固效果比被动式锚杆要好; 适应岩层范围较大,地下水对它的锚固效果影响很小; 操作方便,作业安全,劳动强度低,安装一根约4分钟。 极限锚固力约为120KN,适于中、小断面工程的临时支护和抢险工程。

锚杆及锚杆支护概述

锚杆及锚杆支护概述

锚杆及锚杆支护概述 1.概念及用途锚杆(bolt ;bolting (准确称谓);anchor (早期称谓))是当代煤矿当中巷道支护的最基本的组成部分,它将巷道的围岩加固在一起,起支护作用。

它一端与工程构筑物连接,另一端深入地层中,是受拉构件;整根锚杆分为自由段和锚固段,由托盘,锚杆,螺母,垫圈构成。

锚杆不仅用于矿山,也用于国防、隧道及交通运输等多种坑道作业中,对边坡,隧道,坝体进行主动加固。

如我国的世纪工程—三峡工程,其大坝施工中使用了大量锚杆(索)维护开挖的边坡、岩壁。

但现今锚杆支护作用的理论研究落后于其工程应用,使得现在锚杆支护设计中,还多采用技术要求低、成本低和管理容易的工程类比的经验方法。

2.锚杆分类按材质可以分为:木锚杆,钢锚杆,玻璃钢锚杆等;按材质强度分为:普通锚杆,s σ<340MPa ;高强(度)锚杆,s σ=340~600MPa ;超高强(度)锚杆,s σ>600MPa ;国外以高强、超高强居多。

按锚固长度分为:端锚固,加长锚固和全长锚固;按锚固方式分为:树脂锚杆,双快水泥锚杆,倒楔式金属锚杆;按结构分为:实心锚杆,中空注浆锚杆;3.锚杆材料要求3.1一般要求设计选用的煤巷锚杆支护材料应符合国家标准和相关行业标准,并具有产品合格证。

锚杆(锚索)杆体及其附件、其它组合构件等的力学性能应相互匹配。

3.2杆体、托板、螺母金属杆体、托板、螺母应符合MT146.2-2002的规定。

杆体优先选用屈服强度大于335MPa 螺纹钢杆体,在满足锚杆支护需要时,也可采用屈服强度大于235MPa 的普通热轧圆钢,杆体延伸率应不小于15%,直线度≤2mm/m 。

尾部螺纹极限载荷不小于杆体屈服载荷。

杆体规格符合表1规定:螺母优选可快速安装工艺扭矩螺母,采用六角螺母时,技术条件须符合GB/T6170的规定。

托盘优选碟形托盘,承载力不小于杆体屈服载荷,尺寸不小于100*100或Φ100。

选用脆性材料时,其极限载荷应为杆体载荷1.5倍以上。

锚杆支护及其分类

锚杆支护及其分类

锚杆支护及其分类引言钢筋混凝土结构被广泛应用于大型土木工程、建筑工程、交通运输及水电工程等领域,因其具有高耐腐蚀性、高强度和高稳定性的特点,可有效抵御外部环境的影响。

随着经济的快速发展,这些工程的规模和复杂性也呈现出爆发式增长的趋势。

这些工程建造中常常面临一个重要的问题,那就是土壤支撑不足,从而导致结构不稳定和沉降,严重威胁其安全和可靠性。

为了克服这些困难,锚杆支护技术应运而生。

锚杆支护技术是一种常用的土木工程支持技术,通过在深层土体中和梁板结构中设置锚杆(或预应力锚杆)来消除或减少地面沉降,增强结构的稳定性和可靠性。

在不同类型的土建工程中,锚杆支护技术得到了广泛应用。

本文将深入探讨锚杆支护技术及其分类。

什么是锚杆支护?锚杆是一种结构物,由钢筋和粘结材料组成,并在施工过程中插入孔中,通过粘合和锚固的形式把结构物和土壤结合在一起,从而增强结构体系的稳定性和可靠性。

锚杆支护的主要目的是对原始土壤进行支撑,并将其负荷转移到深层土体中或岩石中,在土体中形成一个锚固体系,以减少结构内的应力和位移。

锚杆支护技术的使用主要取决于受力状况和土质类型。

锚杆支护时,应首先对土质和受力状况进行全面认识和评估,以确定不同类型的锚杆支护方案。

锚杆支护各种分类方法锚杆支护的分类方法有多种,根据不同的条件和需求,可采用不同的分类方法,如下所示:先按用途分类1.临时支护。

主要用于修建阶段,等建筑物或现场制造物建成后,它们可以被完全去掉。

通常只在临时修建中使用。

2.永久支护。

主要用于需要在修建项目完成后保持结构物稳定的情况下。

支护通常是固定的,它们不会在结构物周围移动或被移动。

直到需要进行结构修理或拆除时才会被拆除。

再按构造分类1.单向锚杆。

单向锚杆通常用于支持沉降或轻微位移的浅层结构。

钢筋的长度与结构的深度呈正比例关系。

2.双向锚杆。

双向锚杆用于支持深层结构物的强制位移控制。

钢筋的长度与结构的深度呈正比例关系。

3.系列锚杆。

系列锚杆用于支持深层结构物的非强制位移控制。

锚杆支护及其分类

锚杆支护及其分类

锚杆支护及其分类锚杆支护是一种常见的地下工程支护方法,它通过在地下进行锚杆的布设,来增强地下工程的稳定性和承载能力。

锚杆支护能够适用于各种地质和地下工程情况,例如隧道、岩石边坡、地下矿井等。

本文将详细介绍锚杆支护的定义、分类及其应用。

一、锚杆支护的定义锚杆支护是指通过将钢筋(称为锚杆)安装在地下结构中,通常通过固定杆锚固装置,将锚杆的一端固定在地下结构上,另一端则连接到支撑装置上,通过杆与土体之间的摩擦力和拉拢单元的强度来增强地下结构的稳定性。

锚杆可以通过钻孔法或喷射法进行布设和固定。

二、锚杆支护的分类锚杆支护根据应力传递方式和锚固方式可以分为多种类型,下面将分别介绍。

1. 摩擦式锚杆支护摩擦式锚杆支护是指通过摩擦力来传递结构荷载的一种支护方式。

摩擦式锚杆支护适用于土体较坚硬的情况,锚杆与土体之间的摩擦力能够有效传递结构荷载,并增强地下结构的稳定性。

摩擦式锚杆支护通常采用锚固装置将锚杆的一端固定在地下结构上,另一端则通过拉拢单元或锚杆接头连接到支撑装置上。

在地下结构受力时,锚杆通过摩擦力将结构荷载传递到土体当中。

摩擦式锚杆支护的优点是施工简单,成本较低,适用范围广。

缺点是传力效果受土体性质和固结效应的影响。

2. 粘结式锚杆支护粘结式锚杆支护是指通过粘结杆与土体之间的粘结力来传递结构荷载的一种支护方式。

粘结式锚杆支护适用于土体较软或有稳定性问题的情况,通过粘结杆与土体之间的粘结力可以有效传递结构荷载,并增强地下结构的稳定性。

粘结式锚杆支护通常采用锚固装置将锚杆的一端固定在地下结构上,另一端则通过拉拢单元或锚杆接头连接到支撑装置上。

在地下结构受力时,锚杆的粘结部分承担结构荷载,通过粘结力将荷载传递到土体当中。

粘结式锚杆支护的优点是施工相对简单,支撑效果较好。

缺点是技术要求较高,施工周期较长。

3. 预应力锚杆支护预应力锚杆支护是指通过预应力技术将锚杆中的拉拓名义应力预先增加到一定数值,以达到加固土体和地下结构的目的。

锚杆支护及其分类范文

锚杆支护及其分类范文

锚杆支护及其分类范文锚杆支护是一种常见的地下工程支护方法,广泛应用于矿山、隧道、地下工程等领域。

它通过在地下围岩中安装预应力钢杆,利用其对地下围岩施加预应力,增强地下工程的稳定性和承载能力。

本文将从锚杆支护的基本原理、分类和应用范围三个方面进行阐述。

一、锚杆支护的基本原理锚杆支护的基本原理是通过在锚杆与围岩之间形成摩擦力和粘结力来增加支护体系的整体稳定性。

锚杆的预应力作用可以将围岩与锚杆紧密连接在一起,形成一个整体结构,提高整体强度和稳定性。

同时,锚杆的预应力还可以分担围岩的负荷,减小了围岩的开挖应力,对地下工程的稳定性有着重要的意义。

二、锚杆支护的分类根据锚杆的材料和锚固方式的不同,可以将锚杆支护分为多种类型。

1. 普通锚杆支护:普通锚杆支护是最常见的锚杆支护形式,它使用的材料通常是无缝钢管或钢棒。

普通锚杆通过预应力将围岩与锚杆连接在一起,形成一个整体支护体系,提高了围岩的稳定性和承载能力。

2. 预应力锚杆支护:预应力锚杆支护是指在锚杆上施加一定的预应力,使其能够对围岩施加更大的锚固力。

预应力锚杆的设置既可以是锚杆与围岩形成的摩擦力产生的预应力,也可以是锚杆与围岩之间形成的粘结力产生的预应力。

3. 脉冲爆炸锚杆支护:脉冲爆炸锚杆支护是一种新型的支护方法,它利用了高能率力波对围岩产生冲击破碎的效果,从而提高了围岩的稳定性和承载能力。

该方法适用于围岩质量较差或需要进行加固的地下工程。

4. 钻喷锚杆支护:钻喷锚杆支护是一种以喷锚剂为介质进行激光堵漏的新型支护方式。

它通过在围岩中钻孔并喷洒喷锚剂,将喷锚剂固化后形成支护体系,提高了围岩的稳定性。

三、锚杆支护的应用范围锚杆支护广泛应用于矿山、隧道、地铁等地下工程中,具有以下几个方面的应用范围。

1. 煤矿巷道支护:煤矿巷道是一种典型的地下开采工程,巷道支护的稳定性对于煤矿的安全生产至关重要。

锚杆支护作为一种有效的巷道支护方式,可以提高地下巷道的稳定性和承载能力。

锚杆支护及其分类

锚杆支护及其分类

锚杆支护及其分类锚杆支护是一种常用的地下工程支护技术,适用于各种地质条件下的隧道、矿山、地铁等工程施工。

本文将介绍锚杆支护的基本原理、分类以及常见应用。

1. 锚杆支护的基本原理锚杆是一根贯穿地层的杆状体,通过将锚杆固定在地层中,形成一个稳定的支撑系统。

锚杆支护的基本原理是利用锚杆与周围地层的摩擦和强度,将地层固化在一起,形成一个整体。

锚杆通常由钢筋或合成材料制成,固定在地层中的锚具有一定的长度,并采用特定的施工方法进行施工。

2. 锚杆支护的分类根据不同的应用要求和具体工况,锚杆支护可以分为以下几类:(1)单锚杆支护:单锚杆支护是最简单的一种支护方式。

它通常是在隧道施工过程中使用的,主要用于控制地层的位移和稳定地质结构。

单锚杆通常通过一端固定在地层中,另一端与锚杆头连接,通过提供悬挂支撑,使地层保持稳定。

(2)多锚杆支护:多锚杆支护是指在一定长度范围内使用多根锚杆进行支撑的方法。

多锚杆支护相比单锚杆支护更加稳定,能够分担更大的地层力量。

多锚杆支护一般采用拉挤加固法进行施工,通过调整锚杆的应力分布情况,使地层产生较大的压缩应力,从而增强地层的整体稳定性。

(3)锚索锚杆支护:锚索锚杆支护是一种具有较高抗拉强度的支护系统。

它采用在地层中安装锚索和锚杆的组合,通过拉拽锚索和压实地层来实现地层的支撑和加固。

锚索锚杆支护适用于需要抵抗拉力和具有较大变形能力的地层,如弱固结地层和地层含有较多含水层的情况。

(4)自锚杆支护:自锚杆支护是一种特殊的锚杆支护方法。

它通过在地层中预埋锚管或特殊构造的支护体,使地层在受力后能够形成自锚杆结构,从而达到支撑和固化地层的目的。

自锚杆支护适用于需要进行大规模地下施工的地方,如地铁隧道、交通隧道等。

3. 锚杆支护的常见应用锚杆支护在地下工程中有着广泛的应用,常见的应用包括:(1)隧道工程:隧道工程是锚杆支护的主要应用领域之一。

在隧道施工过程中,由于地层的不稳定性和变形,需要通过锚杆支护来保证施工安全和工程质量。

一、锚杆的种类资料

一、锚杆的种类资料

一、锚杆种类
2.按锚固长度分类 按锚固长度分类,可分为端部锚固、全长锚固与加长锚 固。 端部锚固锚杆的锚固长度不大于500mm或锚杆钻孔深度 的1∕3.各种用锚固装置提供锚固力的机械式锚杆大多属于 端部锚固锚杆;圆钢水泥、树脂锚杆也以端部锚固为主。 全长锚固锚杆的锚固长度大小于锚杆钻孔深度的90%。 管缝式和水力膨胀式锚杆属于机械式全长锚固锚杆;水泥 、水泥砂浆、树脂锚固剂也可实现全长锚固。 加长锚固锚杆的锚固长度介于端部锚固与全长锚固之间 。如加长锚固的螺纹钢锚杆,既能保证锚杆锚固力,又能 节约一定的锚固材料,得到大量的推广应用。 3.按锚杆杆体种类与材质分类 按锚杆杆体种类与材质分类,如图3-1-1所示。
120
100
80
60
40
20
0
100
200
300
400
500
锚杆预紧扭矩(N·m)
数字 代表减摩材料
220
0 不使用减摩垫片
221
222
1
聚四氟乙烯
223
224
2
1010尼龙
3
改性1010尼龙
4
高密度聚乙烯
3、锚杆支护材料
树脂锚固剂
对树脂锚固剂的要求:固化后有较高粘结力、较高变 性模量;固化快,快速安装,及时施加预应力;固化 时间可调,满足加长、全长锚固要求;固化后收缩率 低;有利于钻孔中安装和搅拌。
螺母
阻力增大,控制围岩变形。
要求:承载能力与杆体匹配; 螺母结构形状、规格与加工 精度有利于给锚杆施加大预 应力;有利于锚杆安装。
普通螺母 扭矩螺母
标准螺母 加厚螺母 大螺距螺母 球形螺母 阻尼式螺母 销钉式螺母 压片式螺母
3、锚杆支护材料

2024年锚杆支护及其分类

2024年锚杆支护及其分类

2024年锚杆支护及其分类____年锚杆支护及其分类,____字引言:锚杆支护是施工过程中广泛应用的一种地下工程支护方式,它通过使用锚杆将地下结构与锚固层连接起来,以增加地下结构的稳定性和承载能力。

随着经济的发展和城市化进程的加速,地下工程建设的需求也越来越大,锚杆支护技术得到了广泛的应用。

本文将对____年的锚杆支护及其分类进行详细的介绍。

一、锚杆支护的概述锚杆支护是指将钢筋混凝土锚杆嵌入围岩或基岩中,通过锚杆固结在岩层上方,以提供承载力和稳定性的一种支护方式。

它具有施工工艺简单、效果显著、适应性广等优点,在地下工程建设中得到了广泛的应用。

随着不断发展的技术,锚杆支护也不断创新和完善,不同的分类适用于不同的工程应用。

二、锚杆支护的分类根据施工材料的不同,锚杆支护可以分为以下几类:1. 钢筋混凝土锚杆支护钢筋混凝土锚杆是最常用的锚杆支护方式之一,它具有强度高、耐久性好等特点。

在施工过程中,首先将孔道钻进地下结构中的围岩或基岩中,然后注入混凝土,在固定在锚固层上方的锚杆中。

这种方式能够有效地增加地下结构的稳定性和承载能力,广泛应用于隧道、地下车库等地下工程。

2. 环氧树脂锚杆支护环氧树脂锚杆是一种新型的支护材料,具有粘接力强、耐久性好等特点。

在施工过程中,首先将孔道钻进地下结构中的围岩或基岩中,然后将环氧树脂注入孔道,通过化学反应固结锚杆。

与传统的钢筋混凝土锚杆相比,环氧树脂锚杆具有施工工艺简单、效果显著等优点。

3. 预应力锚杆支护预应力锚杆是一种通过在围岩中施加预应力来增加地下结构稳定性的支护方式。

在施工过程中,首先将孔道钻进地下结构中的围岩或基岩中,然后将钢丝绳固定在孔道底部,通过紧张钢丝绳来施加预应力。

这种方式能够有效地增加地下结构的承载能力,广泛应用于高速公路、铁路等地下工程。

4. 螺纹钢锚杆支护螺纹钢锚杆是一种通过螺旋转动的方式将锚杆嵌入围岩或基岩中来实现支护的一种方式。

在施工过程中,首先将孔道钻进地下结构中的围岩或基岩中,然后将螺纹钢锚杆旋入孔道,通过摩擦力来增加固结效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仅供参考[整理] 安全管理文书
锚杆支护及其分类
日期:__________________
单位:__________________
第1 页共3 页
仅供参考[整理]
锚杆支护及其分类
锚杆支护实质上是把锚杆安装在巷道的围岩中,使层状的、软质的岩体以不同的形态得到加固,形成完整的支护结构,提供一定的支护抗力,共同阻抗其外部围岩的位移和变形。

(1)木锚杆。

我国使用的木锚杆有两种,即普通木锚杆和压缩木锚杆。

(2)钢筋或钢丝绳砂浆锚杆。

以水泥砂桨作为锚杆与围岩的粘结剂。

(3)倒楔式金属锚杆。

这种锚杆曾经是使用最为广泛的锚杆形式之一。

由于它加工简单,安装方便,具有一定的锚固力,因此这种锚杆在一定范围内至今还在使用。

(4)管缝式锚杆。

是一种全长摩擦锚固式锚杆。

这种锚杆具有安装简单、锚固可靠、初锚力大、长时锚固力随围岩移动而增长等特点。

(5)树脂锚杆。

用树脂作为锚杆的粘结剂,成本较高。

(6)快硬膨胀水泥锚杆。

采用普通硅酸盐水泥或矿渣硅酸盐水泥加入外加剂而成,具有速凝、早强、减水、膨胀等特点。

(7)双快水泥锚杆。

是由成品早强水泥和双快水泥按一定比例混合而成的。

具有快硬快凝、早强的特点。

第 2 页共 3 页
仅供参考[整理] 安全管理文书
整理范文,仅供参考!
日期:__________________
单位:__________________
第3 页共3 页。

相关文档
最新文档