操作系统实验三进程的创建

合集下载

进程的创建实验报告

进程的创建实验报告

进程的创建实验报告进程的创建实验报告引言:在计算机科学领域中,进程是一个非常重要的概念。

进程是计算机程序的执行实例,它具有独立的内存空间和执行环境。

进程的创建是操作系统中一个关键的操作,本实验旨在通过编写一个简单的程序来演示进程的创建过程。

实验目的:通过实验,我们的目标是深入理解进程的创建过程,并了解操作系统是如何管理进程的。

实验步骤:1. 引入必要的头文件:在开始编写代码之前,我们需要引入一些必要的头文件。

这些头文件包括<sys/types.h>、<sys/wait.h>和<unistd.h>。

这些头文件提供了创建进程所需的函数和数据类型。

2. 创建一个子进程:在主程序中,我们使用fork()函数来创建一个子进程。

fork()函数会在当前进程的基础上创建一个新的进程,这个新进程称为子进程。

子进程和父进程几乎完全相同,只有在返回值上有所区别。

如果fork()函数返回0,表示当前进程是子进程;如果返回一个正整数,表示当前进程是父进程。

3. 子进程的执行:在子进程中,我们可以编写任意的代码来执行特定的任务。

子进程可以使用exec()函数来执行其他程序,或者执行一系列的操作。

在本实验中,我们简单地输出一条信息,以展示子进程的执行过程。

4. 父进程的执行:在父进程中,我们可以编写代码来执行其他任务,或者等待子进程的结束。

在本实验中,我们使用wait()函数来等待子进程的结束。

wait()函数会暂停父进程的执行,直到子进程结束为止。

5. 编译和运行程序:在完成代码编写后,我们需要将程序编译成可执行文件,并运行它。

我们可以使用gcc编译器来编译程序,然后运行生成的可执行文件。

实验结果:在运行程序后,我们可以观察到以下结果:子进程开始执行。

父进程等待子进程结束。

子进程结束。

父进程继续执行。

结论:通过本实验,我们成功地演示了进程的创建过程。

我们了解了操作系统是如何管理进程,并且掌握了使用fork()函数来创建子进程的方法。

操作系统实验3-进程控制

操作系统实验3-进程控制
DWORD dwVerReq=::GetProcessVersion(dwIdThis);
WORD wMajorReq=(WORD)(dwVerReq>16);
WORD wMinorReq=(WORD)(dwVerReq&0xffff);
::cout<<"Process ID:"<<dwIdThis<<",requires OS:"<<wMajorReq<<wMinorReq<<::endl;
{
//改变优先级
::SetPriorityClass(
::GetCurrentProcess(), //利用这一进程
HIGH_PRIORITY_CLASS); //改变为high
//报告给用户
::cout<<"Task Manager should indicate this "
"process is high priority."<<::endl;
//设置版本信息的数据结构,以便保存操作系统的版本信息
OSVERSIONINFOEX osvix;
::ZeroMemory(&osvix,sizeof(osvix));
osvix.dwOSVersionInfoSize=sizeof(osvix);
//提取版本信息和报告
::GetVersionEx(reinterpret_cast<LPOSVERSIONINFO>(&osvix));
Parent();
}
return 0;
}
分析:程序4-3.cpp说明了一个进程从“生”到“死”的整个一生,第一次执行时,它创建一个子进程,其行为如同“父亲”。在创建子进程之前,先创建一个互斥的内核对象,其行为对于子进程来说,如同一个“自杀弹”。当创建子进程时,就打开了互斥体并在其他线程中进行别的处理工作,同时等待着父进程使用ReleaseMutex()API发出“死亡”信号。然后用Sleep()API调用来模拟父进程处理其他工作,等完成时,指令子进程终止。

操作系统实验实验报告

操作系统实验实验报告

操作系统实验实验报告一、实验目的操作系统是计算机系统中最为关键的核心软件,它管理着计算机的硬件资源和软件资源,为用户提供了一个方便、高效、稳定的工作环境。

本次操作系统实验的目的在于通过实际操作和实践,深入理解操作系统的基本原理和核心概念,掌握操作系统的基本功能和操作方法,提高对操作系统的认识和应用能力。

二、实验环境本次实验使用的操作系统为 Windows 10 专业版,开发工具为Visual Studio 2019,编程语言为 C 和 C++。

实验硬件环境为一台配备Intel Core i7 处理器、16GB 内存、512GB SSD 硬盘的个人计算机。

三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新的进程,并在完成任务后终止进程。

在实验中,我们使用了 Windows API 函数 CreateProcess 和 TerminateProcess 来完成进程的创建和终止操作。

通过观察进程的创建和终止过程,深入理解了进程的生命周期和状态转换。

2、进程同步与互斥为了实现进程之间的同步与互斥,我们使用了信号量、互斥量等同步对象。

通过编写多线程程序,模拟了多个进程对共享资源的访问,实现了对共享资源的互斥访问和同步操作。

在实验中,我们深刻体会到了进程同步与互斥的重要性,以及不正确的同步操作可能导致的死锁等问题。

(二)内存管理实验1、内存分配与释放使用 Windows API 函数 VirtualAlloc 和 VirtualFree 进行内存的分配和释放操作。

通过实验,了解了内存分配的不同方式(如堆分配、栈分配等)以及内存释放的时机和方法,掌握了内存管理的基本原理和操作技巧。

2、内存分页与分段通过编程模拟内存的分页和分段管理机制,了解了内存分页和分段的基本原理和实现方法。

在实验中,我们实现了简单的内存分页和分段算法,对内存的地址转换和页面置换等过程有了更深入的理解。

(三)文件系统实验1、文件操作使用 Windows API 函数 CreateFile、ReadFile、WriteFile 等进行文件的创建、读取和写入操作。

电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验电大操作系统实验报告 3 进程管理实验一、实验目的进程管理是操作系统的核心功能之一,本次实验的目的是通过实际操作和观察,深入理解进程的概念、状态转换、进程调度以及进程间的通信机制,掌握操作系统中进程管理的基本原理和方法,提高对操作系统的整体认识和实践能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C 语言,开发工具为 Visual Studio 2019。

三、实验内容及步骤(一)进程的创建与终止1、编写一个 C 程序,使用系统调用创建一个子进程。

2、在父进程和子进程中分别输出各自的进程 ID 和父进程 ID。

3、子进程执行一段简单的计算任务,父进程等待子进程结束后输出结束信息。

以下是实现上述功能的 C 程序代码:```cinclude <stdioh>include <stdlibh>include <unistdh>int main(){pid_t pid;pid = fork();if (pid < 0) {printf("创建子进程失败\n");return 1;} else if (pid == 0) {printf("子进程:我的进程 ID 是%d,父进程 ID 是%d\n",getpid(), getppid());int result = 2 + 3;printf("子进程计算结果:2 + 3 =%d\n", result);exit(0);} else {printf("父进程:我的进程 ID 是%d,子进程 ID 是%d\n",getpid(), pid);wait(NULL);printf("子进程已结束\n");}return 0;}```编译并运行上述程序,可以观察到父进程和子进程的输出信息,验证了进程的创建和终止过程。

(二)进程的状态转换1、编写一个 C 程序,创建一个子进程,子进程进入睡眠状态一段时间,然后被唤醒并输出状态转换信息。

操作系统实验3进程的创建控制实验

操作系统实验3进程的创建控制实验

操作系统实验3进程的创建控制实验实验三的目标是通过实现一个进程控制程序,来加深我们对进程创建和控制机制的理解,并通过实践来熟悉和掌握相关的编程技巧。

在进行实验之前,我们需要先了解进程的一些基本概念和相关知识。

首先,进程的创建是通过操作系统中的系统调用来完成的。

在Linux系统中,常用的创建进程的系统调用有fork(和exec(。

fork(系统调用可以创建一个新的进程,该进程与调用fork(的进程几乎完全相同;而exec(系统调用则在新创建的进程中执行一个新的程序。

另外,进程的控制机制主要是通过进程的状态来实现的。

进程可以处于就绪状态、运行状态和阻塞状态。

就绪状态的进程可以被调度器选择后立即运行,而阻塞状态的进程则需要等待一些条件满足后才能被唤醒并变为就绪状态。

实验三的具体内容包括:1. 编写一个程序,通过调用fork(创建多个子进程。

子进程和父进程可以并行执行,共享程序的代码和数据段。

2. 子进程通过调用exec(系统调用执行不同的程序。

可以通过调用不同的exec(函数或者传入不同的参数来执行不同的程序。

3. 子进程执行的程序可能会产生不同的结果,比如输出不同的字符串或者产生不同的返回值。

我们可以通过wait(系统调用等待子进程退出,并获取子进程的返回值。

4. 父进程可以通过调用waitpid(系统调用来选择等待一些特定的子进程,以及获取特定子进程的返回值。

通过实验三的实践,我将更加深入地了解进程的创建和控制机制。

实验三的实验结果将让我熟悉和掌握相关的编程技巧,为我今后更加熟练地编写和控制进程打下坚实的基础。

总之,实验三是一个非常有意义的实验,将帮助我更加深入地理解进程的创建和控制机制,并通过实践获得相关的编程技巧。

这将对我今后的学习和实践有很大的帮助。

操作系统上机实验报告

操作系统上机实验报告

操作系统上机实验报告实验一进程的建立1.实验目的学会通过基本的Windows进程控制函数,由父进程创建子进程,并实现父子进程协同工作。

2.实验软硬件环境Dev-C++3.实验内容创建两个进程,让子进程读取一个文件,父进程等待子进程读取完文件后继续执行,实现进程协同工作。

进程协同工作就是协调好两个进程,使之安排好先后次序并以此执行,可以用等待函数来实现这一点。

当需要等待子进程运行结束时,可在父进程中调用等待函数。

4.实验程序及分析实验程序源代码如下:父进程:#include<stdio.h>#include<windows.h>int main(){STARTUPINFO si;PROCESS_INFORMA TION pi; //当Windows创建新进程时,将使用这两个结构体的有关成员。

所以在创建子进程之前应该对结构体进行声明和初始化。

ZeroMemory(&pi,sizeof(pi));ZeroMemory(&si,sizeof(si));si.cb=sizeof(STARTUPINFO);if(CreateProcess("lab1.2.exe",NULL,NULL,NULL,FALSE,CREATE_NEW_CONSOLE,NULL ,NULL,&si,&pi))//创建一个新进程,若是成功,就返回1,进而实现if选择{printf("子进程已创建~\n");int i,sum=0;for(i=1;i<=100;++i){sum+=i;printf("sum=%d\n",sum);} //进行1+2+3+….+100计算WaitForSingleObject(pi.hProcess,INFINITE); FILE *fp;fp=fopen("date.txt","r");char ch=fgetc(fp); //创建文件并打开while(ch!=EOF){putchar(ch);ch=fgetc(fp);}fclose(fp); //关闭文件}elseprintf("子进程创建失败~\n");return 0;}子进程:#include<stdio.h>#include<stdlib.h>int main(){printf("子进程运行~\n");FILE *fp;if(fp=fopen("date.txt","w")){printf("已经创建文件!\n");int i;for(i=48;i<58;i++) fputc(i,fp);fputc('\n',fp);fclose(fp);printf("已经写入数据:"); //向文本中写入数据fp=fopen("date.txt","r");char ch=fgetc(fp);while(ch!=EOF){putchar(ch);ch=fgetc(fp); //输出数据}fclose(fp);}else printf("创建文件失败!\n");system("pause");return 0;}5. 实验截图说明及分析6. 实验心得体会掌握了父进程创建子进程的方法,对操作系统多线程认识更深了。

操作系统:进程创建与撤消

操作系统:进程创建与撤消

操作系统实验报告试验一:进程创建与撤销计科112康岩岩2011008142202013/4/10实验一:进程创建与撤消一、实验目的1、加深对进程概念的理解和进程创建与撤消算法;2、进一步认识并发执行的实质。

二、实验内容本实验完成如下三个层次的任务:(1)系统级—以普通用户身份认识windows的进程管理。

通过windows的“任务管理器”观察进程的状态,进行进程的创建、切换和撤销。

(2)语言级—以普通程序员身份认识高级语言VC++/Java/C#的进程创建与撤销工具。

(3)模拟级—以OS设计师身份编程模拟实现进程创建与撤销功能,并在屏幕上观察进程活动的结果。

三、实验步骤1、windows的进程管理以下是win7的人物管理器,可以进行进程的查看、创建、撤销等操作,由于操作比较简单与琐碎,这里不再具体描述。

2、VC++/Java/C#的进程创建与撤销工具对于本次试验,我使用C#进行进程创建、撤销等测试,具体内容在下面给出。

3、进程创建与撤销的模拟实现(1)总体设计:此次程序完全由c#实现,能够通过窗体界面详细地生动地显示进程的运行状态。

下面一步一步的进行实现①数据定义:类PCB的定义如下:class PCB{string pcbName; //进程名int pcbId; //IDlong startTime; //开始时间long pcbRuntime = 0; //运行时间int pcbLeve; //线程优先级}对于所有的进程信息,用以下表储存:Dictionary<int,Hashtable>ThreadTable=new Dictionary<int,Hashtable>();容器ThreadTable用来储存所有进程简直key 表示进程id,值为Hashtable,储存的为线程信息,②函数CREATE(PCB pcb)—进程创建:创建进程需要传入一个PCB 对象,然后启动一个单独的线程来操作该对象,操作该对象就是把线程运行的状态传送给PCB同时PCB也唯一地标示其所在的线程。

创建进程的实验报告

创建进程的实验报告

一、实验目的1. 理解进程的概念和特点。

2. 掌握创建进程的方法和过程。

3. 熟悉进程调度和同步机制。

4. 分析进程创建过程中可能遇到的问题及解决方法。

二、实验环境1. 操作系统:Windows 102. 编程语言:C/C++3. 开发工具:Visual Studio 2019三、实验原理进程是操作系统中进行资源分配和调度的基本单位。

创建进程是操作系统提供的一项基本功能,它允许用户在系统中启动新的程序。

在创建进程的过程中,操作系统会为进程分配一定的资源,如内存、文件句柄等。

四、实验内容1. 创建进程2. 父子进程的同步3. 进程的终止五、实验步骤1. 创建进程(1)编写C/C++程序,使用系统调用创建进程。

(2)父进程调用`fork()`函数创建子进程。

(3)在子进程中执行特定任务。

(4)父进程和子进程分别调用`wait()`函数等待对方结束。

2. 父子进程的同步(1)父进程和子进程使用信号量实现同步。

(2)父进程调用`sem_wait()`函数等待信号量。

(3)子进程调用`sem_post()`函数释放信号量。

3. 进程的终止(1)父进程调用`kill()`函数终止子进程。

(2)子进程调用`exit()`函数结束进程。

六、实验结果与分析1. 创建进程(1)在父进程中调用`fork()`函数创建子进程。

(2)父进程和子进程分别输出“父进程”和“子进程”信息。

实验结果:```父进程子进程```2. 父子进程的同步(1)父进程和子进程使用信号量实现同步。

(2)父进程调用`sem_wait()`函数等待信号量。

(3)子进程调用`sem_post()`函数释放信号量。

实验结果:```父进程子进程```3. 进程的终止(1)父进程调用`kill()`函数终止子进程。

(2)子进程调用`exit()`函数结束进程。

实验结果:```父进程子进程```七、实验总结通过本次实验,我们掌握了以下内容:1. 进程的概念和特点。

进程创建实验报告

进程创建实验报告

实验名称:进程创建实验实验目的:1. 理解进程的概念和进程创建的过程。

2. 掌握使用系统调用创建进程的方法。

3. 分析进程创建的参数和返回值。

4. 了解进程的层次结构。

实验环境:操作系统:Linux编译器:gcc开发环境:Eclipse/Visual Studio Code实验内容:1. 理论学习- 进程的概念:进程是计算机系统中正在运行的可执行程序实例,具有独立的内存空间、执行状态和系统资源。

- 进程创建:操作系统通过创建一个新的进程来启动一个程序,新的进程会继承父进程的某些属性。

2. 实验步骤(1)编写C语言程序,使用系统调用创建进程。

(2)观察进程的创建过程,分析进程的层次结构。

(3)测试进程创建的参数和返回值。

实验代码:```c#include <stdio.h>#include <stdlib.h>#include <sys/types.h>#include <unistd.h>int main() {pid_t pid;pid = fork(); // 创建子进程if (pid == 0) { // 子进程printf("子进程 %d\n", getpid());exit(0);} else if (pid > 0) { // 父进程printf("父进程 %d, 子进程 %d\n", getpid(), pid);exit(0);} else { // 创建进程失败perror("fork error");exit(1);}return 0;}```实验结果与分析:1. 进程创建过程- 通过`fork()`系统调用创建子进程,返回值分别为子进程ID和0。

父进程的返回值为子进程ID,子进程的返回值为0。

- 在父进程中,打印出父进程和子进程的进程ID,观察到父进程和子进程的进程ID不同。

操作系统进程管理实验报告

操作系统进程管理实验报告

操作系统进程管理实验报告一、引言在现代计算机科学中,操作系统的进程管理是确保系统高效运行的关键环节。

本实验旨在通过观察和分析操作系统的进程管理行为,深入理解进程的创建、运行和终止过程,以及操作系统如何对进程进行调度和资源分配。

二、实验目标1、理解进程的基本概念、进程状态及转换。

2、掌握进程的创建、终止和调度方法。

3、观察和分析进程在运行过程中的资源消耗和调度行为。

4、分析操作系统对进程的资源分配和调度策略对系统性能的影响。

三、实验环境与工具本实验在Linux操作系统上进行,使用GNU/Linux环境下的工具进行进程的创建、监控和调度。

四、实验步骤与记录1、创建进程:使用shell命令“fork”创建一个新的进程。

记录下父进程和子进程的PID,以及它们在内存中的状态。

2、进程状态观察:使用“ps”命令查看当前运行进程的状态,包括进程的PID、运行时间、CPU使用率等。

同时,使用“top”命令实时监控系统的CPU、内存等资源的使用情况。

3、进程调度:在“crontab”中设置定时任务,观察系统如何根据预设的调度策略分配CPU资源给各个进程。

4、资源分配:通过修改进程的优先级(使用“nice”命令),观察系统如何调整资源分配策略。

5、终止进程:使用“kill”命令终止一个进程,并观察系统如何处理该进程占用的资源。

五、实验结果与分析1、创建进程:通过“fork”系统调用,成功创建了一个新的进程,并获取了父进程和子进程的PID。

在内存中,父进程和子进程的状态分别为“running”和“ready”。

2、进程状态观察:使用“ps”命令可以看到父进程和子进程的状态均为“running”,同时显示了它们的CPU使用率和运行时间等信息。

通过“top”命令,可以实时监控系统的CPU、内存等资源的使用情况,为进一步分析提供了数据支持。

3、进程调度:在“crontab”中设置定时任务后,系统会根据预设的调度策略以及各个进程的运行状态,动态地分配CPU资源给各个进程。

进程管理实验报告

进程管理实验报告

进程管理实验报告进程管理实验报告引言:进程管理是操作系统中的重要概念,它负责调度和控制计算机系统中的各个进程,确保它们能够有序地执行。

本实验旨在通过实际操作和观察,深入了解进程管理的原理和方法,并通过实验结果分析其影响因素和优化策略。

实验一:进程创建与终止在本实验中,我们首先进行了进程的创建和终止实验。

通过编写简单的程序,我们能够观察到进程的创建和终止过程,并了解到进程控制块(PCB)在其中的作用。

实验结果显示,当一个进程被创建时,操作系统会为其分配一个唯一的进程ID,并为其分配必要的资源,如内存空间、文件描述符等。

同时,操作系统还会为该进程创建一个PCB,用于存储该进程的相关信息,如进程状态、程序计数器等。

当我们手动终止一个进程时,操作系统会释放该进程所占用的资源,并将其PCB从系统中删除。

这样,其他进程便可以继续使用这些资源,提高系统的效率和资源利用率。

实验二:进程调度算法进程调度算法是决定进程执行顺序的重要因素。

在本实验中,我们通过模拟不同的进程调度算法,比较它们在不同场景下的表现和效果。

我们选择了三种常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)和轮转调度(RR)。

通过设置不同的进程执行时间和优先级,我们观察到不同调度算法对系统吞吐量和响应时间的影响。

实验结果显示,FCFS算法适用于执行时间较短的进程,能够保证公平性,但在执行时间较长的进程出现时,会导致等待时间过长,影响系统的响应速度。

SJF 算法在执行时间较长的进程时表现出色,但对于执行时间较短的进程,可能会导致饥饿现象。

RR算法能够在一定程度上平衡各个进程的执行时间,但对于执行时间过长的进程,仍然会影响系统的响应速度。

实验三:进程同步与互斥在多进程环境中,进程之间的同步和互斥是必不可少的。

在本实验中,我们通过模拟进程间的竞争和互斥关系,观察进程同步与互斥的实现方式和效果。

我们选择了信号量机制和互斥锁机制作为实现进程同步和互斥的方法。

操作系统实验报告三

操作系统实验报告三

操作系统实验报告三一、实验目的本次操作系统实验的目的在于深入了解操作系统的进程管理、内存管理和文件系统等核心功能,通过实际操作和观察,增强对操作系统原理的理解和掌握,提高解决实际问题的能力。

二、实验环境本次实验在 Windows 10 操作系统环境下进行,使用了 Visual Studio 2019 作为编程工具,并借助了相关的操作系统模拟软件和调试工具。

三、实验内容与步骤(一)进程管理实验1、创建多个进程使用 C++语言编写程序,通过调用系统函数创建多个进程。

观察每个进程的运行状态和资源占用情况。

2、进程同步与互斥设计一个生产者消费者问题的程序,使用信号量来实现进程之间的同步与互斥。

分析在不同并发情况下程序的执行结果,理解进程同步的重要性。

(二)内存管理实验1、内存分配与回收实现一个简单的内存分配算法,如首次适应算法、最佳适应算法或最坏适应算法。

模拟内存的分配和回收过程,观察内存的使用情况和碎片产生的情况。

2、虚拟内存管理了解 Windows 操作系统的虚拟内存机制,通过查看系统性能监视器观察虚拟内存的使用情况。

编写程序来模拟虚拟内存的页面置换算法,如先进先出(FIFO)算法、最近最少使用(LRU)算法等。

(三)文件系统实验1、文件操作使用 C++语言对文件进行创建、读写、删除等操作。

观察文件在磁盘上的存储方式和文件目录的结构。

2、文件系统性能测试对不同大小和类型的文件进行读写操作,测量文件系统的读写性能。

分析影响文件系统性能的因素,如磁盘碎片、缓存机制等。

四、实验结果与分析(一)进程管理实验结果1、创建多个进程在创建多个进程的实验中,通过任务管理器可以观察到每个进程都有独立的进程 ID、CPU 使用率、内存占用等信息。

多个进程可以并发执行,提高了系统的资源利用率。

2、进程同步与互斥在生产者消费者问题的实验中,当使用正确的信号量机制时,生产者和消费者能够协调工作,不会出现数据不一致或死锁的情况。

操作系统实验---进程的创建与控制

操作系统实验---进程的创建与控制

实验报告实验题目姓名:学号:课程名称:操作系统实验所在学院:信息科学与工程学院专业班级:计算机任课教师:核心为fork( )完成以下操作:(1)为新进程分配一进程表项和进程标识符进入fork( )后,核心检查系统是否有足够的资源来建立一个新进程。

若资源不足,则fork( )系统调用失败;否则,核心为新进程分配一进程表项和唯一的进程标识符。

(2)检查同时运行的进程数目超过预先规定的最大数目时,fork( )系统调用失败。

(3)拷贝进程表项中的数据将父进程的当前目录和所有已打开的数据拷贝到子进程表项中,并置进程的状态为“创建”状态。

(4)子进程继承父进程的所有文件对父进程当前目录和所有已打开的文件表项中的引用计数加1。

(5)为子进程创建进程上、下文进程创建结束,设子进程状态为“内存中就绪”并返回子进程的标识符。

(6)子进程执行虽然父进程与子进程程序完全相同,但每个进程都有自己的程序计数器PC(注意子进程的注意子进程的PC 开始位置),然后根据pid 变量保存的fork( )返回值的不同,执行了不同的分支语句。

四、实验过程、步骤及内容1、编写一段程序,使用系统调用fork( )创建两个子进程。

当此程序运行时,在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符:父进程显示'a',子进程分别显示字符'b'和字符'c'。

试观察记录屏幕上的显示结果,并分析原因。

2、修改上述程序,每一个进程循环显示一句话。

子进程显示'daughter …'及'son ……',父进程显示'parent ……',观察结果,分析原因。

3、用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容4、用fork( )建立如下形式的进程树:A进程B进程C进程D进程各个进程中都打印出本身PID 和其父进程的PID,并用wait( )来控制进程执行顺序,打印出正确和期望的结果。

进程系统演示实验报告

进程系统演示实验报告

一、实验目的1. 理解进程的概念及其在操作系统中的作用。

2. 掌握进程的创建、调度、同步和通信的基本原理。

3. 通过实验演示进程系统的运行过程,加深对进程管理的理解。

二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发工具:gcc三、实验内容1. 进程的创建2. 进程的调度3. 进程的同步4. 进程的通信四、实验步骤1. 进程的创建(1)编写一个主函数,作为父进程;(2)在父进程中,使用fork()系统调用创建子进程;(3)输出父进程和子进程的进程号、父进程号和子进程号。

2. 进程的调度(1)使用进程调度算法(如FIFO、时间片轮转)对进程进行调度;(2)设置进程的优先级,实现进程的动态调度;(3)输出进程的调度结果,包括进程名、进程号、优先级和调度时间。

3. 进程的同步(1)使用互斥锁(mutex)实现进程的互斥访问;(2)使用条件变量(condition variable)实现进程的同步;(3)输出进程同步的结果,包括互斥锁的使用情况和条件变量的等待/唤醒情况。

4. 进程的通信(1)使用管道(pipe)实现进程间的数据传递;(2)使用共享内存(shared memory)实现进程间的数据共享;(3)输出进程通信的结果,包括管道和共享内存的使用情况。

五、实验结果与分析1. 进程的创建实验结果:成功创建父进程和子进程,输出进程号、父进程号和子进程号。

分析:通过fork()系统调用,父进程创建子进程,子进程继承父进程的代码段和数据段。

2. 进程的调度实验结果:根据进程调度算法,输出进程的调度结果,包括进程名、进程号、优先级和调度时间。

分析:通过设置进程优先级和调度算法,实现进程的动态调度,提高系统资源利用率。

3. 进程的同步实验结果:成功实现互斥锁和条件变量的使用,输出进程同步的结果。

分析:通过互斥锁和条件变量,实现进程的同步访问和条件等待,保证数据的一致性和进程的同步。

4. 进程的通信实验结果:成功使用管道和共享内存实现进程间的数据传递和共享。

进程创建的实验报告

进程创建的实验报告

一、实验目的1. 理解进程的概念及其在操作系统中扮演的角色。

2. 掌握进程创建的基本原理和过程。

3. 学习使用编程语言实现进程的创建和基本管理。

二、实验环境1. 操作系统:Windows 102. 编程语言:C语言3. 开发环境:Visual Studio 2019三、实验原理进程是操作系统中执行的基本单元,是系统进行资源分配和调度的基本单位。

进程创建是指操作系统创建一个新的进程,使其从无到有,成为系统中的一个可执行实体。

进程创建的基本原理如下:1. 系统为进程分配必要的资源,如内存、CPU时间等。

2. 创建进程控制块(PCB),记录进程的基本信息。

3. 将进程插入到进程队列中,等待调度。

四、实验内容1. 创建一个名为“HelloWorld”的进程,该进程在执行时打印“Hello, World!”。

2. 研究进程创建的过程,分析进程控制块(PCB)的结构。

3. 使用编程实现进程的创建、调度和销毁。

五、实验步骤1. 创建一个新的C语言项目,命名为“进程创建实验”。

2. 在主函数中,使用系统调用创建一个新的进程。

3. 编写进程函数,实现打印“Hello, World!”的功能。

4. 编写进程的调度函数,实现进程的创建、调度和销毁。

5. 编译并运行程序,观察进程创建和执行过程。

六、实验代码```c#include <stdio.h>#include <stdlib.h>#include <unistd.h>// 进程函数void processFunc() {printf("Hello, World!\n");}int main() {pid_t pid;pid = fork(); // 创建子进程if (pid == -1) {// 创建进程失败perror("fork");exit(1);} else if (pid == 0) {// 子进程processFunc();exit(0);} else {// 父进程wait(NULL); // 等待子进程结束printf("子进程结束,PID:%d\n", pid);}return 0;}```七、实验结果与分析1. 编译并运行程序,观察进程创建和执行过程。

操作系统实验报告

操作系统实验报告

操作系统实验报告操作系统是计算机科学中十分重要的一门课程,本次实验是关于操作系统的,通过实验,我们可以更深入地了解操作系统的相关知识和操作。

本篇文章将着重介绍本次操作系统实验的内容和实验过程中的收获。

一、实验内容本次实验内容主要涉及操作系统的进程、线程和进程同步三部分。

具体内容包括:1. 进程的创建和管理2. 线程的创建和管理3. 进程同步的实现在实验过程中,我们将分别使用C语言和Linux操作系统实现上述功能。

二、实验过程1. 进程的创建和管理在这一部分实验中,我们要创建多个进程,实现进程的调度和管理功能。

我们采用了Linux系统下的fork()函数,用于创建子进程。

在程序运行时,首先创建一个父进程,然后使用fork()函数创建四个子进程,每个子进程都有自己的进程号(pid),并在屏幕上输出该进程号以示区分。

为了实现进程的调度功能,我们在代码中加入了sleep()函数,用于将进程挂起一段时间,然后再轮流执行其他进程。

2. 线程的创建和管理在这一部分实验中,我们使用了C语言的POSIX线程库pthread.h,实现多线程的功能。

同样地,我们采用了Linux系统下的fork()函数来创建线程。

在代码运行时,我们创建了两个线程,并在屏幕上输出线程号(tid)以示区分。

为了实现线程的调度和管理功能,我们在代码中加入了pthread_join()函数,用于等待线程的执行完成。

3. 进程同步的实现在这一部分实验中,我们使用了Linux系统下的进程同步工具——信号量(semaphore)。

在代码中,我们使用sem_init()函数创建信号量,使用sem_wait()函数阻塞进程或线程,使用sem_post()函数释放进程或线程。

为了更好地理解信号量的工作原理,我们将代码分为生产者和消费者两部分,其中生产者用于向缓冲区添加数据,消费者则用于删除数据。

在这个过程中,我们需要使用信号量控制生产者和消费者的数量,避免出现生产过多或消费过多的情况。

操作系统课程实验报告

操作系统课程实验报告

操作系统课程实验报告一、实验目的操作系统是计算机系统中最为关键的软件之一,它负责管理计算机的硬件资源和软件资源,为用户提供一个良好的工作环境。

通过操作系统课程实验,旨在深入理解操作系统的基本原理和功能,提高对操作系统的实际操作能力和问题解决能力。

二、实验环境本次实验使用的操作系统为Windows 10 和Linux(Ubuntu 1804),开发工具包括 Visual Studio Code、gcc 编译器等。

三、实验内容(一)进程管理1、进程创建与终止在 Windows 系统中,使用 C++语言创建多个进程,并通过进程句柄控制进程的终止。

在 Linux 系统中,使用 fork()系统调用创建子进程,并通过 exit()函数终止进程。

2、进程同步与互斥使用信号量实现进程之间的同步与互斥。

在 Windows 中,利用CreateSemaphore()和 WaitForSingleObject()等函数进行操作;在Linux 中,通过 sem_init()、sem_wait()和 sem_post()等函数实现。

(二)内存管理1、内存分配与释放在 Windows 中,使用 HeapAlloc()和 HeapFree()函数进行动态内存的分配与释放。

在 Linux 中,使用 malloc()和 free()函数完成相同的操作。

2、内存页面置换算法实现了几种常见的内存页面置换算法,如先进先出(FIFO)算法、最近最少使用(LRU)算法等,并比较它们的性能。

(三)文件系统管理1、文件创建与读写在 Windows 和 Linux 系统中,分别使用相应的 API 和系统调用创建文件,并进行读写操作。

2、目录操作实现了目录的创建、删除、遍历等功能。

四、实验步骤(一)进程管理实验1、进程创建与终止(1)在 Windows 系统中,编写 C++程序,使用 CreateProcess()函数创建新进程,并通过 TerminateProcess()函数终止指定进程。

操作系统实验报告实验3_1

操作系统实验报告实验3_1

操作系统实验报告实验3_1一、实验目的本次实验的主要目的是深入理解操作系统中进程管理的相关概念和原理,通过实际操作和观察,掌握进程的创建、调度、同步与互斥等关键机制,提高对操作系统内核工作原理的认知和实践能力。

二、实验环境本次实验在装有 Windows 10 操作系统的计算机上进行,使用了Visual Studio 2019 作为开发工具,编程语言为 C++。

三、实验内容与步骤(一)进程创建1、编写一个简单的 C++程序,使用系统调用创建一个新的进程。

2、在父进程和子进程中分别输出不同的信息,以区分它们的执行逻辑。

```cppinclude <iostream>include <windowsh>int main(){DWORD pid;HANDLE hProcess = CreateProcess(NULL, "childexe", NULL, NULL, FALSE, 0, NULL, NULL, NULL, &pid);if (hProcess!= NULL) {std::cout <<"Parent process: Created child process with PID "<< pid << std::endl;WaitForSingleObject(hProcess, INFINITE);CloseHandle(hProcess);} else {std::cerr <<"Failed to create child process" << std::endl;return 1;}return 0;}```(二)进程调度1、设计一个多进程并发执行的程序,通过设置不同的优先级,观察操作系统对进程的调度情况。

2、记录每个进程的执行时间和等待时间,分析调度算法的效果。

```cppinclude <iostream>include <windowsh>DWORD WINAPI ProcessFunction(LPVOID lpParam) {int priority =(int)lpParam;DWORD start = GetTickCount();std::cout <<"Process with priority "<< priority <<"started" << std::endl;for (int i = 0; i < 100000000; i++){//执行一些计算操作}DWORD end = GetTickCount();DWORD executionTime = end start;std::cout <<"Process with priority "<< priority <<" ended Execution time: "<< executionTime <<" ms" << std::endl;return 0;}int main(){HANDLE hThread1, hThread2;int priority1 = 1, priority2 = 2;hThread1 = CreateThread(NULL, 0, ProcessFunction, &priority1, 0, NULL);hThread2 = CreateThread(NULL, 0, ProcessFunction, &priority2, 0, NULL);if (hThread1!= NULL && hThread2!= NULL) {SetThreadPriority(hThread1, THREAD_PRIORITY_LOWEST);SetThreadPriority(hThread2, THREAD_PRIORITY_NORMAL);WaitForSingleObject(hThread1, INFINITE);WaitForSingleObject(hThread2, INFINITE);CloseHandle(hThread1);CloseHandle(hThread2);} else {std::cerr <<"Failed to create threads" << std::endl;return 1;}return 0;}```(三)进程同步与互斥1、实现一个生产者消费者问题的程序,使用信号量来实现进程之间的同步与互斥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作系统
实验报告
哈尔滨工程大学
软件学院
第一讲实验环境的使用
一、实验概述
1. 实验名称
进程的创建
2. 实验目的
练习使用EOS API函数CreateProcess创建一个进程,掌握创建进程的方法,理解进程和程序的区别。

调试跟踪CreateProcess函数的执行过程,了解进程的创建过程,理解进程是资源分配的单位。

3. 实验类型(验证、设计)
验证
4. 实验内容
二、实验环境
操作系统:windows xp
编译环境:OS Lab
语言:汇编语言、C语言
三、实验过程(每次实验不一定下面6条都写,根据实际情况定)
1.设计思路和流程图
main函数流程图
2. 需要解决的问题及解答
(1)在源代码文件NewTwoProc.c提供的源代码基础上进行修改,要求使用hello.exe同时创建10个进程。

提示:可以使用PROCESS_INFORMATION类型定义一个有10个元素的数组,每一个元素对应一个进程。

使用一个循环创建10个子进程,然后再使用一个循环等待10个子进程结束,得到退出码后关闭句柄。

答:后文中,有此题解决方案。

尝试根据之前对PsCreateProcess函数和PspCreateProcessEnvironment函数执行过程的跟踪调试,绘制一幅进程创建过程的流程图。

(3)在PsCreateProcess函数中调用了PspCreateProcessEnvironment函数后又先后调用了PspLoadProcessImage和PspCreateThread函数,学习这些函数的主要功能。

能够交换这些函数被调用的顺序吗?思考其中的原因。

答:PspCreateProcessEnvironment的主要功能是创建进程控制块并且为进程创建了地址空间和分配了句柄表。

PspLoadProcessImage是将进程的可执行映像加载到了进程的地址空间中。

PspCreateThread创建了进程的主线程。

这三个函数被调用的顺序是不能够改变的就向上面描述的加载可执行映像之前必须已经为进程创建了地址空间这样才能够确定可执行映像可以被加载到内存的什么位置在创建主线程之前必须已经加载了可执行映像这样主线程才能够知道自己要从哪里开始执行,执行哪些指令。

因此不能交换他们的顺序。

3.主要数据结构、实现代码及其说明
主要定义一个有10个元素的数组,每一个元素对应一个进程。

使用一个循环创建10个子进程,然后再使用一个循环等待10个子进程结束,得到退出码后关闭句柄
4.源程序并附上注释
#include "EOSApp.h"
//
// main 函数参数的意义:
// argc - argv 数组的长度,大小至少为1,argc - 1 为命令行参数的数量。

// argv - 字符串指针数组,数组长度为命令行参数个数+ 1。

其中argv[0] 固定指向当前
// 进程所执行的可执行文件的路径字符串,argv[1] 及其后面的指针指向各个命令行
// 参数。

// 例如通过命令行内容"a:\hello.exe -a -b" 启动进程后,hello.exe 的main 函
// 数的参数argc 的值为3,argv[0] 指向字符串"a:\hello.exe",argv[1] 指向
// 参数字符串"-a",argv[2] 指向参数字符串"-b"。

//
int main(int argc, char* argv[])
{
int i;
//
// 启动调试EOS 应用程序前要特别注意下面的问题:
//
// 1、如果要在调试应用程序时能够调试进入内核并显示对应的源码,
// 必须使用EOS 核心项目编译生成完全版本的SDK 文件夹,然
// 后使用此文件夹覆盖应用程序项目中的SDK 文件夹,并且EOS
// 核心项目在磁盘上的位置不能改变。

//
// 2、在启动调试应用程序之前必须首先删除/禁用所有的断点,在断// 点中断(int 3) 被命中后才能重新添加/启用断点,否则启动
// 调试会失败。

//
STARTUPINFO StartupInfo;
PROCESS_INFORMATION P[10];
ULONG ulExitCode; // 子进程退出码
INT nResult = 0; // main 函数返回值。

0 表示成功,非0 表示失败。

BOOL num[10];
#ifdef _DEBUG
__asm("int $3\n nop");
#endif
printf("Create ten processes and wait for the processes exit...\n\n");
//
// 使子进程和父进程使用相同的标准句柄。

//
StartupInfo.StdInput = GetStdHandle(STD_INPUT_HANDLE);
StartupInfo.StdOutput = GetStdHandle(STD_OUTPUT_HANDLE); StartupInfo.StdError = GetStdHandle(STD_ERROR_HANDLE);
//
// 为一个应用程序同时创建十个子进程。

//
for( i=0;i<10;i++){
num[i]=CreateProcess("A:\\Hello.exe", NULL, 0, &StartupInfo, &P[i]); }
for(i=0;i<10;i++){
if(num[i]){
//
// 创建子进程成功,等待子进程运行结束。

//
WaitForSingleObject(P[i].ProcessHandle, INFINITE);
}
}
for(i=0;i<10;i++){
if(num[i]){
//
// 得到并输出子进程的退出码。

//
GetExitCodeProcess(P[i].ProcessHandle, &ulExitCode);
printf("\nThe process %d exit with %d.\n", ulExitCode);
}
}
for(i=0;i<10;i++){
if(num[i]){
//
// 关闭不再使用的句柄。

//
CloseHandle(P[i].ProcessHandle);
CloseHandle(P[i].ThreadHandle);
}
}
for(i=0;i<10;i++){
if(!num[i]){
printf("CreateProcess Failed, Error code: 0x%X.\n", GetLastError());
nResult = 1;
}
}
return nResult;
}
5.程序运行时的初值和运行结果
a.使用控制台命令创建EOS应用程序进程
b.查看应用程序创建另一个应用程序的进程的执行结果:
c.调试进程控制块的创建过程
将鼠标移动到“监视”窗口中此表达式的“值”属性上,会弹出一个临时窗口,在临时窗口中会按照进程控制块的结构显示各个成员变量的值(可以参考PROCESS结构体的定义)。

由于只是新建了进程控制块,还没有初始化其中成员
变量,所以值都为0。

d.接下来调试初始化进程控制块中各个成员变量的过程:
1.创建进程的地址空间,即4G虚拟地址空间。

在代码行(create.c文件的第437行)NewProcess->Pas = MmCreateProcessAddressSpace(); 添加一个断点。

2.按F5继续调试,到此断点处中断。

3.按F10执行此行代码后中断。

4.在“监视”窗口中查看进程控制块的成员变量Pas的值已经不再是0。

说明已经初始化了进程的4G虚拟地址空间。

使用F10一步步调试PspCreateProcessEnvironment函数中后面的代码,在调试的过程中根据执行的源代码,查看“监视”窗口中*NewProcess表达式的值结果如下:。

相关文档
最新文档