Genetics and Genomics -- Impact - Stanford University:遗传学和基因组学的影响——斯坦福大学

合集下载

表观遗传学-基因组印记(Genomic imprinting)

表观遗传学-基因组印记(Genomic imprinting)

Epigenetics, 2008-2009, Semester 1, USTC
If a corresponding maternal DNA sample is also available for study, then the parental origin of the active allele can be determined. If the gene is not imprinted, that is biallelic in some tissues, then both alleles will be represented in the RNA.
Epigenetics, 2008-2009, Semester 1, USTC
Because imprinting is important for normal fetal development, and might occur only during gestation, fetal tissue samples are needed to determine which parental allele a gene is transcribed from. If the fetal genomic DNA is heterozygous for an exonic polymorphism within the gene under study, then imprinted expression from one parental allele can be detected by visualisation of a single allele in the RNA.
Epigenetics, 2008-2009, Semester 1, USTC

基因组与基因组学

基因组与基因组学

人体细胞的核型(Spectral Karyotype)
18
一些模式生物的基因组大小
基因组大小/bp T4噬菌体 2.0×10 5 大肠杆菌(Escherichia coli ) 4.2×10 6 酵母(Sccharomyces cerevisiae) 1.5×10 7 拟南芥(Arabidopsis thaliana ) 1.0×10 8 秀丽小杆线虫(Caenorhbditis elagans) 1.0×10 8 果蝇(Drosophila melanogaster) 1.65×10 8 水稻(Oryza sativa ) 3.89×10 8 小白鼠(Mus musculus ) 3.0×10 9 人类(Homo sapiens) 3.3×10 9 玉米(Zea mays ) 5.4×10 9 普通小麦(Triticum aestivum) 1.6×10 10
其DNA是与蛋白质结合,不形成染色体结构, 只是习惯上将之称为染色体。细菌染色体DNA在胞 内形成一个致密区域,即类核(nucleoid),类 核无核膜将之与胞浆分开。
2.功能相关的几个结构基因往往串联排列在一起 组成操纵子结构,受上游共同的调控区控制。 3.原核生物基因组中基因密度非常高,结构基因是 连续的多为单一拷贝。
3、编码序列只占基因组总DNA量的5%以下,非
编码区占95%以上,大量为重复序列。
49
重复序列
1.高度重复序列:重复频率 >105,通常这些序列的 长度为6-200bp,如卫星DNA; 2.中度重复序列:重复频率 101-105,重复单位平均 长度约300bp占基因总量的35%。(rRNA gene, tRNA gene, 组蛋白gene );
52
二、基因组学概念及范畴

基因组学

基因组学
又称后基因组学(postgenomics) 基因的识别、鉴定、克隆 基因结构、功能及其相互关系
基因表达调控的研究
蛋白质组学(proteomics) • 鉴定蛋白质的产生过程、结构、功能和 相互作用方式
2 基因组图谱的构建
基因组计划的主 要任务是获得全 基因组序列 但是,现在的测 序方法每次只能 测800~1000bp 小基因组物种常 用鸟枪射击法
(restriction fragment length polymorphism,RFLP)
如有两个 DNA 分子(一对染色体),一 个具有某一种酶的酶切位点,而另一个 没有这个位点,酶切后形成的DNA片段长 度就有差异,即多态性。
• 利用限制性内切酶消化基因组DNA,形成大小 不等、数量不同的分子片段, • 经电泳分离, • 通过Southern印迹将DNA片段转移至支持膜 (尼 龙膜或硝酸纤维素膜)上, • 然后用放射性同位素(32P)或非同位素 (如地高 辛,荧光素)标记的探针与支持膜上的DNA片 段进行杂交。 • 不同基因组DNA酶切位点的改变,会使得 RFLP谱带表现出不同程度的多态性.
中英联合实验室
双脱氧终止法测序反应体系包括:
DNA polymerase
Template:(单链DNA模板)
Primer:(带有3-OH末端的单链寡核苷酸引物)
Mg2+ dNTP(dATP,dGTP,dCTP和dTTP) ddNTP(ddATP,ddGTP,ddCTP和ddTTP)
DNA自动测序
形态标记
能够用肉眼识别和观察、明确显示遗传多样性 的外观性状。 形态性状:株高、颜色、白化症等 又称表型标记 简单直观 数量少 很多突变是致死的 受环境、生育期等因素的影响

遗传学英语文献

遗传学英语文献

遗传学英语文献Genetics has been a field of study that has captivated the minds of scientists and laypeople alike for centuries. The intricacies of the genetic code and its influence on the development and behavior of living organisms have been the subject of extensive research and literature. In the realm of English literature, the topic of genetics has been explored in various forms, from scientific treatises to fictional narratives.One of the seminal works in the field of genetics is Charles Darwin's "On the Origin of Species," published in 1859. This groundbreaking publication laid the foundation for the theory of evolution through natural selection, which has had a profound impact on our understanding of genetics and the diversity of life on Earth. Darwin's work not only presented his scientific findings but also engaged in a broader philosophical discourse on the implications of his theory, sparking debates and conversations that continue to this day.Another notable contribution to the literature on genetics is the work of Gregor Mendel, an Augustinian friar whose experiments with peaplants in the mid-19th century laid the groundwork for our understanding of heredity. Mendel's laws of inheritance, which describe the patterns of genetic inheritance, have become a cornerstone of modern genetics. While Mendel's work was not widely recognized during his lifetime, it has since been celebrated as a pivotal moment in the history of science.In the realm of fiction, genetics has been a recurring theme, often used as a tool to explore the ethical and social implications of scientific advancements. One such example is Aldous Huxley's "Brave New World," published in 1932, which presents a dystopian future where human beings are genetically engineered and society is strictly controlled. Huxley's novel raises questions about the potential consequences of genetic manipulation and the impact it could have on individual autonomy and societal structures.Similarly, Mary Shelley's "Frankenstein," published in 1818, can be interpreted as an exploration of the ethical boundaries of scientific experimentation, particularly in the realm of creating life. The story of Victor Frankenstein's creation of a sentient being, and the subsequent consequences of his actions, has become a classic in the science fiction genre and continues to be analyzed and discussed in the context of genetics and the limits of scientific inquiry.In more recent years, the field of genetics has been further exploredin popular fiction, such as Michael Crichton's "Jurassic Park," which explores the potential of genetic engineering to resurrect extinct species. This novel, and the subsequent film adaptations, have captured the public's imagination and sparked discussions about the ethical and practical implications of such advancements.Beyond fiction, the field of genetics has also been the subject of various scientific texts and scholarly works, which have helped to advance our understanding of the genetic mechanisms that govern the development and function of living organisms. These works range from textbooks and research papers to more accessible popular science books, which aim to bridge the gap between the scientific community and the general public.One such example is James Watson and Francis Crick's "The Double Helix," a firsthand account of their groundbreaking discovery of the structure of DNA, which revolutionized our understanding of the genetic code. This book not only presents the scientific findings but also provides insights into the personalities and dynamics of the scientists involved in the research, offering a glimpse into the human side of scientific discovery.Another notable work in the field of genetics literature is "The Selfish Gene" by Richard Dawkins, published in 1976. This book presents a gene-centric view of evolution, which has had a significant impact onour understanding of the mechanisms of natural selection and the role of genetics in shaping the natural world. Dawkins' engaging writing style and thought-provoking ideas have made this book a classic in the field of evolutionary biology and genetics.In conclusion, the field of genetics has been the subject of a rich and diverse body of English literature, spanning from scientific treatisesto imaginative works of fiction. These literary contributions have not only advanced our understanding of the genetic mechanisms that govern living organisms but have also explored the ethical, social, and philosophical implications of our growing knowledge in this field. As the field of genetics continues to evolve, it is likely that we will see new and innovative perspectives emerge in the literature, further enriching our understanding of this captivating and ever-expanding area of study.。

journal of genetics and genomics 参考文献格式

journal of genetics and genomics 参考文献格式

journal of genetics and genomics 参考文献格式知识专题:深度探讨《遗传学与基因组学杂志》1. 引言作为一名学术研究人员,我始终关注着《Journal of Genetics and Genomics》(《遗传学与基因组学杂志》)这一权威期刊的最新研究成果。

今天,我将就这一主题展开深入探讨,带领大家一起了解这一杂志的重要性以及最新的研究动态。

2. 了解《Journal of Genetics and Genomics》《Journal of Genetics and Genomics》是一份涵盖遗传学和基因组学领域的权威期刊,其发表的论文涵盖了分子遗传学、基因组学、染色体生物学、人类和动物遗传学等广泛领域。

该杂志以其严谨的学术态度和丰富的研究内容而闻名,受到全球遗传学和基因组学研究者的高度关注。

3. 《Journal of Genetics and Genomics》的研究热点近年来,该期刊发表了许多重要的研究成果,涉及到多个研究热点。

基因编辑技术在动植物遗传改良中的应用、生物信息学在基因组学研究中的发展、以及人类遗传疾病的分子机制等。

这些研究成果为我们深入了解生命的遗传本质提供了重要的参考和指导。

4. 个人观点与理解作为一名对遗传学和基因组学领域感兴趣的学术研究者,我对《Journal of Genetics and Genomics》的重要性深有体会。

通过阅读该期刊发表的论文,我不仅了解到了最新的研究进展,也结识了许多同行,广泛交流并深化了自己的研究思路。

我认为该期刊对于推动遗传学和基因组学领域的发展起到了至关重要的作用。

5. 总结与回顾通过本文的介绍,我们对《Journal of Genetics and Genomics》这一重要学术期刊有了更深入的了解。

该期刊以其丰富的研究内容和严谨的学术态度受到全球研究者的高度关注,其发表的论文涉及到的研究热点也备受同行们的关注。

有关基因技术的英语作文

有关基因技术的英语作文

有关基因技术的英语作文标题,The Impact of Genetic Technology on Society。

Genetic technology has become a prominent force shaping our society, with its influence reaching various aspects of human life. From healthcare to agriculture, genetic technology has sparked both enthusiasm and concern. In this essay, we will explore the profound impact of genetic technology on society, examining its benefits, challenges, and ethical implications.In the realm of healthcare, genetic technology has revolutionized diagnostics, treatment, and prevention of diseases. Through genetic testing, individuals can now assess their risk of inheriting certain diseases and take proactive measures to mitigate them. For instance, carriers of genetic mutations associated with breast cancer can opt for preventative surgeries or enhanced screening protocols. Moreover, genetic engineering has facilitated the development of targeted therapies, such as gene editingtechniques like CRISPR-Cas9, which hold promise for curing genetic disorders like sickle cell anemia and cystic fibrosis.However, the widespread application of genetic technology in healthcare also raises ethical concerns, particularly regarding issues of consent, privacy, and equity. Genetic data is inherently sensitive, and concerns about its misuse or unauthorized access abound. Moreover, the availability of genetic testing and advanced treatments may exacerbate existing disparities in healthcare access, widening the gap between the privileged and the marginalized. Therefore, it is imperative to establish robust ethical frameworks and regulatory mechanisms to ensure the responsible and equitable use of genetic technology in healthcare.Beyond healthcare, genetic technology has significant implications for agriculture and food production. Genetically modified organisms (GMOs) have been engineered to exhibit desirable traits such as pest resistance, drought tolerance, and increased nutritional content. Theseadvancements have the potential to enhance crop yields, improve food security, and alleviate poverty in resource-constrained regions. Additionally, genetic modification techniques like CRISPR have enabled precise genome editingin plants, paving the way for the development of novel crop varieties with enhanced nutritional value and reduced environmental impact.Nevertheless, the widespread adoption of GMOs has generated controversy, with concerns ranging from environmental sustainability to food safety and sovereignty. Critics argue that genetically modified crops may have unforeseen ecological consequences, such as theproliferation of pesticide-resistant pests or the loss of biodiversity. Moreover, questions persist about the long-term health effects of consuming GMOs and the potential for genetic contamination of non-GMO crops. Thus, the deployment of genetic technology in agriculturenecessitates comprehensive risk assessments and transparent communication to address public concerns and ensure responsible stewardship of the environment and food supply.In conclusion, genetic technology holds immense promise for transforming healthcare, agriculture, and various other sectors of society. Its potential to diagnose and treat diseases, enhance crop productivity, and address global challenges is undeniable. However, realizing these benefits requires careful consideration of ethical, social, and environmental implications. By fostering dialogue, promoting transparency, and upholding principles of equity and justice, we can harness the power of genetic technology for the betterment of humanity while mitigating its potential risks.。

Gene and genomics

Gene and genomics

100
950 2500 10,000 15 4.7 1.8 0.58
2n=10
2n=24 2n=20 2n=24 n=16 n=1 n=1 n=1
一、 病毒基因组结构与功能的特点
1.不同病毒基因组大小相差较大 2.不同病毒基因组可以是不同种类、结 构的核酸 3.病毒基因组有连续的也有不连续的 有
些RNA病毒为不连续的片段
一 人类基因组的重复序列
• 串联重复顺序(tandem repeats) 约占10%
– 编码区串联重复顺序:组蛋白基因
– 非编码区串联重复顺序:通常存在于间隔 DNA和内含子中 • 大卫星DNA(macrosatellite DNA)
• 小卫星DNA(miniosatellite DNA)
• 微卫星DNA (microsatellite DNA)
4.编码序列大于90%
5.单倍体基因组 除逆转录病毒外 6.基因有连续的和间断的 7.相关基因丛集 转录出多顺反子mRNA 8.基因重叠
9.病毒基因组含有不规则结构基因
病毒基因组核酸的主要类型
核酸类型 转录方式 复制特点 病毒种类
双链DNA
类似细胞基因
① 通过DNA复制过程完成基 因组复制; ① 大部分DNA病毒 ② 先转录出一个RNA中间体 ②乙肝病毒(HBV) (前基因组),再通过逆转录 过程完成复制
乙型肝炎病毒基因组结构和功能
• C区段:编码核心抗原(HBcAg),羧基端 富Arg水解后转变为分泌性e抗原(HBeAg) • P区段:编码DNA聚合酶,是依赖RNA的 DNA聚合酶(逆转录酶) • X区段:X蛋白功能尚不十分清楚,可能是 反式激活因子
二、原核生物基因组结构和功能的特点
1.通常仅有一条环状双链DNA分子组成 2.只有一个复制起点 3.具有操纵子结构 4.编码序列一般不重叠

基因与基因组学

基因与基因组学

Prokaryotes are the simplest living cells including
bacteria,
archaea,
actiunomyces,chlamydia,mycoplasma
Prokaryote
Prokaryotes consist of a single cell which has no nucleus or nucleolus. There is a single chromosome compacted into a nucleoid in the cell interior.
基因概念的发展
一个基因一种酶(蛋白质) 一个基因一条多肽链 RNA作为遗传信息的携带者 ……
From simple virus to complicated higher organisms,the total genetic information that control life activity is stored in genes.
基因与基因组学
Gene and Genomics
人类对生命现象的认识
20世纪
还原论
生命科学的飞跃
人类对生命现象的认识
21世纪
整体论
揭示生命的奥秘
Genomics Structural Genomics Functional genomics
概念:
一个物种的单倍体染色体数目,称该物种的基因组 (genome)。
The transcription units mostly are polycistronic mRNA.
The sequence are uninterrupted and no introns remain in genes.

遗传学相关词汇中英对照

遗传学相关词汇中英对照

遗传学相关词汇中英对照一:细胞遗传学 cytogenetics细胞的遗传学 cell genetics体细胞遗传学 somatic cell genetics发育遗传学 developmental genetics又称“发生遗传学”。

微生物遗传学 microbial genetics细菌遗传学 bacterial genetics生化遗传学 biochemical genetics分子遗传学 molecular genetics生物工程 biotechnology分子细胞遗传学 molecular cytogenetics植物遗传学 plant genetics动物遗传学 animal genetics生统遗传学 biometrical genetics统计遗传学 statistical genetics数量遗传学 quantitative genetics群体遗传学 population genetics进化遗传学 evolutionary genetics人类遗传学 human genetics医学遗传学 medical genetics临床遗传学 clinical genetics法医遗传学 medico-legal genetics, forensic genetics病理遗传学 pathogenetics药物遗传学 pharmacogenetics生理遗传学 physiological genetics免疫遗传学 immunogenetics, immunological genetics行为遗传学 behavioral genetics核遗传学 karyogenetics辐射遗传学 radiation genetics毒理遗传学 toxicological genetics生态遗传学 ecological genetics, ecogenetics群落遗传学 syngenetics优生学 eugenics优型学 euphenics优境学 euthenics染色体学 chromosomology, chromosomics染色体工程 chromosome engineering核学 karyology, caryology核形态学 karyomorphology核型分类学 karyotaxonomy基因学说 gene theory多基因学说 polygenic theory孟德尔遗传定律 Mendel's law of inheritance, Mendel's laws分离定律 law of segregation独立分配定律 law of independent assortment又称“自由组合定律”。

生命科学之遗传学简介

生命科学之遗传学简介
Half “Ww”, Heterozygous, and will have a widows peak Half “ww”, Homozygous, and will not have a widows peak w
W
Ww
w
ww
w
Ww
ww
Genetics
Another possibility is that Lilly might be “WW”, homozygous dominant.
Hair color is a perfect example of a trait
What color hair should their children have?
Prince Charming is blond Snow White has dark hair
Genetics
There are three basic kinds of genes:
Life Science
Genetics
Genetics The study of heredity, how traits are passed from parent to offspring
x
or
=
or
The study of heredity started with the work of Gregor Mendel and his pea plant garden
Widows Peak
Genetics
Punnet Square - A tool we use for predicting the traits of an offspring
– Letters are used as symbols to designate genes – Capital letters are used for dominant genes – Lower case letters are used for recessive genes – Genes always exist in pairs

Genetics and Genomics -- Impact - Stanford University:遗传学和基因组学的影响——斯坦福大学

Genetics and Genomics -- Impact - Stanford University:遗传学和基因组学的影响——斯坦福大学
Or….
2
Pharmacotherapy: State-of-the-Art
Group
AT2-antag SSRI ACE -I Beta blockers Tricycl. AD HMGCoAR-I Beta-2-agonists
Incomplete/absent efficacy
10-25% 10-25% 10-30% 15-25% 20-50% 30-70% 40-70%
Low HER2
High HER2
11
Xeloda® (capcitabine)
Patient stratification based on enzyme patterns
Xeloda
TS
TP DPD
5-DFUR 5-FU
inactive metabolites
(dThdPase/DPD)
Xeloda susceptibility vs tumor TP/DPD
Inherited differences affect drug effects
Pharmacogenetics = molecular DD Case Study: Herceptin®
Bimodal response: 2/3 of patients: addition of Herceptin® to chemoRx no benefit 1/3 of patients: addition of Herceptin® to chemoRx 50% survival time increased by factor 1.5 (20 29 weeks)
6.7% 0.3%
2 M cases 100,000 cases
JAMA 98;279:1200

转录组 基因家族

转录组 基因家族

转录组基因家族
转录组(Transcriptome)和基因家族(Gene family)是基因组学(Genomics)研究中的两个重要概念。

它们分别关注基因的转录表达和基因间的进化关系。

1. 转录组
转录组是指一个细胞或组织在某一特定时刻转录产生的所有RNA分子,包括mRNA、tRNA、rRNA和其他非编码RNA。

通过对转录组的研究,科学家可以了解基因的表达模式、调控机制以及不同细胞类型和生理状态下基因的活性。

转录组学(Transcriptomics)是研究转录组的一门学科,主要利用高通量测序技术(如RNA-seq)来获取和分析RNA 序列数据。

2. 基因家族
基因家族是指在基因组中具有相似结构、起源和功能的一组基因。

基因家族成员通常具有较高的序列相似性和相似的调控元件,它们可能起源于一个共同的祖先基因,通过基因重复和演化形成了多个拷贝。

基因家族在生物进化过程中起着重要作用,如新功能的产生、基因剂量效应以及基因的亚细胞定位等。

总结:
转录组关注的是基因在特定时间和环境下的转录表达,而基因家族则强调基因间的进化关系和功能相似性。

在基因组学研究中,这两个概念都具有重要的意义,它们共同揭示了生物体基因表达调控和进化过程中的复杂性和多样性。

作物遗传改良——农业可持续发展的保证

作物遗传改良——农业可持续发展的保证

EditorialGenetic Crop Improvement:A Guarantee for Sustainable AgriculturalProductionJianmin WanChinese Academy of2593.2million tonnes;the utilization for food and feed accountedfor43.1%and35.0%,respectively[2].Although soybean(Glycinemax),rapeseed(Brassica napus),sunflower(Helianthus annuus),and peanut(Arachis hypogaea)are traditionally the most importantoil crops,it has been demonstrated that non-classic oilseed plantssuch as oil palm(Elaeis guineensis)have potential as new oil crops.Science and technology can contribute significantly to foodsecurity.A new‘‘Greener Revolution,”which includes cropimprovement,environmentally friendly approaches for crop pro-tection,and efficient use of water and fertilizers,is needed[3].The genetic improvement of crops promotes sustainable crop pro-duction;thus,the development of new crop cultivars constitutes amajor objective in breeding programs.Genetic gains are the bene-fits from crop breeding.For example,wheat yield increased at arate of26kgÁhmÀ2per annum during the period1901–2014inNew South Wales,Australia[4],and increased by57.5kgÁhmÀ2per annum during the period1950–2012in the major wheat-producing regions of China[5].However,crop yields are constantlychallenged by different biotic and abiotic stresses[6,7],and thissituation can be worsened by climate change.The occurrence ofcertain diseases has expanded.For example,Fusarium head blightin wheat,which was regarded as the most devastating fungalwheat disease in southern China,but which rarely occurred innorthern China,has now spread to the north and become one ofthe most serious threats in the Huang-Huai River Basin WinterWheat Zone,the largest wheat-producing regions of the country.The objectives of crop genetic improvement must be to solve thesebreeding programs due to several significant constraints.The Con-sultative Group on International Agricultural Research(CGIAR)Excellence in Breeding Platform,which is part of the new CGIARPortfolio2017–2022of Research Programs and Platforms,wasdeveloped for staple crop-and animal-breeding programs of thedeveloping world,and gives small breeding operations aroundthe world access to modern genotyping,bioinformatics,and phe-notyping tools.It also provides a series of training programs inkey areas of research need.Enhancing genetic gain depends on both continuously increas-ing genetic potential and narrowing the gap between geneticpotential and the actual yield that is achieved[8];the latter is lar-gely addressed by improving biotic and abiotic stress tolerance.The challenge of biotic stresses comes not only from airborne fungisuch as Blumeria graminis f.sp.tritici(the causal agent of wheatpowdery mildew),but also from a class of soil-borne pathogensthat invade crop roots.Three review papers on this topic are pro-vided in this special issue,with one addressing airborne and twoaddressing soil-borne ing powdery mildew resistanceas an example,a group of scientists from Sichuan AgriculturalUniversity,China,demonstrate the potential of Pm40as anadditional gene to replace the traditional Pm21for developingsustainable disease-resistant cultivars.As qualitatively inheritedgenes will lose their resistance after being used in agriculture overa period of time,it is important to identify new resistance genesin order to continuously provide resistance genes to replaceineffective genes.Regarding soil-borne diseases,Drs.Yan andBaidoo from North Dakota State University,USA,summarize the improvements that have been made in resistance to soybean cyst nematode(Heterodera glycines)through breeding.They provide an example of how the molecular biology of pathogens and related studies can be used to expedite conventional breeding programs.A group of scientists from the University of Alberta,Canada,review the occurrence and control measures of root rot,a soil-borne dis-ease infield pea that is caused by Aphanomyces euteiches,and that presents a significant threat to Canadianfield pea production.Global climate change caused by greenhouse gas emissions has largely contributed to adverse changes in temperature and precip-itation.One significant impact on crop production that is caused by global warming—drought stress—may result in a significant loss of yield for many crops.Developing crops that are adapted to the changing climate is an important task for crop geneticists and breeders.The paper contributed to this special issue by Dr.Nazim Ud Dowla and his colleagues from Australia reports on the adaption of wheat to drought stress by altering the key genes that control vernalization(Vrn),photoperiod(Ppd),and dwarfing(Rht) traits.To meet the demands of the increasing global population while protecting natural environments,it is critical to develop high-yielding and environmentally friendly crops,including those with improved traits,new crop types,or new products.New crop spe-cies,types,and products can be created through the development of synthetic crop species or crops with significantly changed pro-duction modes,such as a change from annual to perennial[9]. Three review papers published in this special issue provide examples of such efforts in plant breeding.A paper by scientists from China and the United States reports on the development of perennial wheat,which has long been an objective of several breeding programs in different countries.This article summarizes the production and potential application of perennial wheat via crossing wheat with perennial wheatgrasses.A review provided by a joint group of scientists from China and the International Maize and Wheat Improvement Center(CIMMYT)summarizes the potential application of synthetic hexaploid wheat in wheat breeding.The newly developed synthetic wheat provides useful genetic resources that are needed for wheat improvement.A paper by a group of scientists from the Commonwealth Scientific and Industrial Research Organization(CSIRO),Australia,reports on the genetic manipulation of non-classic oilseed plants to enhance their potential as a biofactory for the production of triacylglycerol as the dominant form of vegetable oil.The authors summarize current genetic engineering strategies to increase triacylglycerol accumulation in plants.References[1]Food and Agriculture Organization of the United Nations.Food and nutrition innumbers2014.Rome:Food and Agriculture Organization of the United Nations;2014.[2]Bedford D,Claro J,Giusti AM,Karumathy G,Lucarelli L,Mancini D,et al.Foodoutlook:biannual report on global food markets.Rome:Food and Agriculture Organization of the United Nations;2017.[3]Beddington J.Food security:contributions from science to a new and greenerrevolution.Philos Trans R Soc Lond B Biol Sci2010;365(1537):61–71.[4]Flohr BM,Hunt JR,Kirkegaard JA,Evans JR,Swan A,Rheinheimer B.Geneticgains in NSW wheat cultivars from1901to2014as revealed from synchronous flowering during the optimum period.Eur J Agron2018;98:1–13.[5]Gao FM,Ma DY,Yin GH,Rasheed A,Dong Y,Xiao YG,et al.Genetic progress ingrain yield and physiological traits in Chinese wheat cultivars of southern Yellow and Huai Valley since1950.Crop Sci2017;57(2):760–73.[6]Dai AG.Drought under global warming:a review.WIREs Clim Change2011;2(1):45–65.[7]Singh RP,Singh PK,Rutkoshi J,Hodson DP,He XY,Jørgensen LN,et al.Diseaseimpact on wheat yield potential and prospects of genetic control.Annu Rev Phytopathol2016;54:303–22.[8]Xu Y,Li P,Zou C,Lu Y,Xie C,Zhang X,et al.Enhancing genetic gain in the era ofmolecular breeding.J Exp Bot2017;68(11):2641–66.[9]Glover JD,Reganold JP,Bell LW,Borevitz J,Brummer EC,Buckler ES,et al.Increased food and ecosystem security via perennial grains.Science2010;328 (5986):1638–9.432J.Wan/Engineering4(2018)431–432Engineering 2 (2016) xxx–xxxEditorial作物遗传改良——农业可持续发展的保证万建民Chinese Academy of Agricultural Sciences, Beijing 100081, China作物生产提供了我们日常生活的食物、饲料和其他营养物质。

遗传学

遗传学

3.遗传工程的应用 3.遗传工程的应用 4.能源的开发与环境保护 4.能源的开发与环境保护 生物资源的可持续利用 生物多样性的保护 5.遗传学与社会、法律、伦理道德和世界观 5.遗传学与社会、法律、伦理道德和世界观
主要参考书
刘祖洞主编,《遗传学》 刘祖洞主编,《遗传学》,高教出版社。 李宝森、胡庆宝主编,《遗传学》 李宝森、胡庆宝主编,《遗传学》,南开大学出 版社。 林文君主编, 林文君主编, 《细胞遗传学原理 》,四川大学 出版社。 朱军主编, 遗传学》 朱军主编, 《遗传学》,农业出版社。 赵寿元、乔守怡主编, 现代遗传学》 赵寿元、乔守怡主编, 《现代遗传学》, 高教出版社
第三节 遗传、发育、进化在基因水平的 统一
进化、发育和遗传的共同基础是基因 个体发育是细胞内的基因按照特定的时间个体发育是细胞内的基因按照特定的时间-空间程 序精确表达的过程。 发育的核心问题是细胞分化。 发育和遗传统一 生物进化的长链和系统发生的长链的统一 遗传学与进化论的综合产生了新达尔文主义或综 合进化论 遗传学理论、发育理论和进化论将综合为基因学
遗传学
讲授:周颂东 四川大学生命科学学院
第一章
绪论
第一节 遗传学的定义、研究内容和任务 第二节 遗传学的发展历史 第三节 遗传、发育、进化在基因水平的 统一 第四节 遗传学的应用
第一节遗传学的定义、研究内容和任务
一、定义 遗传学(Genetics): 遗传学(Genetics): 经典定义:研究生物体遗传和变异规律的一 门科学。 现代定义:研究基因的结构、传递和表达规 律的一门科学,又称为基因学。 遗传(Heredity):同类生物世代间相似的 遗传(Heredity):同类生物世代间相似的 现象。 变异(Variation):生物个体间的差异。 变异(Variation):生物个体间的差异。

基因组学-Genomics-知识考点汇总

基因组学-Genomics-知识考点汇总

基因组学-Genomics-知识考点汇总•基因组(Genome:Gene+chromosome)细胞或生物体中一套完整的单倍体遗传物质•基因组学(Genomics)最早Thomas Roderick在1986年提出,包括基因组作图、测序和分析。

可分为结构基因组学和功能基因组学。

一、结构基因组学1.遗传图(Genetic Mapping Genomes) : Based on the calculation of recombination frequencyby linkage analysis .通过亲本的杂交,分析后代的基因间重组率,并用重组率来表示两个基因之间距离的线形连锁图谱每条染色体组成一个连锁群,所有染色体的连锁群组成的图谱即构成基因组遗传图。

重组率代表基因位点之间的相对距离。

在遗传作图中,人们把一个作图单位定义为1厘摩(cM),1cM等于1%的重组率。

提高遗传作图的分辨率:选用不同的杂交群体;增加杂交群体的数目;增加分子标记的数目;扩大分子标记的来源分子标记:绘制基因组遗传图需要的坐标点。

分子标记的主要来源是染色体上存在的大量等位基因。

在DNA水平上,两个基因间一个碱基的差异就足以形成等位基因。

2.物理图(physical map):指DNA序列上两点的实际距离,它是以DNA的限制酶片段或克隆的大片段的基因组DNA分子为基本单位,以连续的重叠群为基本框架,通过遗传标记将重叠群或基因组DNA分子有序排列于染色体上。

物理图的绘制: Based on molecular hybridization analysis and PCR techniques杂交法;指纹法;荧光原位杂交技术。

3.基因组序列测定: Sequencing methods: the chain termination procedure;Map-based clone by clone strategy;Whole genome shotgun (WGS) strategy;Sequence assembly;•传统基因组测序的方法:克隆步移法(BAC-by-BAC Strategy)和全基因组鸟抢法(Whole Genome Shotgun Strategy)。

acgzghn医_学遗传学名词解释

acgzghn医_学遗传学名词解释

、|!_一个人总要走陌生的路,看陌生的风景,听陌生的歌,然后在某个不经意的瞬间,你会发现,原本费尽心机想要忘记的事情真的就这么忘记了..1、genetics遗传学:遗传学是研究生物遗传和变异的科学,是研究基因的性质、功能和意义的科学。

2、medical genetic医学遗传学:研究人类遗传病发生机理、传递方式、诊断、治疗、预后、再发风险和预防方法,从而控制遗传病在一个家系的再发,降低它在人群中的危害,提高人类的健康水平。

3、homologous chromosomes同源染色体:大小、形态、结构上相同的一对染色体。

成对的染色体一条来自父体,一条来自母体。

4、allele等位基因:位于一对同源染色体的相同基因座上,控制同一类形状的两个基因被称为一对等位基因,如基因A、a。

5、house-keeping gene持家基因:为维持细胞基本生命活动所必需而时刻都在表达的基因。

6、luxury gene奢侈基因:在不同的细胞中,只在特定的细胞中表达的基因,称之为奢侈基因。

7、gene cluster基因簇:功能相同、结构相似的一系列基因常彼此靠近、成串地排列在一起,这一系列基因称基因簇。

8、gene mutation基因突变:基因在结构上发生碱基对组成或排列顺序的改变称为基因突变。

point mutation点突变:当基因(DNA链)中一个或一对碱基改变时,称之为点突变。

9、dynamic mutation动态突变:又称不稳定三核苷酸重复序列突变。

突变是由基因组中脱氧三核苷酸串联重复拷贝数增加,拷贝数的增加随着世代的传递而不断扩增。

10、genetic imprinting(genomic imprinting)遗传印记(基因组印记):不同性别的亲体传给子代的同一染色体或基因,当发生改变时可引起不同的表型,这种现象称为遗传印记,也称为基因组印记。

11、relative character相对性状:同一单位性状的相对差异称为相对性状,即一些相互排斥的性状。

细胞生物学 名词解释和重点知识点 第一、二章 细胞的统一性与多样性

细胞生物学 名词解释和重点知识点 第一、二章 细胞的统一性与多样性

细胞生物学第一章绪论表观遗传学epigenetics 与核苷酸序列无关的调节基因表达的可遗传控制机制。

表观遗传学是研究基因核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。

表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic imprinting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA 编辑(RNA editing)等。

细胞凋亡apoptosis 一种有序的或程序性的细胞死亡方式,是细胞接受某些特定信号刺激后进行的正常生理应答反应。

该过程具有典型的形态学和生化特征,凋亡细胞最后以凋亡小体被吞噬消化。

细胞分化cell differentiation细胞在形态、结构和功能上产生稳定性差异的过程。

细胞学说由德国人施莱登施旺在1838-1839年提出,即一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。

细胞学说主要内容cell theory 生物科学的重要学说之一,包括三个基本内容:所有生命体均由单个或多个细胞组成;细胞是生命的结构基础和功能单位;细胞只能由原有细胞分裂产生。

细胞生物学Cell biology 是研究细胞基本生命活动规律的科学,是现代生命科学的重要基础学科之一,它从显微、亚显微和分子三个层次研究细胞结构和功能,细胞增殖、分化、衰老与凋亡,细胞信号转导,细胞基因表达与调控,细胞起源与进化等。

概括的说,细胞生物学是应用现代物理化学技术成就和分子生物学的概念与方法,以细胞作为生命活动的基本单位的思维作为出发点,探索生命活动规律的学科,其核心问题是将遗传与发育在细胞水平上结合起来。

分子细胞生物学以细胞为对象,主要在分子水平上研究细胞生命活动的分子机制,即研究细胞器、生物大分子与生命活动现象之间的变化发展过程,研究它们之间的相互关系,以及它们与环境之间的相互关系。

1例1号染色体片段移位并1号和18号染色体易位病例报道

1例1号染色体片段移位并1号和18号染色体易位病例报道

1例1号染色体片段移位并1号和18号染色体易位病例报道朱玉娟 钟小林 郑秀惠 (陆军军医大学大坪医院妇产科,重庆 400042)【中图分类号】 R714.55 【文献标识码】 B犇犗犐:10.13470/j.cnki.cjpd.2021.01.012 通信作者:郑秀惠,E mail:lph1972@163.com1 资料与方法1.1 病例资料 男性,33岁,因婚后10个月未避孕女方未怀孕,夫妇双方于中国人民解放军陆军特色医学中心生殖中心就诊。

查体:身高168cm,体重65kg,第二性征正常,外阴发育正常,双侧睾丸大小约15cm,附睾无肿大,输精管未触及结节。

2018年精液常规结果:精液量3.0ml,精子浓度100万,PR1%。

后于其他医院精液检查结果为无精症。

复查精液离心后每视野可见0~1条精子。

初步诊断为男性不育症、隐匿性精子症。

染色体核型结果显示为异常核型:46,XY,ins(1)(p22q21q25),t(1;18)(q25;q11.2),其染色体核型分析见图1。

图1 染色体核型分析图1.2 外周血染色体核型分析 用5ml无菌注射器加入新鲜肝素抗凝外周血35滴接种于外周血淋巴细胞培养基中,置于37°恒温培养箱培养72小时,用1ml无菌注射器加入40ug/ml秋水仙素4滴于1.5h后收获、制片、G显带,计数20个,核型分析5个,核型描述按照《人类细胞遗传学命名国际体制》(ISCN2016)。

2 讨论染色体移位[1]是指某一条染色体同时发生3处断裂,其中一个片段插入到另一个断裂处重接,3个断裂点可发生在1臂或2臂,其方向可顺向或反向重接。

如果夫妇一方为顺向移位携带者,则可形成正常配子、移位配子、部分缺失、部分重复配子;如果夫妇一方为反向移位携带者,在减数分裂种则将形成正常配子、移位配子、双着丝粒断片、无着丝粒片段以及部分重复或缺失的配子;这些配子与正常配子相结合可形成正常、移位携带、部分单体、部分三体的后代,因此必须进行产前诊断。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• Inter-individual differences in drug efficacy
• Significant incidence of serious adverse effects
among elderly hospitalized patients (US)
• Serious • Lethal
• Gram-positive bacteria: e.g. penicillin derivatives • Gram-negative bacteria: e.g. aminoglycosides • M. tuberculosis: isoniazid/rifampin/pyrazinamide
7
2 Major Classes of Pharmacogenetics – Both Resulting in Patient Stratification
• Strictly affecting drug response – not predictive of disease risk:
Or….
2
Pharmacotherapy: State-of-the-Art
Group
AT2-antag SSRI ACE -I Beta blockers Tricycl. AD HMGCoAR-I Beta-2-agonists
Incomplete/absent efficacy
10-25% 10-25% 10-30% 15-25% 20-50% 30-70% 40-70%
4
Bridging a Historical Divide
clinical diagnosis
tissue / organ physiology-pathology molecular diagnosis
cell-biology
protein RNA DNA
protein RNA DNA
cell-biology
Omics, Biomarkers, Personalized Medicine: A New Era, or More of the Same?
Klaus Lindpaintner
Roche Genetics/Roche Center for Medical Genomics
Differential drug efficacy
• Finding the optimal treatment for every patient is as old as medicine: differential diagnosis
• Tailoring treatments to drug-specific test results is nothing new. Example: antibiotics
6.7% 0.3%
2 M cases 100,000 casesJBiblioteka MA 98;279:12003
Pharmacogenetics and Personalized Medicine
An altogether new concept?
• Knowledge of inter-individual differences wrt metabolism as old as civilization: 6th century B.C. Pythagoras observes that ingestion of fava beans is harmful to some individuals yet innocuous to others
• Pharmacogenomics (1):
• a concept to provide more patient/disease-specific health care • based on the effects acquired (or inherited) genetic variants • assessed primarily by expression profiles (many mRNAs) • one drug – many genomes (patients) • focus: patient variability
protein RNA DNA
protein RNA DNA
drugs
6
Pharmacogenetics, Pharmacogenomics
Glossary of Terms
• Pharmacogenetics:
• a concept to provide more patient/disease-specific health care* • based on the effects of inherited (or acquired) genetic variants • assessed primarily by sequence determination (or single gene expression) • one drug – many genomes (patients) • focus: patient variability
• Pharmacogenomics (2):
• a tool for compound selection/drug discovery • many drugs – one genome (inbred animal/chip) • focus: compound variability
*as conceptualized by Motulsky (1957), Vogel (1959), Kalow (1962) and endorsed in the 2003 Nuffield Council’s Report on Pharmacogenetics
Same symptoms Same findings Same disease (?)
Same Drug….
Genetic Differences
Different Effects
?
Possible Reasons: Non-Compliance… Drug-drug interactions… Chance…
相关文档
最新文档