自变量的取值范围专项练习

合集下载

初中数学《函数自变量的取值范围》练习题(含答案)

初中数学《函数自变量的取值范围》练习题(含答案)

函数自变量的取值范围一 、选择题(本大题共4小题)1.函数y =x 的取值范围是( )A .12x -≥B .12x ≥C .12x ≤-D .12x ≤2.在函数y 中,自变量x 的值取值范围是( )A.3x <-B.3x ≤-C.3x ≤D.3x >3.函数y =的自变量的取值范围是( ) A.22x -<≤ B.22x -≤≤ C.2x ≤且2x ≠ D.22x -<<4.以下说法正确的是( )A .平行四边形是轴对称图形B .函数y =的自变量取值范围2x ≥ C .相等的圆心角所对的弧相等 D .直线5y x =- 不经过第二象限二 、填空题(本大题共10小题)5.根据你的理解写出下列y 与x 的函数关系式,并写出自变量的取值范围(我们称为定义域).⑴ 某人骑车以6/m s 是速度匀速运动的路程y 与时间x ,解析式: ,定义域: ;⑵ 正方形的面积y 与边长x ,解析式: ,定义域: ;6.函数52x y x -=-自变量的取值范围是 . 7.函数214y x =-的自变量x 的取值范围是 . 8.函数2113y x =+的自变量x 的取值范围是 .9.函数y =x 的取值范围是 . 10.在函数 121y x =-中,自变量x 的取值范围是 .11.函数13y x =-中自变量x 的取值范围是__________ 12.函数y 的自变量x 的取值范围是 .13.函数25y x =-自变量的取值范围是 .14.函数y 的自变量x 的取值范围是 .三 、解答题(本大题共8小题)15.某礼堂共有25排座,第一排有20个座位,后面每排比前一排多1个座位.求每排座位数y 与这排的排数x 的函数关系,并写出自变量的取值范围.16.求下列各函数中自变量x 的取值范围;⑴y =y;⑶0y x =;⑷y =+17.如图,周长为24的凸五边形ABCDE 被对角线BE 分为等腰ABE ∆及矩形BCDE ,AE DE =,设AB 的长为x ,CD 的长为y ,求y 与x 之间的函数关系式,写出自变量的取值范围.18.等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x 。

练习-函数自变量的取值范围

练习-函数自变量的取值范围

函数自变量的取值范围一、选择题1.函数中,自变量x的取值范围是()A.B.C.且D.2.函数的自变量x的取值范围是()A. B.C.D.3.下列函数中,自变量取值范围选取错误的是()A.中,x取全体实数B.中,C.中,D.中,4.如果每盒圆珠笔有12支,售价18元,那么圆珠笔的售价y(元)与圆珠笔的支数x之间的函数关系式是()A.B.C.D.5.已知函数的自变量x的取值范围是全体实数,则实数m的取值范围是()A.B.C.D.6.已知函数,其中相同的两个函数是()A.与B.与C.与D.与7.有一内角为120°的平行四边形,它的周长为l,如果它的一边为x,与它相邻的另一边长y与x之间的函数关系式及x的取值范围是()A.B.C.D.二、填空题8.函数中自变量x的取值范围是_______.9.函数的自变量x的取值范围是_________.10.函数中自变量x的取值范围是______;函数中自变量x的取值范围是_______.11.14. 中自变量x的取值范围是______.12.圆锥的体积为,则圆锥的高h(cm)与底面积之间的函数关系是________.13.将改用x的代数式表示y的形式是_____;其中x的取值范围是________.14.函数中自变量x的取值范围是________.15.物体从离A处20m的B处以6m/s的速度沿射线AB方向作匀速直线运动,t秒钟后物体离A处的距离为s m,则s与t之间的函数关系式是________,自变量t的取值范围是_______.16.等腰三角形的周长是50cm,底边长是x cm,一腰长为y cm,则y与x之间的函数关系式是______;自变量x的取值范围是______.三、解答题17.求下列函数自变量的取值范围(1);(2);(3);(4).18.在中,已知,任取AB上一点M,作,设AM的长为x,平行四边形MPCQ的周长为y,求出y关于x的函数关系式和自变量的取值范围.19.中,已知的平分线交于点D,设和的度数分别为x和y,写出y与x之间的函数关系式,并求x的取值范围.参考答案1.A 2.C 3.B 4.A 5.A 6.D 7.B 8.9.且10.11.12.13.14.且和2 15.16.17.(1)全体实数;(2)且;(3)且;(4)且18.19.。

函数的自变量取值范围

函数的自变量取值范围

怎样求自变量的取值范围
1.整式: 取全体实数 2.分式: 取使分母不为0的值
3.偶次根式:取使“被开方数≥0”的值 4.奇次根式: 取全体实数
取使每一个式子有意义的值 5.对于混合式:
求出下列函数中自变量的取值范围
( 1)
(2)
-1 y=(x+6)
0 y=(x-3)
怎样求自变量的取值范围
1.整式: 取全体实数 2.分式: 取使分母不为0的值
解(1)y=x (0<x<2)
(2)当BE=1.75cm时 x=2-1.75 =0.25
A
xH
O
E
B
2
D
∴y=x=0.25
F
C

3、一辆汽车的油箱中现有汽油50升,如果不再加 油,那么油箱中的油量y(升)随行驶里程x(公 里)的增加而减少,平均耗油量为0.1升/公里。 (1)写出表示y与x的函数关系的式子。
图象法
用图象来表示两个变量之间的关系;
列表法
用表格的方法来表示两个变量之间的关系;
s=60t;
解析式法
用代数表达式来表示两个变量之间的关系等. (用解析法表示关系时,还要注意自变量的取值范围)
填写如图所示的加法表,然后把所有填 有10的格子涂黑,看看你能发现什么? 解 如图,能发现涂黑的格子成一条直线. 如果把这些涂黑的 格子横向的加数用 x表示,纵向的加 数用y 表示,试写 出y与x 的函数关 系式. 函数关系式:
1 2 y x 2
x Y x
1.在上面所出现的各个函数中,自变量的取 值有限制吗?如果有,写出它的取值范围。 探索 1
y 10 x
(x取1到9的
y
y 180 2 x

一次函数练习题(附答案)

一次函数练习题(附答案)

一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1.函数y=中,自变量某的取值范围是()某1A.某≥0B.某1C.某0且某≠1D.某≥0且某≠12.已知正比例函数y=-2某,当某=-1时,函数y的值是()A.2B.-2C.-0.5D.0.53.一次函数y=-2某-3的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间某(分钟)之间的函数关系,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时。

5.已知一次函数y=(m+2)某+(1-m),若y随某的增大而减小,且此函数图像与y轴的交点在某轴上方,则m的取值范围是()A.m-2B.m1C.-2D.-2m16.(2007福建福州)已知一次函数y(a1)某b的图象如图所示,那么a的取值范围是()A.a1B.a1C.a0D.a07.(2007上海市)如果一次函数yk某b的图象经过第一象限,且与y轴负半轴相交,那么()A.k0,b0B.k0,b0C.k0,b0D.k0,b08.(2007陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某2C.y某2B.y某2D.y某2)9.(2007浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。

CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。

最新华东师大版下册数学八年级函数自变量的取值范围.函数值同步练习试题.doc

最新华东师大版下册数学八年级函数自变量的取值范围.函数值同步练习试题.doc

(新课标)华东师大版八年级下册17.1.2函数自变量的取值范围.函数值一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A.x>2 B.x≥2 C.x<2 D.x≤22.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣13.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=14.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A.1 B.﹣2 C.D.35.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 烤制时间/分40 60 80 100 120140 160 180设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A.140 B.138 C.148 D.1607.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣48.在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1二.填空题(共6小题)9.函数中,自变量x的取值范围是_________ .10.函数y=中,自变量x的取值范围是_________ .11.函数,当x=3时,y= _________ .12.函数的主要表示方法有_________ 、_________ 、_________ 三种.13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是_________ .输入数据 1 2 3 4 5 6 …输出数据…14.已知方程x﹣3y=12,用含x的代数式表示y是_________ .三.解答题(共6小题)15.求函数y=的自变量x的取值范围.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t 计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.17.1.2函数自变量的取值范围.函数值参考答案与试题解析一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A. x>2 B.x≥2 C.x<2 D.x≤2考点:函数自变量的取值范围.菁优网版权所有专题:函数思想.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意,得x﹣2≥0,解得x≥2.故选:B.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.函数y=中的自变量x的取值范围是()A. x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1考点:函数自变量的取值范围.菁优网版权所有专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.点评:本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.在函数y=中,自变量x的取值范围是()A. x>1 B.x<1 C.x≠1 D.x=1考点:函数自变量的取值范围.菁优网版权所有分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选:C.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A. 1 B.﹣2 C.D. 3考点:函数值.菁优网版权所有专题:图表型.分析:先根据x的值确定出符合的函数解析式,然后进行计算即可得解.解答:解:x=﹣1时,y=x2=(﹣1)2=1.故选A.点评:本题考查了函数值的求解,根据自变量的取值范围准确确定出相应的函数解析式是解题的关键.5.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对考点:函数的表示方法.菁优网版权所有分析:表示函数的方法有三种:解析法、列表法和图象法.解答:解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.点评:本题考查了函数的三种表示方法:解析法、列表法和图象法.要熟练掌握.6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 烤制时间/分40 60 80 100 120140 160 180设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A. 140 B.138 C.148 D.160考点:函数的表示方法.菁优网版权所有分析:观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x=3.2千克代入即可求出烤制时间t.解答:解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,,解得所以t=40x+20.当x=3.2千克时,t=40×3.2+20=148.故选C.点评:本题考查了一次函数的运用.关键是根据题目的已知及图表条件得到相关的信息.7.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣4考点:函数值.菁优网版权所有专题:图表型.分析:根据流程,把输出的函数值分别代入函数解析式求出输入的x的值即可.解答:解:∵输出数值y为1,∴①当x≤1时,0.5x+5=1,解得x=﹣8,符合,②当x>1时,﹣0.5x+5=1,解得x=8,符合,所以,输入数值x为﹣8或8.故选C.点评:本题考查了函数值求解,比较简单,注意分两种情况代入求解.8.在函数y=中,自变量x的取值范围是()A. x≤1 B.x≥1 C.x<1 D.x>1考点:函数自变量的取值范围.菁优网版权所有分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.二.填空题(共6小题)9.函数中,自变量x的取值范围是x≥﹣2且x≠1 .考点:函数自变量的取值范围.菁优网版权所有分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解解答:解:根据题意得:,解得:x≥﹣2且x≠1.故答案是:x≥﹣2且x≠1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.函数y=中,自变量x的取值范围是x≠2 .考点:函数自变量的取值范围;分式有意义的条件.菁优网版权所有专题:计算题.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.解答:解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.11.函数,当x=3时,y= ﹣3 .考点:函数值.菁优网版权所有分析:把自变量的值代入函数解析式进行计算即可求解.解答:解:当x=3时,y==﹣3.故答案为:﹣3.点评:本题考查了函数值的求解,把自变量的值代入函数解析式进行计算即可求解,是基础题,比较简单.12.函数的主要表示方法有列表法、图象法、解析式法三种.考点:函数的表示方法.菁优网版权所有专题:推理填空题.分析:根据函数的三种表示法解答即可.解答:解:函数表示两个变量的变化关系,有三种方式:列表法、图象法、解析式法.故答案为列表法、图象法、解析式法.点评:本题考查了函数的表示方法,不论何种形式,符合函数定义即可,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是.输入数据 1 2 3 4 5 6 …输出数据…考点:函数的表示方法.菁优网版权所有专题:计算题;规律型.分析:分析可得:各个式子分子是输入的数字,分母是其3倍减1,故当输入数据是正整数n时,即可求得输出的值.解答:解:∵各个式子分子是输入的数字,分母是其3倍减1,∴当输入数据是正整数n时,输出的数据是.点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.14.已知方程x﹣3y=12,用含x的代数式表示y是y=x﹣4 .考点:函数的表示方法.菁优网版权所有分析:要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.解答:解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.点评:考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.三.解答题(共6小题)15.求函数y=的自变量x的取值范围.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.菁优网版权所有专题:计算题.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数>等于0,分母不等于0,就可以求解.解答:解:根据二次根式的意义,被开方数4+2x≥0,解得x≥﹣2;根据分式有意义的条件,x﹣1≠0,解得x≠1,因为x≥﹣2的数中包含1这个数,所以自变量的范围是x≥﹣2且x≠1.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.考点:函数自变量的取值范围.菁优网版权所有分析:(1)根据对任意实数,多项式都有意义,即可求解;(2)根据分母不等于0,即可求解;(3)根据任意数的平方都是非负数即可求解.解答:解:(1)x是任意实数;(2)根据题意得:x+4≠0,则x≠﹣4;(3)x是任意实数.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.考点:函数值.菁优网版权所有分析:(1)把x的值分别代入函数关系式计算即可得解;(2)把函数值代入函数关系式,解关于x的一元一次方程即可.解答:解:(1)x=﹣时,y=2×(﹣)﹣3=﹣1﹣3=﹣4,x=4时,y=2×4﹣3=8﹣3=5;(2)y=﹣5时,2x﹣3=﹣5,解得x=﹣1.点评:本题考查了函数值求解,已知函数值求自变量,是基础题,准确计算是解题的关键.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?考点:函数值.菁优网版权所有分析:根据函数值相等,自变量相等,可得方程组,根据解方程组,可得答案.解答:解:由题意得,解得,当x=﹣时,函数y=x+1与y=5x+17的值相等,这个函数值是﹣15.点评:本题考查了函数值,利用了函数值相等,自变量相等得出方程组是解题关键.19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?考点:函数的表示方法.菁优网版权所有专题:应用题.分析:(1)根据图表,反映的是距离地面的高度和温度两个量,所以温度和高度是两个变化的量,温度随高度的变化而变化;(2)根据表格数据,高度越大,时间越低,所以随着高度的h的增大,温度t 在减小;(3)求出当h=6时温度t的值即可.解答:解:(1)上表反映了温度和高度两个变量之间.高度是自变量,温度是因变量.(2)如果用h表示距离地面的高度,用t表示温度,那么随着高度h的增大,温度t逐渐减小(或降低).(3)距离地面6千米的高空温度是﹣16℃.点评:本题是对函数定义的考查和图表的识别,自变量、因变量的区分对初学函数的同学来说比较困难,需要在学习上多下功夫.20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t 计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.考点:函数值;常量与变量.菁优网版权所有专题:应用题.分析:(1)因为温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度,所以自变量是x,因变量是y.(2)令t=2,x=5,代入函数解析式,即可求解.解答:(1)解:自变量是地表以下的深度x,因变量是所达深度的温度y;(2)解:当t=2,x=5时,y=3.5×5+2=19.5;所以此时地壳的温度是19.5℃.点评:本题只需利用函数的概念即可解决问题.。

一次函数(基础篇)专项练习1 含答案

一次函数(基础篇)专项练习1 含答案

一次函数(基础篇)专项练习1一、单选题1.下列图象中,表示y 是x 的函数的是()A .B .C .D .2.在函数1y =x 的取值范围是()A .2x >B .2x ≠C .2x <D .2x ≤3.一次函数y =(k ﹣1)x +3的图象经过点(﹣2,1),则k 的值是()A .﹣1B .2C .1D .04.一次函数y=kx+b 的图像经过点(-1,2),则k-b 的值是()A .-1B .2C .1D .-25.一次函数y =12x ﹣m 的图象上有两点A (﹣2,y 1),B (3,y 2),则y 1,y 2的大小关系为()A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定6.如图是一次函数112y x =-的图象,根据图象可直接写出方程1102x -=的解为2x =,这种解题方法体现的数学思想是()A .数形结合思想B .转化思想C .分类讨论思想D .函数思想7.一根蜡烛长30cm ,点燃后每小时燃烧5cm ,燃烧时蜡烛剩余的长度h (cm )和燃烧时间t (小时)之间的函数关系用图像可以表示为中的()A .B .C .D .8.已知一次函数y =﹣2x +4,下列说法错误的是()A .图象经过第一、二、四象限B .图象与x 轴的交点坐标为(4,0)C .y 随x 增大而减小D .该图象可以由y =﹣2x 平移得到9.若关于x 的不等式组2−>0−2≤0有且只有四个整数解,且一次函数y =(k +3)x +k +5的图象不经过第三象限,则符合题意的整数k 有()个.A .4B .3C .2D .110.如图,在平面直角坐标系中,直线1l :152y x =-+与x 轴、y 轴分别交于点A 和点B ,直线2l 经过坐标原点,且21l l ⊥,垂足为C ,则点C 到y 轴的距离为()A .1B .2C .3D .4二、填空题11.已知f (x )=22x x-,那么f (2)=_____.12.如图,在平面直角坐标系中,点A (2,m )在第一象限,若点A 关于x 轴的对称点B 在直线y =﹣x+1上,则m 的值为_____.13.若y=(m ﹣1)x |m|是正比例函数,则m 的值为_____.14.直线2y x b =+(b 为常数)的图象经过第一、三、四象限,则b 的值可以是______(写出一个即可).15.已知正比例函数的图象经过点M (﹣2,1)、A (x 1,y 1)、B (x 2,y 2),如果x 1<x 2,那么y 1_____y 2.(填“>”、“=”、“<”)16.已知一次函数(1)2(1)y m x m m =++-≠-,将该函数图象先向下平移2个单位长度,再向右平移4个单位长度,平移后的函数图象过点(1,2)-,则m 的值为___________.17.已知在正比例函数y =-2mx 中,函数y 的值随x 值的增大而增大,则点P (m ,4)在第______象限.18.若A(x 1,y 1)、B(x 2,y 2)是一次函数2y ax x =+-图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是___.19.一次函数y =2x +4的图象与x 轴、y 轴的交点分别为A ,B ,则线段AB 的长为_____________.20.已知一次函数21y x =-+,若21x -≤≤,则y 的最小值为_________________.21.一次函数2y kx k =+的图象如图所示,当0y >时,则x 的取值范围是_______.22.如图,直线y =,点1A 坐标为()1,0,过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点2021B 的坐标为______.三、解答题23.已知一次函数y =kx +b 的图象经过点A (―1,3)和点B (2,―3).(1)求这个一次函数的表达式;(2)求直线AB 与坐标轴围成的三角形的面积.24.有一个容量为8GB(1GB=1024MB)的U盘,U盘中已经存储了1个视频文件,其余空间都用来存储照片.若每张照片占用的内存容量均相同,照片数量x(张)和剩余可用空间y(MB)的部分关系如表:照片数量100150200400800剩余可用空间56005400520044002800(1)求出y与x之间的关系式.(2)若U盘中已经存入1100张照片,那么最多还能存入多少张照片?25.如图,直线l1经过点A(0,2)和C(6,﹣2),点B的坐标为(4,2),点P是线段AB上的动点(点P不与点A重合),直线l2:y=kx+2k(k≠0)经过点P,并与l1交于点M.(1)求l1的函数表达式;(2)若点M坐标为(1,43),求S△APM;(3)无论k取何值,直线l2恒经过点,在P的移动过程中,k的取值范围是.26.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,问:(1)求一次函数解析式(2)旅客可携带的免费行李的最大质量是多少kg?27.直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,直线(y kx b k b =+,是常数,0)k ≠经过点A ,与y 轴交于点C ,且OC OA =.()1求点A 的坐标及k 的值;()2点C 在x 轴的上方,点P 在直线24y x =-+上,若PC PB =,求点P 的坐标.28.如图,已知函数12y x b =-+的图象与x 轴、y 轴分别交于点A ,B ,与函数y =x 的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P (a ,0)(其中a>2),过点P 作x 轴的垂线,分别交函数12y x b =-+和y =x 的图象于点C ,D(1)求点A 的坐标;(2)若OB =CD ,求a 的值.参考答案1.A【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数.解:A 、对于x 的每一个取值,y 都有唯一确定的值与之对应,故A 正确;B 、对于x 的每一个取值,y 可能有三个值与之对应,故B 错误;C 、对于x 的每一个取值,y 可能有两个值与之对应,故C 错误;D 、对于x 的每一个取值,y 可能有两个值与之对应,故D 错误;故选:A .【点拨】主要考查了函数的定义,在一个变化过程中有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.2.D【分析】根据二次根式的意义,被开方数大于等于0,列不等式求解即可得出结论.解:由题意得:2-x ≥0,解得x ≤2.故选:D .【点拨】本题主要考查了求自变量的取值范围,掌握二次根式的被开方数是非负数是解题的关键.3.B【分析】函数经过点(﹣2,1),把点的坐标代入解析式,即可求得k 的值.解:根据题意得:﹣2(k ﹣1)+3=,解得:k =2.故选B .【点拨】本题主要考查了函数的解析式与图象的关系,满足解析式的点一定在图象上,图象上的点一定满足函数解析式.4.D【分析】根据一次函数的性质即可得.解:由题意,将点(1,2)-代入一次函数的解析式得2k b -+=则2k b -=-故选:D .【点拨】本题考查了一次函数的性质,掌握理解一次函数的性质是解题关键.5.C【分析】直接根据一次函数的增减性判断即可.解:∵一次函数y =12x ﹣m 中,k =12>0,∴y 随x 的增大而增大.∵﹣2<3,∴y 1<y 2.故选:C .【点拨】本题主要考查一次函数的性质,熟练掌握函数性质是解题的关键.6.A【分析】根据图像与x 轴交点可得方程的解,体现的是数形结合的思想.解:由图像可知y =0时,与x 轴交于(2,0)点,故1102x -=的解为2x =,这种解题方法体现的是数形结合的数学思想.【点拨】本题主要考查根据函数图像求方程的解,正确理解函数图像各点的含义是解题关键.7.B【分析】根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.解:由题意,得y=30-5t ,∵y≥0,t≥0,∴30-5t≥0,∴t≤6,∴0≤t≤6,∴y=30-5t 是降函数且图象是一条线段.故选B .【点拨】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.8.B【分析】根据一次函数的解析式中一次项系数20k =-<,40b =>,即可判断经过的象限进而判断A 选项,令0y =即可判断B 选项,根据一次项系数20k =-<,即可判断C 选项,根据一次函数平移的规律可判断D 选项.解:由24y x =-+,20k =-<,40b =>,∴一次函数24y x =-+图象经过第一、二、四象限,故A 选项正确,不符合题意;令0y =,则2x =,∴图象与x 轴的交点坐标为(2,0)故B 选项不正确,符合题意;20k =-<,∴y 随x 增大而减小;故C 选项正确,不符合题意;将一次函数2y x =-图象向上平移4个单位可得24y x =-+,故D 选项正确,不符合题意.故选B【点拨】本题考查了一次函数图象与性质,一次函数图象的平移,一次函数与坐标轴的交点,掌握一次函数的图象与性质是解题的关键.9.D 【解析】试题分析:解不等式组2−>0−2≤0得,2<x≤2,∵不等式组有且只有四个整数解,∴其整数解为:﹣1,0,1,2,∴﹣2≤2<﹣1,即﹣4≤k <﹣2.∵一次函数y=(k+3)x+k+5的图象不经过第三象限,∴+3<0k +5≥0,解得﹣5≤k <﹣3,∴﹣4≤k <﹣3,∴k 的整数解只有﹣4.故选D .【考点】一次函数与一元一次不等式.10.B【分析】先分别求得A ,B 两点坐标,然后利用勾股定理求得AB 的长,结合三角形面积求得OC 的长,再利用勾股定理求得BC ,最后再利用三角形面积求解解:在152y x =-+中,当x =0时,y =5当y =0时,15=02x -+,解得:x =10∴OA =10;OB =5∴在Rt △AOB 中,AB =∵21l l ⊥∴1122AB OC OA OB ⋅=⋅,1151022⨯=⨯⨯,解得:OC =∴在Rt △BOC 中,BC ==过点C 作CD ⊥y 轴∴1122OB CD BC ⋅=⋅,11522CD ⨯=⨯2CD =故选:B【点拨】本题考查一次函数的几何应用及勾股定理解直角三角形,二次根式的乘除运算,利用数形结合思想解题是关键.11.1【分析】把x=2代人f (x )=22x x-,求得答案即可.解:当x =2时,f (2)=2222-=1,故答案为:1.【点拨】考查了函数值的知识,解题的关键是代人后正确的计算,难度不大.12.1【分析】根据关于x 轴的对称点的坐标特点可得B (2,−m ),然后再把B 点坐标代入y =−x +1可得m 的值.解:点A 关于x 轴的对称点B 的坐标为:(2,﹣m ),将点B 的坐标代入直线y =﹣x+1得:﹣m =﹣2+1,解得:m =1,故答案为1.【点拨】此题主要考查了关于x 轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.13.-1【分析】根据正比例函数的定义,令m-1≠0,|m|=1即可.解:由题意得:m−1≠0,|m|=1,解得:m=−1.故答案为−1.【点拨】本题考查正比例函数的定义.14.-1(答案不唯一,b <0即可)【分析】由一次函数图象经过第一、三、四象限,可知k >0,b <0,在范围内确定b 的值即可.解:因为一次函数2y x b =+(b 为常数)的图象经过第一、三、四象限,所以k >0,b <0,所以b 可以取-1,故答案为:-1(答案不唯一,b <0即可)【点拨】此题考查一次函数图象与系数的关系,根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k 的取值范围.15.>【分析】根据正比例函数的性质,解答即可.解:设该正比例函数的解析式为y =kx ,则1=﹣2k ,得k =﹣0.5,∴y =﹣0.5x ,∵正比例函数的图象经过点A (x 1,y 1)、B (x 2,y 2),x 1<x 2,∴y 1>y 2,故答案为:>.【点拨】本题考查了正比例函数的性质,掌握性质是解题的关键.16.52-【分析】根据函数图象平移的规律:“上加下减”“左加右减”的原则即可求得.解:由题意得一次函数y=(m+1)(x-4)+m−2-2(m≠−1)经过点(1,-2)∴(m+1)(1-4)+m−2-2=-2,解得:m=-52,故答案为:-52.【点拨】本题考查一次函数的图象与几何变换,熟知平移的原则是解题的关键.17.二【分析】根据正比例函数y 的值随x 值的增大而增大,可知20m ->,求得0m <,即可判断P (m ,4)在第二象限.解:∵函数y 的值随x 值的增大而增大,∴20m ->,解得0m <,∴点P (m ,4)在第二象限.【点拨】本题考查正比例函数,较容易,熟练掌握正比例函数的性质是顺利解题的关键.18.1a <-【分析】根据一次函数的性质知,当k <0时,判断出y 随x 的增大而减小.解:∵A(1x ,1y )、B(2x ,2y )是一次函数()212y ax x a x =+-=+-图象上的不同的两点,()()1212 0m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴10a +<,解得1a <-.故答案为:1a <-.【点拨】本题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理.19.【分析】由一次函数y =2x +4的图象与x 轴、y 轴的交点分别为A ,B ,可求A (-2,0),B (0,4),在Rt △AOB 中,由勾股定理得AB ==.解:∵一次函数y =2x +4的图象与x 轴、y 轴的交点分别为A 、B ,∴当y =0时,240x +=,解得x =-2,∴A (-2,0),∴当x =0时,y=4,∴B (0,4),∵∠AOB =90°,在Rt △AOB 中,OA =2,OB =4,由勾股定理得AB ===.故答案为:【点拨】本题考查直线与两轴的交点坐标,勾股定理,掌握直线与两轴的交点坐标,勾股定理是解题关键.20.-1【分析】由k =-2<0,可得出y 随x 的增大而减小,结合-2≤x ≤1,即可求出y 的最小值.解:∵k =-2<0,∴y 随x 的增大而减小,∴当x =1时,y 取得最小值,此时y =-2×1+1=-1.故答案为:-1.【点拨】本题考查了一次函数的性质,牢记“k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小”是解题的关键.21.2x >-【分析】根据一次函数2y kx k =+,可以求得0y =时x 的值,然后根据函数图象和一次函数的性质,可以写出当0y >时,x 的取值范围.解:∵()22y kx k k x =+=+,∴当0y =时,2x =-,由图象可知,y 随x 的增大而增大,∴当0y >时,则x 的取值范围是2x >-,故答案为:2x >-.【点拨】本题考查一次函数图象和性质.根据函数图象判断其增减性是解答本题的关键.22.(20202,2【分析】根据题意可以写出A 和B 的前几个点的坐标,从而可以发现各点的变化规律,从而可以写出点A 2021的坐标.解:∵直线y =,点A 1坐标为(1,0),当1x =时,y ==∴点B 1的坐标为(1,在Rt △OA 1B 1中,OA 1=1,A 1B 1∴12OB =,∴点A 2坐标为(2,0),同理,点B 2的坐标为(2,,点A 3坐标为(4,0),点B 3的坐标为(4,,……∴点B n 的坐标为(2n -1,2n ,当n =2021时,点B 2021的坐标为(22020,2,故答案为:(22020,2.【点拨】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.(1)一次函数的表达式是y=-2x+1,(2)所围成的三角形面积为14.【分析】把两点坐标分别代入解析式,再解出k,b 即可求出解析式;(2)先根据解析式先求出直线与坐标轴的交点,再利用三角形面积公式求解.解:(1)依题意得323k b k b -+=⎧⎨+=-⎩解得21k b =-⎧⎨=⎩∴所求一次函数的表达式是y=-2x+1,(2)令x =0,由y=-2x+1得,y =1,令y =0,由y=-2x+1,得x =12,∴直线AB 与坐标轴的交点坐标分别是(0,1)和(102)∴所围成的三角形面积为:1111224⨯⨯=.24.(1)y =-4x +6000;(2)400张【分析】(1)运用待定系数法解答即可;(2)根据(1)结果算出当x =0时y 的值,用总内存减去此时y 的值即可得到视频文件占用的内存然后求出每张照片的内存,由此求解即可;解:(1)设y 与x 之间的关系式为y =kx +b ,根据题意得,10056001505400k b k b +=⎧⎨+=⎩,解得46000k b =-⎧⎨=⎩,故y 与x 之间的关系式为y =-4x +6000;(2)当x =0时,y =6000,此时U 盘没有储存照片,只有一个视频文件,8G=8⨯1024MB=8192MB ,8192-6000=2192(MB )∴U 盘中视频文件的占用内存容量为2192MB ;当x =1100时,y =-4×1100+6000=1600,∴此时U 盘有1600MB 内存,当x =100时,y =5600,∴每张照片的内存为(8192-2192-5600)÷100=4MB ,1600÷4=400(张)∴最多还能存入400张照片.答:最多还能存入400张照片.【点拨】本题主要考查了一次函数的应用,熟练掌握待定系数法求函数关系式是解答本题的关键.25.(1)223y x =-+;(2)56APM S ∆=;(3)1(2,0),13k -≤<.【分析】(1)将点A (0,2)和C (6,﹣2)代入y kx b =+,待定系数法求一次函数解析式即可;(2)根据2y kx k +=过点M 4(1,3求出解析式,求出求S △APM ;(3)2(2)y kx k k x +=+=过定点,分别求出P 在AB 、两点的时的k 即可.解:(1)点A (0,2)和C (6,﹣2)代入,y kx b =+得:262b k b =⎧⎨+=-⎩,解得232k b ⎧=-⎪⎨⎪=⎩223y x ∴=-+.(2)2y kx k + =过M 4(1,)3442,39k k k ∴+==4899y x ∴=+ A (0,2),B (4,2),点P 是线段AB 上的动点2y P ∴=直线l 2:y =kx +2k (k ≠0)经过点P4852992x x =+=5(,2)2P ∴52PA =14(2)23APM S PA ∆∴=⨯⨯-154(2223=⨯⨯-56=56APM S ∆∴=.(3)2(2)y kx k k x +=+ =∴过定点(2,0)-当点P 经过A (0,2)时,代入2y kx k=+22k =,解得1k =当点P 经过B (4,2)时,代入2y kx k=+422k k +=,解得13k =当点P 从点A 到点B 的移动过程中,k 的值在不断变小,点P 不与点A 重合.113k ∴≤<.【点拨】本题考查了,待定系数法求一次函数解析式,一次函数围成的三角形面积,过定点的一次函数,通过数形结合,理解题意,正确的解得一次函数解析式是解题的关键.26.(1)y =20x -300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y =0,求出对应的x 即可.解:(1)设y =kx +b ,代入(20,100),(30,300),得:1002030030k b k b =+⎧⎨=+⎩,解得:20300k b =⎧⎨=-⎩,∴y =20x -300;(2)取y =0,则20x -300=0,解得x =15,∴免费行李的最大质量为15kg .【点拨】本题主要考查一次函数的图形,关键是能根据图象用待定系数法求出函数的解析式,然后根据y 的值即可求出x 的值.27.(1) 1k =或1k =-;(2)1 32P ⎛⎫ ⎪⎝⎭,解:分析:(1)令0y =,求得x 的值,即可求得A 的坐标为()20,,由OC OA =得()02C ,或()02-,,然后根据待定系数法即可求得k 的值;(2)由()()0402B C ,,,,根据题意求得P 的纵坐标,代入24y x =-+即可求得横坐标.详解:()1由直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,令0y =,则240x -+=,解得2x =,()20A ∴,,OC OA = ,()02C ,∴或()02-,,直线(y kx b k b =+,是常数,0)k ≠经过点A 和点C ,202k b b +=⎧∴⎨=-⎩或202k b b +=⎧⎨=⎩,解得1k =或1k =-;()()()20402B C ,,,,且PC PB =,P ∴的纵坐标为3,点P 在直线24y x =-+上,把3y =代入24y x =-+解得12x =,132P ⎛⎫∴ ⎪⎝⎭,.点睛:考查了待定系数法求一次函数的解析式以及一次函数的图象与性质.注意待定系数法在求函数解析式中的应用.28.(1)(6,0);(2)4.解:试题分析:(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣12x+b可计算出b=3,得到一次函数的解析式为y=﹣12x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣12a+3),D点坐标为(a,a),所以a﹣(﹣12a+3)=3,然后解方程即可.试题解析:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣12x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣12x+3,把y=0代入y=﹣12x+3得﹣12x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣12x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣12a+3),D点坐标为(a,a)∴a﹣(﹣12a+3)=3,∴a=4.考点:两条直线相交或平行问题.。

八年级数学一次函数自变量取值范围练习题

八年级数学一次函数自变量取值范围练习题

八年级数学一次函数自变量取值范围班别 姓名 学号一、学习目标:了解函数概念,并学会找自变量取值范围。

二、学习过程:知识点一:自变量的取值范围:提示:x 能取什么数或不能取什么数例1、(1)21y x =+的自变量x 的取值范围是 ;(2)1y x=的分母 0≠,即x ≠ 。

所以自变量x 的取值范围是 。

(3)2y x =的自变量x 的取值范围是 ;(4)11y x =+的分母 0≠,即x ≠ 。

所以自变量x 的取值范围是 。

(5)y =x -2≥0,所以自变量x 的取值范围是 ;练习:求下列函数中自变量的取值范围。

(1)225y x =-+的自变量x 的取值范围是 ;(2)213x y +=的自变量x 的取值范围是 ; (3)321y x =+的分母 0≠,即x ≠ 。

所以自变量x 的取值范围是 ;(4)35y x =-的分母 0≠,即x ≠ 。

所以自变量x 的取值范围是 。

(5)b =中, ≥0,所以自变量x 的取值范围是 ;(6)12x y -=的自变量x 的取值范围是 ;例2:现有笔记本500本分给学生,每人5本,则余下的本数y 和学生数x 之间的函数关系式(也叫解析式) ,自变量x 的范围是 。

练习:1、购买一些铅笔,单价0.2元每支,写出总价y 元与铅笔支数x 的函数解析式 ,自变量是 ,是 的函数,自变量x 的取值范围。

2、一个三角形的底边长为10,高h 可任意伸缩,写出面积S 随h 变化的解析式,常量是 ,变量是 ,自变量是 , 是 的函数,自变量的取值范围 。

义,而且还要使 有意义。

三、课堂练习:A 组1、求下列函数的函数值(1)25y x =+ (2)22y x =解:当1x=时,y=,x=时,y=,解:当1当3x=-时,y=,x=时,y=,当1当3x=时,y=,x=-时,y=,当3当10x=-时,y=。

x=时,y=。

当32、一个小球由静止开始从一个斜坡上向下滚动,已知小球滚动的距离s(cm)与时间t(s)的函数关系式是2=,如果斜坡长为2米,求小球滑到坡底的时s t2间,写出自变量的取值范围。

初二自变量取值范围题

初二自变量取值范围题

初二自变量取值范围题一、对于函数 y = 1 / (x + 2),自变量 x 的取值范围是什么?A. x > -2B. x < -2C. x 不等于 -2(答案)D. x 为任意实数二、函数 y = sqrt(3 - x) 中,自变量 x 的取值范围是什么?A. x > 3B. x 小于或等于 3(答案)C. x 大于或等于 3D. x <= 3 (注意:原选项D的表述不够清晰,但理解为“x小于等于3”则与B重复,因此实际上B已涵盖D的意思,此处保留B作为正确答案)三、对于函数 y = (sqrt(x + 1)) / (x - 1),自变量 x 的取值范围是什么?A. x > -1B. x 大于或等于 -1 且 x 不等于 1(答案)C. x 大于或等于 -1D. x > 1四、函数 y = 1 / sqrt(x - 2) 中,自变量 x 的取值范围是什么?A. x > 2(答案)B. x < 2C. x 大于或等于 2D. x <= 2五、对于函数 y = sqrt(2x - 1) + sqrt(1 - 2x),自变量 x 的取值范围是什么?A. x 大于或等于 1/2B. x 小于或等于 1/2C. x = 1/2(答案)D. x 为任意实数六、函数 y = x / (x2 - 9) 中,自变量 x 的取值范围是什么?A. x 不等于 3 且 x 不等于 -3(答案)B. x = 3 或 x = -3C. x > 3 或 x < -3D. x 为任意实数七、对于函数 y = sqrt(x) + 1/x,自变量 x 的取值范围是什么?A. x > 0(答案)B. x < 0C. x 大于或等于 0D. x 不等于 0八、函数 y = (sqrt(x + 5)) / (x - 5) 中,自变量 x 的取值范围是什么?A. x > -5B. x 大于或等于 -5 且 x 不等于 5(答案)C. x 大于或等于 -5D. x 不等于 5九、对于函数 y = 1 / (x2 - 4),自变量 x 的取值范围是什么?A. x 不等于 2 且 x 不等于 -2(答案)B. x = 2 或 x = -2C. x > 2 或 x < -2D. x 为任意实数十、函数 y = sqrt(4 - 3x) 中,自变量 x 的取值范围是什么?A. x 小于或等于 4/3(答案)B. x < 4/3C. x > 4/3D. x 为任意实数。

自变量的取值范围及函数值同步练习题

自变量的取值范围及函数值同步练习题

自变量的取值范围及函数值同步练习题1.函数y =1x +2中,x 的取值范围是( ) A .x ≠0 B .x >-2 C .x <-2 D .x ≠-22.函数y =2x -4中自变量x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x ≠23.函数y =x -2x +3的自变量x 的取值范围是_______. 4.求下列函数中自变量x 的取值范围:(1)y =-13x +8; (2)y =42x -1; (3)y =1x -2+x ; (4)y =-11+x2.5.变量x 与y 之间的关系是y =12x 2-1,当自变量x =2时,因变量y 的值是( ) A .-2 B .-1 C .1 D .26.同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y =95x +32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____℉.7.如果每盒圆珠笔有12支,每盒售价18元,那么圆珠笔的总销售额y (元)与圆珠笔的销售支数x 之间的函数关系式是( )A .y =32xB .y =23xC .y =12xD .y =112x 8.已知两个变量x 和y ,它们之间的3组对应值如下表所示.则y 与x A .y =x B .y =2x +1 C .y =x 2+x +1 D .y =3x9.已知方程x -4y =11,用含x 的代数式表示y 是___________.10. 我们知道,海拔高度每上升1千米,温度就下降6 ℃.某时刻,某地地面温度为20 ℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式;(2)已知此地某山峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过此地上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?11.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,则y 与x 之间的函数关系式和自变量取值范围分别是( )A .y =,x >0B .y =60-,x >0C .y =,0≤x ≤500D .y =60-,0≤x ≤50012.已知函数y =⎩⎪⎨⎪⎧2x +1(x≥0),4x (x <0),当x =2时,函数值y 为( ) A .5 B .6 C .7 D .813.等腰三角形的周长为20 cm ,腰长为x cm ,底边长为y cm ,则底边长与腰长之间的函数关系式为( )A .y =20-x (0<x <10)B .y =20-x (10<x <20)C .y =20-2x (10<x <20)D .y =20-2x (5<x <10)14.当x =2时,函数y =kx -2和y =2x +k 的值相等,则k =____.15.当x =2及x =-3时,分别求出下列函数的函数值:(1)y =(x +1)(x -2); (2)y =x +2x -1.16.弹簧挂上物体后会伸长,在弹性限度内测得一弹簧的长度y (cm )与所挂物体的质量x (kg )有如下关系:(1)请写出弹簧总长y (cm )与所挂物体质量x (kg )之间的函数关系式;(2)当挂重10千克时弹簧的总长是多少?(3)当弹簧总长为 cm 时,所挂物体重多少?17.根据如图所示的程序计算函数值:若输入的x 值为-1,则输出的函数值为____.18.(2016·黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?参考答案:1. D2. B3. x ≥24. (1) x 为任意实数 (2) x ≠12(3) x ≥0且x ≠2 (4) x 为任意实数5. C6. 777. A8. B9. y =14x -11410. (1) y =20-6x (x >0)(2) 由题意得y =20-6×=17,答:这时山顶的温度大约是17 ℃(3) 由题意得-34=20-6x ,解得x =9.答:飞机离地面的高度为9千米11. D12. A13. D14. 615. (1)当x =2时,y =(x +1)(x -2)=(2+1)(2-2)=0;当x =-3时,y =(x +1)(x -2)=(-3+1)(-3-2)=10 (2)当x =2时,y =x +2x -1=2+22-1=4;当x =-3时,y =x +2x -1=-3+2-3-1=1416. (1) y =+12(2) 当x =10时,代入y =+12,解得y =17,即弹簧总长为17 cm(3) 当y =时,代入y =+12,解得x =9,即所挂物体重为9 kg17. 118. (1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得⎩⎪⎨⎪⎧12a +(24-12)b =42,12a +(20-12)b =32,解得⎩⎪⎨⎪⎧a =1,b =.答:每吨水的政府补贴优惠价为1元,市场调节价为元 (2)∵当0≤x ≤12时,y =x ;当x >12时,y =12+(x -12)×=-18,∴所求函数关系式为y =⎩⎪⎨⎪⎧x (0≤x≤12),-18(x >12) (3)∵x =26>12,∴把x =26代入y =-18,得y =×26-18=47(元).答:小黄家3月份应交水费47元。

函数自变量取值范围专题练习解析及答案

函数自变量取值范围专题练习解析及答案

初二数学《函数自变量的取值范围专练》1、函数中,自变量x的取值范围是()A、x≤6B、x≥6C、x≤﹣6D、x≥﹣62、要使有意义,则x应该满足()A、0≤x≤3B、0<x≤3且x≠1C、1<x≤3D、0≤x≤3且x≠13、已知函数,则自变量x的取值范围是()A、x≠2B、x>2C 、D 、且x≠24、下列函数中,自变量x的取值范围为x<1的是()A 、B 、C 、D 、5、函数的自变量x的取值范围在数轴上表示为()A 、B 、C 、D 、6、函数的自变量x的取值范围是()A、x>1B、x≤﹣1C、x≥﹣1D、x>﹣17、函数y=的自变量x的取值范围是()A、x≥﹣2且x≠2B、x≥﹣2且x≠±C、x=±2D、全体实数8、下列函数中,自变量x的取值范围是x>2的函数是()A 、B 、C、D、9、函数的自变量的取值范围在数轴上可表示为()A、B、C、D、10、函数的自变量x的取值范围为()A、x≥﹣2B、x>﹣2且x≠2C、x≥0且≠2D、x≥﹣2且x≠211、函数y=﹣中的自变量x的取值范围是()A、x≥0B、x<0且x≠1C、x<0D、x≥0且x≠112、在函数中,自变量x的取值范围是()A、x≥﹣3B、x≤﹣3C、x>3D、x>﹣313、函数y=中,自变量x的取值范围是()A、x≥﹣1B、﹣1≤x≤2C、﹣1≤x<2D、x<214、函数y=的自变量x的取值范围是()A、x≥﹣2B、x≥﹣2且x≠﹣1C、x≠﹣1D、x>﹣115、函数y=自变量的取值范围是()A、x>0B、x<0C、x≥0D、x≤016、函数y=中自变量x的取值范围是()A、x≥B、x>C、x≠﹣1D、x<17、函数y=的自变量x的取值范围是()A、x≥1且x≠2B、x≠2C、x>1且x≠2D、全体实数18、函数y=的自变量x的取值范围是()A、x≤﹣1B、x≥﹣1C、x≥﹣1且x≠OD、x≤﹣1且x≠019、下列函数中,自变量取值范围正确的是()A、y=3x﹣1中,B、y=x0中,x为全体实数C、中,x>﹣2D、中,x≠﹣120、函数y=中,自变量x的取值范围是()A、x≥﹣1B、x>﹣1且x≠2C、x≠2D、x≥﹣1且x≠221、函数y=中,自变量x的取值范围()A、x>﹣4B、x>1C、x≥﹣4D、x≥122、在函数中,自变量x的取值范围是()A、x≠3B、x≥3C、x>3D、可取任何实数23、下列函数中,自变量的取值范围选取错误的是()A、y=2x2中,x取全体实数B、y=中,x取x≠﹣1的实数C、y=中,x取x≥2的实数D、y=中,x取x>﹣3的实数24、函数的自变量x的取值范围为()A、x≥0B、x>0C、x=0D、x≠025、下列函数中,自变量x的取值范围是x≥2的是()A、y=B、y=C、y=D、y=•26、函数中,自变量x的取值范围是()A、x≠﹣1B、x≠1C、x≠2D、x≠1且x≠227、下列函数中,自变量x的取值范围x≥3的是()A、B、C、D、28、下列函数中自变量取值范围选取错误的是()A、y=x2中x取全体实数B、C、D、29、函数y=的自变量的取值范围是()A、x>0且x≠0B、x≥0且x≠C、x≥0D、x≠30、函数的自变量x的取值范围是()A、x≥3B、x≤3C、x=3 D、全体实数。

中考数学压轴题专项练习二:动态下的自变量取值范围问题

中考数学压轴题专项练习二:动态下的自变量取值范围问题

专题二:动态下的自变量取值范围问题题目8如图,在Rt∆ABC中,∠ACB=90°, AC=3 cm, BC=4 cm, 点D是线段AB的中点,连结CD.点P从点A出发,沿折线A-C-B方向以1个单位长度的速度向终点B运动(点P不与点A, C, B重合),过点P向其所在的边作垂线,交AB于点M, 过点M向另一条直角边作垂线交于点Q, 得到矩形PMQC. 设矩形PMQC与ABCD 重叠部分图形的面积为S, 运动时间为t.(1)点M与点D重合时,求t的值。

(2)当点P在CB边上时,求S与t的函数关系式。

(3)当点P在线段CD垂直平分线上时,求t的值。

(4)矩形PMQC 与ABCD重叠部分图形是三角形时,直接写出t的取值范围。

题目9如图,在∆ABC中,∠ACB=90°, BC=4, AB=8, CD⊥AB于点D. 动点P从点A出发以每秒4个单位的速度沿AB向终点B运动(点P不与A、B重合),过点P作AC的垂线交AC于点Q, 过点Q作AB的平行线交CD于点M, 过点M作BC的平行线交AB于点N, 得到▱PQMN. 设点P的运动时间为t(s).(1)AD= CD=(2)当▱PQMN 是菱形时,求出t的值。

(3)设▱PQMN与人BCD重叠部分图形的面积为S, 求S与t的函数关系式。

(4)将 DMN 绕点D顺时针旋转90°得到ΔDM'N', 直接写出ΔDM'N'与▱PQMN重叠部分图形是三角形时t的取值范围。

题目10如图①, 在AABC中,∠ACB=90°, AC=12. AB=15, 点P从点A出发沿AB方向以每砂2. 5个单位的速度向点B运动,同时点Q以每秘4个单位的速度沿A-C-A做往返运动,点P不与A、B重合时,将ΔAQP绕PQ的中点旋转180°得到ΔDPQ, 作PE ⊥AC 于点E, 设点P、Q的运动时间为t.(1)用含t的代数式表示线段AQ的长度。

自变量的取值范围专项练习

自变量的取值范围专项练习

自变量的取值范围专项练习1.在函数43+=x y 中,当1=x 时,函数值为( ),当x=( )时,函数值为102.函数x x y 2+=中,自变量x 的取值范围是____________。

3.函数323-=x x y 中,自变量x 的取值范围是____________。

4.若函数{)2(2)2(22≤+=x x x x y φ,则当函数值8=y 时,自变量x 的值为____________。

5.函数113-+=x x y 的自变量x 的取值范围是____________。

6.在函数x x y -++=431中,自变量x 的取值范围是____________。

7.在函数24-++=x x y 中,自变量x 的取值范围是____________。

8.函数2+=x x y 的自变量x 的取值范围是____________。

9.函数13-=x y 的自变量x 的取值范围是____________。

10.函数x x y 2112-+-=的自变量x 的取值范围是____________。

11.函数231-=x y 的自变量x 的取值范围是____________。

12.函数xx y =的自变量x 的取值范围是____________。

13.函数25x y =的自变量x 的取值范围是____________。

14.函数xx y 14+-=的自变量x 的取值范围是____________。

15.函数68-=x y 的自变量x 的取值范围是____________。

16.函数123353-+-=x x y 的自变量x 的取值范围是____________。

17.函数231233-+-=x x y 的自变量x 的取值范围是____________。

18.函数x x y -+-=2141的自变量x 的取值范围是____________。

19.函数12+=x y 的自变量x 的取值范围是____________。

一次函数专项练习(经典题型收集)

一次函数专项练习(经典题型收集)

一次函数专项练习(经典题型收集)1.自变量x的取值范围为x≠-1.2.自变量x的取值范围为x≠0.3.代入点P(-2,m),得m=2*(-2)+1=-3.4.交点坐标分别为(0,-1)和(1,1)。

5.由于函数经过原点,代入得m=2.6.答案为B,即(-2,1)。

7.底为y,面积为1/2*y*x=8,解得y=16/x。

8.图象为y=x^2,不是一次函数。

9.长度剩余y与时间x成反比例关系,即y=20-5x。

10.代入交点(1,6),解得k=1,b=-3.一次函数练(二)1.n=2.2.解析式为y=(2m-1)/(m^2-3)。

3.m<1/2.4.解得m=4或m=-2.5.y=-6.6.答案为(-2,-4)。

7.根据比例关系,y-2=kx,代入x=-2和y=4,解得k=-3/2,再代入x=6,解得y=7.1.一次函数是指函数的自变量的最高次数为1的函数。

因此,③y=x和④y=-x-1是一次函数。

2.首先将函数展开,得到y=mx^5+10x- m^2+3.由于一次函数的解析式为y=kx+b,因此要求m使得y=mx^5+10x-m^2+3满足一次函数的形式。

因为一次函数的自变量的最高次数为1,因此只有当m=4或m=-4时,y才能写成一次函数的形式。

此时解析式分别为y=4x+3和y=-4x+3.3.当m=1时,y=(m+2)x+m-1变为y=3x,为一次函数;当m=-2时,y=(m+2)x+m-1变为y=-4x-5,为正比例函数。

4.向下平移1个单位后,直线y=-2x的解析式变为y=-2x-1.5.直线y=2x-4与x轴的交点坐标为(2,0),与y轴的交点坐标为(0,-4),三角形的底为2,高为4,因此面积为4.6.当a=-2时,直线经过原点,此时解析式为y=-2x;当a=1时,直线与y轴交于点(0,-2),此时解析式为y=3x-1.7.将点A的坐标代入函数y=2x-1中,得到1-a=2(a+2)-1,解得a=1.8.因为直线与y轴平行,所以斜率为2.又因为过点(-2,1),所以解析式为y=2x+5.9.由于两个函数的图象平行,因此它们的斜率相等。

2022年中考复习《函数自变量取值范围》专项练习附答案

2022年中考复习《函数自变量取值范围》专项练习附答案

函数自变量取值范围1、〔2021•资阳〕在函数y=中,自变量x的取值范围是〔〕A.x≤1B.x≥1C.x<1 D.x>1考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,x﹣1>0,解得x>1.应选D.点评:此题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2、〔2021•泸州〕函数自变量x的取值范围是〔〕A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,x﹣1≥0且x﹣3≠0,解得x≥1且x≠3.应选A.点评:此题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3、〔2021•包头〕函数y=中,自变量x的取值范围是〔〕A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠0考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:根据题意得,x+1≠0,解得x≠﹣1.应选C.点评:此题考查了函数自变量的范围,一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.4、〔2021•铁岭〕函数y=有意义,那么自变量x的取值范围是x≥1且x≠2.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.故答案为:x≥1且x≠2.点评:此题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5、〔2021•湘西州〕函数y=的自变量x的取值范围是x.考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:3x﹣1≥0,解得:x≥.故答案为:x≥.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.6、〔2021•郴州〕函数y=中自变量x的取值范围是〔〕A.x>3 B.x<3 C.x≠3D.x≠﹣3考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:根据题意得,3﹣x≠0,解得x≠3.应选C.点评:此题考查了函数自变量的范围,一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.7、〔2021•常德〕函数y=中自变量x的取值范围是〔〕A.x≥﹣3 B.x≥3C.x≥0且x≠1D.x≥﹣3且x≠1考点:函数自变量的取值范围分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x+3≥0且x﹣1≠0,解得x≥﹣3且x≠1.应选D.点评:此题考查了函数自变量的范围,一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数; 〔2〕当函数表达式是分式时,考虑分式的分母不能为0; 〔3〕当函数表达式是二次根式时,被开方数非负.8、 (2021年广东湛江)函数3y x =+中,自变量x 的取值范围是〔 〕.A 3x >- .B 3x ≥- .C 3x ≠- .D 3x ≤-解析:函数中含二次根式的局部,要求其被开方数是非负数,即30,3x x +≥∴≥-,∴选B9、〔2021•眉山〕函数y=中,自变量x 的取值范围是 x≠2 .考点: 函数自变量的取值范围;分式有意义的条件. 专题: 计算题. 分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0. 解答: 解:x ﹣2≠0,解得x≠2. 点评: 此题考查的知识点为:分式有意义,分母不为0.10、〔2021•恩施州〕函数y=的自变量x 的取值范围是 x≤3且x≠﹣2 .考点: 函数自变量的取值范围. 分析: 根据被开方数大于等于0,分母不等于0列式进行计算即可得解. 解答:解:根据题意得,3﹣x≥0且x+2≠0, 解得x≤3且x≠﹣2.故答案为:x≤3且x≠﹣2. 点评:此题考查了函数自变量的范围,一般从三个方面考虑: 〔1〕当函数表达式是整式时,自变量可取全体实数; 〔2〕当函数表达式是分式时,考虑分式的分母不能为0; 〔3〕当函数表达式是二次根式时,被开方数非负.11、〔2021•绥化〕函数y=中自变量x 的取值范围是 x >3 .考点: 函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件. 专题: 计算题. 分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式即可求解. 解答:解:依题意,得x ﹣3>0, 解得x >3. 点评:此题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数是非负数.12、〔2021•巴中〕函数y=中,自变量x 的取值范围是 x≥3 .考点: 函数自变量的取值范围. 分析: 根据被开方数大于等于0,分母不等于0列式进行计算即可得解. 解答:解:根据题意得,x ﹣3≥0且2x+4≠0, 解得x≥3且x≠﹣2,所以,自变量x 的取值范围是x≥3. 故答案为:x≥3. 点评: 此题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13、〔2021•牡丹江〕在函数y=中,自变量x 的取值范围是 x≥ .考点: 函数自变量的取值范围;二次根式有意义的条件. 分析: 根据二次根式的性质,被开方数大于等于0可知:2x ﹣1≥0,解得x 的范围. 解答:解:根据题意得:2x ﹣1≥0, 解得,x≥.点评: 此题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数; 〔2〕当函数表达式是分式时,考虑分式的分母不能为0; 〔3〕当函数表达式是二次根式时,被开方数为非负数.14、〔2021•内江〕函数y=中自变量x 的取值范围是 x≥﹣且x≠1 .考点: 函数自变量的取值范围. 分析: 根据被开方数大于等于0,分母不等于0列式求解即可. 解答:解:根据题意得,2x+1≥0且x ﹣1≠0, 解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1. 点评:此题考查了函数自变量的范围,一般从三个方面考虑: 〔1〕当函数表达式是整式时,自变量可取全体实数; 〔2〕当函数表达式是分式时,考虑分式的分母不能为0; 〔3〕当函数表达式是二次根式时,被开方数非负.15、〔2021哈尔滨〕在函数3xy x =+中,自变量x 的取值范围是 . 考点:分式意义的条件.分析:根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 解答:∵ 式子3xy x =+在实数范围内有意义, ∴ x +3≠≥0,解得x ≠-3.1 在实数范围内有意义,那么x的取值范围16、〔13年安徽省4分、11〕假设x317、〔2021•常州〕函数y=中自变量x的取值范围是x≥3;假设分式的值为0,那么x= .考点:分式的值为零的条件;函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解;根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣3≥0,解得x≥3;2x﹣3=0且x+1≠0,解得x=且x≠﹣1,所以,x=.故答案为:x≥3;.点评:此题主要考查了分式的值为零,需同时具备两个条件:〔1〕分子为0;〔2〕分母不为0.这两个条件缺一不可.尺规作图一、解答题1、〔2021山东省德州三模〕〔1〕如图1,∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺........在图中画出∠AOB的平分线.〔保存作图痕迹,不要求写作法〕〔2〕如图2,在10×10的正方形网格中,点A〔0,0〕、B〔5,0〕、C〔3,6〕、D 〔-1,3〕,①依次连结A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是▲.②在x轴上找一点P,使得△PCD的周长最短〔直接画出图形,不要求写作法〕;此时,点P的坐标为▲,最短周长为A F答案:解:〔1〕如下图;……………………………………………………………………2分 〔2〕①等腰梯形;…………………………………………………………………4分②P 〔31,0〕…………………………………………………………………6分 597+〔其中画图正确得2分〕……………………………………10分2、〔2021山东省德州三模〕提出问题:如图,有一块分布均匀的等腰三角形蛋糕〔BC AB =,且AC BC ≠〕,在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分〔要求分得的蛋糕和巧克力质量都一样〕.背景介绍:这条分割直线..即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角 形的“等分积周线〞. 尝试解决: 〔1〕小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线〞,从而平分蛋糕.〔2〕 小华觉得小明的方法很好,所以自己模仿着在图1中过点C 画了一条直线CD 交AB于点D .你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.〔3〕通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:假设AB =BC =5 cm ,AC =6 cm ,请你找出△ABC 的所有“等分积周线〞,并简要的说明确定的方法.答案:解:(1) 作线段AC 的中垂线BD 即可.………………………………………………2分(2) 小华不会成功.假设直线CD 平分△ABC 的面积D'P xyO B C DA 〔第24题图〕 AB AB C图 1 图 2EBCD那么DBC ADC S S ∆∆= ∴CE BD CE AD •=•2121∴ AD BD =…………………………………………………………………4分 ∵ BC AC ≠∴ BC BD AC AD +≠+∴ 小华不会成功.………………………………………………………………5分〔3〕① 假设直线经过顶点,那么AC6分②假设直线不过顶点,可分以下三种情况:〔a 〕直线与BC 、AC 分别交于E 、F ,如下图 过点E 作EH ⊥AC 于点H,过点B 作BG ⊥AC 于点易求,BG=4,AG=CG=3设CF=x ,那么CE=8-x 由△CE H ∽△CBG ,可得EH=)8(54x - 根据面积相等,可得6)8(5421=-••x x ……………………………7分 ∴ 3=x 〔舍去,即为①〕或5=x∴ CF=5,CE=3,直线EF 即为所求直线.……………………………8分 〔b 〕直线与AB 、AC 分别交于M 、N, 如下图由 (a)可得,AM=3,AN=5,直线MN 即为所求直线.〔仿照上面给分〕(c) 直线与AB 、BC 分别交于P 、Q ,如下图过点A 作AY ⊥BC 于点Y ,过点P 作PX ⊥BC 于点由面积法可得, AY=524设BP=x ,那么BQ=8-x 由相似,可得PX=x 2524 根据面积相等,可得6)8(252421=-••x x 11分∴ 52148>+=x 〔舍去〕或2148-=x 而当BP 2148-=时,BQ=52148>+,舍去. ∴ 此种情况不存在.……………………………………………12分综上所述,符合条件的直线共有三条.〔注:假设直接按与两边相交的情况分类,也相应给分〕4、〔2021山东省德州四模〕用尺规作图的方法(作垂线可用三角板)找出符合以下要求的点.(保存作图痕迹)(1)在图1中的直线m 上找出所有能与A,B 两点构成等腰三角形的点P,并用12,P P 等表示; (2) 在图2中的直线m 上找出所有能与A,B 两点构成直角三角形的点Q,并用12,Q Q 等表示;( 图1) ( 图2)(备用图) (备用图) 答案:〔此题9分〕每个点1分mm5、 (此题10分) 如图,在平面直角坐标系中,点A 〔0,8〕,点B 〔6,8〕. (1)只用直尺〔没有刻度〕和圆规,求作一个点P ,使点P 同时满足以下两个条件〔要求保存作图痕迹,不必写出作法〕 ①点p 到A ,B 两点的距离相等; ②点P 到∠xoy 的两边的距离相等. (2)直接写出点P 的坐标. 解〔1〕作图正确6分〔2〕点P 坐标为〔3,3〕……4分6、(2021温州市泰顺九校模拟)如图,在平面直角坐标系中,点A 〔0,8〕,点B 〔6,8〕.(1)只用直尺〔没有刻度〕和圆规,求作一个点P ,使点P 同时满足以下两个条件〔要求保存作图痕迹,不必写出作法〕m BAm BA mB AmBA①点P 到A ,B 两点的距离相等; ②点P 到∠xoy 的两边的距离相等. (2)直接写出点P 的坐标. 答案:〔1〕作图正确6分〔2〕点P 坐标为〔3,3〕……4分7、〔2021年山东泰安模拟〕〔1〕∠α和线段x ,y 〔如图〕。

(844)函数自变量取值范围专项练习20题(有答案)13页 ok

(844)函数自变量取值范围专项练习20题(有答案)13页  ok

函数自变量取值范围专项练习20题1.求出下列函数中自变量x的取值范围.①y=②y=.2.求出下列函数中自变量x的取值范围.(1)y=x2﹣x+5;(2)y=;(3)y=;(4)y=;(5)y=;(6)y=.3.求下列函数中自变量x的取值范围:(1)y=x2﹣2;(2)y=;(3)y=;(4)y=.4.求下列函数中自变量x的取值范围:(1)y=3x﹣5;(2)y=;(3)y=;(4)y=.5.求下列函数中自变量x的取值范围(1)y=(2)y=+(3)y=(4)y=(5)y=.6.求下列函数中自变量x的取值范围:(1)y=2x3+3x+1 (2)y=(3)y=.7.求下列函数中自变量的取值范围:(1)y=x2+x﹣2 (2)y=(3)y=(4)y=.8.求下列函数中自变量的取值范围.(1)y=2x2+1 (2)y=(3)y=.9.求下列函数中的自变量的取值范围.(1)y=;(2)y=.10.求下列函数的自变量的取值范围.(1)y=2﹣3x2 (2)y=.11.写出下列各函数中自变量的取值范围.(1)y=;(2)y=﹣;(3)y=.12.求下列函数中自变量x的取值范围:(1)y=;(2)y=x2﹣x﹣2;(3)y=;(4)y=.13.求下列函数的定义域:(1)y=x2+x;(2)y=;(3)y=;(4)y=.14.写出下列函数中自变量x的取值范围:(1)y=2x﹣3;(2)y=﹣2x2+1;(3)y=;(4)y=.15.求下列函数中自变量x的取值范围.(1)y=;(2)y=.16.若函数y=的自变量x的取值范围是一切实数,求a的取值范围.17.求函数y=+中未知数x的取值范围.18.求下列函数中自变量x的取值范围.(1)y=﹣x3 (2)y=(3)y=.19.求下列函数自变量x的取值范围.(1)y=﹣x2﹣5x+6;(2)y=;(3)y=;(4)y=.20.已知函数y=(2x﹣1)0+3x2+2x﹣1,你能找出自变量x的取值范围吗?函数自变量取值范围专项练习20题答案:1.【分析】(1)根据分式的分母不为零分式有意义,可得答案;(2)根据二次根式的被开方数是非负数,可得答案.【解答】解:(1)由y=有意义,得x﹣2≠0,解得x≠2;(2)由y=有意义,得x+2≥0,解得x≥﹣2.2.【分析】(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负;(4)当函数表达式的二次根式在分母位置时,被开方数为正数;(5)当函数表达式是三次根式时,被开方数可取全体实数;(6)根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:(1)y=x2﹣x+5,自变量x的取值范围是全体实数;(2)y=,2x﹣3≠0,解得:x≠1.5,自变量x的取值范围是x≠1.5;(3)y=,2x+3≥0,解得:x≥﹣1.5,自变量x的取值范围是x≥﹣1.5;(4)y=,2x﹣1>0,解得:x>0.5,自变量x的取值范围是x>0.5;(5)y=,自变量x的取值范围是全体实数;(6)y=,x+3≥0且x+2≠0,解得:x≥﹣3且x≠﹣2,自变量x的取值范围是x≥﹣3且x≠﹣2.3.【分析】(1)根据表达式是整式,自变量取全体实数解答;(2)根据分母不等于0列不等式求解即可;(3)根据被开方数大于等于0列不等式求解即可;(4)根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:(1)x取全体实数;(2)由题意得,4﹣x≠0,解得x≠4;(3)由题意得,x﹣2≥0且3﹣x≥0,解得x≥2且x≤3,所以,2≤x≤3;(4)由题意得,x+2≥0且﹣2≠0,解得x≥﹣2且x≠2.4.【分析】(1)根据当函数表达式是整式时,自变量可取全体实数,可得答案;(2)函数表达式是分式时,考虑分式的分母不能为0,可得答案;(3)根据二次根式时,被开方数非负,可得答案;(4)根据二次根式时,被开方数非负,可得答案.【解答】解:(1)y=3x﹣5自变量是全体实数;(2)y=得2x+7≠0,解得x≠﹣,自变量的取值范围是x≠﹣;(3)y=得4﹣3x≥0,解得x≤,自变量的取值范围是x≤;(4)y=得x﹣1>0,解得x>1,自变量的取值范围是x>1.5.【分析】(1)根据二次根式的被开方数不小于零,分母不为零即可求解;(2)根据二次根式的被开方数不小于零即可求解;(3)根据二次根式的被开方数不小于零即可求解;(4)根据二次根式的被开方数不小于零即可求解;(5)根据二次根式的被开方数不小于零,分母不为零即可求解.【解答】解:(1)依题意有x+2>0,解得x>﹣2;(2)依题意有x﹣2≥0且2﹣x≥0,解得x=2;(3)依题意有(x﹣2)2≥0,解得x为任意实数;(4)依题意有﹣(x﹣2)2≥0,解得x=2;(5)依题意有x+1≥0且x﹣2≠0,解得x≥﹣1且x≠2.6.【分析】(1)根据函数表达式是整式时,自变量可取全体实数解答;(2)根据被开方数非负数解答;(3)根据被开方数是非负数解答.【解答】解:(1)自变量x的取值范围是全体实数;(2)由题意得,7﹣2x≥0,解得x≤;(3)由题意得,2x﹣3≥0且7﹣3x≥0,所以,x≥且x≤,所以,≤x≤.7.【分析】(1)根据整式有意义的条件即可求解;(2)根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0即可求解;(3)根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0即可求解;(4)根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0即可求解.【解答】解:(1)y=x2+x﹣2的定义域是全体实数;(2)根据题意得:x>0.故y=的定义域是x>0;(3)根据题意得:x﹣2>0,解得:x>2.故y=的定义域是x>2;(4)根据题意得:x+3≥0且5﹣x>0,解得:﹣3≤x<5.故y=的定义域是﹣3≤x<5.8.【分析】(1)根据解析式的意义,可得答案;(2)根据分母不能为零,可得答案;(3)根据被开方数是非负数且分母不能为零,可得答案.【解答】解:(1)y=2x2+1是全体实数;(2)y=是x≠3;(3)y=是x≥﹣1且x≠1.9.【分析】根据分式的分母不能为零,可得答案.【解答】解:(1)x取任意实数y=都有意义,y=的自变量的取值范围是x是全体实数;(2)当x2﹣8x+15≠0时y=有意义,解得x≠3,x≠3,y=的取值范围是x≠3,x≠5.10.【分析】(1)在整式中,自变量取全体实数;(2)根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:(1)因为2﹣3x2是整式,∴x取全体实数;(2)根据题意得:2x﹣3≠0,解得:x≠.11.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围【解答】解:(1)y=自变量的取值范围是x>0;(2)y=﹣自变量的取值范围是x≥2;(3)y=自变量的取值范围是x≥﹣2且x≠1.12.【分析】(1)x取全体实数;(2)x取全体实数;(3)根据分式的意义,分母不等于0,可以求出x的范围;(4)根据二次根式有意义的条件,被开方数大于或等于0,可以求出x的范围.【解答】解:(1)在y=中,x取全体实数;(2)在y=x2﹣x﹣2中,x取全体实数;(3)在y=中,4x+8≠0,x≠﹣2;(4)在y=中,x+3≥0,解得x≥﹣3.13.【分析】(1)根据整式有意义的条件即可求解;(2)根据分式有意义的条件:分式的分母不能为0即可求解;(3)根据二次根式的性质,被开方数大于或等于0即可求解;(4)根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0即可求解.【解答】解:(1)y=x2+x的定义域是全体实数;(2)根据题意得:2﹣x≠0,解得:x≠2.故y=的定义域是x≠2;(3)根据题意得:3﹣2x≥0,解得:x≤.故y=的定义域是x≤;(4)根据题意得:2+3x>0,解得:x>﹣.故y=的定义域是x>﹣.14.【分析】(1)(2)根据整式有意义的条件解答;(3)根据分母不等于0列式计算即可得解;(4)根据被开方数大于等于0列式计算即可得解.【解答】解:(1)自变量x的取值范围是全体实数;(2)自变量x的取值范围是全体实数;(3)由题意得,1﹣x≠0,解得x≠1;(4)由题意得,4﹣x≥0,解得x≤4.15.【分析】(1)根据被开方数大于等于0,分母不等于0列式计算即可得解;(2)根据分母不等于0列不等式求解即可.【解答】解:(1)由题意得,x+2≥0且x2﹣9≠0,解得x≥﹣2且x≠±3,所以,x≥﹣2且x≠3;(2)由题意得,2x+9≠0,解得x≠﹣.16.【分析】根据分母不能为零,可得根的判别式小于零,根据解不等式,可得答案.【解答】解:由y=的自变量x的取值范围是一切实数,得x2+4x+a=0方程无解,△=42﹣4a<0解得a>4.故函数y=的自变量x的取值范围是一切实数,a的取值范围是a>4.17.【分析】根据二次根式有意义且分式有意义分母不为0得到1﹣x≥0,且x2﹣4≠0,求出x 的取值范围即可.【解答】解:若函数y=+有意义,则1﹣x≥0,且x2﹣4≠0,解得x≤1且x≠﹣2.18.【分析】(1)根据解析式的意义,可得答案;(2)根据分母不能为零,可得答案;(3)根据被开方数是非负数且分母不能为零,可得答案.【解答】解:(1)y=﹣x3自变量x的取值范围全体实数;(2)y=自变量x的取值范围是x≠2;(3)y=自变量x的取值围x≥且x≠1.19.【分析】(1)根据二次函数的自变量的取值范围是全体实数,可得答案;(2)根据二次根式的被开方数是非负数,可得函数自变量的取值范围;(3)根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围;(4)根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:(1)y=﹣x2﹣5x+6自变量x的取值范围是全体实数;(2)y=自变量x的取值范围是4x﹣3≥0,解得:x≥;(3)y=自变量x的取值范围是x2﹣2x﹣3>0,解得x>﹣1或x<3;(4)y=自变量x的取值范围是7﹣x≥0,且4+5x≠0,解得:x≤7且x≠﹣.20.【分析】根据在a0=1中a≠0和x﹣1=中x≠0列出表达式组解则可.根据0的0次幂以及负指数次幂无意义,就可以求解.【解答】解:由函数y=(2x﹣1)0+3x2+2x﹣1知,,所以x≠且x≠0,故函数y=(2x﹣1)0+3x2+2x﹣1的自变量x的取值范围是x≠且x≠0.。

(完整版)常量与变量练习题

(完整版)常量与变量练习题

1 •圆周长公式C=2n R中,下列说法正确的是()(A)n、R是变量,2为常量(B)C 、R为变量,2、n为常量(C)R为变量,2、n、C为常量(D)C为变量,2、n、R为常量2、一辆汽车以40千米/小时的速度行驶,写出行驶路程s(千米)与行驶时间t(时)的关系式。

关系式为_______________________ (____ 是自变量,______ 是因变量);一辆汽车行驶5小时,写出行驶路程s (千米)与行驶速度v(千米/小时)之间的关系式。

关系式为_________________ ___________________ _____ ( ____ 是自变量,______ 是因变量)3、写出下列函数关系式,并指出关系式中的自变量与因变量:⑴每个同学购一本代数教科书,书的单价是2元,总金额Y (元)与学生数n (个)的函数关系式;关系式为________________ (______ 是自变量,________ 是因变量⑵ 计划购买50元的乒乓球,所能购买的总数n (个)与单价 a (元)的函数关系式•关系式为( ___ 是自变量,______ 是因变量)(3)、用长20m的篱笆围成一个矩形,则矩形的面积S与它一边的长x的关系是什么?关系式为(___ 是自变量,______ 是因变量)4、用长的篱笆围成矩形莎矩形一边靠墙,另三边用篱笆围成,⑴ 写出矩形面积S (m )与平行于墙的一边长x (m)的关系式;关系式为(是自变量,是因变量)⑵ 写出矩形面积s( m)与垂直于墙的一边长x (m的关系式•关系式为 ___________________ ________________________ (______ 是自变量, ______ 是因变量)5:指出下列变化关系中,哪些x是y的函数,哪些不是,说出你的理由。

(A )y = x + 1 ( B )y= 2x2+ 3x —2 xy=2 ②x+y=5 ③ |y|=3x+16:写出下列函数关系式:并指出其中的常量与变量。

14[1].1.2自变量的取值范围

14[1].1.2自变量的取值范围

谢谢! 同学们再见 !
如图,每个图形都是由若干个棋子围成
的正方形图案的每条边(包括两个顶点)
上都有
n(n 2) 个棋子,设每个图
案的棋子总数为 S.
n2 s4
s 8
n3 n4
s 12
n5 s 16
图中棋子的排列有什么规律? S与 n 之间 能用函数解析式表示吗?自变量的取值范 围是什么?
n2 s4
:求下列函数中自变量x的取值范围: x取全体实数 (1) y = 3x + 1 1 x + 2 ≠ x ≠-2 0 (2)y = x+2
(3) y x 5
x5 0 x 5
x取全体实数
(4) y 3 2x 1
(5) y
注意:
x 1 x 1 0 . . . 即 一般来说,函数解析式中自变量的取值 0 x -2 -1 20 x 代数式有意义.2 要使
2、解析式是分式时,自 变量的取值要使分母不 0. 为
3、解析式是偶次根式时 ,自变量的取值必须使 被开方数为非负数 .
解析式是奇次根式时, 自变量取全体实数 .
. 求函数自变量的取值范围时,需要考虑: ① 代数式有意义
1、解析式是整式时,自 变量取全体实数 .
2、解析式是分式时,自 变量的取值要使分母不 0. 为
x2 x 1
x 2且x 1
:求下列函数中自变量x的取值范围:
(1) y 3x 1 1 (2) y x2
x取全体实数
x2
(3) y x 5
x5
x取全体实数
(4) y 3 2x 1
(5) y x2 x 1
x 2且x 1

湘教版九年级数学下册《1.1二次函数》同步练习(含答案解析)

湘教版九年级数学下册《1.1二次函数》同步练习(含答案解析)

1.1二次函数知识要点分类练夯实基础知识点1二次函数的概念及自变量的取值范围1.下列函数是二次函数的是()A.y=2x+1 B.y=-2x+1C.y=x2+2 D.y=12x-22.已知二次函数y=1-3x+5x2,则其二次项系数a,一次项系数b,常数项c分别是() A.a=1,b=-3,c=5 B.a=1,b=3,c=5C.a=5,b=3,c=1 D.a=5,b=-3,c=13.下列函数中,是二次函数的是()A.圆的周长l关于它的半径r的函数B.购买单价相同的笔记本的总钱数y(元)关于购买数量x(台)的函数C.正三角形的面积S关于它的边长a的函数D.当路程一定时,汽车行驶的速度v关于行驶时间t的函数4.函数y=-2x2+4x中,自变量x的取值范围是______________.知识点2建立简单的二次函数模型5.在半径为4 cm的圆中,挖去一个半径为x cm的圆,剩余部分的面积为y cm2,则y 关于x的函数表达式为(不要求写出自变量的取值范围)()A.y=πx2-4 B.y=π(2-x)2C.y=-(x2+4) D.y=-πx2+16π6.一个直角三角形的两条直角边长的和为20 cm,面积为y cm2,其中一直角边长为x cm,则y与x之间的函数表达式是(不要求写出自变量的取值范围)()A.y=10x B.y=x(20-x)C.y=12x(20-x) D.y=x(10-x)7.用长为24 m的篱笆,一面利用围墙围成中间隔有一道篱笆的矩形花圃,如图1-1-1,设花圃垂直于墙的一边长为x m,面积为S m2,则S与x之间的函数表达式是(不要求写出自变量的取值范围)()图1-1-1A.S=-3x2+24x B.S=-2x2+24xC.S=-3x2-24x D.S=-2x2-24x8. 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品的售价,每件每降价1元,每星期可多卖出20件.设每件商品降价x元,每星期售出商品的总销售额为y元,则y与x之间的函数表达式为(不考虑x的取值范围)() A.y=60(300+20x) B.y=(60-x)(300+20x)C.y=300(60-20x) D.y=(60-x)(300-20x)9.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份的研发资金y(元)关于增长率x的函数表达式为y=____________.(不要求写出自变量的取值范围)10.教材习题1.1第3题变式如图1-1-2,一块矩形田地的长为100 m,宽为80 m,现计划在该矩形田地中修3条宽度均为x m的小路,其中两条小路与AB垂直,另一条小路与AB平行,剩余部分种庄稼.设剩余部分的面积为y m2,求y关于x的函数表达式,并写出自变量x的取值范围.图1-1-2规律方法综合练提升能力;③y=2x;④y=1x2;⑤y=(x-1)(x+2);⑥y=2(x-1)2+2;⑦y=(2x+1)(x-2)-2x2.其中y是x的二次函数的有() A.2个B.3个C.4个D.5个12.下列结论正确的是()A.关于x的二次函数y=a(x+2)2中,自变量的取值范围是x≠-2 B.二次函数y=ax2+bx+c(a≠0)的自变量的取值范围是全体实数C.在函数y=-x22中,自变量的取值范围是x≠0D.二次函数y=ax2+bx+c(a≠0)的自变量的取值范围是所有非零实数13.如果y=(a+1)x2+ax是二次函数,那么a的取值范围是________.图1-1-314.·常德如图1-1-3,正方形EFGH的顶点在边长为2的正方形ABCD的边上,若设AE=x,正方形EFGH的面积为y,则y与x之间的函数表达式为____________________________.(不要求写出自变量的取值范围)15.已知关于x的函数y=(m2+m)xm2-2m+2.(1)当函数是二次函数时,求m的值;(2)当函数是一次函数时,求m的值.16.为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款每件成本为40元的可控温杯,并投放市场进行试销售.经过调查发现,该产品每天的销售量y(件)与销售单价x(元/件)满足一次函数关系y=-10x+1200.(1)求出每天的利润S(元)与销售单价x(元/件)之间的函数表达式(不要求写出x的取值范围,利润=销售额-成本).(2)当销售单价定为50元/件时,该公司每天获取的利润是多少?(3)当该公司每天获取的利润是12000元时,销售单价为多少?拓广探究创新练冲刺满分17.为了改善小区环境,某小区决定在一块空地上修建一个矩形绿化带ABCD,绿化带一边靠墙(墙的长为25 m),其他三边用总长为60 m的栅栏围成(如图1-1-4).设绿化带的边BC的长为x m,绿化带的面积为y m2.(1)求y与x之间的函数表达式,并写出自变量的取值范围.(2)绿化带的面积能为450 m2吗?若能,请求出此时BC的长;若不能,请说明理由.图1-1-4教师详解详析1.C2.D [解析] 将原二次函数化为一般形式为y =5x 2-3x +1,故a =5,b =-3,c =1.3.C 4.全体实数 5.D6.C [解析] 一条直角边长为x cm ,则另一条直角边长为(20-x )cm ,根据题意得出y =12x (20-x ). 7.A [解析] 由题意知AB =x m ,BC =(24-3x )m ,利用长方形的面积公式可得S =(24-3x )x =24x -3x 2.故选A.8.B [解析] 每件降价x 元,则每件售价为(60-x )元,每星期的销售量为(300+20x )件,根据题意,得y =(60-x )(300+20x ).故选B.9.a (1+x )210.解:依题意,得y =(100-2x )(80-x )=2x 2-260x +8000.由⎩⎨⎧100-2x >0,80-x >0,得x <50. 又∵x >0,∴自变量x 的取值范围是0<x <50.∴所求函数表达式为y =2x 2-260x +8000(0<x <50).11.B [解析] ②⑤⑥是二次函数.12.B 13.a ≠-114.y =2x 2-4x +4[解析] 由题中条件,可知图中的四个直角三角形是全等三角形,设AE =x ,则BE =2-x ,BF =x .在Rt △EBF 中,由勾股定理,可得EF 2=(2-x )2+x 2=2x 2-4x +4,即y =2x 2-4x +4.15.解:(1)依题意,得m 2-2m +2=2,解得m =2或m =0.又因为m 2+m ≠0,解得m ≠0且m ≠-1.因此m =2.(2)依题意,得m 2-2m +2=1,解得m =1.又因为m 2+m ≠0,解得m ≠0且m ≠-1.因此m =1.16.解:(1)S =y (x -40)=(-10x +1200)(x -40)=-10x 2+1600x -48000.(2)当x =50时,S =-10×502+1600×50-48000=7000,即当销售单价定为50元/件时,该公司每天获取的利润是7000元.(3)当S =12000时,-10x 2+1600x -48000=12000,解得x =60或x =100,经检验均符合题意,即该公司每天获取的利润是12000元时,销售单价为60元/件或100元/件.17.解:(1)由题意得y =x ×60-x 2=-12x 2+30x ,自变量x 的取值范围是0<x ≤25. (2)不能.理由如下:若绿化带的面积为450 m 2,则有450=-12x 2+30x ,解得x 1=x 2=30.∵0<x ≤25,∴x =30不合题意,∴绿化带的面积不能为450 m 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自变量的取值范围专项练习
1.在函数43+=x y 中,当1=x 时,函数值为( ),当x=( )时,函数值为10
2.函数x x y 2+=
中,自变量x 的取值范围是____________。

3.函数323-=
x x y 中,自变量x 的取值范围是____________。

4.若函数{)
2(2)2(22≤+=x x x x y φ,则当函数值8=y 时,自变量x 的值为____________。

5.函数1
13-+=x x y 的自变量x 的取值范围是____________。

6.在函数x x y -++=43
1中,自变量x 的取值范围是____________。

7.在函数24-++=x x y 中,自变量x 的取值范围是____________。

8.函数2
+=x x y 的自变量x 的取值范围是____________。

9.函数13-=x y 的自变量x 的取值范围是____________。

10.函数x x y 2112-+-=的自变量x 的取值范围是____________。

11.函数2
31-=x y 的自变量x 的取值范围是____________。

12.函数x
x y =的自变量x 的取值范围是____________。

13.函数25x y =
的自变量x 的取值范围是____________。

14.函数x
x y 14+-=的自变量x 的取值范围是____________。

15.函数68-=x y 的自变量x 的取值范围是____________。

16.函数1
23353-+-=
x x y 的自变量x 的取值范围是____________。

17.函数2
31233-+-=x x y 的自变量x 的取值范围是____________。

18.函数x x y -+-=2141的自变量x 的取值范围是____________。

19.函数12+=x y 的自变量x 的取值范围是____________。

20.函数x y 1=的自变量x 的取值范围是____________。

相关文档
最新文档