二次函数压轴题等腰三角形存在性-直角三角形存在性
专题11 存在性-等腰直角三角形(解析版)
中考数学压轴题--二次函数--存在性问题第11节等腰直角三角形的存在性方法点拨第一步:易证ΔBAD∽ΔECB,如果再加一个条件BD=BE,此时ΔBAD≌ΔECB (AAS)所以,AB=CE,AD=CB第二步:根据点坐标来表示线段长度,列等式求解。
例题演练1.如图所示,抛物线y=a(x+1)(x﹣5)(a≠0)的图象与x轴交于A、B两点,与y轴交于点C.(1)当a=﹣时,①求点A、B、C的坐标;②如果点P是抛物线上一点,点M是该抛物线对称轴上的点,当△OMP是以OM为斜边的等腰直角三角形时,求出点P的坐标;(2)点D是抛物线的顶点,连接BD、CD,当四边形OBDC是圆的内接四边形时,求a 的值.【解答】解:对于y=a(x+1)(x﹣5)(a≠0),令y=a(x+1)(x﹣5)=0,解得x =5或﹣1,令x=0,则y=﹣5a,故点A、B、C的坐标分别为(5,1)、(﹣1,0)、(0,﹣5a),当x=2时,y=a(x+1)(x﹣5)=﹣9a,顶点的坐标为(2,﹣9a).(1)①当a=﹣时,函数的表达式为y=﹣(x+1)(x﹣5),则点A、B、C的坐标分别为(5,1)、(﹣1,0)、(0,2);②过点P作y轴的平行线交过点M与x轴的平行线于点F,交x轴于点E,设点P的坐标为(x,﹣(x+1)(x﹣5)),∵∠MPO=90°,∴∠MPF+∠OPE=90°,∵∠OPE+∠POE=90°,∴∠POE=∠MPF,∵∠PFM=∠OEP=90°,PM=PO,∴△PFM≌△OEP(AAS),∴PE=MF,则﹣(x+1)(x﹣5)=x﹣2,解得x=﹣或4,故点P的坐标为(﹣,﹣)或(4,2);(2)点B、C的坐标分别为(﹣1,0)、(0,﹣5a),顶点D的坐标为(2,﹣9a).当四边形OBDC是圆的内接四边形时,则BC的中点为该圆的圆心,设BC的中点为点Q,由中点坐标公式得,点Q(,﹣a),则OQ=DQ,即()2+(﹣)2=(2﹣)2+(﹣9a+a)2,解得a=±.2.如图,已知抛物线y=ax2+4x+c与直线AB相交于点A(0,1)和点B(3,4).(1)求该抛物线的解析式;(2)设C为直线AB上方的抛物线上一点,当△ABC的面积最大时,求点C的坐标;(3)将该抛物线向左平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,是否存在点E使得△ADE是以AD为腰的等腰直角三角形?若存在,直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A、B两点代入到解析式中,得,,解得,∴抛物线的解析式为:y=﹣x2+4x+1;(2)设直线AB为:y=k1x+1,代入点B,得,3k1+1=4,解得k1=1,∴直线AB为:y=x+1,设C(m,﹣m2+4m+1),过C作CM∥y轴交AB于M,如图1,则M(m,m+1),∴CM=﹣m2+4m+1﹣m﹣1=﹣m2+3m,∴S△ABC=S△ACM+S△BCM==,∵C为直线AB上方抛物线上一点,∴0<m<3,∴时,△ABC的面积最大值为,此时C();(3)∵抛物线y=﹣(x﹣2)2+5,∴将抛物线向右平移2个单位后得到的抛物线为:y=﹣x2+5,联立,解得,∴D(1,4),①如图2,当DA=DE,∠EDA=90°,E在AD右侧时,过D作x轴平行线交y轴于N,过E作y轴平行线,两线交于F点∵∠DAN+∠NDA=∠NDA+∠EDF=90°∴∠DAN=∠EDF,又∠DNA=∠EFD=90°,DA=DE,∴△DNA≌△EFD(AAS),∴DN=EF=1,AN=DF=3,∴E(4,3),②当DA=DE,∠EDA=90°,E在AD左侧,同理可得,E(﹣2,5),③当AD=AE,∠DAE=90°,E在AD左侧时,同理可得,E(﹣3,2),④当AD=AE,∠DAE=90°,E在AD右侧时,同理可得,E(3,0),综上所述,E(4,3)或(﹣2,5)或(﹣3,2)或(3,0).3.如图,已知抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,其中A(﹣1,0),C(0,3).(1)求该抛物线的函数表达式;(2)抛物线与直线y=﹣x﹣1交于A、E两点,P是x轴上点B左侧一动点,当以P、B、C为顶点的三角形与△ABE相似时,求点P的坐标;(3)若F是直线BC上一动点,在抛物线上是否存在动点M,使△MBF为等腰直角三角形,若存在,请直接写出点M的坐标;否则说明理由.【解答】解:(1)把A(﹣1,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数表达式为y=﹣x2+2x+3;(2)联立直线AE和抛物线的函数关系式成方程组,得:,解得:,,∴点E的坐标为(4,﹣5),∴AE==5,在y=﹣x2+2x+3中,令y=0,得:﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴点B的坐标为(3,0),∵C(0,3),∴OB=OC=3,∵∠BOC=90°,∴∠CBO=45°,BC=3,∵直线AE的函数表达式为y=﹣x﹣1,∴∠BAE=45°=∠CBO.设点P的坐标为(m,0),则PB=3﹣m,∵以P、B、C为顶点的三角形与△ABE相似,∴=或=,∴=或=,解得:m=或m=﹣,∴点P的坐标为(,0)或(﹣,0);(3)∵∠CBO=45°,∴存在两种情况(如图2).①取点M1与点A重合,过点M1作M1F1∥y轴,交直线BC于点F1,∵∠CBM1=45°,∠BM1F1=90°,∴此时△BM1F1为等腰直角三角形,∴点M1的坐标为(﹣1,0);②取点C′(0,﹣3),连接BC′,延长BC′交抛物线于点M2,过点M2作M2F2∥y 轴,交直线BC于点F2,∵点C、C′关于x轴对称,∠OBC=45°,∴∠CBC′=90°,BC=BC′,∴△CBC′为等腰直角三角形,∵M2F2∥y轴,∴△M2BF2为等腰直角三角形.∵点B(3,0),点C′(0,﹣3),∴直线BC′的函数关系式为y=x﹣3,联立直线BC′和抛物线的函数关系式成方程组,得:,解得:,,∴点M2的坐标为(﹣2,﹣5),综上所述:点M的坐标为(﹣1,0)或(﹣2,﹣5).4.如图,抛物线y=ax2+bx﹣3(a>0)与x轴交于A、B两点,交y轴于点C,OB=3,抛物线经过点(2,5).(1)求该抛物线解析式;(2)如图1,该抛物线顶点D,连接BD、BC,点P是线段BD下方抛物线上一点,过点P作PE∥y轴,分别交线段BD、BC于点F、E,过点P作PG⊥BD于点G,求2PG+EF 的最大值,及此时点P的坐标;(3)如图2,在y轴左侧抛物线上有一动点M,在y轴上有一动点N,是否存在以AN 为直角边的等腰直角三角形AMN?若存在,请直接写出点M的坐标.【解答】解:(1)∵OB=3,∴B(﹣3,0)把C(﹣3,0)和点(2,5),代入抛物线y=ax2+bx﹣3,得,解得,∴抛物线解析式为y=x2+2x﹣3;(2)延长PE与x轴交于点M,FM⊥x轴,PG⊥BD,如图所示,∠FMB=90°,∠PGF=90°,∵∠BFM=∠PFG,∴∠MBF=∠GPF,∴B(﹣3,0),D(﹣1,﹣4),B、D两点的横坐标距离为2,纵坐标距离为4,由勾股定理得BD==2,∴cos∠MBF=cos∠GPF=,∴2PG+EF=EF+2FP,∴C(0,﹣3),设直线BC解析式为l BC:y=kx+b(b≠0),把B(﹣3,0)和C(0,﹣3)代入得,,解得,∴l BC:y=﹣x﹣3,同理,直线BD得解析式为:y=﹣2x﹣6,设E(m,﹣m﹣3),P(m,m2+2m﹣3),F(m,﹣2m﹣6),∴EF+2FP=[﹣m﹣3﹣(﹣2m﹣6)]+2[(﹣2m﹣6)﹣(m2+2m﹣3)]=﹣2(m+)2+,∴当m=﹣时,EF+2FP有最大值,∵2PG+EF=EF+2FP,∴此时,P点坐标为P(﹣,﹣);(3)存在,设N(0,y1),M(x2,+2x2﹣3),当y=0时,代入抛物线y=x2+2x+3中,解得两根为﹣3和1,A在y轴右侧,∴A(1,0),∴AN2=OA2+ON2=1+y12,AM2=(x2﹣1)2+(+2x2﹣3)2,MN2=+(+2x2﹣3﹣y1)2,①当AN⊥MN时,此时由AN=MN,等腰直角三角形各边比为1:1:,∴M点横坐标为﹣﹣1或﹣3﹣1,将M的横坐标为﹣﹣1或﹣3﹣1,代入y=x2+2x﹣3中得,∴M点坐标为(﹣﹣1,﹣2)或(﹣3﹣1,14),②由AN⊥MA得:M点横坐标为﹣2﹣2或﹣2﹣2,将M点横坐标为﹣2﹣2或﹣2﹣2代入y=x2+2x+3中,得M点坐标为(﹣2﹣2,17+8﹣4﹣4)或(﹣2﹣2,33+8﹣4﹣4),综上所述,M点坐标为(﹣﹣1,﹣2)或(﹣3﹣1,14),(﹣2﹣2,17+8﹣4﹣4)或(﹣2﹣2,33+8﹣4﹣4),5.如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到物度C2,C2交x轴于A、B两点(点A在点B的左边),交y轴于点C.(1)求抛物线C1的解析式及顶点坐标;(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式及D点坐标.【解答】解:(1)∵抛物线C1经过原点,与x轴的另一个交点为(2,0),∴,解得,∴抛物线C1的解析式为y=x2﹣2x,∴抛物线C1的顶点坐标(1,﹣1).(2)如图,∵抛物线C1的向右平衡m(m>0)个单位得到抛物线C2,∴C2的解析式为y=(x﹣m﹣1)2﹣1,∴A(m,0),B(m+2,0),C(0,m2+2m),过点C作CH⊥对称轴DE,垂足为H,∵△ACD为等腰直角三角形,∴AD=CD,∠ADC=90°,∴∠CDH+∠ADE=90°,∴△HCD=△ADE,∵∠DEA=90°,∴△CHD≌△DEA,∴AE=HD=1,CH=DE=m+1,∴EH=HD+DE=1+m+1=m+2,由OC=EH得m2+2m=m+2,解得m1=1,m2=﹣2(舍去),∴抛物线C2的解析式为:y=(x﹣2)2﹣1,∴D点坐标(2,2).6.已知:如图,抛物线y=ax2+bx+6与x轴交于点B(6,0),C(﹣2,0),与y轴交于点A,点P是线段AB上方抛物线上的一个动点.(1)如图,连接P A、PB.设△P AB的面积为S,点P的横坐标为m.请说明当点P运动到什么位置时,△P AB的面积有最大值?(2)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+6与x轴交于点B(6,0),C(﹣2,0),∴可设抛物线的表达式为:y=a(x+2)(x﹣6),∴﹣12a=6,解得a=﹣,∴抛物线的表达式为:y=﹣x2+2x+6,∴A(0,6)∴直线AB的表达式为:y=﹣x+6,点P的横坐标为m,则P(m,﹣m2+2m+6),过点P作x轴的垂线,交线段AB于点D,则D(m,﹣m+6),∴S=×OB×PD=×6×(﹣m2+2m+6+m﹣6)==﹣(m﹣3)2+,∴当m=3时,S的值取最大,此时P(3,);(2)存在,理由如下:由题意可知,PD⊥PE,若△PDE是等腰直角三角形,则PE=PD,由(1)可得,PD=﹣m2+2m+6+m﹣6=﹣m2+3m,∵PE∥x轴,∴E(4﹣m,﹣m2+2m+6),∴PE=|2m﹣4|,∴|2m﹣4|=﹣m2+3m,解得m1=﹣2(舍),m2=4,m3=5+(舍),m4=5﹣,∴当△PDE是等腰直角三角形时,点P的坐标为(4,6),(5﹣,3﹣5).7.如图1.二次函数y=﹣x2+6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求出点A,B,C的坐标;(2)连接AC,求直线AC的表达式;(3)如图2,点D为线段AC上的一个动点,连接BD,以点D为直角顶点,BD为直角边,在x轴的上方作等腰直角三角形BDE,若点E在y轴上时,求点D的坐标;(4)若点D在线段AC上,点D由A到C运动的过程中,以点D为直角顶点,BD为直角边作等腰直角三角形BDE,当抛物线的顶点C在等腰直角三角形BDE的边上(包括三角形的顶点)时,请直接写出顶点E的坐标.【解答】解:(1)当x=0时,y=6.∴C点坐标为(0,6).当y=0时,.解得x1=﹣4,x2=4.∵A点在B点左侧,∴点A坐标为(﹣4,0),点B坐标为(4,0).(2)设直线AC的表达式为:y=kx+b.∵点A坐标为(﹣4,0),点C坐标为(6,0).∴.解得.∴直线AC的表达式为.(3)如答图1,过点D分别作DF⊥x轴于点F,DG⊥y轴于G. ∴四边形DGOF为矩形,∠FDG=90°.∵△BDE为等腰直角三角形,BD为直角边.∴BD=ED,∠EDB=90°.∴∠EDB﹣∠GDB=∠FDG﹣∠GDB.即∠EDG=∠BDF.在△BDF和△EDG中,.∴△BDF≌△EDG(AAS).∴DF=DG.设点D的坐标为(m,).∴.解得m=,∴点D的坐标为().(4)由(2)可得直线AC的表达式为.∵点D在直线AC上,∴设点D坐标为().设直线BC的解析式为:y=kx+b.将B(4,0),C(0,6)代入得.解得.∴直线BC的解析式为.①当C位于斜边BE上时,∵点E在直线BC上,∴设点E坐标为(b,).如答图2所示.作EM⊥x轴于点M,DQ⊥x轴于点Q,DN⊥EM于点N.易知四边形DQMN为矩形.∴∠QDN=90°.∵△BDE为等腰直角三角形,BD为直角边.∴BD=ED,∠EDB=90°.∴∠EDB﹣∠NDB=∠QDN﹣∠NDB.即∠EDN=∠BDQ.在△BDQ和△EDN中,.∴△BDQ≌△EDN(AAS).∴DN=DQ,EN=BQ.∵E坐标为(b,),D坐标为().∴DN=b﹣a,EN=.DQ=,BQ=4﹣a.∴.解得.∴=.∴点E的坐标是().②当点D在直角边DE上时,BD交y轴于点F,如答图3所示.∵∠CDF=∠BOF=90°,∠CFD=∠BFO.∴∠DCF=∠OBF.∴tan∠DCF=tan∠OBF.即.亦即.∴OF=.∴点F坐标为(0,).设直线BF解析式为y=kx+b.将B(4,0),F(0,)代入得.解得.∴直线BF解析式为y=.∵B、F、D三点共线,亦即直线BD解析式为y=.联立直线AC解析式得解得.故点D坐标为().∵BD⊥AC,BD=DE,∴BD2=DE2.∴.解得b=.∴=.∴点E的坐标为().③当点D与点C重合时,即点C为直角顶点时.如答图4所示.作EG⊥y轴于点G.∵∠BCE=90°.∴∠ECG+∠BCO=90°.又∵∠ECG+∠GEC=90°∴∠BCO=∠GEC.在△GEC和△OCB中,.∴△GEC≌△OCB(AAS).∴GE=OC=6,GC=OB=4.∴点E的坐标为(6,10).由图知点E关于点C对称的点E'亦满足题意.则由中点坐标公式可得点E'的横坐标为2×0﹣6=﹣6,纵坐标为2×6﹣10=2.故点E'坐标为(﹣6,2).综上所述,点E的坐标为()或()或(6,10)或(﹣6,2).8.如图,抛物线y=ax2+bx+5交x轴于A(﹣1,0)、B(5,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)点P是对称轴上一点,当P A+PC达到最小值时,求点P的坐标;(3)M、N为线段BC上两点(N在M的右侧,且M、N不与B、C重合),MN=2,在第一象限的抛物线上是否存在这样的点R,使△MNR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+5交x轴于A(﹣1,0),B(5,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+4x+5;(2)当x=0时,y=5,∴C(0,5),∵A与B关于抛物线的对称轴对称,∴直线BC与对称轴的交点就是点P,此时P A+PC达到最小值,∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为直线x=2,设直线BC的解析式为:y=kx+b(k≠0),∵点B坐标为(5,0),则,解得:,∴直线BC的解析式为y=﹣x+5,与对称轴的交点为(2,3),∴点P的坐标(2,3);(3)分三种情况:①以点M为直角顶点,如图1,∵MN=2,∴RN=MN=4,∵C(0,5),B(5,0),∴OC=OB=5,∴∠OCB=∠OBC=45°,∵∠RNM=45°=∠BCO,∴RN∥OC,由(2)知:直线BC的解析式为y=﹣x+5,设R(m,﹣m2+4m+5),则N(m,﹣m+5),则RN=(﹣m2+4m+5)﹣(﹣m+5)=4,解得m1=4,m2=1,∵点N在点M右侧,∴m=4,∴R(4,5);②以点R为直角顶点,如图2,∵MN=2,∴RN=MN=2,设R(m,﹣m2+4m+5),则Q(m,﹣m+5),∴RN=(﹣m2+4m+5)﹣(﹣m+5)=2,解得m1=,m2=,∵点N在点M右侧,∴m=,∴R(,);③以点N为直角顶点,如图3,∵MN=2,∴RM=MN=4,∵∠RMN=∠OBC=45°,∴MR∥OB,设R(m,﹣m2+4m+5),则M(m﹣4,﹣m2+4m+5),把M(m﹣4,﹣m2+4m+5)代入y=﹣x+5,得﹣(m﹣4)+5=﹣m2+4m+5,解得m1=4,m2=1,此时点M(0,5),因为点M在线段BC上运动,且不与B、C重合,所以不存在以N为直角顶点的情况;综上所述:当R(4,5)或(,)时,△MNR为等腰直角三角形.9.抛物线y=ax2﹣6ax+4(a≠0)交y轴正半轴于点C,交x轴负半轴于点A,交x轴正半轴于点B,且AB=10.(1)如图(1),求抛物线的解析式;(2)如图(2),连接BC,点P为第一象限抛物线上一点,设点P横坐标为t,△PBC 的面积为S,求S与t之间的函数关系式(不用写出自变量t的取值范围);(3)如图(3),在(2)的条件下,连接P A交y轴于点D,过点P作x轴的垂线,交x轴于点E,交BC于点F,连接DF,当∠APE+∠CFD=90°时,在抛物线上是否存在点Q,使得点Q、PE的中点N、点C、是构成以CN为斜边的等腰直角三角形?若存在,请求出点Q的坐标,若不存在,请说明理由.【解答】解:(1)如图1中,设A(m,0),B(n,0),由题意:,解得,∴A(﹣2,0),B(8,0),把A(﹣2,0)代入y=ax2﹣6ax+4,得到a=﹣,∴抛物线的解析式为y=﹣x2+x+4.(2)如图2中,连接OP.设P(t,﹣t2+t+4),∵B(8,0),C(0,4),∴OB=8,OC=4,∴S=S△POC+S△POB﹣S△OBC=×4×t+×8×(﹣t2+t+4)﹣×4×8=﹣t2+8t(0<t<8).(3)存在.理由:如图3中,设P(t,﹣t2+t+4),∵A(﹣2,0),B(8,0),C(0,4),∴直线P A的解析式为y=﹣(t﹣8)x﹣t+4,直线BC的解析式为y=﹣x+4,∵PE⊥x轴,∴F(t,﹣t+4),∵D(0,﹣t+4),∴FD∥AB,∴∠CFD=∠CBA,∵∠APF+∠CFD=90°,∠APF+∠P AE=90°,∴∠P AB=∠CFD=∠CBO,∴tan∠CBO=tan∠P AB==,∴=,∵OA=2,∴OD=1,∴﹣t+4=1,∴t=6,∴P(6,4),E(6,0),∵PN=NE,∴N(6,2),∵C(0,4),△CNQ是等腰直角三角形,CN是斜边,当点Q在CN的上方时,如图3,过点Q作x轴的平行线交y轴于点G,交EP的延长线于点H,设点Q(s,k),易证△QGC≌△NHQ(AAS),则GC=QH,GQ=HN,即s=k﹣2,k﹣4=6﹣s,解得,∴点Q的坐标为(4,6),∵当x=4时,y=﹣×42+×4+4=6,∴点Q在抛物线y=﹣x2+x+4上,∴满足条件的点Q的坐标为(4,6).10.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标和△ABC的面积.(3)点P是抛物线对称轴上一点,且使得P A﹣PC最大,求点P的坐标.(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【解答】解:(1)∵抛物线y=ax2+bx过A(4,0),B(1,3)两点,∴,解得,∴抛物线的解析式为y=﹣x2+4x.(2)如图1中,∵y=﹣x2+4x=﹣(x﹣2)2+4,∴对称轴x=2,∵B,C关于对称轴对称,B(1,3),∴C(3,3),∴S△ABC=×2×3=3.(3)如图1中,∵A(4,0),C(3,3),∴直线AC的解析式为y=﹣3x+12,∵P A﹣PC≤AC,∴当点P在直线AC上时,P A﹣PC的值最大,此时P(2,6).(4)如图4﹣1中,如图,当∠CNM=90°,NC=NM时,可知N(4,0),M(1,﹣1),CN=NM=,∴S△MNC=×CN×MN=5.如图4﹣2中,当∠CMN=90°,MN=MC时,M(1,﹣2),N(﹣4,0),可知MN =MC==,∴S△MNC=.如图4﹣3中,当∠CMN=90°,MC=MN时,可知M(1,2),N(2,0),MN=CM ==,∴S△MNC=××=,如图4﹣4中,当∠CNM=90°,CN=MN时,N(﹣2,0),M(1,﹣5),可得S△MNC =17.综上所述,满足条件的△MNC的面积为5或或或17.。
中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)
中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x 轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P 的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D (t ,t 2+t ﹣4),连接OD .令y =0,则x 2+x ﹣4=0,解得x =﹣4或2,∴A (﹣4,0),C (2,0),∵B (0,﹣4),∴OA =OB =4,∵S △ABD =S △AOD +S △OBD ﹣S △AOB =×4×(﹣﹣t +4)+×4×(﹣t )﹣×4×4=﹣t 2﹣4t =﹣(t +2)2+4,∵﹣1<0,∴t =﹣2时,△ABD 的面积最大,最大值为4,此时D (﹣2,﹣4); (3)如图2中,设抛物线的对称轴交x 轴于点N ,过点B 作BM ⊥抛物线的对称轴于点M .则N (﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC 于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P 运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S△OPE =S△OPG+S△EPG=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M4(1,1).13.(2023•三亚一模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC 与抛物线的对称轴l交于点E.(1)求抛物线的解析式和直线BC的解析式;(2)求四边形ABDC的面积;(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC =S△ABC时,求点P的坐标;(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+3x+c(a≠0)过点A(﹣2,0)和C(0,8),∴,解得,∴抛物线的解析式为y=﹣x2+3x+8.令y=0,得.解得x1=﹣2,x2=8.∴点B的坐标为(8,0).设直线BC的解析式为y=kx+b.把点B(8,0),C(0,8)分别代入y=kx+b,得,解得,∴直线BC的解析式为y=﹣x+8.(2)如图1,设抛物线的对称轴l与x轴交于点H.∵抛物线的解析式为,∴顶点D的坐标为.∴S四边形ABDC =S△AOC+S梯形OCDH+S△BDH===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC 于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0)41。
中考压轴题等腰三角形存在性问题 -
中考压轴题等腰三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写面动形成的等腰三角形存在性问题模拟题.在中考压轴题中,面动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类.原创模拟预测题1.如图,抛物线223y x x=-++与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.【答案】(122)或(122).【分析】当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P 点坐标.【解析】∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线223y x x=-++与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在223y x x=-++中,令y=2,可得2232x x-++=,解得x=12±,∴P点坐标为(122)或(12,2),故答案为:(122)或(12,2).考点:二次函数图象上点的坐标特征;等腰三角形的判定;动点型.原创模拟预测题2.如图,在边长为2的正方形ABCD 中,G 是AD 延长线时的一点,且DG=AD ,动点M 从A 点出发,以每秒1个单位的速度沿着A→C→G 的路线向G 点匀速运动(M 不与A ,G 重合),设运动时间为t 秒,连接BM 并延长AG 于N .(1)是否存在点M ,使△ABM 为等腰三角形?若存在,分析点M 的位置;若不存在,请说明理由;(2)当点N 在AD 边上时,若BN ⊥HN ,NH 交∠CDG 的平分线于H ,求证:BN=HN ;(3)过点M 分别作AB ,AD 的垂线,垂足分别为E ,F ,矩形AEMF 与△ACG 重叠部分的面积为S ,求S 的最大值.【答案】(1)答案见试题解析;(2)证明见试题解析;(3)当t=238秒时,S 的最大值为38.(2)证明:在AB 上取点K ,使AK=AN ,连接KN .∵AB=AD ,BK=AB-AK ,ND=AD-AN ,∴BK=DN ,又DH 平分直角∠CDG ,∴∠CDH=45º,∴∠NDH=90º+45º=135º,∴∠BKN=180-∠AKN=135º,∴∠BKN=∠NDH ,∵在Rt △ABN 中,∠ABN+∠ANB=90º,又BN ⊥NH ,即∠BNH=90º,∴∠ANB+∠DNH=180º-∠BNH=180º-90º=90º,∴∠ABN=∠DNH .∴△BNK ≌△NHD (ASA ),∴BN=NH ;(3)①当点M 在AC 上时,即0<t≤22时,易知:△AMF 为等腰直角三角形.∵AM=t ,∴AF=FM=t22,∴S=24122222121tttFMAF=⋅⋅=⋅;当点M在CG上时,即22<t<24时,CM=t-22,MG=24-t.∵AD=DG,∠ADC=∠CDG,CD=CD,∴△ACD≌△GCD(SAS),∴∠ACD=∠GCD=45º,∴∠ACM=∠ACD+∠GCD=90º,∴∠G=90-∠GCD=90º-45º=45º,∴△MFG为等腰直角三角形,∴ttMGFG22422)24(45cos0-=⋅-=⋅=,∴ACG CMJ FMGS S S S∆∆∆=--=11142222CM CM FG FM⨯⨯-⨯⨯-⋅=221124(22)(4)222t t----= 234284t t-+-,∴221t0t2243-t42t-8 22t424S⎧<≤⎪⎪=⎨⎪+<<⎪⎩()();②在0<t≤22范围内,当t=22时,S的最大值为222412=⨯)(;在22<t<24范围内,38)238-t(432+-=S,当238t=时,S的最大值为38,∵823>,∴当t=238秒时,S的最大值为38.考点:四边形综合题;二次函数综合题;分段函数;二次函数的最值;最值问题;动点型;存在型;压轴题.学科网原创模拟预测题3.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M (x1,0),N (x2,0)(x1<x2)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.【答案】(1)a=14,b=c=0;(2)证明见解析;(3)0或423+或423-.【解析】(2)设P (x ,y ),⊙P 的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P 在运动过程中,⊙P 始终与x 轴相交;(3)设P (a ,a2),∵PA=,作PH ⊥MN 于H ,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M (a ﹣2,0),N (a+2,0),又∵A (0,2),∴AM=,AN=,当AM=AN 时,=,解得:a=0,当AM=MN 时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN 时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2; 综上所述,P 的纵坐标为0或423+或423-.学科网考点:几何变换综合题;动点型;存在型;分类讨论;分段函数.原创模拟预测题4.如图1,在▱ABCD 中,AH ⊥DC ,垂足为H ,AB=4,AD=7,AH=.现有两个动点E ,F 同时从点A 出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC 方向匀速运动,在点E ,F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 与△ABC 在射线AC 的同侧,当点E 运动到点C 时,E ,F 两点同时停止运动,设运动时间为t 秒.(1)求线段AC 的长;(2)在整个运动过程中,设等边△EFG 与△ABC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)当等边△EFG 的顶点E 到达点C 时,如图2,将△EFG 绕着点C 旋转一个角度α(0°<α<360°),在旋转过程中,点E 与点C 重合,F 的对应点为F′,G 的对应点为G′,设直线F′G′与射线DC 、射线AC 分别相交于M ,N 两点.试问:是否存在点M ,N ,使得△CMN 是以∠MCN 为底角的等腰三角形?若存在,请求出CM 的长度;若不存在,请说明理由.【答案】(1)7;(2)S=;(3)存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形,CM的长度为7或.【解析】试题分析:试题解析:(1)∵▱ABCD,∴CD=AB=4.在Rt△ADH中,由勾股定理得:DH===2,∴CH=DH,∴AC=AD=7.(2)在运动过程中,AE=t,AF=3t,∴等边△EFG的边长EF=EG=GF=2t.如答图1,过点G作GP⊥AC于点P,则EP=EG=t,GP=EG=t.∴AP=AE+EP=2t,∴tan∠GAC===.∵tan∠BAC=tan∠ACH===,∴tan∠GAC=tan∠BAC,∴点G始终在射线AB上.设∠BAC=∠ACH=θ,则sinθ==,cosθ==.①当0≤t≤时,如答图2﹣1所示,等边△EFG在△内部.S=S△EFG=EF2=(2t)2=t2;②当<t≤4时,如答图2﹣2所示,点G在线段AB上,点F在AC的延长线上.过点B作BQ⊥AF于点Q,则BQ=AB•sinθ=4×=4,AQ=AB•cosθ=4×=8,∴CQ=AQ﹣AC=8﹣7=1.设BC与GF交于点K,过点K作KP⊥AF于点P,设KP=x,则PF==x,∴CP=CF﹣PF=3t﹣7﹣x.∵PK∥BQ,∴,即,解得:x=(3t﹣7),∴S=S△EFG﹣S△CFK=t2﹣(3t﹣7)•(3t﹣7)=﹣t2+t﹣;③当4<t≤7时,如答图2﹣3所示,点G、F分别在AB、AC的延长线上,点E在线段AC 上.过点B作BQ⊥AF于点Q,则BQ=AB•sinθ=4×=4,AQ=AB•cosθ=4×=8,∴CQ=AQ﹣AC=8﹣7=1.设BC与GF交于点K,过点K作KP⊥AF于点P,设KP=x,则EP==x,∴CP=EP﹣CE=x﹣(7﹣t)=x﹣7+t.∵PK∥BQ,∴,即,解得:x=(7﹣t),∴S=S△CEK=(7﹣t)•(7﹣t)=t2﹣t+.综上所述,S与t之间的函数关系式为:S=.(3)设∠ACH=θ,则tanθ===,cosθ==.当点E与点C重合时,t=7,∴等边△EFG的边长=2t=14.假设存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形,①若点N为等腰三角形的顶点,如答图3﹣1所示,则∠NMC=∠MCN=θ.过点C作CP⊥F′M于点P,则CP=CF′=7,∴PM===14.设CN=MN=x,则PN=PM﹣MN=14﹣x.在Rt△CNP中,由勾股定理得:CP2+PN2=CN2,即:(7)2+(14﹣x)2=x2,解得:x=.过点N作NQ⊥CM于点Q,∴CM=2CQ=2CN•cosθ=2××=7;②若点M为等腰三角形的顶点,如答图3﹣2所示,则∠MNC=∠MCN=θ.学,科,网过点C作CP⊥G′N于点P,则CP=CF′=7,∴PN===14.设CM=MN=x,则PM=PN﹣MN=14﹣x.在Rt△CMP中,由勾股定理得:CP2+PM2=CM2,即:(7)2+(14﹣x)2=x2,∴CM=x=.综上所述,存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形,CM的长度为7或.考点:二次函数综合题;动点型;直线与圆的位置关系;分类讨论;等腰三角形的性质;勾股定理.。
【中考数学压轴题专题突破12】二次函数中的直角三角形存在性问题
【中考压轴题专题突破】二次函数中的直角三角形存在性问题1.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C(0,3),且OB=OC.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标.(2)连接CQ,直接写出线段CQ与线段AE的数量关系和位置关系.(3)连接P A、PD,当m为何值时S△APD=S△DAB?(4)在直线AD上是否存在一点H,使△PQH为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式.(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).3.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是抛物线段BC上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.综合与探究如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B两点,与y轴相交于点.当x=﹣4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC,BC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,则t的值为,点P的坐标为;(4)抛物线对称轴上是否存在一点F,使得△ACF是以AC为直角边的直角三角形?若不存在,请说明理由;若存在,请直接写出点F的坐标.参考答案与试题解析1.【分析】(1)直线y=x+1与抛物线交于A 点,则点A(﹣1,0)、点E(0,1),可得出点B、C的坐标分别为:(3,0)、(0,3),用待定系数法求出二次函数解析即可求解;(2)求出CQ和AE的长,可得出CQ=AE,由两直线的解析式k相等可得出CQ 与AE平行;(3)联立直线y=x+1与抛物线的表达式,并解得x=﹣1或2.故点D(2,3),过点P作y轴的平行线交AD于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1),根据面积关系可求出m的值;(4)分∠QOH=90°、∠PQH=90°、∠QHP=90°三种情况,分别求解即可.【解答】(1)直线y=x+1与抛物线交于A点,则点A(﹣1,0)、点E(0,1).∵OB=OC,C(0,3),∴点B的坐标为(3,0),故抛物线的表达式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),将点C的坐标代入,得﹣3a=3,解得a=﹣1,∴抛物线的表达式为y=﹣x2+2x+3,∴函数的对称轴为x=1,故点Q的坐标为(1,4).(2)CQ=AE,且CQ∥AE,理由:∵Q(1,4),C(0,3),∴CQ ==,CQ的解析式为y=x+3,又∵AE ==,直线AE的解析式为y=x+1,∴CQ=AE,CQ∥AE,(3)∵,∴,,∴点D的坐标为(2,3).如图1,过点P作y轴的平行线,交AD 于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1)∴===.解得m=0或1.(4)存在,点P的坐标为(2,3)或(0,3)或.设点H(t,t+1),点P(m,n),n=﹣m2+2m+3,而点Q(1,4),①当∠QPH=90°时,如图2,过点P作y轴的平行线,过点H、点Q作x轴的平行线,交过点P且平行于y轴的直线于点M、G,∵∠GQP+∠QPG=90°,∠QPG+∠HPM=90°,∴∠HPM=∠GQP,∠PGQ=∠HMP=90°,PH=PQ,∴△PGQ≌△HMP(AAS),∴PG=MH,GQ=PM,即4﹣n|=|t﹣m|,|1﹣m|=|n﹣(t+1)|,解得m=2或n=3.当n=3时,3=﹣m2+2m+3,解得m1=0,m2=2,∴点P(2,3)或(0,3).②当∠PQH=90°时,如图3所示,同理可得m1=0,m2=3(舍去),故点P为(0,3).③当∠PHQ=90°时,同理可得n=2,解得(舍去),.故点P 为.综上可得,点P的坐标为(2,3)或(0,3)或.【点评】本题是二次函数综合题,主要考查了待定系数法求函数解析式(包括二次函数解析式,一次函数解析式),三角形面积,全等三角形的判定与性质,等腰直角三角形的判定与性质,坐标与图形的性质,正确进行分类是解题的关键.2.【分析】(1)用待定系数法即可求出直线BC和抛物线的解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x =﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答】(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=﹣1+3=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)如图,设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【点评】本题是二次函数的综合题,考查了二次函数的图象与性质,待定系数法求函数的解析式,利用轴对称性质确定线段的最小长度,两点间的距离公式的运用,直角三角形的性质等知识点,熟练掌握二次函数的性质是解题的关键.3.【分析】(1)将点A、B的坐标代入函数解析式,列出方程组,通过解方程组求得a、b的值即可;利用配方法将函数解析式转化为顶点式,即可得到点M的坐标;(2)利用待定系数法确定直线BC解析式,由函数图象上点的坐标特征求得点E、F的坐标,然后根据两点间的距离公式求得EF长度,结合三角形的面积公式列出函数式,根据二次函数最值的求法求得点E的横坐标,易得其纵坐标,则点E的坐标迎刃而解了;(3)需要分类讨论:点A、P、C分别为直角顶点,利用勾股定理求得答案.【解答】(1)∵抛物线y=ax2+bx+3与x 轴交于点A(﹣1,0)、B(3,0),∴.解得.∴y=﹣x2+2x+3=﹣(x﹣1)2+4,则M (1,4);(2)如图,作EF∥y轴交BC于点F∵B(3,0),C(0,3),∴直线BC解析式为:y=﹣x+3.设E(m,﹣m2+2m+3),则F(m,﹣m+3).∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.∴S =EF•OB =(﹣m2+3m)×3=﹣(m ﹣)2+.当m =时,S最大=.此时,点E 的坐标是(,);(3)设P(1,n),A(﹣1,0)、C(0,3),∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10.①当AC⊥AP时,AC2+AP2=CP2,即10+4+n2=n2﹣6n+10.解得n =﹣.②当AC⊥CP时,AC2+CP2=AP2,即10+n2﹣6n+10=4+n2.解得n =.③当AP⊥CP时,AP2+CP2=AC2,即4+n2+n2﹣6n+10=10.解得n=1或2.综上所述,存在,符合条件的点P的坐标是(1,﹣)或(1,)或(1,1)或(1,2),【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.4.【分析】(1)由对称性先求出点B的坐标,可设抛物线的解析式为y=a(x+3)(x﹣1),将C坐标代入y=a(x+3)(x﹣1)即可;(2)先判断△ABC为直角三角形,分别求出AB,AC,BC的长,由勾股定理的逆定理可证明结论;(3)因为点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,所以BM=BN=t,证四边形PMBN是菱形,设PM与y轴交于H,证△CPN∽△CAB,由相似三角形的性质可求出t的值,CH的长,可得出点P纵坐标,求出直线AC的解析式,将点P纵坐标代入即可;(4)求出直线BC的解析式,如图2,当∠ACF=90°时,点B,C,F在一条直线上,求出直线BC与对称轴的交点即可;当∠CAF=90°时,求出直线AF的解析式,再求其与对称轴的交点即可.【解答】(1)∵在抛物线y=ax2+bx+c中,当x=﹣4和x=2时,二次函数y=ax2+bx+c的函数值y相等,∴抛物线的对称轴为x ==﹣1,又∵抛物线y=ax2+bx+c与x轴交于A (﹣3,0)、B两点,由对称性可知B(1,0),∴可设抛物线的解析式为y=a(x+3)(x ﹣1),将C(0,)代入y=a(x+3)(x﹣1),得,﹣3a =,解得,a =﹣,∴此抛物线的解析式为y =﹣(x+3)(x﹣1)=﹣x2﹣x +;(2)△ABC为直角三角形,理由如下:∵A(﹣3,0),B(1,0),C(0,),∴OA=3,OB=1,OC =,∴AB=OA+OB=4,AC ==2,BC ==2,∵AC2+BC2=16,AB2=16,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)∵点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC 边运动,∴BM=BN=t,由翻折知,△BMN≌△PMN,∴BM=PM=BN=PN=t,∴四边形PMBN是菱形,∴PN∥AB,∴△CPN∽△CAB,设PM与y轴交于H,∴==,即==,解得,t =,CH =,∴OH=OC﹣CH =﹣=,∴y P =,设直线AC的解析式为y=kx +,将点A(﹣3,0)代入y=kx +,得,k =,∴直线AC的解析式为y =x +,将y P =代入y =x +,∴x=﹣1,∴P(﹣1,),故答案为:,(﹣1,);(4)设直线BC的解析式为y=kx +,将点B(1,0)代入y=kx +,得,k =﹣,∴直线BC的解析式为y =﹣x +,由(2)知△ABC为直角三角形,∠ACB =90°,如图2,当∠ACF=90°时,点B,C,F在一条直线上,在y =﹣x +中,当x=﹣1时,y=2,∴F1(﹣1,2);当∠CAF=90°时,AF∥BC,∴可设直线AF的解析式为y=﹣x+n,将点A(﹣3,0)代入y =﹣x+n,得,n=﹣3,∴直线AF的解析式为y =﹣x﹣3,在y =﹣x﹣3中,当x=﹣1时,y =﹣2,∴F2(﹣1,﹣2);∴点F的坐标为F1(﹣1,2),F2(﹣1,﹣2).【点评】本题考查了待定系数法求解析式,勾股定理,相似三角形的判定与性质,直角三角形的性质等,解题关键是注意分类讨论思想在解题过程中的运用.。
初中数学压轴题(等腰三角形问题)
(1)∵C(0, ),∴OC= .
∵tan ACO= ,∴OA=1.∴A(-1,0). ∵点 A,C 在抛物线 y=ax2-2ax+b 上,
∴
,解得
,
∴此抛物线的解析式为 y= x2-x- ;
∴P(3- ,0), 综上所述,当△MPQ 为等腰三角形时,点 P 的坐标为(1,0)或(3- ,0).
然后解方程并检验. 2.本题中等腰三角形的角度特殊,三种情况的点 P 重合在一起.
满分解答
(3)抛物线的对称轴是直线 x=2,设点 P 的坐标为(2, y). ①当 OP=OB=4 时,OP2=16.所以 4+y2=16.解得 y 2 3 . 当 P 在 (2, 2 3) 时,B、O、P 三点共线(如图 2). ②当 BP=BO=4 时,BP2=16.所以 42 ( y 2 3)2 16 .解得 y1 y2 2 3 . ③当 PB=PO 时,PB2=PO2.所以 42 ( y 2 3)2 22 y2 .解得 y 2 3 . 综合①、②、③,点 P 的坐标为 (2, 2 3) ,如图 2 所示.
满分解答
图2
图3
图4
②我们先讨论 P 在 OC 上运动时的情形,0≤t<4.
如图 1,在△AOB 中,∠B=45°,∠AOB>45°,OB=7, AB 4 2 ,所以 OB>AB.因此∠OAB>∠
AOB>∠B.
如图 4,点 P 由 O 向 C 运动的过程中,OP=BR=RQ,所以 PQ//x 轴.
图2
图3
考点伸展
如图 3,在本题中,设抛物线的顶点为 D,那么△DOA 与△OAB 是两个相似的等腰三角形.
由 y 3 x(x 4) 3 (x 2)2 2 3 ,得抛物线的顶点为 D(2, 2 3 ) .
中考数学复习典型压轴题专题讲解20---二次函数与特殊三角形存在型问题
同理可得直线 AC 的表达式为: y = 4 x + 4 ,
3
设直线 AC 的中点为 K (− 3 , 2) ,过点 M 与 CA 垂直直线的表达式中的 k 值为 − 3 ,
2
4
同理可得过点 K 与直线 AC 垂直直线的表达式为: y = − 3 x + 7 … ②,
48
①当 AC = AQ 时,如图 1,
33
QOB = OC ,∴∠ABC = ∠OCB = 45° = ∠PQN ,
3 / 60
PN = PQ sin ∠PQN =
2 (− 1 m2 + 1 m + 4 + m − 4) = −
2 (m − 2)2 + 2
2
,
23 3
6
3
Q − 2 < 0 ,∴ PN 有最大值,
6
当 m = 2 时, PN 的最大值为: 2
NQ 2
求 t 的值; (3)如图②,连接 AM 交 BC 于点 D ,当 ∆PDM 是等腰三角形时,直接写出 t 的值.
【分析】(1)求直线 y = −x + 4 与 x 轴交点 B ,与 y 轴交点 C ,用待定系数法即求得抛物 线解析式. (2)根据点 B 、C 坐标求得 ∠OBC = 45° ,又 PE ⊥ x 轴于点 E ,得到 ∆PEB 是等腰直角三 角形,由 PB = 2t 求得 BE = PE = t ,即可用 t 表示各线段,得到点 M 的横坐标,进而用 m
4 / 60
∽ 表示点 M 纵坐标,求得 MP 的长.根据 MP / /CN 可证 ∆MPQ ∆NCQ ,故有 MP = MQ = 1 , NC NQ 2
【分析】(1)由二次函数交点式表达式,即可求解; (2)分 AC = AQ 、 AC = CQ 、 CQ = AQ 三种情况,分别求解即可; (3)由 PN = PQ sin ∠PQN = 2 (− 1 m2 + 1 m + 4 + m − 4) 即可求解.
二次函数压轴题第四讲 因动点产生的等腰三角形问题
第四讲因动点产生的等腰三角形问题【知识要点】求等腰三角形的存在性方法:(1)几何法:两个圆一条线;(2)代数法:盲解【典型例题】例1.如图,y=ax2+bx+c的图像与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点N是抛物线对称轴上一动点,且△NAC是等腰三角形,求点N的坐标.例2.如图,抛物线)0(42≠++=a bx ax y 与x 轴交于点A (-2,0)和B (4,0)、与y 轴交于点C .(1)求抛物线的解析式;(2)T 是抛物线对称轴上的一点,且△ACT 是以AC 为底的等腰三角形,求点T 的坐标;(3)点M 、Q 分别从点A 、B 以每秒1个单位长度的速度沿x 轴同时出发相向而行.当点M 到达原点时,点Q 立刻掉头并以每秒23个单位长度的速度向点B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动.过点M 的直线l ⊥x 轴,交AC 或BC 于点P .求点M 的运动时间t (秒)与△APQ 的面积S 的函数关系式例3.在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).(1)请直接写出点B、C的坐标:B、C;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M.设AE=x,当x为何值时,△OCE∽△OBC;(3)在(2)的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.例4.如图,已知二次函数c x ax y ++=32的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数的表达式;(2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请直接写出此时点N 的坐标;(4)若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.。
二次函数压轴题等腰三角形存在性,直角三角形存在性
中考数学压轴题一、等腰三角形存在性1 解题思想:分类讨论2 解题技巧:坐标系内线段长度表示(1)线段在坐标轴上或平行于坐标轴在x轴或平行于x轴:x右-x左在y轴或平行于y轴:y上-y下(2)线段为倾斜(斜线段)A(X A,Y A)B(X B,Y B)C(X C,Y C)由勾股定理得:AB2=AC2=BC2=3 解题方法(1)代数法:(1)根据条件用坐标表示三边或三边的平方(2)分三种情况列方程,解方程(3)根据题目条件及方程解确定坐标(注意重根)(2)几何法:(1)先分三种情况A为顶点,B为顶点,C为顶点(2)画图,作圆法,垂直平分线法(3)计算:以两定点为腰则腰长已知,先求出腰长进行几何构造,注意不要漏解,以两定点为底则利用腰相等建立方程求解(表示腰长可结合代数法)。
例1. 如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B 两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.代数法:几何法:例2 如图△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.(1)试求△ABC 的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设AD=x ,当△BDG 是等腰三角形时,求出AD 的长. 只能选择几何法 1 先分析三种情况2 根据已知表示三边长度(相似)3 列方程计算同步练习:1.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC .(1)写出A,B,C 三点的坐标并求抛物线的解析式;(2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.2.如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.3.(2016•临沂第26题)如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。
九年级中考数学复习《探索二次函数综合型压轴题解题技巧》与等腰三角形相关的压轴题(附答案)
2021中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练四:与等腰三角形相关的压轴题(附答案)方法提炼:1、设出点坐标,利用等腰三角形的性质求边长;2、当所给定长未说明是等腰三角形的底还是腰时,需分情况讨论:①当定长为腰,找已知直线上满足条件的点时,以定长的某一端点为圆心,以定长为半径画弧,若所画弧与已知直线有交点且交点不是定长的另一端点时,交点即为所求的点;若所画弧与已知直线无交点或交点是定长的另一端点时,满足条件的点不存在;②当定长为底边时,作出定长的垂直平分线,若作出的垂直平分线与已知直线有交点,则交点即为所求的点,若作出的垂直平分线与已知直线无交点,则满足条件的点不存在.用以上方法即可找出所有符合条件的点。
典例引领:例:如图,直线y=3x+3交x轴于点A,交y轴于点B,过A、B两点的抛物线交x轴于另一点C(3,0)。
(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由。
解:(1)抛物线的解析式为:y=-x2+2x+3(2)该抛物线的对称轴为x= 1。
设Q点坐标为(1,m)当AB=AQ时Q点坐标(1, 6),或(1,- 6);当BA= BQ时解得:m=0,m =6, Q点坐标为(1,0)或(1,6) 此点在直线AB上,不符合题意应舍去; 当QA=QB时解得:m=1,Q点坐标为(1,1).抛物线的对称轴上是存在着点Q(1, 6)、(1,- 6)、(1,0)、(1,1)跟踪训练:1.抛物线y=ax2﹣4ax+3a交x轴于点B、C两点,交y轴于点A,点D为抛物线的顶点,连接AB、AC,已知△ABC的面积为3.(1)求抛物线的解析式;(2)点P为抛物线对称轴右侧一点,点P的横坐标为m,过点P作PQ∥AC交y轴于点Q,AQ的长度为d,求d与m的函数关系式;(3)在(2)的条件下,当d=4时,作DN⊥y轴于点N,点G为抛物线上一点,AG交线段PD于点M,连接MN,若△AMN是以MN为底的等腰三角形,求点G的坐标.2.如图,抛物线y=﹣x2﹣x+c与x轴交于A,B两点,且点B的坐标为(3,0),与y 轴交于点C,连接AC,BC,点P是抛物线上在第二象限内的一个动点,点P的横坐标为a,过点P作x轴的垂线,交AC于点Q.(1)求A,C两点的坐标.(2)请用含a的代数式表示线段PQ的长,并求出a为何值时PQ取得最大值.(3)试探究在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PN⊥x轴于点N,交抛物线于点M,当△BCM面积最大时,求△BPN的周长.(3)在(2)的条件下,当△BCM面积最大时,在抛物线的对称轴上是否存在点Q,使△CNQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.4.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP 为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标.5.图1,抛物线与x轴交于A(﹣1,0),B(3,0),顶点为D(1,﹣4),点P为y轴上一动点.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P,使△BDP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,点在抛物线上,求的最小值.6.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.7.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0),B(1,0)两点,与y轴交于点C(0,﹣3),顶点为D,其对称轴与x轴交于点E.(1)求二次函数解析式;(2)连接AC,AD,CD,试判断△ADC的形状,并说明理由;(3)点P为第三象限内抛物线上一点,△APC的面积记为S,求S的最大值及此时点P 的坐标;(4)在线段AC上,是否存在点F,使△AEF为等腰三角形?若存在,直接写出点F的坐标;若不存在,请说明理由.8.抛物线y=ax2+bx+分别交x轴于点A(1,0),B(﹣3,0),交y轴于点C.抛物线的对称轴l与x轴相交于点D,直线AC与抛物线的对称轴l相交于点P.(1)请直接写出抛物线的解析式和点D的坐标;(2)如图1,点M为线段OC上的动点,点N为线段AC上的动点,且MN⊥AC,在点M,点N移动的过程中,DM+MC是否有最小值?如果有,请求出最小值;(3)以点C为旋转中心,将直线AC绕点C逆时针旋转,旋转角为α(0°<α≤90°),直线AC旋转时,与抛物线的对称轴l相交于点E,与抛物线的另一个交点为点Q.①如图2,当直线AC旋转到与直线BC重合时,判断线段PE、ED的数量关系?并说明理由;②当△CPQ为等腰三角形时,请直接写出点Q的坐标.9.如图,抛物线y=x2+bx+c与y轴交于点C,与x轴相交于A,B两点,点A的坐标为(2,0),点C的坐标为(0,﹣4).(1)求该抛物线的解析式;(2)点Q是线段BA上的一动点,点E为线段AC上一动点,若始终保持∠AQE=∠ABC,连接CQ,求△CQE的面积S关于点Q的横坐标m的函数关系式;(3)若点D为OB的中点,点M是线段BC上一点,当△OMD为等腰三角形时,直接写出点M的坐标.10.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△P AB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.11.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.12.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,且抛物线经过点D(2,3).(1)求这条抛物线的表达式;(2)将该抛物线向下平移,使得新抛物线的顶点G在x轴上.原抛物线上一点M平移后的对应点为点N,如果△AMN是以MN为底边的等腰三角形,求点N的坐标;(3)若点P为抛物线上第一象限内的动点,过点B作BE⊥OP,垂足为E,点Q为y轴上的一个动点,连接QE、QD,试求QE+QD的最小值.13.如图,菱形ABCD在平面直角坐标系中,边AB在x轴的负半轴上,点C在y轴的正半轴上,AB=10,tan∠DAB=,抛物线经过点B、C、D.(1)求抛物线的解析式;(2)直线EF与BC平行,与抛物线只有一个交点,求直线EF解析式;(3)抛物线对称轴上是否存在点P,使△PBC是以BC为腰的等腰三角形?若存在直接写出P点坐标,若不存在说明理由.参考答案1.分析:(1)y=ax2﹣4ax+3a交x轴于点B、C两点,交y轴于点A,则点B、C的坐标分别为:(1,0)、(3,0),点A(0,3a),△ABC的面积=AB×OA=3a=3,即可求解;(2)PQ平行线于AC直线,其表达式设为:y=﹣x+b,设点P(m,m2﹣4m+3)(m>2),将点P的坐标代入上式,即可求解;(3)d=4时,点P(4,3),设点G(n,n2﹣4n+3),直线PD的函数表达式为:y=2x ﹣5…①,直线AG的函数表达式为:y=(n﹣4)x+3…②,联立①②并解得:x=,故点M(,﹣5),AN=AM,即4+9=()2+(﹣8)2,即可求解.解:(1)y=ax2﹣4ax+3a交x轴于点B、C两点,交y轴于点A,则点B、C的坐标分别为:(1,0)、(3,0),点A(0,3a),△ABC的面积=AB×OA=3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3;(2)点A(0,3),点C(3,0),D(2,﹣1),则PQ平行线于AC直线,其表达式设为:y=﹣x+b,设点P(m,m2﹣4m+3)(m>2),将点P的坐标代入上式并解得:b=m2﹣3m﹣3,则d=AQ=|m2﹣3m|(m>2);(3)当d=4时,|m2﹣3m|=4,解得:m=4或﹣1(舍去﹣1),故点P(4,3),设点G(n,n2﹣4n+3),点D(2,﹣1),则点N(0,﹣1)同理可得:直线PD的函数表达式为:y=2x﹣5…①,直线AG的函数表达式为:y=(n﹣4)x+3…②,联立①②并解得:x=,故点M(,﹣5),点A(0,3)、点N(0,﹣1),AN=AM,即16=()2+(﹣8)2,解得:n=或4,故点G(,﹣)或(4,3).点评:本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形的性质、图形的面积计算等,其中(2),要注意分类求解,避免遗漏.2.分析:(1)将点B的坐标(3,0)代入抛物线解析式可得出c=4,解方程,得x1=3,x2=﹣4,则A(﹣4,0);(2)求出直线AC的解析式y=﹣x+4,设P(a,),则点Q(a,a+4),则PQ可用a表示,由二次函数的性质可求出PQ的最大值;(3)分BC=BQ、BC=CQ、CQ=BQ三种情况,分别列得出方程求解即可.解:(1)把点B的坐标(3,0)代入抛物线解析式得,,解得:c=4,令y=0,则,解得x1=3,x2=﹣4,∴A(﹣4,0),C(0,4);(2)∵A(﹣4,0),C(0,4),设直线AC的解析式为y=kx+b,∴,∴,∴直线AC的解析式y=x+4,点P的横坐标为a,P(a,),则点Q(a,a+4),∴PQ==,∵,∴a=﹣2时,PQ有最大值;(3)存在,理由:点A、B、C的坐标分别为(﹣4,0)、(3,0)、(0,4),则BC=5,AB=7,AC=4,∠OAC=∠OCA=45°,将点B、C的坐标代入一次函数表达式:y=mx+n并解得:,∴直线BC的解析式为y=﹣x+4,设BC的中点为H,由中点坐标公式可得H(),∴过BC的中点H且与直线BC垂直直线的表达式为:y=,①当BC=BQ时,如图1,∴BC=BQ=5,设:QM=AM=n,则BM=7﹣n,由勾股定理得:(7﹣n)2+n2=25,解得:n=3或4(舍去4),故点Q1(﹣1,3);②当BC=CQ时,如图1,∴CQ=5,则AQ=AC﹣CQ=4,∴,∴,③当CQ=BQ时,联立直线AC解析式y=x+4和y=,解得x=﹣(不合题意,舍去),综合以上可得点Q的坐标为:Q(﹣1,3)或().点评:主要考查了二次函数的解析式的求法,等腰三角形的判定与性质,二次函数的性质等知识点,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.分析:(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)先求出直线BC的解析式,设P(x,﹣x+3),则M(x,﹣x2+2x+3),求出△BCM 面积的表达式,这是一个二次函数,求出其取最大值的条件;然后利用勾股定理可求出△BPN的周长;(3)由(2)可知N(),设Q(1,a),由两点间的距离公式可分别表示出CQ2,QN2,CN2,若△CNQ为等腰三角形,可分CQ=QN、CQ=CN、QN=CN三种情况考虑,由此可得到关于a的方程,解方程求出符合题意的坐标即可.解:(1)由题意可得:,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)设直线BC的解析式为:y=kx+b,则有:,解得:,∴直线BC的解析式为:y=﹣x+3.设P(x,﹣x+3),则M(x,﹣x2+2x+3),∴PM=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.∴S△BCM=S△PMC+S△PMB=(x B﹣x C)=,∴S△BCM==,∴当x=时,△BCM的面积最大.此时P(),∴PN=ON=,∴BN=OB﹣ON=3﹣=,在Rt△BPN中,由勾股定理得:PB=,C△BCN=BN+PN+PB=3+,∴当△BCM的面积最大时,△BPN的周长为3+;(3)由(2)知P点坐标为(),∴,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为x=1,设Q(1,a),∵C(0,3),N(),∴CQ2=12+(3﹣a)2,,,若△CNQ为等腰三角形,可分三种情况:当CQ=QN时,1+,解得:a=,∴点Q的坐标为(1,),当CQ=CN时,1+,解得:a=3,∴点Q的坐标为(1,3﹣),(1,3+),当QN=CN时,,解得:a=,∴点Q的坐标为(1,),(1﹣),综合以上可得点Q的坐标为(1,)或(1,3﹣)或(1,3+)或(1,)或(1,﹣).点评:本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、等腰三角形的性质及分类讨论思想等知识.把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.4.分析:(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,再设P(t,3﹣t),即可得D(t,﹣t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;(3)如图2,构造BG与x轴成30°角,将MB转化为线段M到BG的距离,从而可知C、M、N、B′在同一条直线上时,CN+MN+MB取最小值,根据CG的长和∠CGB =60°即可求出最小值.根据直线BG求出直线CB′解析式,即求出MN坐标.解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,把A(﹣1,0),C(0,3)代入解析式得,∴,解得b=2,c=3.故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,则,解得:,故直线BC的解析式为y=﹣x+3;∴设P(t,3﹣t),∴D(t,﹣t2+2t+3),∴PD=(﹣t2+2t+3)﹣(3﹣t)=﹣t2+3t,∵OB=OC=3,∴△BOC是等腰直角三角形,∴∠OCB=45°,当CD=PC时,则∠CPD=∠CDP,∵PD∥y轴,∴∠CPD=∠OCB=45°,∴∠CDP=45°,∴∠PCD=90°,∴直线CD的解析式为y=x+3,解得或,∴D(1,4),此时P(1,2);当CD=PD时,则∠DCP=∠CPD=45°,∴∠CDP=90°,∴CD∥x轴,∴D点的纵坐标为3,代入y=﹣x2+2x+3得,3=﹣x2+2x+3,解得x=0或x=2,此时P(2,1);当PC=PD时,∵PC=t,∴t=﹣t2+3t,解得t=0或t=3﹣,此时P(3﹣,);综上,当△CDP为等腰三角形时,点P的坐标为(1,2)或(2,1)或(3﹣,).(3)CN+MN+MB的最小值为,N坐标为(1,3﹣),M坐标为(,0).理由如下:如图,取G点坐标为(0,﹣),连接BG,∵B(3,0),∴直线BG解析式为:y=,∴tan∠GBO=,∴∠GBO=30°,过M点作MB′⊥BG,∴,∴CN+MN+MB=CN+MN+B′M,∴CN+MN+MB取最小值时,C、M、N、B′在同一条直线上,即CB′⊥BG,设直线CB′解析式为,∵C(0,3)故直线CB′解析式为为,∵抛物线的顶点为E坐标为(1,4),EF⊥x轴,N在EF、CB′上,∴N坐标为(1,3﹣),M(m,0)是x轴一个动点,也是CB′与x轴交点,∴M(,0).∵CG=3+,∠CGB=60°,∴CB′=CG sin∠CGB=(3+)×=,综上所述:CN+MN+MB的最小值为,N坐标为(1,3﹣),M坐标为(,0).点评:此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.5.分析:(1)由已知抛物线顶点D可设抛物线顶点式,再把点A代入即求得二次项系数a 的值.(2)由点B、D坐标可求BD的长.设点P坐标为(0,t),用t表示BP2,DP2.对BP =BD、DP=BD、BP=DP三种情况进行分类讨论计算,解方程求得t的值并讨论是否合理.(3)由点B、C坐标可得∠BCO=45°,所以过点P作BC垂线段PQ即构造出等腰直角△PQC,可得PQ=PC,故有MP+PC=MP+PQ.过点M作BC的垂线段MH,根据垂线段最短性质,可知当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH 最小,即需求MH的长.连接MB、MC构造△BCM,利用y轴分成△BCD与△CDM求面积和即得到△BCM面积,再由S△BCM=BC•MH即求得MH的长.解:(1)∵抛物线顶点为D(1,﹣4)∴设顶点式为y=a(x﹣1)2﹣4∵A(﹣1,0)在抛物线上∴4a﹣4=0,解得:a=1∴抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3(2)在y轴的负半轴上存在点P,使△BDP是等腰三角形.∵B(3,0),D(1,﹣4)∴BD2=(3﹣1)2+(0+4)2=20设y轴负半轴的点P坐标为(0,t)(t<0)∴BP2=32+t2,DP2=12+(t+4)2①若BP=BD,则9+t2=20解得:t1=(舍去),t2=﹣②若DP=BD,则1+(t+4)2=20解得:t1=(舍去),t2=﹣﹣4③若BP=DP,则9+t2=1+(t+4)2解得:t=﹣1综上所述,点P坐标为(0,﹣)或(0,﹣﹣4)或(0,﹣1)(3)连接MC、MB,MB交y轴于点D,过点P作PQ⊥BC于点Q,过点M作MH⊥BC 于点H∵x=0时,y=x2﹣2x﹣3=﹣3∴C(0.﹣3)∵B(3,0),∠BOC=90°∴∠OBC=∠OCB=45°,BC=3∵∠PQC=90°∴Rt△PQC中,sin∠BCO==∴PQ=PC∴MP+PC=MP+PQ∵MH⊥BC于点H∴当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH最小∵M(﹣,m)在抛物线上∴m=(﹣)2﹣2×(﹣)﹣3=∴M(﹣,)设直线MB解析式为y=kx+b∴解得:∴直线MB:y=﹣x+∴MB与y轴交点D(0,)∴CD=﹣(﹣3)=∴S△BCM=S△BCD+S△CDM=CD•BO+CD•|x M|=CD•(x B﹣x M)=××(3+)=∵S△BCM=BC•MH∴MH=∴MP+PC的最小值为点评:本题考查了二次函数的图象与性质,等腰三角形和等腰直角三角形的性质,解二元一次方程组和一元二次方程,垂线段最短定理.求线段和最小值时,一般利用特殊三角函数应用把含有系数的线段长进行转换,再利用三点成一直线或垂线段最短性质得到最短路径的位置,进而计算.6.分析:(1)求直线y=﹣x+4与x轴交点B,与y轴交点C,用待定系数法即求得抛物线解析式.(2)根据点B、C坐标求得∠OBC=45°,又PE⊥x轴于点E,得到△PEB是等腰直角三角形,由PB=t求得BE=PE=t,即可用t表示各线段,得到点M的横坐标,进而用m表示点M纵坐标,求得MP的长.根据MP∥CN可证△MPQ∽△NCQ,故有,把用t表示的MP、NC代入即得到关于t的方程,求解即得到t的值.(3)因为不确定等腰△PDM的底和腰,故需分3种情况讨论:①若MD=MP,则∠MDP =∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP,则∠DMP=∠MPD =45°,进而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,则∠PMD =∠PDM,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF进而得CF=CD.用t表示M的坐标,求直线AM解析式,求得AM与y轴交点F 的坐标,即能用t表示CF的长.把直线AM与直线BC解析式联立方程组,解得x的值即为点D横坐标.过D作y轴垂线段DG,得等腰直角△CDG,用DG即点D横坐标,进而可用t表示CD的长.把含t的式子代入CF=CD,解方程即得到t的值.解:(1)直线y=﹣x+4中,当x=0时,y=4∴C(0,4)当y=﹣x+4=0时,解得:x=4∴B(4,0)∵抛物线y=﹣x2+bx+c经过B,C两点∴解得:∴抛物线解析式为y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90°∴OB=OC∴∠OBC=∠OCB=45°∵ME⊥x轴于点E,PB=t∴∠BEP=90°∴Rt△BEP中,sin∠PBE=∴BE=PE=PB=t∴x M=x P=OE=OB﹣BE=4﹣t,y P=PE=t ∵点M在抛物线上∴y M=﹣(4﹣t)2+3(4﹣t)+4=﹣t2+5t∴MP=y M﹣y P=﹣t2+4t∵PN⊥y轴于点N∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴∴解得:t1=,t2=4(点P不与点C重合,故舍去)∴t的值为(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM∥x轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m ∴解得:∴直线AM:y=tx+t∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:x=∴DG=x D=∵∠CGD=90°,∠DCG=45°∴CD=DG=∴4﹣t=解得:t=﹣1综上所述,当△PDM是等腰三角形时,t=1或t=﹣1.点评:本题考查了二次函数的图象与性质,解二元一次方程组和一元二次方程,等腰直角三角形的性质,相似三角形的判定和性质,涉及等腰三角形的分类讨论,要充分利用等腰的性质作为列方程的依据.7.分析:(1)二次函数表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),则﹣3a=﹣3,解得:a=1,即可求解;(2)由AD2=AC2+CD2,故△ADC为直角三角形;(3)S=PH×OA=(﹣x﹣3﹣x2﹣2x+3)=﹣(x+)2+,即可求解;(4)分AE=EF、AE=AF、AF=EF三种情况分别求解即可.解:(1)二次函数表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),则﹣3a=﹣3,解得:a=1,函数的表达式为:y=x2+2x﹣3;(2)由(1)知,点D(﹣1,﹣4),AC=3,CD=,AD==,∴AD2=AC2+CD2,故△ADC为直角三角形;(3)过点P作PH∥y轴交AC于点H,将点A、C的坐标代入一次函数表达式并解得:直线AC的表达式为:y=﹣x﹣3,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),S=PH×OA=(﹣x﹣3﹣x2﹣2x+3)=﹣(x+)2+,当x=﹣时,S最大值为,此时点P(﹣,﹣);(4)∵OA=OC=3,∴∠OAC=∠OCA=45°,①当AE=EF时,如下图,△AEF为等腰直角三角形,AE=2=EF,∴点F(﹣1,﹣2);②当AE=AF时,同理可得:点F(﹣3+,﹣);③当AF=EF时,同理可得:点F(﹣2,﹣1);故点F的坐标为:(﹣1,﹣2)或(﹣3+,﹣)或(﹣2,﹣1).点评:本题考查的是二次函数综合运用,涉及到等腰三角形的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.8.分析:(1)用待定系数法即求得抛物线解析式;用顶点坐标公式即求得对称轴直线,得到点D坐标.(2)求点C坐标,利用三角函数求得∠OCA的度数.由MN垂直AC可把MC转化为MN,所以当点D、M、N在同一直线上时DM+MC=DM+MN,根据垂线段最短,可知过点D作DF⊥AC于点F,此时为DM+MN最短.求∠OAC的度数,利用三角函数即求得DF的长.(3)①求直线BC解析式,把x=1代入即求得点E坐标,进而得DE的长.由∠PDA =90°,∠P AD=60°利用三角函数求得PD的长,进而得PE的长,求得PE=2ED.②求直线AC解析式,求点P坐标,进而求PC的长.设抛物线上的点Q坐标为(t,﹣t2﹣t+)(t≠0),根据两点间距离公式即能用t表示PQ2,CQ2.由△CPQ为等腰三角形分三种情况讨论两腰相等,即列得关于t的方程,求解得t的值即得到点Q 坐标.解:(1)∵抛物线y=ax2+bx+经过点A(1,0),B(﹣3,0)∴解得:∴抛物线的解析式为:y=﹣x2﹣x+∵对称轴为直线:x=﹣=﹣1∴D(﹣1,0)(2)在M,N移动的过程中,DM+MC有最小值.如图1,过点D作DF⊥AC于点F∵当x=0时,y=﹣x2﹣x+=∴C(0,)∵A(1,0)∴在Rt△AOC中,tan∠OCA===∴∠OCA=30°∵MN⊥AC,即∠MNC=90°∴MN=MC∴DM+MC=DM+MN∴当点D、M、N在同一直线上时,DM+MC=DM+MN=DF最小∵∠OAC=90°﹣∠OCA=60°∴在Rt△DAF中,sin∠OAC=∴DF=AD=×(1+1)=∴DM+MC的最小值为(3)①PE=2ED,理由如下:设直线BC的解析式为y=kx+b∴解得:∴直线BC的解析式为y=x+,∵对称轴为直线:x=﹣1,点E在对称轴上∴点E(﹣1,)∴DE=∵∠PDA=90°,∠P AD=60°∴在Rt△P AD中,tan∠OAC=∴PD=2∴PE=PD﹣DE=2﹣=∴PE=2ED②设直线AC解析式为y=cx+把点A(1,0)代入得:c+=0,解得:c=﹣∴直线AC:y=﹣x+∵直线AC与对称轴:直线x=﹣1的交点为P∴P(﹣1,2)∴PC==2∵点Q在抛物线上∴设点Q坐标为(t,﹣t2﹣t+)(t≠0)∴PQ2=(t+1)2+(﹣t2﹣t+﹣2)2,CQ2=t2+(﹣t2﹣t+﹣)2i)若PQ=PC,如图2∴PE垂直平分CQ∴QE=CE=1,y Q=y C=∴Q(﹣2,)ii)若PQ=CQ,则(t+1)2+(﹣t2﹣t+﹣2)2=t2+(﹣t2﹣t+﹣)2解得:t1=﹣2,t2=﹣1∴Q(﹣2,)或(﹣1,)iii)若PC=CQ,则t2+(﹣t2﹣t+﹣)2=4解得:t=﹣2∴Q(﹣2,)综上所述,当△CPQ为等腰三角形时点Q的坐标分别为(﹣2,),(﹣1,).点评:本题考查了二次函数的图象与性质,求一次函数解析式,特殊角三角函数,垂线段最短,两点间距离公式,等腰三角形的性质.求线段与线段的几分之一的和的最小值,通常需要对几分之一线段长进行转换,再利用三点共线或垂线段最短等相关定理找到最小值时的位置.9.分析:(1)将点A、C的坐标代入抛物线,利用待定系数法求二次函数解析式解答;(2)先求出点B的坐标,再根据三角形的面积公式求出S△ABC,设Q(m,0),表示出QA,再判断出△AQE∽△ABC,然后根据相似三角形面积的比等于相似比的平方表示出S△AQE,再根据S△QCE=S△AQC﹣S△AQE整理得到关于m的函数关系;(3)分①当DM=DO时,DO=DM=DB=2,∠OBC=∠BMD=45°,再求出∠BDM =90°,然后写出M点的坐标;②当MD=MO时,过点M作MN⊥OD于点N,根据等腰三角形三线合一的性质可得点N为OD的中点,求出DN=ON=1,BN=BD+DN=3,再根据△BMN为等腰直角三角形求出MN=BN=3,然后写出M点的坐标;③当OD=OM时,根据△OBC为等腰直角三角形求出点O到BC的距离,然后与OD相比较判断出不存在.解:(1)将点A(2,0),C(0,﹣4),分别代入y=x2+bx+c,,解得:,∴抛物线的解析式为y=;(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴点B(﹣4,0),AB=2﹣(﹣4)=2+4=6,S△ABC=AB•OC==12,设Q点坐标为(m,0),则QA=2﹣m.∵∠AQE=∠ABC,∴QE∥BC,∴△AQE∽△ABC,∴,∴,S△QCE=S△AQC﹣S△AQE=,=﹣.(3)△OMD为等腰三角形,可能有三种情形:①当DM=DO时,DO=DM=DA=2,所以,∠OBC=∠BMD=45°,所以,∠BDM=90°,所以,M点的坐标为(﹣2,﹣2);②当MD=MO时,如图,过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,BN=BD+DN=3,又△BMN为等腰直角三角形,∴MN=BN=3,∴M点的坐标为(﹣1,﹣3);③当OD=OM时,∵△OBC为等腰直角三角形,∴点O到BC的距离为×4=2,即BC上的点与点O之间的最小距离为2,∵2>2,∴OD=OM的情况不存在,综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3).点评:本题是二次函数综合题,主要考查了待定系数法求二次函数解析式,抛物线与x 轴的交点问题,三角形的面积,相似三角形面积的比等于相似比的平方的性质,等腰三角形的性质,等腰直角三角形的性质,注意等腰三角形根据腰长的不同分情况讨论.10.分析:(1)用待定系数法即可求抛物线解析式.(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t 表示点F坐标,进而表示PF的长.把△P AB分成△P AF与△PBF求面积和,即得到△P AB面积与t的函数关系,配方即得到t为何值时,△P AB面积最大,进而求得此时点P 坐标.(3)设点P横坐标为t,即能用t表示PD的长.根据对称性可知点P、E关于抛物线对称轴对称,用中点坐标公式可得用t表示点E横坐标,进而用t表示PE的长(注意点P、E左右位置不确定,需分类讨论).由于△PDE要成为等腰直角三角形,∠DPE=90°,所以PD=PE,把含t的式子代入求值即得到点P坐标.解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△P AB=S△P AF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△P AB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.点评:本题考查了二次函数的图象与性质,求二次函数最值,等腰直角三角形的性质,中点坐标公式,一元二次方程的解法.分类讨论进行计算时,要注意讨论求得的解是否符合分类条件,是否需要舍去.11.分析:(1)函数的表达式为:y=﹣(x+1)(x﹣5),即可求解;(2)确定PB、CE的表达式,联立求得点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,即可求解;(3)分当CP=CF、CP=PF、CF=PF三种情况,分别求解即可.解:(1)函数的表达式为:y=﹣(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=2,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+,∵CE⊥PB,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=,解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3,故点P(2,﹣3)或(2,5);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)2=()2+4,解得:m=0或(0舍去),②当CP=PF时,同理可得:m=,③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2)或(2,)或(2,)点评:本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.12.分析:(1)由抛物线与x轴两交点设交点式,把点D代入即求得抛物线表达式.(2)由原抛物线顶点式可知,向下平移4个单位后顶点落在x轴上,故MN=4且MN ⊥x轴.由于△AMN为等腰三角形且MN为底边,故有x轴垂直平分MN,得到点N纵坐标为﹣2,代入新抛物线解析式解方程即求得点N横坐标.(3)作点D关于y轴的对称点D',根据轴对称性质即有QD=QD',易得当点D'、Q、E 在同一直线上时,QE+QD=QE+QD'=ED'最小.由于点E随点P运动也是一个动点,由∠OEB=90°且O、B是定点可得点E的运动轨迹为圆弧.故当点E运动到点D'与圆心所连线段上时,D'E最小.求出圆心F的坐标,即求出D'F和半径r,所以D'E=D'F﹣r,所求即为QE+QD的最小值.解:(1)抛物线与x轴交于A(﹣1,0)、B(3,0)∴设交点式为y=a(x+1)(x﹣3)∵抛物线经过点D(2,3)∴a(x+1)(x﹣3)=3解得:a=﹣1∴抛物线表达式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴向下平移后新抛物线为y=﹣(x﹣1)2,顶点G(1,0),即抛物线向下平移4个单位∵原抛物线上一点M平移后的对应点为点N∴MN=4,MN⊥x轴∵△AMN是以MN为底边的等腰三角形,且点A在x轴上∴x轴垂直平分MN∴N的纵坐标为﹣2∴﹣(x﹣1)2=﹣2解得:x1=1+,x2=1﹣∴点N坐标为(1+,﹣2)或(1﹣,﹣2)(3)作点D关于y轴的对称点点D',连接D'Q,取OB中点F,连接D'F∵D(2,3),点Q为y轴上的动点∴D'(﹣2,3),QD=QD'∴当点D'、Q、E在同一直线上时,QE+QD=QE+QD'=ED'最小∵BE⊥OP于点E,P为抛物线上第一象限内的动点∴∠OEB=90°∴点E在以OB为直径的圆在第一象限内的弧上运动∵圆心F(,0),r=∴当点E在线段D'F上时,D'E=D'F﹣EF=﹣=最小∴QE+QD的最小值为.点评:本题考查了二次函数的图象与性质,平移的性质,等腰三角形的性质,解一元二次方程,轴对称求最短路径,圆周角定理,勾股定理.第(3)题求线段和最小值涉及的两条线段有2个动点,先由常规的轴对称求最短路径问题确定点D'、Q、E必须共线,再找出点E运动轨迹为圆弧而得到点E在D'与圆心连线上时D'E最小.13.分析:(1)由菱形的性质可得AD∥BC,BC=AB=10,那么∠DAB=∠CBO,根据tan ∠DAB=tan∠CBO==,求出B、C、D三点的坐标,利用待定系数法求出抛物线的解析式;(2)利用待定系数法求出直线BC的解析式为y=x+8.根据EF∥BC,可设直线EF 解析式为y=x+t,根据直线EF与抛物线只有一个交点,得出方程x2+x+8=x+t 只有一个解,即△=0,求出t的值,得到直线EF的解析式;(3)分别利用当CP=CB时,△PCB为等腰三角形;当BP=BC时,△PCB为等腰三角形,利用勾股定理列方程即可.解:(1)∵四边形ABCD是菱形,∴AD∥BC,BC=AB=10,∴∠DAB=∠CBO,∴tan∠DAB=tan∠CBO==,∵BC=10,。
中考数学压轴题专题1《直角三角形的存在性问题》
中考数学压轴题专题一《直角三角形的存在性问题》【考题研究】这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。
这类问题主要是和动点问题结合在一起,主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年来各市地对学生能力提高方面的一个考查。
【解题攻略】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).【解题类型及其思路】当直角三角形存在时可从三个角度进行分析研究:(1)当动点在直线上运动时,常用的方法是①121k k⋅=-,②三角形相似,③勾股定理;(2)当动点在曲线上运动时,情况分类如下,第一当已知点处作直角的方法①121k k⋅=-,②三角形相似,③勾股定理;第二是当动点处作直角的方法:寻找特殊角【典例指引】类型一【确定三角形的形状】典例指引1.(2019·辽宁中考模拟)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c 与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.类型二【确定点的坐标】典例指引2.19.(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【举一反三】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.类型三【确定动点运动的时间】典例指引3.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F5AC方向运动.当点E停止运动时,点F 随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y 轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【新题训练】1.如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.2.如图,抛物线y =mx 2+nx ﹣3(m≠0)与x 轴交于A(﹣3,0),B(1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求点C 坐标及抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点D ,使得△BCD 是以CD 为直角边的直角三角形?若存在,直接写出D 点坐标;若不存在,请说明理由.3.(2019·四川)如图,顶点为(3,3)P 的二次函数图象与x 轴交于点(6,0)A ,点B 在该图象上,OB 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、ON .(1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题:①连接OP ,当12OP MN =时,请判断NOB ∆的形状,并求出此时点B 的坐标. ②求证:BNM ONM ∠=∠.4.(2018·贵州中考)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.5.(2018·四川中考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.6.(2019·云南中考模拟)已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使P A+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.7.(2019·黑龙江中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A (﹣1,0)B(3,0)两点,与y轴交于点C.(1)求抛物线y=ax2+2x+c的解析式:;(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;(3)①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.8.(2019·广西中考模拟)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)设点P 为抛物线的对称轴x=﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.9.(2019·山东中考模拟)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB ,tan ∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x 2+bx+c 经过A 、B 两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE . ①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.10.(2019·山东中考模拟)已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.11.(2019·陕西中考模拟)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.12.(2019·山东中考模拟)如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2 .(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?13.(2019·河北中考模拟)已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.14.(2019·河南中考模拟)如图所示,菱形ABCD位于平面直角坐标系中,抛物线y=ax2+bx+c 经过菱形的三个顶点A、B、C,已知A(﹣3,0)、B(0,﹣4).(1)求抛物线解析式;(2)线段BD上有一动点E,过点E作y轴的平行线,交BC于点F,若S△BOD=4S△EBF,求点E的坐标;(3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.15.(2019·临沭县青云镇青云初级中学中考模拟)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PC 的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求∆PAC 为直角三角形时点P 的坐标.16.(2019·江西中考模拟)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值; ②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.【典例指引】类型一 【确定三角形的形状】典例指引1.(2019·辽宁中考模拟)已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或> 【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ=2,∴QF=1. ①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213(03)22{13 (03)22t t t t t t t 或-+<<-.【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).类型二【确定点的坐标】典例指引2.19.(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣3, y=﹣x﹣3;(2)y=2x2﹣4x+1;(3)存在,P为(1172+,﹣2)117-,﹣2)或(9,﹣2)或(﹣8,﹣2).【解析】分析:(1)衍生抛物线顶点为原抛物线与y轴的交点,则可根据顶点设顶点式方程,由衍生抛物线过原抛物线的顶点则解析式易得,MN解析式易得.(2)已知衍生抛物线和衍生直线求原抛物线思路正好与(1)相反,根据衍生抛物线与衍生直线的两交点分别为衍生抛物线与原抛物线的交点,则可推得原抛物线顶点式,再代入经过点,即得解析式.(3)由N(0,﹣3),衍生直线MN绕点N旋转到与x轴平行得到y=﹣3,再向上平移1个单位即得直线y=﹣2,所以P点可设(x,﹣2).在坐标系中使得△POM为直角三角形一般考虑勾股定理,对于坐标系中的两点,分别过点作平行于x轴、y轴的直线,则可构成以两点间距离为斜边的直角三角形,且直角边长都为两点横纵坐标差的绝对值.进而我们可以先算出三点所成三条线的平方,然后组合构成满足勾股定理的三种情况,易得P 点坐标.本题解析:(1)∵抛物线y=x2﹣2x﹣3过(0,﹣3),∴设其衍生抛物线为y=ax2﹣3,∵y=x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴衍生抛物线为y=ax2﹣3过抛物线y=x2﹣2x﹣3的顶点(1,﹣4),∴﹣4=a•1﹣3,解得a=﹣1,∴衍生抛物线为y=﹣x2﹣3.设衍生直线为y=kx+b,∵y=kx+b过(0,﹣3),(1,﹣4),∴304bk b -=+⎧⎨-=+⎩,∴13 kb=-⎧⎨=-⎩,∴衍生直线为y=﹣x﹣3.(2)∵衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点,∴将y=﹣2x2+1和y=﹣2x+1联立,得22121y xy x⎧=-+⎨=-+⎩,解得1xy=⎧⎨=⎩或11xy=⎧⎨=-⎩,∵衍生抛物线y=﹣2x2+1的顶点为(0,1),∴原抛物线的顶点为(1,﹣1).设原抛物线为y=a(x﹣1)2﹣1,∵y=a(x﹣1)2﹣1过(0,1),∴1=a(0﹣1)2﹣1,解得a=2,∴原抛物线为y=2x2﹣4x+1.(3)∵N(0,﹣3),∴MN绕点N旋转到与x轴平行后,解析式为y=﹣3,∴再沿y轴向上平移1个单位得的直线n解析式为y=﹣2.设点P坐标为(x,﹣2),∵O(0,0),M(1,﹣4),∴OM2=(x M﹣x O)2+(y O﹣y M)2=1+16=17,OP2=(|x P﹣x O|)2+(y O﹣y P)2=x2+4,MP2=(|x P﹣x M|)2+(y P﹣y M)2=(x﹣1)2+4=x2﹣2x+5.①当OM2=OP2+MP2时,有17=x2+4+x2﹣2x+5,解得,即P,﹣2)或P,﹣2).②当OP2=OM2+MP2时,有x2+4=17+x2﹣2x+5,解得x=9,即P(9,﹣2).③当MP2=OP2+OM2时,有x2﹣2x+5=x2+4+17,解得x=﹣8,即P(﹣8,﹣2).综上所述,当P为(1172+,﹣2)或(1172-,﹣2)或(9,﹣2)或(﹣8,﹣2)时,△POM为直角三角形.【名师点睛】本题考查了一次函数、二次函数图象及性质,勾股定理及利用其表示坐标系中两点距离的基础知识,特别注意的是:利用其表示坐标系中两点距离,是近几年中考的热点,需学生熟练运用.【举一反三】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣4x+5.(2)372;(3)P坐标为(﹣2,7)或(﹣2,﹣3)或(﹣2,6)或(﹣2,﹣1).【解析】试题分析:(1)利用待定系数法即可解决问题; (2)构建二次函数利用二次函数的性质即可解决问题;(3)分三种情形分别求解①当90,ACP ∠=o由222AC PC PA +=,列出方程即可解决.②当90CAP ∠=︒时,由222AC PA PC +=, 列出方程即可解决.③当90APC ∠=︒ 时,由222PA PC AC +=,列出方程即可; 试题解析:(1)把A (−5,0),B (1,0)两点坐标代入2y x bx c =-++,得到255010b c b c --+=⎧⎨-++=⎩,解得45b c =-⎧⎨=⎩,∴抛物线的函数表达式为24 5.y x x =--+ (2)如图1中,∵抛物线的对称轴x =−2,2(,45)E x x x ,--+ ∴2452EH x x EF x =--+=--,,∴矩形EFDH 的周长225372()2(53)2().22EH EF x x x =+=--+=-++ ∵−2<0, ∴52x =-时,矩形EHDF 的周长最大,最大值为37.2 (3)如图2中,设P (−2,m )①当90,ACP ∠=o ∵222AC PC PA +=, ∴22222(52)2(5)3m m ++-=+, 解得m =7, ∴P 1(−2,7).②当90CAP ∠=o 时,∵222AC PA PC +=, ∴22222(52)32(5)m m ++=+-, 解得m =−3, ∴P 2(−2,−3).③当90APC ∠=o 时,∵222PA PC AC +=, ∴2222232(5)(52)m m ,+++-= 解得m =6或−1, ∴P 3(−2,6),P 4(−2,−1),综上所述,满足条件的点P 坐标为(−2,7)或(−2,−3)或(−2,6)或(−2,−1).类型三 【确定动点运动的时间】典例指引3.已知二次函数y =ax 2+bx -2的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当x =-2和x =5时二次函数的函数值y 相等.(1)求实数a ,b 的值;(2)如图①,动点E ,F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F AC 方向运动.当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将△AEF 沿EF 翻折,使点A 落在点D 处,得到△DEF.①是否存在某一时刻t ,使得△DCF 为直角三角形?若存在,求出t 的值;若不存在,请说明理由;②设△DEF 与△ABC 重叠部分的面积为S ,求S 关于t 的函数关系式.【解析】试题分析:(1)根据抛物线图象经过点A 以及“当x =﹣2和x =5时二次函数的函数值y 相等”两个条件,列出方程组求出待定系数的值.(2)①首先由抛物线解析式能得到点A 、B 、C 三点的坐标,则线段OA 、OB 、OC 的长可求,进一步能得出AB 、BC 、AC 的长;首先用t 表示出线段AD 、AE 、AF (即DF )的长,则根据AE 、EF 、OA 、OC 的长以及公共角∠OAC 能判定△AEF 、△AOC 相似,那么△AEF 也是一个直角三角形,及∠AEF 是直角;若△DCF 是直角,可分成三种情况讨论:i )点C 为直角顶点,由于△ABC 恰好是直角三角形,且以点C 为直角顶点,所以此时点B 、D 重合,由此得到AD 的长,进而求出t 的值;ii )点D 为直角顶点,此时∠CDB 与∠CBD 恰好是等角的余角,由此可证得OB =OD ,再得到AD 的长后可求出t 的值;iii )点F 为直角顶点,当点F 在线段AC 上时,∠DFC 是锐角,而点F 在射线AC 的延长线上时,∠DFC 又是钝角,所以这种情况不符合题意. ②此题需要分三种情况讨论:i )当点E 在点A 与线段AB 中点之间时,两个三角形的重叠部分是整个△DEF ;ii )当点E 在线段AB 中点与点O 之间时,重叠部分是个不规则四边形,那么其面积可由大直角三角形与小钝角三角形的面积差求得;iii )当点E 在线段OB 上时,重叠部分是个小直角三角形.试题解析:解:(1)由题意得: 16420{4222552a b a b a b +-=--=+-,解得:a =12,b =32-.(2)①由(1)知二次函数为213222y x x =--.∵A (4,0),∴B (﹣1,0),C (0,﹣2),∴OA =4,OB =1,OC =2,∴AB =5,AC =BC AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形,且∠ACB =90°.∵AE=2t,AF,∴2AF ABAE AC==.又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF=12AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE=12AB=52t=52÷2=54;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE=32,∴t=34;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t=34或t=54.②ⅰ)当0<t≤54时,重叠部分为△DEF,如图1、图2,∴S=12×2t×t=t2;ⅱ)当54<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= 12m,DH=2m,∴DB=32m.∵DB=AD﹣AB=4t﹣5,∴32m=4t﹣5,∴m=23(4t﹣5),∴S=S△DEF﹣S△DBG=12×2t×t﹣12(4t﹣5)×23(4t﹣5)=2134025333t t-+-;ⅲ)当2<t≤52时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S=12×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:2225(0)41340255{(2)3334542025(2)2t tS t t tt t t<≤=-+-<≤-+<≤.【名师点睛】此题主要考查的是动点函数问题,涉及了函数解析式的确定、直角三角形以及相似三角形的判定和性质、等腰三角形的性质以及图形面积的解法等综合知识;第二题的两个小题涉及的情况较多,一定要根据动点的不同位置来分类讨论,抓住动点的关键位置来确定未知数的取值范围是解题的关键所在. 【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值. 【答案】(1)A (,0)、B (3,0);(2)存在.S △PBC 最大值为2716;(3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】 【分析】(1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值. 【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=. ∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--.设P (p ,213p p 22--),∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+().∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716.(3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -), ∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+, 解得:12m =-,22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+, 解得:1m 1=-,2m 1=(舍去) . 综上所述,2m 2=-或1m =-时,△BDM 为直角三角形. 【新题训练】1.(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【详解】解:(1)令y=0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧。
二次函数综合题存在性问题分类训练(9种类型)(学生版)--2023-2024学年九年级数学上册重难点
二次函数综合题存在性问题分类训练(9种类型)【类型一存在性之等腰三角形】1如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.2如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于A-1,0,B2,0两点,与y轴交于点C.(1)求抛物线的解析式及点C的坐标;(2)若F为抛物线上一点,连接BC,是否存在以BC为底的等腰△BCF?若存在,请求出点F的坐标;若不存在,请说明理由.3如图,已知抛物线y=-x2+bx+c经过B-3,0两点,与x轴的另一个交点为A.,C0,3(1)求抛物线的解析式;(2)在抛物线对称轴上找一点E,使得AE+CE的值最小,求出点E的坐标;(3)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.4如图,已知抛物线y=-x2+bx+c经过B(-3,0),C(0,3)两点,与x轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m=;n=;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.【类型二存在性之直角三角形】5如图,在平面直角坐标系中,一次函数y=12x-2的图象分别交x轴、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,E是线段OA的中点.(1)求抛物线的解析式;(2)点F是抛物线上的动点,当∠OEF=∠BAE时,求点F的横坐标;(3)在抛物线上是否存在点P,使得△ABP是以点A为直角顶点的直角三角形,若存在,请求出P点坐标,若不存在,请说明理由.(4)抛物线上(AB下方)是否存在点M,使得∠ABM=∠ABO?若存在,求出点M到y轴的距离,若不存在,请说明理由.6如图,已知抛物线y=x2+bx+c的对称轴为直线x=2,与y轴交于点C0,3,与x轴交于点A和点B.(1)求抛物线的解析式和点A、B的坐标;(2)设点P为抛物线的对称轴直线x=2上的一个动点,求使△PBC为直角三角形的点P的坐标.7如图,在平面直角坐标系xOy中,抛物线y=x2+bx-3与直线l:y=x+1交于A,B两点,点A的坐标为-1,0.(1)求抛物线的解析式及点B的坐标;(2)已知抛物线与x轴有2个交点,右侧交点为C,点P为线段AB上任意一点(不含端点),若△PBC是以点P为直角顶点的直角三角形,求点P的坐标.8如图,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为1,0.(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB-PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【类型三存在性之等腰直角三角形】9如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.(3)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.10如图1,在平面直角坐标系中,抛物线y=-23x2+43x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过点A作AD∥BC交抛物线于D,连接CA,CD,PC,PB,记四边形ACPB的面积为S1,△BCD的面积为S2,当S1-S2的值最大时,求P点的坐标和S1-S2的最大值;(3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点O,G为平移后的抛物线的对称轴直线l上一动点,将线段AC沿直线BC平移,平移过程中的线段记为A′C′(线段A'C'始终在直线l左侧),是否存在以A′,C′,G为顶点的等腰直角△A′C′G?若存在,请写出满足要求的所有点G的坐标并写出其中一种结果的求解过程,若不存在,请说明理由.11如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.12如图,在平面直角坐标系中,将一等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,其中A的坐标为(0,2),直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.(1)求抛物线的解析式;(2)设抛物线的顶点为D,连结BD、CD,求△DBC的面积;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【类型四存在性之平行四边形】13在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点(-1,0),(3,0)和0,3.(1)求抛物线的表达式;(2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当AN+MN有最大值时,求出抛物线上点M的坐标;(3)若点P为抛物线y=ax2+bx+c(a≠0))的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点,在(2)的条件下求得的点M,是否能与A,P,Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.14如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)在直线BC的下方的抛物线上存在一点M,使得△BCM的面积最大,请求出点M的坐标(3)点F是抛物线上的动点,点D是抛物线顶点坐标,作EF∥AD交x轴于点E,是否存在点F,使得以A、D、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.15如图,在平面直角坐标系中,抛物线y=12x2+bx+c(b、c为常数)的顶点坐标为32,-258,与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,点C,点D关于x轴对称,连接AD,作直线BD.(1)求b、c的值;(2)求点A、B的坐标;(3)求证:∠ADO=∠DBO;(4)点P在抛物线y=-12x2+bx+c上,点Q在直线BD上,当以点C、D、P、Q为顶点的四边形为平行四边形时,直接写出点Q的坐标.16如图,抛物线y=ax2+2ax+c与y轴负半轴交于点C,与x轴交于A,B两点,点A在点B左侧,点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是第三象限抛物线上的动点,连接AC,当△ACD的面积为3时,求出此时点D的坐标;(3)将抛物线y=ax2+2ax+c向右平移2个单位,平移后的抛物线与原抛物线相交于点M,N在原抛物线的对称轴上,H为平移后的抛物线上一点,当以A、M、H、N为顶点的四边形是平行四边形时,请直接写出点H的坐标.【类型五存在性之菱形】17如图,抛物线y=ax2+bx+c过点A-1,0.,B3,0,C0,3(1)求抛物线的解析式;(2)设点P是直线BC上方抛物线上一点,求出△PBC的最大面积及此时点P的坐标;(3)若点M是抛物线对称轴上一动点,点N为坐标平面内一点,是否存在以BC为边,点B、C、M、N为顶点的四边形是菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.18综合与探究:如图,已知抛物线y=-38x2+94x+6与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.直线BC与抛物线的对称轴交于点E.将直线BC沿射线CO方向向下平移n个单位,平移后的直线与直线AC 交于点F,与抛物线的对称轴交于点D.(1)求出点A,B,C的坐标,并直接写出直线AC,BC的解析式;(2)当△CDB是以BC为斜边的直角三角形时,求出n的值;(3)直线BC上是否存在一点P,使以点D,E,F,P为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.19如图,直线y =mx +n m ≠0 .与抛物线y =-x 2+bx +c 交于A -1,0 ,B 2,3 两点.(1)求抛物线的解析式;(2)若点C 在抛物线上,且△ABC 的面积为3,求点C 的坐标;(3)若点P 在抛物线上,PQ ⊥OA 交直线AB 于点Q ,点M 在坐标平面内,当以B ,P ,Q ,M 为顶点的四边形是菱形时,请直接写出点M 的坐标.20如图1,在平面直角坐标系中,抛物线y=-32x2+32x+3与x轴交于点A和点B(点A在点B左侧),与y轴交于点C.(1)求直线BC的解析式;(2)点P是直线BC上方抛物线上的一动点,过点P作y轴的平行线交BC于点D,过点P作x轴的平行线交BC于点E,求PE+3PD的最大值及此时点P的坐标;(3)如图2,在(2)中PE+3PD取得最大值的条件下,将抛物线y=-32x2+32x+3沿着射线CB方向平移得到新抛物线y ,且新抛物线y 经过线段BC的中点F,新抛物线y 与y轴交于点M,点N为新抛物线y 对称轴上一点,点Q为坐标平面内一点,若以点P,Q,M,N为顶点的四边形是以PN为边的菱形,写出所有符合条件的点Q的坐标,并写出求解点Q的坐标的其中一种情况的过程.【类型六存在性之矩形】21如图①,抛物线y=ax2+x+c a≠0与x轴交于A(-2,0),B(6,0)两点,与y轴交于点C,点P是第一象限内抛物线上的一个动点,过点P作PD⊥x轴,垂足为点D,PD交直线BC于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)如图②.过点P作PF⊥CE,垂足为点F,当CF=EF时,请求出m的值;(3)如图③,连接CP,当四边形OCPD是矩形时,在抛物线的对称轴上存在点Q,使原点O关于直线CQ的对称点O 恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q的坐标.22已知抛物线y =ax 2+bx -4a ≠0 交x 轴于点A 4,0 和点B -2,0 ,交y 轴于点C .(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线AC 下方的动点,过点P 分别作x 轴、y 轴的平行线,交直线AC 于点D ,交x 轴于点E ,当PD +PE 取最大值时,求点P 的坐标及PD +PE 最大值.(3)在抛物线上是否存在点M ,对于平面内任意点N ,使得以A 、C 、M 、N 为顶点且AC 为一条边的四边形为矩形,若存在,请直接写出M 、N 的坐标,不存在,请说明理由.23综合与探究如图,抛物线y=ax2-3x+c a≠0与x轴交于A(4,0),C两点,交y轴于点B(0,-4),点P为y轴右侧抛物线上的一个动点.(1)求抛物线的解析式;(2)当P在AB下方时,求△ABP面积的最大值;(3)当∠ABP=15°时,△BOP的面积为;(4)点M为抛物线对称轴上的一点,点N为平面内一点,是否存点M、点N,使得以A、B、M、N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;如不存在,请说明理由.24如图,直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2-83x+c(a≠0)经过A,C两点,交x轴的正半轴于点B,连接BC.(1)求抛物线的解析式.(2)点P在抛物线上,连接PB,当∠PBC=45°时,求点P的坐标;(3)已知点M从点B出发,以每秒1个单位长度的速度沿BA运动,同时点N从点O出发,以每秒3个单位长度的速度沿OC,CA运动.当点M,N运动到某一时刻时,在坐标平面内是否存在点D,使得以A,M,N,D为顶点的四边形是矩形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【类型七存在性之正方形】25如图,抛物线y=-14x2+bx+c的对称轴与x轴交于点A1,0,与y轴交于点B0,3,C为该抛物线图象上的一个动点.(1)求抛物线的解析式;(2)如图,当点C在第一象限,且∠BAC=90°,求ACAB的值;(3)点D在抛物线上(点D在点C的左侧,不与点B重合),点P在坐标平面内,问是否存在正方形ACPD?若存在,请直接写出点P的坐标;若不存在,请说明理由.26综合与探究如图,抛物线y=ax2+bx+6与x轴交于A-2,0,B4,0两点,与y轴交于点C,直线y=23x-4与x轴交于点D,与y轴交于点E.若M为第一象限内抛物线上一点,过点M且垂直于x轴的直线交DE于点N,连接MC,MD.(1)求抛物线的函数表达式及D,E两点的坐标.(2)当CM=EN时,求点M的横坐标.(3)G为平面直角坐标系内一点,是否存在点M使四边形MDEG是正方形.若存在,请直接写出点G的坐标;若不存在,请说明理由.27如图,已知直线y=-x+4与抛物线y=ax2+bx交于点A4,0两点,点P为抛物线上和B-1,5一动点,过点P作x轴的垂线,交直线AB于Q,PN⊥AB于点N.(1)求抛物线的解析式;(2)当点P在直线AB下方时,求线段PN的最大值;(3)是否存在点P使得△ABP是直角三角形,若存在,请求出点P坐标,若不存在,请说明理由;(4)坐标轴上是否存在点M,使得以点P,N,Q,M为顶点的四边形是正方形,若存在,请直接写出点M的坐标,若不存在,请说明理由28如图,抛物线y=-12x2+bx+c与x轴交于点A和点B4,0,与y轴交于点C0,4,点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.【类型八存在性之相似三角形】29如图,在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A,B,与y轴交于点C,经过点x+2交抛物线于点D,点D与点A的横坐标互为相反数,P是抛物线上一动点,连接A的直线y=-12AC.(1)求抛物线的表达式;(2)若点P在第一象限内的抛物线上,当∠PBA=2∠BAD时,求直线BP的表达式;(3)点Q在y轴上,若△DQP∽△COA,请直接写出点P的坐标.30如图,已知抛物线过三点O0,0,弧AB过线段OA的中点C,若点E为弧AB,B2,23,A8,0所在圆的圆心.(1)求该抛物线的解析式.(2)求圆心点E的坐标,并判断点E是否在这条抛物线上.(3)若弧BC的中点为P,是否在x轴上存在点M,使得△APB与△AMP相似?若存在,请求出点M的坐标,若不存在说明理由.31如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.②设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,直接写出当△CEF与△COD相似时,点P的坐标;32如图,抛物线y=12x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A-4,0,C0,-2.(1)求抛物线和直线AC的函数解析式;(2)若点E是线段AC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,求四边形CDAF的最大面积;(3)在抛物线的对称轴上找一点P,使得以A、D、P为顶点的三角形与△OAC相似,请直接写出点P的坐标.【类型九存在性之角度问题】33如图,抛物线y=ax2+bx+2经过A-1,0为抛物线上、B4,0两点,与y轴交于点C,点D x,y 第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为4时,求点D的坐标;(3)该抛物线上是否存在点D,使得∠DCB=2∠ABC,若存在,求点D的坐标;若不存在,请说明理由.34如图,抛物线y=ax2+bx-1a≠0与x轴交于点A1,0和点B,与y轴交于点C,抛物线的对称轴交x轴于点D3,0,过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当BQPQ=57时.求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.35如图,在平面直角坐标系xoy中,顶点为M的抛物线y=ax2+bx a>0经过点A(-1,3)和x轴正半轴上的点B,AO=OB.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的度数;(3)联结AM、BM、AB,若在坐标轴上存在一点P,使∠OAP=∠ABM,求点P的坐标.36如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A1,0两点,,B3,0与y轴交于点C,其顶点为点D,点E的坐标为0,-1,该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式.(2)一动点M从点D出发,以每秒1个单位的速度沿与y轴平行的方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(3)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
2019中考数学 题型训练- 二次函数综合题压轴
2019中考·数学 ---二次函数综合题压轴题型类型1线段问题1.如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(,)和B(4,c),点P是直线AB上的动点,设点P的横坐标为n,过点P作PC⊥x轴,交抛物线于点C,交x轴于点M.(1)求抛物线的解析式;(2)当点P在线段AB上运动时(点P不与点A,B重合),是否存在这样的点P,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)点P在直线AB上自由移动,当点C,P,M中恰有一点是其他两点所连线段的中点时,请直接写出n的值.2.如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于A(-1,0),B(3,0)两点,直线y=x-2与x轴交于点D,与y轴交于点C.点P是x轴下方的抛物线上一动点,过点P作PF⊥x 轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=3EF,求m的值;(3)连接PC,是否存在点P,使△PCE是以PC为腰的等腰三角形?若存在,请直接写出m的值;若不存在,请说明理由.3.[2019原创]如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,C(1,0),与y轴交于点B(0,-3).(1)求抛物线的解析式;(2)点P是直线AB下方的抛物线上一动点,过点P作x轴的垂线,垂足为点F,交直线AB于点E,作PD⊥AB于点D.①当△PDE的周长最大时,求出点P的坐标;②连接AP,以AP为边在其右侧作正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.则当顶点M或N恰好落在抛物线的对称轴上时,请直接写出点P的坐标.备用图类型2面积问题4.[2018四川绵阳]如图,已知抛物线y=ax2+bx(a≠0)过点A(,-3)和点B(3,0),过点A 作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC=S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.5.[2018山东东营]如图,抛物线y=a(x-1)(x-3)(a>0)与x轴交于A,B两点,抛物线上另有一点C在x轴下方,且△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C恰为BM的中点,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方的抛物线上是否存在一点P,使得四边形ABPC的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.6.[2017开封二模]如图,已知抛物线y=a(x+1)(x-5)与x轴从左至右交于A,B两点,与y轴交于点C(0,5).(1)求该抛物线的函数解析式;(2)D是第一象限内抛物线上的一个动点(与点C,B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,CD,直线BC能否把△BDF分成面积之比为2∶3的两部分?若能,请求出点D的坐标;若不能,请说明理由;(3)若M为抛物线对称轴上一动点,△MBC为直角三角形,请直接写出点M的坐标.类型3等腰三角形的存在性问题7.[2018山西中考改编]如图,抛物线y=ax2+bx-4与x轴交于点A(-3,0),B(4,0),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求抛物线的解析式;(2)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值;(3)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由.8.[2018洛阳二模]如图,二次函数y=x2+bx+c的图象交x轴于A,B两点,交y轴于点C,顶点为点P,经过B,C两点的直线的解析式为y=-x+3. (1)求二次函数的解析式;(2)Q是直线BC下方抛物线上一动点,△QBC的面积是否有最大值?若有,请求出这个最大值和此时点Q的坐标;若无,请说明理由;(3)该抛物线的对称轴上是否存在点M,使以点C,P,M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.9.如图,二次函数y=x2+bx-的图象与x轴交于点A(-3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)求抛物线的解析式及点B的坐标;(2)当点P在线段AO(点P不与A,O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.备用图类型4直角三角形、等腰直角三角形的存在性问题10.[2018四川眉山中考改编]如图(1),已知抛物线y=ax2+bx+c经过点A(0,3),B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P 是抛物线上一个动点,设其横坐标为m. (1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上运动,连接PE,PO,当m为何值时,四边形AOPE的面积最大?并求出其最大值;(3)如图(2),点F是抛物线的对称轴l上的一点,在对称轴左侧、y轴右侧的抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.图(1)图(2)11.[2018辽宁沈阳中考改编]如图,在平面直角坐标系中,抛物线C1:y=ax2+bx-1经过点A(-2,1)和点B(-1,-1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M (1)求抛物线C1的解析式; (2)直接..用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.备用图12.[2018平顶山二模]如图,已知直线y=x-3与x轴、y轴分别交于点A,B,抛物线y=x2+bx+c经过点A,B,且交x轴于点C. (1)求抛物线的解析式.(2)点P为抛物线上一点,且点P在直线AB的下方,设点P的横坐标为m.①试求当m为何值时,△PAB的面积最大;②当△PAB的面积最大时,过点P作x轴的垂线PD,垂足为点D,则在直线PD上是否存在点Q,使△QBC为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.备用图类型5平行四边形的存在性问题13.[2018濮阳一模]如图,抛物线y=ax2+bx-3经过点A(2,-3),与x轴负半轴交于点B,与y 轴交于点C,且OC=3OB. (1)求抛物线的解析式; (2)点D在y轴上,且∠BDO=∠BAC,求点D 的坐标; (3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.14.[2018新乡一模]如图,一次函数y=-x+2分别交y轴、x轴于A,B两点,抛物线y=-x2+bx+c过A,B两点. (1)求抛物线的解析式; (2)作垂直于x轴的直线x=t,在第一象限交直线AB于点M,交这个抛物线于点N.求当t取何值时,MN有最大值,最大值是多少;(3)在(2)的条件下,以A,M,N,D(点D为平面内一点)为顶点作平行四边形,求顶点D的坐标.15.在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a,b,c为常数,a≠0)的“梦想直线”;定义有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=-x2-x+2与其“梦想直线”交于A,B两点(点A在点B的左侧),与x 轴负半轴交于点C. (1)填空:该抛物线的“梦想直线”的解析式为,点A的坐标为,点B的坐标为; (2)如图,点M为线段CB上一动点,将△ACM以AM 所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标; (3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A,C,E,F为顶点的四边形为平行四边形?若存在,请直接写出点E,F的坐标;若不存在,请说明理由.备用图类型6矩形、菱形、正方形的存在性问题16.如图,以直线x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(-1,0),与y 轴交于点C(0,4),作直线AC.(1)求抛物线的解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等.设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C,M,N,Q为顶点的四边形是菱形,请直接写出点Q的坐标.备用图17.[2018四川南充]如图,抛物线的顶点为P(1,4),且与y轴交于C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,且△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为点D,E.是否存在点M,N使四边形MNED为正方形?若存在,请直接写出正方形MNED的边长;若不存在,请说明理由.18.如图,在平面直角坐标系中,直线l:y=kx+h与x轴相交于点A(-1,0),与y轴相交于点C,与抛物线y=-x2+bx+3的一交点为点D,抛物线过x轴上的A,B两点,且CD=4AC.(1)求直线l和抛物线的解析式;(2)点E是直线l上方抛物线上的一动点,连接AE,DE,求△ADE面积最大时点E的坐标;(3)设点P是抛物线对称轴上一点,点Q在抛物线上,以A,D,P,Q为顶点的四边形能否为矩形?若能,请直接写出点P的坐标;若不能,请说明理由.备用图类型7相似三角形或全等三角形的存在性问题19.[2018四川达州中考改编]如图,抛物线经过原点O(0,0),A(1,1),B(,0).(1)求抛物线的解析式;(2)连接OA,过点A作AC⊥OA交抛物线于点C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似?若存在,直接写出点M的坐标;若不存在,请说明理由.备用图20.[2018郑州外国语三模]如图,抛物线y=-x2+(3m+1)x-m(m>,且m为实数)与x轴交于A,B(点B位于点A的右侧,且AB≠OA)两点,与y轴交于点C.(1)填空:点B的坐标为,点C的坐标为(用含m的代数式表示).(2)当m=3时,在直线BC上方的抛物线上有一点M,过点M作x轴的垂线,交直线BC于点N,求线段MN长度的最大值.(3)在第四象限内是否存在点P,使得△PCO,△POA和△PAB中的任意两个三角形都相似(全等是相似的特殊情况)?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.备用图21.[2018山东潍坊]如图(1),抛物线y1=ax2-x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B,且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式.(2)如图(2),在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出点T的坐标;若不存在,请说明理由.(3)点P为抛物线y1上一动点,过点P作y轴的平行线,交抛物线y2于点Q,点Q关于直线l的对称点为R.若以点P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.图(1)图(2)备用图类型8角度的存在性问题22.[2018广东]如图,已知顶点为C(0,-3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求抛物线y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,请求出点M的坐标;若不存在,请说明理由.23.[2018许昌二模]如图,抛物线y=-x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=-x+2经过点A,C. (1)求抛物线的解析式. (2)点P为直线AC上方抛物线上一动点.①连接PO,交AC于点E,求的最大值.②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.[2018安阳二模]如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4).已知点D的坐标为(0,2),点P为二次函数图象上的一动点. (1)求二次函数的解析式; (2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S 的最大值; (3)点F是y轴上一点,是否存在点F,P,使∠PDF与∠ADO互余?若存在,请直接写出点P的横坐标;若不存在,请说明理由.参考答案1.(1)∵B(4,c)在直线y=x+2上,∴c=6,则B(4,6).∵A(,),B(4,6)在抛物线y=ax2+bx+6上,∴解得故抛物线的解析式为y=2x2-8x+6.(2)存在.易知点P的坐标为(n,n+2)(<n<4),点C的坐标为(n,2n2-8n+6),∴PC=(n+2)-(2n2-8n+6)=-2n2+9n-4=-2(n-)2+.∵-2<0,∴当n=时,线段PC的长取得最大值.(3)n的值为或.2.(1)将A(-1,0),B(3,0)两点的坐标分别代入y=ax2+bx-3中,得解得∴抛物线的解析式为y=x2-2x-3.(2)∵点P的横坐标为m,点P在x轴下方,∴P(m,m2-2m-3),E(m,m-2),F(m,0),且-1<m<3,∴PE=|y E-y P|=|(m-2)-(m2-2m-3)|=|-m2+3m+1|,EF=|y F-y E|=|0-(m-2)|=|-m+2|.∵PE=3EF,∴|-m2+3m+1|=3|-m+2|.①若-m2+3m+1=3(-m+2),整理,得m2-6m+5=0,解得m=1或m=5.∵-1<m<3,∴m=5不合题意,应舍去,∴m=1.②若-m2+3m+1=-3(-m+2),整理,得m2-7=0,解得m=或m=-.∵-1<m<3,∴m=-不合题意,应舍去,∴m=.综上所述,m的值为1或.(3)存在,m的值为1+,1-,或.3.(1)将B(0,-3),C(1,0)分别代入y=x2+bx+c,得解得故抛物线的解析式为y=x2+2x-3.(2)①令y=x2+2x-3=0,得x1=1,x2=-3,∴A(-3,0),∴OA=OB,∴∠BAO=45°,又∵PF⊥AO,∴∠AEF=45°,∴∠PED=45°,∴PD=DE,∴△PDE为等腰直角三角形,△PDE的周长为PE+2×=(1+)PE.设点F的横坐标为m,则PF=-m2-2m+3,FE=AF=m+3,∴PE=PF-FE=-m2-3m=-(m+)2+.∵点P是直线AB下方的抛物线上一动点,∴-3<m<0,∴当m=-时,PE最大,为,此时△PDE的周长最大,点P的坐标为(-,-).②点P的坐标为(,)或(-1-,-2).4.(1)把点A,B的坐标分别代入抛物线的解析式,得解得故抛物线的解析式为y=x2-x.(2)设点P的坐标为(m,n).∵A(,-3),∴C(0,-3),D(m,-3),∴PD=n+3,CO=3,AD=m-,AC=.①当△ADP∽△ACO时,=,即=,∴n=m-6.∵点P在抛物线上,∴n=m2-m,∴m-6=m2-m,解得m1=4,m2=(不合题意,舍去),∴P(4,6).②当△PDA∽△ACO时,=,即=,∴n=m-4.∵点P在抛物线上,∴n=m2-m,∴m-4=m2-m,解得m1=,m2=(不合题意,舍去),∴P(,-).综上所述,点P的坐标为(4,6)或(,-).(3)存在.∵A(,-3),∴AC=,OC=3,∴OA=2.在△AOC中,设边OA上的高为h,则S△AOC=OC·AC=OA·h,即×3×=×2×h,解得h=.∵S△AOC=S△AOQ,∴△AOQ的边OA上的高为.如图,过点O作OR⊥OA,在射线OR上截取OM=,过点M作MN∥OA交y轴于点N,过点M作MH⊥x轴于点H.∵AC=,OA=2,∴∠AOC=30°.∵MN∥OA,∴∠MNO=∠AOC=30°,OM⊥MN,∴ON=2OM=9,∠NOM=60°,∴点N的坐标为(0,9),∠MOB=30°,∴MH=OM=,OH=MH=,∴M(,).设直线MN的解析式为y=kx+c,则解得联立抛物线与直线MN的解析式,得整理,得x2-x-18=0,解得x1=3,x2=-2,故点Q的坐标为(3,0)或(-2,15). 5.(1)由题可知,当y=0时,a(x-1)(x-3)=0,解得x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3.∵△OCA∽△OBC,∴OC∶OB=OA∶OC,∴OC2=OA·OB=3,则OC=.(2)∵点C是BM的中点,∴点C的横坐标为,又OC=,点C在x轴下方,∴C(,-).设直线BM的解析式为y=kx+b,把点B(3,0),C(,-)分别代入,得解得将C(,-)代入抛物线的解析式,得a=,故抛物线的解析式为y=x2-x+2.(3)存在.设点P的坐标为(m,m2-m+2),过点P作PQ⊥x轴,交直线BM于点Q,则Q(m,m-),∴PQ=m--(m2-m+2)=-m2+3m-3.当△BCP的面积最大时,四边形ABPC的面积最大,S△BCP=PQ·(3-)=PQ=-m2+m-,当m=-=时,S△BCP有最大值,四边形ABPC的面积最大,此时点P的坐标为(,-).6.(1)∵抛物线y=a(x+1)(x-5)经过C(0,5).∴5=a(0+1)(0-5),解得a=-1,∴抛物线的函数关系式为y=-(x+1)(x-5),即y=-x2+4x+5.(2)直线BC能把△BDF分成面积之比为2∶3的两部分.设直线BC的函数关系式为y=kx+b,则解得∴y=-x+5.设D(m,-m2+4m+5),则E(m,-m+5).∴DE=-m2+4m+5+m-5=-m2+5m,EF=-m+5.∵△BDE和△BFE是等高的,∴=.(i)当DE∶EF=2∶3时,即=,解得m1=,m2=5(舍去),此时,D(,).(ii)当DE∶EF=3∶2时,即=,解得m1=,m2=5(舍去),此时,D(,).综上所述,点D的坐标为(,)或(,).(3)点M的坐标为(2,7),(2,-3),(2,6)或(2,-1).7.(1)将点A(-3,0),B(4,0)分别代入y=ax2+bx-4,得解得故抛物线的解析式为y=x2-x-4.(2)如图,过点F作FG⊥PQ于点G,则FG∥x轴.由B(4,0),C(0,-4),得△OBC为等腰直角三角形,∴∠QFG=∠OBC=45°,∴GQ=FG=QF.∵PE∥AC,∴∠1=∠2.∵FG∥x轴,∴∠2=∠3,∴∠1=∠3.又∵∠FGP=∠AOC=90°,∴△FGP∽△AOC,∴=,即=,∴GP=FG=×QF=QF,∴QP=GQ+GP=QF+QF=QF,∴QF=QP.∵PM⊥x轴,点P的横坐标为m,∠MBQ=45°,∴QM=MB=4-m,PM=-m2+m+4,∴QP=PM-QM=-m2+m+4-(4-m)=-m2+m,∴QF=QP=(-m2+m)=-m2+m.∵-<0,∴QF有最大值,∴当m=-=2时,QF有最大值.(3)存在.点Q的坐标为(,-4)或(1,-3).8.(1)∵直线y=-x+3经过B,C两点,∴B(3,0),C(0,3).∵二次函数y=x2+bx+c的图象经过点B,C,∴解得故二次函数的解析式为y=x2-4x+3.(2)有.设点Q的横坐标为m,则点Q的纵坐标为m2-4m+3.如图,过点Q作x轴的垂线交BC于点D,则点D的坐标为(m,-m+3),∴QD=(-m+3)-(m2-4m+3)=-m2+3m,∴S△QBC=S△QDC+S△QDB=m·QD+(3-m)QD=×3×QD=(-m2+3m)=-(m-)2+.故当m=时,△QBC的面积取最大值,为,此时点Q的坐标为(,-).(3)存在.点M的坐标为(2,7),(2,2-1),(2,)或(2,-2-1).9.(1)将点A坐标代入y=x2+bx-,解得b=1,故抛物线的解析式为y=x2+x-.令y=0,得x2+bx-=0,解得x1=1,x2=-3,故点B的坐标为(1,0).(2)由题意知,正方形ABCD的边长为4,OA=3,OB=1.设PA=t,OE=l.由∠DAP=∠POE=∠DPE=90°,易得△DAP∽△POE.∴=,即=.∴l=-t2+t=-(t-)2+,故当t=时,l有最大值,即P为AO的中点时,OE的最大值为.(3)存在.由题意知,若△PED是等腰三角形,则PD=PE.①当点P在y轴左侧时,如图(1),设DE与x轴交于点G.图(1)易知△DAP≌△POE,∴OP=AD=4,OE=AP=4-3=1,∴点P的坐标为(-4,0).∵AD⊥x轴,EO⊥x轴,∴△ADG∽△OEG,∴==,∴AG=4GO=AO=,∴重叠部分的面积为S△ADG=××4=.图(2)②当点P在y轴右侧时,如图(2),设DE与x轴交于点G,DP与BC交于点F.同①可得OP=4,OE=AP=7,∴点P的坐标为(4,0).由△ADG∽△OEG,得AG=OG=OA=.由△DCF∽△PBF,得CF=BF=BC=.∴重叠部分的面积S四边形DGBF=4×4-××4-××4=.10.(1)设抛物线与x轴的另一个交点为D,由抛物线的对称性,得D(3,0),则抛物线的解析式可变形为y=a(x-1)(x-3),把A(0,3)代入,得3=3a,解得a=1,故抛物线的解析式为y=x2-4x+3.(2)易得点P的坐标为(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3).易得直线OE的解析式为y=x,过点P作PG∥y轴,交直线OE于点G,则G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=+=×3×3+PG·AE=+×3×(-m2+5m-3)=-m2+m=-(m-)2+.∵-<0,∴当m=时,S四边形AOPE有最大值,最大值是.(3)存在.点P的坐标为(,)或(,).11.(1)∵抛物线C1:y=ax2+bx-1经过点A(-2,1)和B(-1,-1),∴解得故抛物线C1的解析式为y=x2+x-1.(2)MN=t2+2.(3)分两种情况讨论.①当∠ANM=90°时,AN=MN,∵AN=t-(-2)=t+2,由(2)得MN=t2+2,∴t+2=t2+2,解得t1=0,t2=1.∵t=0时,∠AMN=90°,不符合题意,舍去,∴t=1.②当∠AMN=90°时,AM=MN,∵AM=t-(-2)=t+2,由(2)得MN=t2+2,∴t+2=t2+2,解得t3=0,t4=1.∵t=1时,∠ANM=90°,不符合题意,舍去,∴t=0.综上所述,t的值为0或1.12.(1)对于直线y=x-3,令x=0,得y=-3,令y=0,得x=6,∴A(6,0),B(0,-3).将点A,B的坐标分别代入y=x2+bx+c,得解得故抛物线的解析式为y=x2-x-3.(2)①由题易知P(m,m2-m-3).如图,过点P作PE⊥x轴,交AB于点E,则E(m,m-3),∴PE=m-3-(m2-m-3)=-m2+2m,∴S△PAB=PE·OA=×(-m2+2m)×6=-(m-3)2+9,∵点P在直线AB下方的抛物线上,∴0<m<6,∴当m=3时,△PAB的面积最大,为9.②存在,点Q的坐标为(3,)或(3,-).13.(1)当x=0时,y=-3,∴C(0,-3).∵OC=3OB,∴OB=1,∴B(-1,0).将A,B两点的坐标代入抛物线的解析式,得解得故抛物线的解析式为y=x2-2x-3.(2)过点B作BF⊥AC,交AC的延长线于点F.易得AF=BF=3,∴∠BAC=45°,∴∠BDO=∠BAC=45°.∵点D在y轴上,∴OB=OD=1,故点D的坐标为(0,1)或(0,-1).(3)存在.如图,当AB为对角线时,易得平行四边形AM1BN1,∴M1(0,-3).当AB为一边时,在▱ABM2N2中,点A的横坐标是2,点N2的横坐标是1,点B的横坐标是-1,由图形平移前后点的坐标关系,得点M2的横坐标是-2,∴点M2的纵坐标为(-2)2-2×(-2)-3=5,∴M2(-2,5).在▱ABN3M3中,点B的横坐标是-1,点N3的横坐标是1,点A的横坐标是2,由图形平移前后点的坐标关系,得点M3的横坐标为4,∴点M3的纵坐标为42-2×4-3=5,∴M3(4,5).14.(1)易知点A,B的坐标分别为(0,2),(4,0).将x=0,y=2代入y=-x2+bx+c,得c=2,将x=4,y=0,c=2代入y=-x2+bx+c,得0=-16+4b+2,解得b=,故抛物线的解析式为y=-x2+x+2.(2)易得M(t,-t+2),N(t,-t2+t+2),则MN=y N-y M=-t2+t+2-(2-t)=-t2+4t=-(t-2)2+4,∴当t=2时,MN有最大值4.(3)易知A(0,2),M(2,1),N(2,5),设D(m,n).当AM是对角线时,AM的中点的坐标为(1,),DN的中点的坐标为(,),∴1=,=,解得m=0,n=-2,此时点D的坐标为(0,-2).当AN是对角线时,AN的中点的坐标为(1,),DM的中点的坐标为(,),∴1=,=,解得m=0,n=6,此时点D的坐标为(0,6).当MN是对角线时,MN的中点的坐标为(2,3),AD的中点的坐标为(,),∴2=,3=,解得m=4,n=4,此时点D的坐标为(4,4).15.(1)y=-x+(-2,2)(1,0)(2)∵抛物线与x轴负半轴交于点C,∴C(-3,0).过点A作AG⊥y轴,垂足为点G.当点N在y轴上时,如图(1),△AMN为抛物线的“梦想三角形”.设N(0,n),∵A(-2,2),C(-3,0),∴AC=,∴AN=AC=.在Rt△AGN中,AG2+GN2=AN2,又AG=2,GN=|n-2|,∴4+(n-2)2=13,解得n=2-3或n=2+3.设M(m,0),当n=2-3时,在Rt△MNO中,ON2+OM2=MN2,即(2-3)2+m2=(m+3)2,解得m=2-2.当n=2+3时,在Rt△MNO中,ON2+OM2=MN2,即(2+3)2+m2=(m+3)2,解得m=2+2.又-3<m≤1,∴m=2+2不合题意,舍去,∴m=2-2,此时n=2-3,∴N(0,2-3).图(1)图(2)当点M在y轴上时,如图(2),△AMN为“梦想三角形”,此时点M与点O重合,在Rt△AGM中,AG=2,GM=2,∴tan∠AMG==,∴∠AMG=30°,∴∠AMC=∠AMN=∠NMB=60°,过点N作NP⊥x轴于点P,在Rt△NMP中,MN=CM=3,∴NP=,OP=,∴N(,).综上所述,点N的坐标为(0,2-3)或(,).(3)E1(-1,-),F1(0,);E2(-1,-),F2(-4,).16.(1)由题意得,c=4,则解得∴抛物线的解析式为y=-x2+x+4.(2)∵抛物线与x轴交于点B(-1,0),对称轴为直线x=1,∴点A的坐标为(3,0).∵直线AC经过点A(3,0),点C(0,4),∴直线AC的解析式为y=-x+4.令对称轴与直线AC交于点D,与x轴交于点E,则DE⊥x轴,点D的坐标为(1,).∴DE=,AE=2,AD=.图(1)①当点P在∠CAB的平分线上时,如图(1),过点P作PH⊥AC于点H,则PH=PE=m,DP=-m.易得△DPH∽△DAE,∴=,即=,解得m=1.图(2)②当点P在∠CAB的邻补角的平分线上时,如图(2),过点P作PG⊥AC于点G,则PG=PE=-m,DP=-m.易得△DPG∽△DAE,∴=,即=,解得m=-4.∴m的值为1或-4.(3)点Q的坐标为(1,)或(,).17.(1)由题可设抛物线的解析式为y=a(x-1)2+4(a≠0),将C(0,3)代入,得a+4=3,∴a=-1,故抛物线的解析式为y=-(x-1)2+4=-x2+2x+3. (2)易得B(3,0),根据待定系数法,易得直线BC的解析式为y=-x+3.分以下两种情况讨论.①当点Q在直线BC上方时,∵S△PBC=S△QBC,∴PQ∥BC.如图(1),过点P作平行于BC的直线,交抛物线于点Q1,∵P(1,4),∴直线PQ的解析式为y=-x+5.联立y=-x+5与y=-x2+2x+3,得解得∴Q1(2,3).②当点Q在直线BC下方时,如图,设抛物线的对称轴交BC于点G,交x轴于点H,则G(1,2),∴PG=GH=2.过点H作平行于BC的直线,交抛物线于点Q2,Q3.易得直线Q2Q3的解析式为y=-x+1,联立y=-x+1与y=-x2+2x+3,得解得∴Q2(,),Q3(,).综上所述,点Q的坐标为(2,3),(,)或(,).(3)存在.正方形MNED的边长为9或.18.(1)将A(-1,0)代入y=-x2+bx+3,得b=2,故抛物线的解析式为y=-x2+2x+3,过点D作DF⊥x轴于点F,易证△AOC∽△AFD,∴=.∵CD=4AC,∴==,∴点D横坐标为4.把x=4代入y=-x2+2x+3,得y=-5,∴D(4,-5).把A(-1,0),D(4,-5)分别代入y=kx+h,解得k=-1,h=-1,故直线l的解析式为y=-x-1.(2)过点E作EM⊥x轴,交AD于点M,设E(m,-m2+2m+3),则M(m,-m-1),∴EM=-m2+2m+3-(-m-1)=-m2+3m+4,∴S△ADE=×5(-m2+3m+4)=-m2+m+10,当m=-=时,△ADE的面积最大,此时,E(,).(3)以A,D,P,Q为顶点的四边形不能为矩形.理由:设P(1,n),AD2=25+25=50.①若AD是一边,则∠QAD=90°.易知x Q-x P=x A-x D,即x Q-1=-1-4,解得x Q=-4,故点Q的坐标为(-4,-21).此时AQ2=32+212=450,DQ2=82+162=320,∴AQ2+AD2≠DQ2,∴∠QAD≠90°,故此时以A,D,P,Q为顶点的四边形不是矩形.②若AD是对角线,则∠AQD=90°.用同样的方法求得Q(2,3),此时QD2=22+82=68,QA2=32+32=18,∴QD2+QA2≠AD2,∴∠AQD≠90°,故此时以A,D,P,Q为顶点的四边形不是矩形.综上所述,以A,D,P,Q为顶点的四边形不能为矩形.19.(1)设抛物线的解析式为y=ax(x-).将点A的坐标代入,得1=a(1-),解得a=-.故抛物线的解析式为y=-x(x-)=-x2+x.(2)如图,过点C作CD⊥x轴于点D,延长CA交y轴于点E,设AC与x轴交于点H.∵A(1,1),∴∠AOE=45°.∵AC⊥OA,∴△AOE为等腰直角三角形.∴OE=2,∴E(0,2).设直线AC的解析式为y=kx+b.根据题意,得解得故直线AC的解析式为y=-x+2.联立抛物线与直线AC的解析式,得解得∴C(5,-3),∴CD=3.易知H(2,0),∴S△AOC=OH·(1+CD)=×2×4=4.(3)存在,点M的坐标为(,),(,-)或(,-54).过点M作MF⊥x轴于点F,则△MNO∽△FMO.①当点M在x轴上方时,由题意得△MNO∽△AOC,设M(m,-m2+m),则OF=m.∴△FMO∽△AOC,∴=.∵A(1,1),∴OA=.∵C(5,-3),∴AC=4,∴=,∴=.∵m>0,∴-m+=,解得m=,当m=时,-m2+m=,∴M(,).②当点M在x轴下方时.(i)若△MNO∽△AOC,同①可得=.∵m>0,∴m-=,解得m=,当m=时,-m2+m=-,∴M(,-).(ii)若△MNO∽△ACO,可得△FMO∽△ACO,∴=,∴=4,∵m>0,∴m-=4,解得m=.当m=时,-m2+m=-54,∴M(,-54).综上,满足条件的点M的坐标为(,),(,-)或(,-54).20.(1)(3m,0)(0,-m)(2)当m=3时,y=-x2+x-3,点B的坐标为(9,0),点C的坐标为(0,-3),易得直线BC的解析式为y=x-3.设M(a,-a2+a-3),则N(a,a-3),∴MN=-a2+a-3-(a-3)=-a2+3a.∵点M在直线BC上方的抛物线上,∴0<a<9,∴当a=-=时,MN的长有最大值,为-×()2+3×=. (3)存在,点P的坐标为(1,-3),(1,-)或(1,).21.(1)将C(0,),B(1,0)分别代入y1=ax2-x+c,得解得故抛物线y1的解析式为y1=-x2-x+.∵抛物线y1平移后得到抛物线y2,且顶点为B(1,0),∴抛物线y2的解析式为y2=-(x-1)2,即y2=-x2+x-.(2)存在.易得抛物线y2的对称轴l为直线x=1,A(-3,0),设T(1,t),过点T作TE⊥y轴于点E,则TC2=TE2+CE2=12+(-t)2, TA2=TB2+AB2=t2+(1+3)2=t2+16,AC2=.分以下三种情况讨论:①当TC=AC时,12+(-t)2=,解得t1=,t2=;②当TA=AC时,t2+16=,此方程无实数解;③当TA=TC时,12+(-t)2=t2+16,解得t3=-.综上可知,在直线l上存在点T,使△TAC是等腰三角形,此时点T的坐标为(1,),(1,)或(1,-).(3)设P(m,-m2-m+),则Q(m,-m2+m-).∵Q,R关于直线x=1对称,∴R(2-m,-m2+m-).分以下两种情况讨论:①当点P在直线l的左侧时,PQ=-m2-m+-(-m2+m-)=1-m,QR=2-2m,a.当△PQR≌△GMA,即PQ=GM,QR=AM时,易得m=0,∴P(0,),即点P与点C重合,∴R(2,-).设直线PR的解析式为y=kx+b,将P(0,),R(2,-)分别代入,得解得故直线PR的解析式为y=-x+.b.当△PQR≌△AMG,即PQ=AM,QR=MG时,这种情况不存在.②当点P在直线l的右侧时,PQ=-m2+m--(-m2-m+)=m-1,RQ=2m-2,同理可得P(2,-),R(0,-),利用待定系数法,可得直线PR的解析式为y=-x-.综上所述,直线PR的解析式为y=-x+或y=-x-.22.(1)将C(0,-3)代入y=x+m,得-3=0+m,解得m=-3.(2)对于y=x-3,令y=0,得x=3,∴B(3,0).将C(0,-3),B(3,0)分别代入y=ax2+b,得解得故抛物线y=ax2+b(a≠0)的解析式为y=x2-3.(3)存在.分以下两种情况讨论.①若点M在BC上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD==,∴D(,0).设直线DC的解析式为y=kx-3,把D(,0)代入,得k-3=0,解得k=,故直线DC的解析式为y=x-3.联立直线DC和抛物线的解析式,得解得(不合题意,舍去)∴M(3,6).②若点M在BC下方,设MC交x轴于点E,则∠OEC=45°-15°=30°,∴OE==3.设直线EC的解析式为y=mx-3,把E(3,0)代入,得0=3m-3,解得m=,故直线EC的解析式为y=x-3.联立直线EC和抛物线的解析式,得解得(不合题意,舍去)∴M(,-2).综上所述,点M的坐标为(3,6)或(,-2).23.(1)对于y=-x+2,当x=0时,y=2,当y=0时,x=4,∴A(4,0),C(0,2).∵抛物线y=-x2+bx+c经过点A(4,0),C(0,2),∴解得故抛物线的解析式为y=-x2+x+2.(2)如图,过点P作PN⊥x轴于点N,交直线AC于点M,则PN∥y轴,∴∠PME=∠OCE.又∵∠PEM=∠OEC,∴△PEM∽△OEC,∴=.∵C(0,2),∴OC=2.设点P的坐标为(t,-t2+t+2),则点M(t,-t+2),∴PM=-t2+t+2-(-t+2)=-t2+2t,∴=-t2+t=-(t-2)2+1.∵-<0,0<t<4,∴当t=2时,有最大值1.(3)存在.点P的坐标为(2,3)或(,).24.(1)∵二次函数y=-x2+bx+c的图象过点B(1,0),C(0,4),∴解得故二次函数的解析式为y=-x2-3x+4.(2)如图,连接PD,过点P作PM⊥x轴于点M,交AD于点N,令-x2-3x+4=0,解得x1=1,x2=-4,∴A(-4,0).设直线AD的解析式为y=kx+t,将A(-4,0),D(0,2)分别代入,得解得故直线AD的解析式为y=x+2.设P(m,-m2-3m+4),则N(m,m+2),∴PN=-m2-3m+4-(m+2)=-m2-m+2,∴S=2S△APD=2(S△APN+S△PND)=2×(PN·AM+PN·MO)=PN·AO=(-m2-m+2)×4=-4(m+)2+.∵-4<m<0,∴当m=-时,S有最大值,为.(3)存在,点P的横坐标为1,-2,或.。
1存在性系列之等腰三角形存在性问题
存在性系列之等腰三角形存在性问题几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法.等腰三角形存在性问题【问题描述】如图,点A 坐标为(1,1),点B 坐标为(4,3),在x 轴上取点C 使得△ABC 是等腰三角形.【几何法】“两圆一线”得坐标(1)以点A 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C,有AB=AC;(2)以点B 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C,有BA=BC;(3)作AB 的垂直平分线,与x 轴的交点即为满足条件的点C,有CA=CB.【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.AC 1=AB=(4-1)2+(3-1)2=作AH ⊥x 轴于H 点,AH =1 C 1H =C 2H = 13-1=2 xC 1(1-2 3,0) C 2(1+2 3,0)C 3、C 4 同理可求,下求C 5 .显然垂直平分线这个条件并不太适合这个题目,如果 A 、B 均往下移一个单位,当点 A 坐标为(1,0),点 B 坐标为(4,2)时,可构造直角三角形勾股解:AH =3,BH =2设AC 5=x ,则BC 5=x ,C 5H =3-x (3-x )2+22=x 213 解得:x = 619故C 坐标为( ,0)5 6而对于本题的C 5 ,或许代数法更好用一些.313【代数法】表示线段构相等(1)表示点:设点C 5 坐标为(m ,0),又 A 点坐标(1,1)、B 点坐标(4,3),(2)表示线段: AC 5 =, BC 5 =(3)分类讨论:根据 AC = BC ,可得:=,5 5(4)求解得答案:解得: m = 23 ,故C 坐标为,0.65 6 ⎪ ⎝ ⎭【小结】几何法:(1)“两圆一线”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标 A 、B 、C ;(2)由点坐标表示出三条线段:AB 、AC 、BC ; (3)根据题意要求取①AB =AC 、②AB =BC 、③AC =BC ; (4)列出方程求解.问题总结:(1)两定一动:动点可在直线上、抛物线上;(2)一定两动:两动点必有关联,可表示线段长度列方程求解; (3)三动点:分析可能存在的特殊边、角,以此为突破口.【2018 泰安中考】如图,在平面直角坐标系中,二次函数y =ax2 +bx +c 交x 轴于点A(-4, 0) 、B(2, 0) ,交y 轴于点C(0, 6) ,在y 轴上有一点E(0, -2) ,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求∆ADE 面积的最大值;(3)抛物线对称轴上是否存在点P ,使∆AEP 为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在请说明理由.11 (2 5 )2-12 19 【分析】(1) y = - 3 x 2 - 3x + 6 ;4 2(2)可用铅垂法,当点 D 坐标为(-2,6) 时,△ADE 面积最大,最大值为 14; (3)这个问题只涉及到 A 、E 两点及直线 x =-1(对称轴)①当 AE =AP 时,以 A 为圆心,AE 为半径画圆,与对称轴交点即为所求 P 点.∵AE = 2 ,∴ AP 1 =2 ,又 AH =3,∴ P 1H = , 故 P 1 (-1, 11)、 P 2 (-1, - 11).②当 EA =EP 时,以 E 点为圆心,EA 为半径画圆,与对称轴交点即为所求 P 点.过点 E 作 EM 垂直对称轴于 M 点,则 EM =1, P 3 M = P 4 M = = ,故 P 3 (-1, -2 + 19 )、 P 4 (-1, -2 - 19 ).③当 PA =PE 时,作 AE 的垂直平分线,与对称轴交点即为所求 P 点. 设 P (-1, m ) , P A 2 = (-1+ 4)2+ (m - 0)2, P E 2 =(-1- 0)2+ (m + 2)2555∴ m 2 + 9 = (m + 2)2+1,解得:m =1.故 P 5 (-1,1).综上所述,P 点坐标为 P 1 (-1, 11)、P 2 (-1, - P 5 (-1,1).11)、P 3 (-1, -2 +19 )、P 4 (-1, -2 -19 )、【补充】“代数法”用点坐标表示出线段,列方程求解亦可以解决.yP 5AO BxEy P 3AOBxMEP 4y P 1HAOBxE P 25 5【2019 白银中考(删减)】如图,抛物线y =ax2 +bx +4 交x 轴于A(-3, 0) ,B(4, 0) 两点,与y 轴交于点C ,连接AC ,BC .点P 是第一象限内抛物线上的一个动点,点P 的横坐标为m .(1)求此抛物线的表达式;(2)过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由;5 2⎛ 5 2 5 2 ⎫ ⎛ 5 2 5 2 ⎫ 【分析】(1) y = - 1 x 2 + 1x + 4 ;3 3(2)①当 CA =CQ 时,∵CA =5,∴CQ =5,考虑到 CB 与 y 轴夹角为 45°,故过点 Q 作 y 轴的垂线,垂足记为 H ,则CH = QH =2 ,故 Q 点坐标为 ,4 - 2 2 ⎪ . ⎝⎭ ②当 AC =AQ 时,考虑直线 BC 解析式为 y =-x +4,可设 Q 点坐标为(m ,-m +4),AQ =故 Q 点坐标为(1,3).= 5 ,解得:m =1 或 0(舍),③当 QA =QC 时,作 AC 的垂直平分线,显然与线段 BC 无交点,故不存在.综上所述,Q 点坐标为 ,4 - 2 2 ⎪ 或(1,3). ⎝ ⎭x(m + 3)2 + (-m + 4 - 0)2(m + 3)2+ (-m + 4 - 0)2y C PQ 1A O Q 2 MB5 【2019 盐城中考删减】如图所示,二次函数 y = k (x -1)2 + 2 的图像与一次函数 y = kx - k + 2 的图像交于 A 、B 两点, 点 B 在点 A 的右侧,直线 AB 分别与 x 、 y 轴交于C 、 D 两点,其中k < 0 . (1)求 A 、 B 两点的横坐标;(2)若∆OAB 是以OA 为腰的等腰三角形,求k 的值.【分析】(1)A 、B 两点横坐标分别为 1、2; (2)求 k 的值等价于求 B 点坐标,B 点横坐标始终为 2,故点 B 可以看成是直线 x =2 上的一个动点, 满足△OAB 是以 OA 为腰的等腰三角形, 又 A 点坐标为(1,2),故OA =①当 OA =OB 时,即OB = ,记直线 x =2 与 x 轴交点为 H 点, ∵OH =2,∴BH =1,故 B 点坐标为(2,1)或(2,-1),k =-1 或-3. ②当 AO =AB 时,易知 B 点坐标为(2,0),k =-2.综上所述,k 的值为-1 或-2 或-3.y DABCOxy DABCOHx5【2018 贵港中考(删减)】如图,已知二次函数y =ax2 +b x +c 的图像与x 轴相交于A(-1, 0) ,B(3, 0) 两点,与y 轴相交于点C(0, -3) .(1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图像上任意一点,PH ⊥x 轴于点H ,与线段BC 交于点M ,连接PC .当∆PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.2 【分析】(1) y = x 2 - 2x - 3;(2)①当 PM =PC 时,(特殊角分析)考虑∠PMC =45°,∴∠PCM =45°,即△PCM 是等腰直角三角形,P 点坐标为(2,-3);②当 MP =MC 时,(表示线段列方程)设 P 点坐标为(m , m 2 - 2m - 3),则 M 点坐标为(m , m - 3), 故线段 PM = (m - 3) - (m 2 - 2m - 3)= -m 2 + 3m 故点 M 作 y 轴的垂线,垂足记为 N ,则 MN =m ,考虑△MCN 是等腰直角三角形,故 MC = 2m ,∴ -m 2 + 3m = 2m ,解得m = 3 - 或 0(舍), 故 P 点坐标为(3 - 2, 2 - 4 2 ).综上所述,P 点坐标为(2,-3)或(3 - 2, 2 - 4 2 ).yHA OBxCPMyHA OxNB MCP【2019 眉山中考删减】如图,在平面直角坐标系中,抛物线y =-4x2 +bx +c 经过点A(-5, 0) 和点B(1, 0) .9(1)求抛物线的解析式及顶点D 的坐标;(2)如图,连接AD 、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN 交线段AD 于点N ,是否存在这样点M ,使得∆DMN 为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.【分析】(1) y = - 4 x 2 - 16 x + 20,顶点 D 坐标为(-2, 4) ;9 9 9(2)考虑到∠DAB =∠DBA =∠DMN ,即有△BMD ∽△ANM (一线三等角).①当 MD =MN 时,有△BMD ≌△ANM , 可得 AM =BD =5,故 AN =BM =1;x②当 NM =ND 时,则∠NDM =∠NMD =∠DAB ,△MAD ∽△DAB ,可得 AM = 25 , BM = 11∴AN 6 6 25= AM , 即 AN = 6 , BM BD解得: AN =55 . 3611 5 6x③当 DM =DN 时,∠DNM =∠DMN =∠DAB ,显然不成立,故不存在这样的点 M .综上,AN 的值为 1 或 55.36yDCN AM OByDCN AMOB2 【2019 葫芦岛中考(删减)】如图,直线 y = -x + 4 与 x 轴交于点 B ,与 y 轴交于点C ,抛物线 y = -x 2 + bx + c 经过 B ,C两点,与 x 轴另一交点为 A .点 P 以每秒 个单位长度的速度在线段 BC 上由点 B 向点C 运动(点 P 不与点 B 和点C 重合),设运动时间为t 秒,过点 P 作 x 轴垂线交 x 轴于点 E ,交抛物线于点 M .(1)求抛物线的解析式;(2)如图,连接 AM 交 BC 于点 D ,当∆PDM 是等腰三角形时,直接写出t 的值.x【分析】(1) y = -x 2 + 3x + 4 ;(2)①考虑到∠DPM =45°,当 DP =DM 时,即∠DMP =45°,直线 AM :y =x +1,联立方程: -x 2 + 3x + 4 = x + 1, 解得: x 1 = 3 , x 2 = -1 (舍).此时 t =1.xyCDMA P EB OyCMDA P BEO2 2 2 2 2 2 45° 12 145°222.5°2 + 12 ②当 PD =PM 时,∠PMD =∠PDM =67.5°,∠MAB =22.5°,考虑 tan ∠22.5°= 直线 AM : y =( -1, - 1)x +- 1 ,联立方程: -x 2 + 3x + 4 =( -1)x + - 1解得: x 1 = 5 - 2 , x 2 = -1 (舍).此时 t = -1.x综上所述,t 的值为 1 或 -1.附:tan22.5°= -1.22.5°tan 22.5︒ =1= - 1【总结】具体问题还需具体分析题目给的关于动点的条件,选取恰当的方法,可减轻计算量.2 2 yCDMA OP B E。
二次函数压轴题3,将军饮马问题和直角三角形存在性问题
⼆次函数压轴题3,将军饮马问题和直⾓三⾓形存在性问题【题⽬呈现】如下图,已知抛物线y=ax²⼗bX⼗c(a≠0)的对称轴为直线x=⼀1,且经过A(1,0),C(0,3)两点,与x轴的另⼀个交点为B.(1)若直线y=mx⼗n经过B、C两点,求直线和抛物线的解析式;(2)在抛物线的对称轴x=⼀1上找⼀点M,使点M到点A,点C两点距离之和最⼩,求点M的坐标;(3)设点P为抛物线对称轴x=⼀1上的⼀个动点,求使△BPC为直⾓三⾓形的点P的坐标.【分析】第⼀问,由已知对称轴,及A,C两点坐标,⽤待定系数法即可求解;第⼆问,由于A,B两点关于对称轴对称,直线BC与对称轴的交点即为要求的M点;第三问,以B、P、C三点分别为直⾓顶点分类讨论。
利⽤勾股定理建⽴⽅程,若有解则存在这样的点P,若⽆解则不存在。
【答案解析】解:(1)依题意,得①⼀b/2a=⼀1,②a⼗b+c=0,③c=3。
三式联⽴解得,a=⼀1,b=⼀2,c=3.∴抛物线的解析式为y=⼀x²⼀2x+3,令y=0,得出B点坐标为(⼀3,0)∵直线y=mx+n经过B(⼀3,0),C(0,3)两点,∴可得①⼀3m⼗n=0,②n=3,∴m=1,n=3.∴直线BC的解析式为y=X⼗3.②∵MA=MB,∴MA+MC=MB⼗MC,∴使MA⼗MC最⼩的点M应为直线BC与对称轴x=⼀1的交点.设直线BC与对称轴X=⼀1的交点为M,把x=⼀1代⼊直线y=X+3,得y=2,∴M(⼀1,2).(3)设P(1,t),结合B(⼀3,0),C(0,3)得BC²=18,PB²=(⼀1⼗3)²+t²=4+t²,PC²=(⼀1)²⼗(t⼀3)²=t²⼀6t⼗10.若B为直⾓顶点,则BC²⼗PB²=PC²,即18+4+t²=t²⼀6t+10,解得t=⼀2;若C为直⾓顶点,则BC²+PC²=PB²,即18⼗t²⼀6t⼗10=4+t²,解得t=4;若P为直⾓顶点,则PB²⼗PC²=BC²,即4⼗t²+t²⼀6t⼗10=18,解得t1=(3⼗√17)/2,t2=(3⼀√17)/2.综上所述,满⾜条件的点P共有4个,分别为P(⼀1,⼀2)或P(⼀1,4)或(⼀1,3/2⼗√17/2)或(⼀1,3/2⼀√17/2).【反思】本题,难度不算太⼤,要熟练掌握将军饮马问题,善于运⽤分类讨论的思想⽅法。
中考复习 数学压轴题二次函数与三角形存在性问题破解策略课件)
16 3- 137
= ;
153 16
,
当 TA=AC 时,得 t2+16= 16 ,无解; 当 TA=TC 时,得 t2- t+ =t2+16, 解得 t3=- ;
8 77 16 25
153
综上可知,在抛物线y2的对称轴l上存在点T使△TAC是等腰三角形, 此时T点的坐标为
T1(1,
3+ 137 4
所以,抛物线 y1 的解析式为
因为抛物线 y1 平移后得到抛物线 y2,且顶点为 B(1,0), 1 所以抛物线 y2 的解析式为 y2=-4(x-1)2, 即
1 2 1 1 y2=- x + x- ; 4 2 4
(2)抛物线y2的对称轴l为x=1,
设 T(1,t),已知 A(-3,0),C(0, ),
QR=2-2m, 又因为以P,Q,R为顶点的三角形与△AMG全等, 当PQ=GM且QR=AM时,m=0,
4 2 4
可求得 P(0, ),即点 P 与点 C 重合, 所以 R(2,- ). 设 PR 的解析式 y=kx+b, 则有 ������ = 4 ,
3 4 1 4
3
2������ + ������ = - 4 .
坐标,注意要根据题意舍去不合题意的点.
(1)求抛物线y2的解析式; (2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在 ,请求出所有点T的坐标;若不存在,请说明理由; (3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点
Q,点Q关于直线l的对称点为R.若以P,Q,R为顶点的三角形与△AMG
2
∴抛物线的表达式是
2 2 8 y= x +2x- . 3 3
中考复习函数专题28 二次函数中的三角形问题(老师版)
专题28 二次函数中的三角形问题知识对接考点一、二次函数中的三角形问题考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
考点二、解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
要点补充:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
要点补充:专项训练一、单选题1.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A .B .C .D .【答案】A 【分析】设三角形运动速度为1,分0≤t≤2时,2<t≤2时,2<时,时五种情况,可知等腰直角三角形与正方形的不重叠部分面积变化过程是变小--不变--变大,分别求出函数关系式,即可得出答案. 【详解】∵等腰直角三角形的直角边长为1, ∵当s =12×1×1+2×2﹣212t ⨯=92﹣12t 2;s =22-12+2×12t)2=t 2﹣112;t≤2时,s =2122-×1×1=72;当2<时,s =22-2×12(t -2)2=t 2﹣4t+152;当2+2<s =22+12-2×12t+2)2=92t+2)2,∵等腰直角三角形与正方形的不重叠部分面积变化过程是变小--不变--变大,且变小、变大时的图象为抛物线,不变时的图象为直线, ∵A 符合要求, 故选:A . 【点睛】考查了动点问题的函数图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论,熟练掌握二次函数的图象是解题关键.2.定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线l :13y x b =+经过点10,4M ⎛⎫⎪⎝⎭一组抛物线的顶点()111B y ,,()222,B y ,()333,B y ,…(),n n B n y (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:()11,0A x ,()22,0A x ,()33,0A x ,…()11,0n n A x ++(n 为正整数).若()101x d d =<<,当d 为( )时,这组抛物线中存在美丽抛物线A .512或712B .512或1112C .712或1112D .712【答案】B 【分析】由抛物线的对称性可知,所有构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以此等腰三角形斜边上的高等于斜边的一半,又0<d <1,所以等腰直角三角形斜边的长小于2,所以等腰直角三角形斜边的高一定小于1,即抛物线的顶点纵坐标必定小于1,据此对上一步结论分析可得满足美丽抛物线对应的顶点,再确定抛物线与x 轴的交点值与对称轴的距离,从而可求得d 的值 【详解】解: 直线l :13y x b =+经过点M (0,14)则b=14,∵直线l :1134y x =+由抛物线的对称性知:抛物线的顶点与x 轴的两个交点构成的直角三角形必为等腰直角三角形; ∵该等腰三角形的高等于斜边的一半 ∵0<d <1∵该等腰直角三角形的斜边长小于2,斜边上的高小于1(即抛物线的顶点纵坐标小于1)∵当x=1时,11173412y =+=<1;当x=2时,221113412y =+= <1; 当x=3时,315144y =+=>1; ∵美丽抛物线的顶点只有12,B B ∵若1B 为顶点,由17(1,)12B ,则7511212d =-= , ∵若2B 为顶点,由211(2,)12B ,则11111(2)11212d ⎡⎤=---=⎢⎥⎣⎦综上所述,d 的值为512或1112时,存在美丽抛物线. 故选B . 【点睛】此题主要考查抛物线与x 轴的交点,抛物线的对称性.3.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是A.16B.15C.14D.13【答案】C【详解】根据在OB上的两个交点之间的距离为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,∵一共有7条抛物线.同理可得开口向上的抛物线也有7条.∵满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14.故选C.4.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果∵ABC是该抛物线的内接格点三角形,A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()。
初中数学二次函数之等腰直角存在性问题
P专题六:二次函数之等腰直角存在性问题一、解题策略分析二次函数之等腰、直角三角形存在性问题,主要指的是在平面直角坐标系下, 已知一条边(或两个顶点)的等腰或直角三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用.(一)涉及主要知识点:1. 已知 A 、B 两点,通过“两圆一线”(所谓两圆是指分别以 A 、B 两点为圆心,AB 长度为半径所作的圆;一线是指 AB 的垂直平分线)可以找到所有满足条件的等腰三角形.即以 AB 为边的等腰三角形的另一个顶点的轨迹是 除 P 、A 、C 、B 、Q 五点外的“两圆一线”(如图 1).图 12. 已知 A 、B 两点,通过“两线一圆”(所谓的两线是指过已知边 AB 的两个端点所作的与 AB 垂直的两条 直线;一圆就是以已知边 AB 为直径,以 AB 的中点 为圆心所作的圆)可以找到所有满足条件的直角三角 B形.即以 AB 为边的直角三角形的另一个顶点的轨迹是 除 A 、B 两点外的“两线一圆”(如图 2).图 2(二)关于等腰三角形存在性问题解题策略分析(三)关于直角三角形存在性问题解题策略分析底角相等 腰长相等 AB=BC AB=AC (算出结果后,一定要检验三角形的存在性,舍去图 2 中的所谓的两个点)构造子母直角三角形模型直角相关模型构造一线三直角模型 AC 2 + BC 2 = AB 2AB 2 + AC 2 = BC 2 两点间距离公式AB 2 + BC 2 = AC 2(算出结果后,一定要检验三角形的存在性,舍去图 1 中的所谓的五个点) 三线合一等腰三角形性质 AC=BC 两点间距离公式33二、典型例题分析(2019.4 嘉定区二模)在平面直角坐标系xOy 中,如图,抛物线y =ax2- 2x +c(a 、c 是常数)经过点A(-2,3) 、B(-3,0) ,与y 轴的交点为点C .(1)求此抛物线的表达式;y(2)点D 为y 轴上一点,如果直线BD 和直线BC 的夹角为15º,求线段CD 的长度;(3)设点Q 为x 轴一个动点,当△BQC 为等腰三角形时,求点Q 的坐标.(改编)(4)设点P 为此抛物线的对称轴上的一个动点,当△BPC 为直角三角形时,求点P 的坐标.(5)设点S 为抛物线上的一个动点,当△BSC为以BC为直角边的直角三角形时,求点S 的坐标.(改编)分析:(1)抛物线的表达式是y=-x2-2x+3.1-1 O 1 x -1(2)CD = 3 -或3 -3.(3)根据“两圆一线”法,可知符合条件的点有 4 个:2 yCQ 2BQ 3 Q 1 Q 434 【思路一:两点间距离公式】【方法 1】设点Q 为(m ,0) , B (- 3,0 ), C (0,3) , 得 BC 2 = 18 , BQ 2 = (m + 3)2, CQ 2 = m 2 + 9 ,分 3 种情况讨论:①当 BC 2 = BQ 2 时,即: (m + 3)2= 18 ,解得: m= -3 + 3 2, m 2= -3- 3 ;②当QB 2 = QC 2 时,即: (m + 3)2= m 2 + 9 ,解得: m = 0 ;③当CB 2 = CQ 2 时,即: m 2 + 9 =18 ,解得: m = -3,m 2 = 3 ;经检验, (- 3,0 )无法与点 B 、点C 构成三角形,不符合题意,故舍去. 从而求得点Q 的坐标为: (- 3 + 3 2,0 )或(-3 - 3 2或,0))或(0,0 ) 或(3,0 ).【思路二:等腰三角形的性质】【方法 2】同方法 1,分 3 种情况讨论:①当 BC = BQ 时,B (- 3,0 ),BQ = BC = 3,得点Q 1 (-3 + 3 2,0)或Q 2 (-3 - 3 2,0);②当QB = QC 时, 作BC 垂直平分线交x 轴于点Q ,易证点Q 与原点重合 得Q (0,0 ) ;③当 B C = Q C 时,由等腰三角形“三线合一” x的性质可得: BO = QO ,得Q (3,0 ).从而求得点Q 的坐标为: Q (- 3 + 3 2,0 )或(- 3- 3 2,0 )或(0,0 ) 或(3,0 ).【说明】方法 1 利用“两点间距离公式”体现数形结合思想,该方法思路简单, 但有一定的计算量;方法 2 利用“等腰三角形的性质”解题,需要学生熟练掌握几何知识.2 1 11(4) 根据“两线一圆”法,可知符合条件的点有 4 个:【思路一:两点间距离公式】【方法 1】易得对称轴:直线 x = -1,设 P (-1,t ) , C (0,3) , B (-3,0)∴ BC 2 = 18 , PB 2 = (-1+ 3)2 + t 2 = 4 + t 2 , PC 2 = (-1)2 + (t - 3)2 = t 2 - 6t +10 ,①若点 B 为直角顶点,则 BC 2 + PB 2 = PC 2 即:18 + 4 + t 2 = t 2 - 6t +10 解得:t = -2 ,②若点C 为直角顶点,则 BC 2 + PC 2 = PB 2 即:18 + t 2 - 6t +10 = 4 + t 2 解得:t = 4 ,③若点 P 为直角顶点,则 PB 2 + PC 2 = BC 2 即: 4 + t 2 + t 2 - 6t +10 =18 解得:t = 3 +2 17 , t =3 - 217 .综上所述 P 的坐标为: (-1, -2) 或(-1, 4) 或(-1, 3 + 17 ) 或(-1,3 - 17 ) .22【思路二:直角相关模型】【方法 1】同方法 1,分 3 种情况讨论:①若点 B 为直角顶点,则可构造如右图所示的“一线三等角”模型,设 P (-1,t ) ,易得:MC = 3 ,MB = 3 ,NP = 2 , 由 MC = MB可得 BN = 2 ,得 P (-1,-2); BN NP2当点C 为直角顶点时P(-1, 4)当点P 为直角顶点时P(-1,3 -217)当点P 为直角顶点时P(-1,3 +217)第②、③种作图如下,解法同上.(5)若题中△BSC 为直角三角形,根据“两线一圆”法,符合条件的点有 4 个.但本题“以BC为直角边”,所以符合条件的点有2 个:S1, S2.【思路一:两点间距离公式】【方法 1】由抛物线y =-x2- 2x + 3 ,设S(n, w) ,且w =-n2- 2n + 3 ,又点C 的坐标是(0,3) ,点B 的坐标是(-3,0)∴BC2= 18 ,SB2= (n + 3)2+w2,SC 2=n2+ (w - 3)2,①若点C 为直角顶点,则SB2=SC2+BC 2即:(n +3)2+w2=n2+ (w -3)2+18 ,解得:n1= 0, n2=-1,得S1(0,3), S2(-1,4) .②若点 B 为直角顶点,则SC2=SB2+BC 2即:n2+ (w - 3)2= (n + 3)2+w2+18 ,-n 2- 2n = -n,得n = n - 3 -n 2- 2n + 3 则S ( -1 - 5 , 5 + 5 )2 2-1 - 5 2 n 2 + 2n =n n + 3 -n 2 - 2n + 3 ,得n= -1 + 5 2 则S ( -1 + 5 , 5 - 5 )2 2解得:n 1 = 2, n 2 = -3 ,得S 3 (2,-5), S 4 (-3,0) .经检验,S 1 (0,3), S 4 (-3,0) 不符合题意,应舍去.综上所述的S 坐标为(-1,4) 或(2,-5).【思路二:直角相关模型】【方法 2】同方法 1,分 3 种情况讨论:①若点C 为直角顶点,则可构造“一线三等角”相似模型 设S (n , -n 2 - 2n + 3) ,易得: OB = OC = 3 , SW = -n ,WC = -n 2 - 2n由 OB = OC 可得n = 0, n = -1,得S (0,3), S (-1, 4) ;CW SW 1 21 2 ②若点 B 为直角顶点,则可构造“一线三等角”相似模型同理可得S 3 (2,-5), S 4 (-3,0) ;经检验, S 1 (0,3), S 4 (-3,0) 不符合题意,应舍去. 综上所述S 的坐标为(-1,4) 或(2,-5).【说明】方法 1 利用“两点间距离公式”体现数形结合思想,该方法思路简单, 但如果点在抛物线上,计算量明显大很多.设S 点坐标时引入两个参数,在计算过程中适当化简,可避免出现四次运算,否则计算量会更大;方法 2 利用“一线 三等角”相似模型解题,需要学生熟练掌握运用该模型.对本题而言方法 2 更为方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题
一、等腰三角形存在性
1 解题思想:分类讨论
2 解题技巧:坐标系内线段长度表示
(1)线段在坐标轴上或平行于坐标轴
在x轴或平行于x轴:x右-x左
在y轴或平行于y轴:y上-y下
(2)线段为倾斜(斜线段)A(X A,Y A)B(X B,Y B)C(X C,Y C)
由勾股定理得:AB2=
AC2=
BC2=
3 解题方法
(1)代数法:(1)根据条件用坐标表示三边或三边的平方
(2)分三种情况列方程,解方程
(3)根据题目条件及方程解确定坐标(注意重根)
(2)几何法:(1)先分三种情况A为顶点,B为顶点,C为顶点
(2)画图,作圆法,垂直平分线法
(3)计算:以两定点为腰则腰长已知,先求出腰长进行几何构造,注意不要漏解,以两定点为底则利用腰相等建立方程求解(表示腰长可结合代数法)。
例1. 如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B 两点,点C是抛物线与x轴的另一个交点(与A点不重合).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.
代数法:
几何法:
例2 如图△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.
(1)试求△ABC 的面积;
(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设AD=x ,当△BDG 是等腰三角形时,求出AD 的长. 只能选择几何法 1 先分析三种情况
2 根据已知表示三边长度(相似)
3 列方程计算
同步练习:
1.如图,抛物线2
54y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC .
(1)写出A,B,C 三点的坐标并求抛物线的解析式;
(2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.
2.如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.
A
C B
y x
0 1
1
(1)求点B的坐标;
(2)求经过点A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
3.(2016•临沂第26题)如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于
A、B两点.点C的坐标是(8,4),连接AC、BC.
(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。
二、直角三角形存在性
解题方法
(1)代数法:
(1)根据条件用坐标表示三边或三边的平方
(2)以直角顶点分三种情况,根据勾股定理列方程,解方程
(3)根据题目条件及方程解确定坐标
(2)几何法:
(1)先分三种情况进行构造:若已知边做直角边,过直角边的两端点作垂线,则第三个顶点在垂线上,若已知边为斜边,可取斜边为直径作圆,直角顶点在圆上
(2)计算:注意题目的几何背景,如有直接的相似则表示线段长度,进行相似求解,无直接相似则围绕顶点分别做坐标轴的平行线,构造一线三角模型进行相似求解。
例1.(2016•枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
代数法:几何法:
例2. 如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
代数法:几何法:
2、如图,已知一条直线过点(0,4),且与抛物线y=x 2
交于A ,B 两点,其中点A 的横坐标是﹣2.
(1)求这条直线的函数关系式及点B 的坐标.
(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在,请说明理由.
3.如图,在平面直角坐标系中,直线1
23
y x =-
+交x 轴于点P ,交y 轴于点A ,抛物线21
2
y x bx c =-++的图象过点(1,0)E -,并与直线相交于A 、B 两点.
⑴ 求抛物线的解析式(关系式);
⑵ 过点A 作AC AB ⊥交x 轴于点C ,求点C 的坐标;
⑶ 除点C 外,在坐标轴上是否存在点M ,使得MAB ∆是直角三角形?若存在,请求出点
M 的坐标,若不存在,请说明理由.
4. 如图,在平面直角坐标系中,直线33y
x =--与x 轴交于点A ,与y 轴交于点C ,
抛物线2
23
(0)y ax x c a =-
+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;
(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;
5.(2016•甘肃)如图,已知抛物线y =﹣x 2+bx +c 经过A (3,0),B (0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;
(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以个单位/秒的速度向终点B 匀速运动,当E ,F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△AEF 为直角三角形?
A O
x y
B F C。