九年级数学下册第一章直角三角形的边角关系小结与复习学案北师大版

合集下载

九年级数学下册 第1章 直角三角形的边角关系教案 北师大版

九年级数学下册 第1章 直角三角形的边角关系教案 北师大版

九年级数学下册第1章直角三角形的边角关系教案北师大版§1.1.1 从梯子的倾斜程度谈起(第1课时)教学目标1、经历探索直角三角形中边角关系的过程2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、能够运用三角函数表示直角三角形中两边的比4、能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计一、复习已学过的直角三角形性质和定理(勾股定理和其逆定理,300定理,斜边中线定理等等)二、新课讲授1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?ABC 8mα5m 5mβ13m3、直角三角形的边与角的关系(如图,回答下列问题) ⑴Rt △AB 1C 1和Rt△AB 2C 2有什么关系? ⑵222111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢? ⑷由此你得出什么结论?4、正切函数(1) 明确各边的名称(2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

(4) tanA 的值越大,梯子越陡 5、巩固练习如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB = ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ; 三、讲解例题例1 图中表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?分析:通过计算正切值判断梯子的倾斜程度。

这是上述结论的直接应用。

ABC∠A 的对边∠A 的邻边斜边ABC例2 如图,在△ACB 中,∠C = 90°,AC = 6,43tanB ,求BC 、AB 的长。

九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

第一章直角三角形的边角关系一、本章知识要点:1、锐角三角函数的概念;2、解直角三角形。

二、本章教材分析:(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。

如何解决这一关键问题,教材采取了以下的教学步骤:1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。

显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。

2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边的比值也随之变化了,由到。

这样就突出了直角三角形中边与角之间的相互关系。

3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。

4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。

同时要强调三角函数的实质是比值。

防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。

如果学生产生类似的错误,应引导学生重新复习三角函数定义。

5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。

北师大版九年级下册第一章直角三角形的边角关系(教案)锐角三角函数与解直角三角形(复习案)

北师大版九年级下册第一章直角三角形的边角关系(教案)锐角三角函数与解直角三角形(复习案)
-解直角三角形时,若已知一个角度和一个边长,可利用锐角三角函数求解其他未知量。
2.教学难点
-函数互化过程中的计算:对于一些特殊角的锐角三角函数值,学生容易混淆,计算过程中需要注意细节,如特殊角的三角函数值记忆。
-解直角三角形的实际应用:将理论知识应用于实际问题,需要学生具备较强的抽象思维能力和实际问题转化能力。
2.加强学生对锐角三角函数概念的理解,发展学生的数学抽象、逻辑推理和数学建模核心素养。
3.通过对解直角三角形的方法探讨,培养学生几何直观和空间想象能力,提高数据分析和问题解决的核心素养。
4.激发学生探索数学问题的兴趣,培养合作交流、自主探究的学习习惯,提升数学思维品质和学科素养。
三、教学难点与重点
1.教学重点
-解决问题的策略选择:在解决具体问题时,学生需要根据已知条件和求解目标,选择合适的锐角三角函数和解题方法。
举例解释:
-函数互化时,对于30°、45°、60°等特殊角的三角函数值,学生需要熟练掌握,如sin30°=1/2,cos30°=√3/2等。
-在实际应用题中,如测量旗杆高度,学生需要将实际问题转化为解直角三角形问题,确定已知量和求解量,选择合适的三角函数进行计算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版九年级下册第一章直角三角形的边角关系(教案)锐角三角函数与解直角三角形(复习案)

北师大版九年级数学下册:第一章 直角三角形的边角关系——回顾和思考 学案

北师大版九年级数学下册:第一章  直角三角形的边角关系——回顾和思考  学案

直角三角形的边角关系回顾与思考【学习目标】1.经历对本章知识的回顾与总结,建立本章的知识框架图。

2.引导学生利用科学计算器寻找任意角的正弦、余弦、正切的关系。

3.通过实际问题求解,进一步体会直角三角形的边角关系在现实生活中的广泛应用。

【学习重难点】重点:归纳直角三角形的边、角之间的关系,利用这些关系式解直角三角形,并利用解直角三角形的有关知识解决实际问题。

难点:利用解直角三角形的有关知识解决实际问题。

【学习过程】问题1:结合图回答:什么是∠A的正弦、余弦、正切?问题2:什么是解直角三角形?问题3:在Rt△ABC中,除直角C外的五个元素间具有什么关系?(1)三边关系:(2)锐角之间关系:(3)边角之间关系:今天我们来复习直角三角形的边角关系的有关内容问题4:(1)tan30°+cos45°+tan60°-cos30°;(2)tan30°•cos30°+sin230°;问题5:根据下列条件,解直角三角形.①a=10,∠B=450;②a= ,c=6 。

问题6:在平地上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测得山顶A的仰角为45°,求山高AB。

知识发展点:问题7:如图在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA= ,求AD的长。

问题8:如图,水库的横截面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1: ,斜坡CD的坡度i′=1:1,求斜坡AB的长及坡角α和坝底宽AD(精确到0.1m)易漏点:问题9:如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且 , AB = 4, 则AD的长为()(A)3 (B)(C)(D)问题10:九(1)班的数学课外小组,对公园人工湖中的湖心亭A处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A处测得南岸的一尊石雕C在其东南方向,再向正北方向前进10米到达B处,又测得石雕C在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?【学习小结】。

北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教学设计

北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教学设计

北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教学设计一. 教材分析北师大版九年级数学下册第一章《直角三角形的边角关系——回顾与思考》主要内容有锐角三角函数的概念、各锐角三角函数值表、直角三角形的边角关系、三角函数的图像和性质。

本章内容是初中数学的重要知识,也是学习高中数学的基础。

通过本章的学习,使学生掌握锐角三角函数的概念和各锐角三角函数值表,理解直角三角形的边角关系,会用三角函数解决实际问题。

二. 学情分析九年级的学生已经学习了三角函数的基础知识,对直角三角形的性质有一定的了解。

但学生对锐角三角函数的概念和各锐角三角函数值表的理解还不够深入,对直角三角形的边角关系的运用还不够熟练。

因此,在教学过程中,需要加强对学生的引导,让学生在复习旧知识的基础上,加深对新知识的理解。

三. 教学目标1.知识与技能目标:使学生掌握锐角三角函数的概念和各锐角三角函数值表,理解直角三角形的边角关系,会用三角函数解决实际问题。

2.过程与方法目标:通过复习旧知识,激发学生的学习兴趣,培养学生自主学习的能力。

3.情感态度与价值观目标:使学生感受到数学在生活中的应用,增强学生对数学的兴趣和信心。

四. 教学重难点1.教学重点:锐角三角函数的概念、各锐角三角函数值表、直角三角形的边角关系。

2.教学难点:锐角三角函数的概念、各锐角三角函数值表的理解和运用。

五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。

通过复习旧知识,激发学生的学习兴趣,引导学生自主学习,培养学生解决问题的能力。

在教学过程中,注重师生互动,鼓励学生提问、讨论,提高课堂氛围。

六. 教学准备1.教师准备:准备好教学课件、教学素材、练习题等教学资源。

2.学生准备:复习三角函数的基础知识,预习本章内容。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生复习三角函数的基础知识,激发学生的学习兴趣。

例如:“同学们,我们已经学习了哪些三角函数?它们有什么特点?”2.呈现(15分钟)教师利用课件呈现本章内容,引导学生了解本章要学习的内容。

2019年(春)九年级数学下册 第一章 直角三角形的边角关系小结与复习教案 (新版)北师大版.doc

2019年(春)九年级数学下册 第一章 直角三角形的边角关系小结与复习教案 (新版)北师大版.doc

2019年(春)九年级数学下册第一章直角三角形的边角关系小结与复习教案(新版)北师大版【教学内容】小结与复习【教学目标】知识与技能:理解三角函数的定义,识记特殊三角函数值,根据条件熟练解直角三角形过程与方法:通过对本章知识进行回顾,对本章知识结构有系统认识。

情感、态度与价值观:通过学习,了解数学在生产生活中的作用,激发数学学习兴趣。

【教学重难点】重点:熟练记忆特殊角三角值,根据条件选择适当方法解直角三角形。

难点:选择适当方法解直角三角形。

【导学过程】【知识回顾】什么是锐角的正切、正弦和余弦?2、写出30°、45°、60°角的三角函数值3、什么叫解直角三角形?解直角三角形有哪两种形式?【情景导入】本节课我们对本章知识进行回顾。

【新知探究】探究一、例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高 (结果精确到0.1m)?探究二、例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?探究三、2、利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:横断面(等腰梯形)ABCD的面积;②修一条长为100米的渠道要挖去的土方数.…….【知识梳理】本节课在回顾全章知识基础上,继续对解直角三角形深入学习。

【随堂练习】1.如图所示,图①中,一栋旧楼房由于防火设施较差,想要在侧面墙外修建一外部楼梯,由地面到二楼,再从二楼到三楼,共两段(图②中AB、BC两段),其中CC′=BB′=3.2m.结合图中所给的信息,求两段楼梯AB与BC的长度之和(结果保留到0.1m).(参考数据:sin30°=0.50,cos30°≈0.87,sin35°≈0.57,cos35°≈0.82)2.如图所示,某公司入口处原有三级台阶,每级台阶高为20c m,台阶面的宽为30cm,为了方便残疾人士,拟将台阶改为坡角为12°的斜坡,设原台阶的起点为A,斜坡的起点为C,求AC的长度(精确到1cm).。

九年级数学下册第一章直角三角形的边角关系小结与复习学案北师大版

九年级数学下册第一章直角三角形的边角关系小结与复习学案北师大版

第一章小结与复习【学习目标】1.理解三角函数的定义,识记特殊三角函数值,根据条件熟练解直角三角形.2.通过对本章知识进行旧知回顾,对本章知识结构有系统认识.【学习重点】熟练记忆特殊角的三角函数值,根据条件选择适当方法解直角三角形.【学习难点】情景导入 生成问题知识结构框图:解直角三角形⎩⎪⎪⎪⎨⎪⎪⎪⎧直角三角形边角关系⎩⎪⎨⎪⎧锐角三角函数⎩⎪⎨⎪⎧正切正弦、余弦30°、45°、60°角的三角函数值一般三角函数值的计算⎩⎪⎨⎪⎧利用计算器求三角函数值利用计算器求角度解直角三角形⎩⎪⎨⎪⎧已知两边解直角三角形已知一边和一锐角解直角三角形三角函数的应用⎩⎪⎨⎪⎧方位角问题俯角、仰角问题坡度问题利用三角函数测高 自学互研 生成能力知识模块一 锐角三角函数范例1:如图,在矩形ABCD 中,点E 在AB 上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的F 处,若AB =4,BC =5,则tan ∠AFE 的值为( C ) A .43B .45C .34D .45,(范例1题图)),(仿例1题图))仿例1:如图,四边形A BCD 中,AD ∥BC ,CA 是∠BCD 的平分线,且AB⊥AC,AB =4,AD =6,则tan B 等于( B )A .23B .22C .114D .554仿例2:tan 30°·tan 60°+2(sin 45°-1)2=3-2.知识模块二 解直角三角形范例2:长为4m 的梯子在墙上与地面成45°角,作业时调整为60°角(如图),则梯子的顶端沿墙面升高了(23-22)m .,(范例2题图)) ,(仿例题图))仿例:将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是2536cm 2. 知识模块三 三角函数的应用范例3:(徐州中考)如图,轮船从点A 处出发,先航行至位于点A 的南偏西15°且与点A 相距100km 的点B 处,再航行至位于点B 的北偏东75°且与点B 相距200km 的点C 处.(1)求点C 与点A 的距离;(精确到1km )(2)确定点C 相对于点A 的方向.(参考数据:2≈1.414,3≈1.732)解:(1)过A 作AD⊥BC 于点D ,∠A BC =75°-15°=60°.在Rt △ABD 中求得AD =503,BD =50,∴CD =150.在Rt △ADC 中,由勾股定理得AC =1003≈173(km ).(2)由AB 2+AC 2=BC 2,∠BAC =90°,∴∠FAC =75°,∴点C 位于点A 的南偏东75°方向.仿例:如图,小明在大楼30m 高(即PH =30m )的窗口P 处进行观测,测出坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i(即tan ∠ABC)为1∶3,点P ,H ,B ,C ,A 在同一个平面上,点H ,B ,C 在同一条直线上,且PH⊥HC.(1)山坡坡角(即∠ABC)的度数等于30°;(2)求A ,B 两点间的距离(结果精确到0.1m ,参考数据:3≈1.732).解:(1)30;(2)由题意得:∠PBH=60°,∠APB =45°,∵∠ABC =30°,∴∠ABP =90°,在Rt △PHB 中,PB =PH sin ∠PBH=203,在Rt △PBA 中,AB =PB =203≈34.6. 答:A ,B 间距离约为34.6m .交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一锐角三角函数知识模块二解直角三角形知识模块三三角函数的应用检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

九年级数学下册 第一章直角三角形的边角关系复习教案 北师大版

九年级数学下册 第一章直角三角形的边角关系复习教案 北师大版

第一章直角三角形的边角关系
回顾与思考
(一)教学核心
1.经历回顾与思考,建立本章的知识框架图;
2.利用计算器,发现同角的正弦、余弦、正切之间的关系;
3.进一步体会直角三角形边角关系在现实生活中的广泛应用;
4.体会数形之间的联系,逐步学会利用数形结合的思想分析问题和解决问题;
(二)课时安排
1课时
(三)教学内容
回顾与思考中共设计有四个问题,帮助大家回顾、思考直角三角形中反映边角关系的三角函数的概念,直角三角形中边角关系在现实生活中的广泛应用,体现数形之间的联系。

以及把实际问题数学化的过程,更进一步了解知识间的联系和综合应用。

使三角函数的意义从现实生活中来,而又服务于现实生活中,从现实生活中抽象出数学问题,然后数形结合,用三角函数解决问题。

(四)教学建议
1.教师可以通过一系列的练习题的解答,逐步呈现本章知识点,然后要求学生自己对本章的内容进行小结,随后进行交流,形成知识框架图。

2.可以让学生说一说他们利用三角函数的知识解决了什么实际问题,或利用三角函数解决问题的体会。

3.可以让学生说一说他们在使用计算器解决问题的过程中有什么发现等。

用心爱心专心 1。

北师大版初中九年级数学下册第一章集体备课教案教学设计含教学反思

北师大版初中九年级数学下册第一章集体备课教案教学设计含教学反思

第一章直角三角形的边角关系1 锐角三角函数第1课时正切【知识与技能】让学生理解并掌握正切的含义,并能够举例说明;会在直角三角形中说出某个锐角的正切值;了解锐角的正切值随锐角的增大而增大.【过程与方法】让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维的习惯,提高学生运用数学知识解决实际问题的能力.【情感态度】能激发学生学习的积极性和主动性,引导学生自主探索、合作交流,培养学生的创新意识.【教学重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.【教学难点】理解正切的意义,并用它来表示两边的比.一、情景导入,初步认知你能比较两个梯子哪个更陡吗?你有哪些办法?【教学说明】通过实际问题,创设情境,引发学生产生认知盲点,激发学生学习的兴趣和探究的欲望。

.二、思考探究,获取新知(1)Rt△AB1C1和 Rt△AB2C2有什么关系?(2)111B CAC有什么关系(3)如果改变B2的位置(如B3C3)呢?(4)由此你得出什么结论?【教学说明】通过相似沟通了直角三角形中的边、角关系,从而变换角度继续探讨,符合学生的认知规律此时学生的思维豁然开朗,同时培养了学生思维的深刻性.此环节的设计正是数学思维的开阔性,多角度、多方位性的展现师生的共同努力,淋漓尽致地演绎了数学体现在思维艺术上的美,从而解决了本节课的第一个难点.【归纳结论】在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定.这个比叫做∠A 的正切.记作:tanA =A A ∠的对边∠的邻边当锐角A 变化时,tanA 也随之变化。

(5)梯子的倾斜度与tanA 有关系吗?【教学说明】借助几何画板,从运动的角度来实施动态化、形象化、直观化教学.【归纳结论】在这些直角三角形中,当锐角A 的大小确定后,无论直角三角形的大小怎样变化,∠A 的对边与∠A 的邻边的比值总是唯一确定的.所以,倾斜角的对边与邻边的比可以用来描述坡面的倾斜程度.三、运用新知,深化理解1. 见教材P 3上第1题.2. 如图,在 Rt △ABC 中,∠C= 90。

九年级数学下册:第一章直角三角形的边角关系复习教案(北师大版)

九年级数学下册:第一章直角三角形的边角关系复习教案(北师大版)

第1章直角三角形的边角关系课题回顾与思考教具目标(一)教学知识点1.经历回顾与思考,建立本章的知识框架图.2.利用计算器,发现同角的正弦、余弦、正切之间的关系。

3.进一步体会直角三角形边角关系在现实生活中的广泛应用.(二)能力训练要求1.体会数形之间的联系,逐步学会利用数形结合的思想分析问题和解决问题.2.进一步体会三角函数在现实生活中的广泛应用,增强应用数学的意识.(三)情感与价值观要求1.在独立思考问题的基础上,积极参与对数学问题的讨论,敢于发表自己的观点.并尊重与理解他人的见解,在交流中获益.2.认识到数学是解决现实问题的重要工具,提高学习数学的自信心.教学重点1.建立本章的知识结构框架图.2.应用三角函数解决现实生活中的问题,进一步理解三角函数的意义.教学难点应用三角函数解决问题教学方法探索——发现法教具准备多媒体演示、计算器教学过程Ⅰ.回顾、思考下列问题,建立本章的知识框架图[师]直角三角形的边角关系,是现实世界中应用广泛的关系之一.通过本章的学习,我们知道了锐角三角函数在解决现实问题中有着重要的作用.如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,—般来说,这些实际问题的数量关系往往归结为直角三角形中边和角的关系.利用锐角三角函数解决实际问题是本章的重要内容,很多实际问题穿插于各节内容之中.[问题门举例说明,三角函数在现实生活中的应用.[生]例如:甲、乙两楼相距30 m,甲楼高40 m,自甲楼楼顶看乙楼楼顶.仰角为30°,乙楼有多高?(结果精确到1 m)解:根据题意可知:3乙楼的高度为30tn30°=40+30×3=40+103≈57(m),即乙楼的高度约为57 m.[生]例如,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P和Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q南偏西50°的方向,求河宽(结果精确到1 m).解:根据题意,∠TPQ=90°,∠PQT=90°-50°=40°,PQ=180 m.则:PT就是所求的河宽.在Rt△TPQ中,PT=180×tan40°=180×0.839≈151 m,即河宽为151 m.[师]三角函数在现实生活中的应用很广泛,下面我们来看一个例子.多媒体演示如图.MN表示某引水工程的一段设计路线从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以A为圆心,500 m为半径的圆形区域为居民区,取MN上的另一点B,测得BA 的方向为南偏东75°,已知MB=400 m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?[师生共析]解:根据题意可知∠CMB=30°,∠CMA=60°,∠EBA=75°,MB=400 m,输水路线是否会穿过居民区,关键看A 到MN 的最短距离大于400 m 还是等于400 m ,于是过A 作AD ⊥MN .垂足为D .∵BE//MC .∴∠EBD =∠CMB =30°.∴∠ABN=45°.∠AMD =∠CMA-∠CMB =60°-30°=30°.在Rt △ADB 中,∠ABD =45°,∴tan45°=BD AD ,BD =︒45tan AD =AD , 在Rt △AMD 中.∠AMD=30°,tan30° =MD AD ,MD =︒30tan AD =3AD , ∵MD=MD-BD ,即 3AD-AD =400, AD-200(3+1)m>400m .所以输水路线不会穿过居民区.[师]我们再来看[问题2]任意给定一个角,用计算器探索这个角的正弦、余弦、正切之间的关系.例如∠α=25°,sin α、cos α、tan α的值是多少?它们有何关系呢?[生]sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663. 而︒︒25cos 25sin ≈0.4663. 我们可以发现ααcos sin =tan α. [师]这个关系是否对任意锐角都成立呢?我们不妨从三角函数的定义出发来推证一下.[师生共析]如 图,在Rt △ABC 中. ∠C =90°,∵sinA =ABBC cosA =AB AC tanA =ACBC , ∴ACBC AC AB AB BC AB AC AB BC A A =⋅=÷=cos sin =tanA, tanA=A A cos sin . 这就是说,对于任意锐角A ,∠A 的正弦与余弦的商等于∠A 的正切.[师]下面请同学们继续用计算器探索sin α,cos α之间的关系.[生]sin 225°≈0.1787,cos 225°≈0.8213,可以发现:sin 225°+cos 225°≈0.1787+0.8213=1.[师]我们可以猜想任意锐角都有关系:sin 2α+cos 2α=1,你能证明吗?[师生共析]如上图.sinA= AB BC ,cosA=ABAC sin 2A+cos 2A =2222222AB AC BC AB AC AB BC +=+, 根据勾股定理,得BC 2+AC 2=AB 2,∴sin 2A+cos 2A =1,这就是说,对于任意锐角A ,∠A 的正弦与余弦的平方和等于1.[师]我们来看一个例题,看是否可以应用上面的tanA 、sinA 、cosA 之间的关系.已知cosA=53,求sinA .tanA . [生]解:根据sin 2A+cos 2A =1.得sinA =.54)53(1cos 122=-=-A tanA=345354cos sin ==A A . [生]我还有另外一种解法,用三角函数的定义来解.解:∵cosA =.53=∠斜边的邻边A 设∠A 的邻边=3k .斜边=5k .则∠A 的对边=.4)3()5(22k k k =-∴sinA=.5454==∠k k A 斜边的邻边 tanA=.3434==∠∠k k A A 的邻边的对边 [师]问题3:你能应用三角函数解决哪些问题?[生]锐角三角函数反映了直角三角形的边角关系.凡是属于直角三角形的问题或可以转化为直角三角形的问题,都可以用三角函数来解决.[师]我们知道在直角三角形中,除直角外,有两个锐角.两条直角边以及斜边共5个元素,它们之间的关系很丰富.如图:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .(1)边的关系:a 2+b 2=c 2(勾股定理):(2)角的关系:∠A+∠B =90; (3)sinA=c a ,cosA=c b ,tanA=b a ;sinB=c b ,cosB=c a ,tanB=ab . 利用三角形的全等和直角三角形全等,以及作图,我们知道:当一直角边和斜边确定时,直角三角形唯一确定,即直角三角形的一直角边和斜边已知,则直角三角形中其他元素都可以求出.同学们不妨试一试.[生]例如Rt △ABC 中,∠C =90°.a =4,c=8求b ,∠A 及∠B解:∵a =4,c =8,根据勾股定理可得 b=3422=-a c .∵sinA=c a =2184=, ∴∠A =30°.又∵∠A+∠B =90°,∴∠B =60°.[师]很好,是不是只要知道直角三角形除直角外的两个元素,其余元素就都可以求出呢?[生甲]可以.[生乙]不可以.例如Rt △ABC 中,∠c =90°,∠A =25°.∠B=65°.这样的直角三角形有无数多个,是不唯一确定的,所以其余的元素无法确定.[生丙]我认为已知直角三角形中除直角外的两个元素.其中至少有一个边,就可以求出其余元素.[师]很好,我们来做一个练习.多媒体演示:在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A ,∠B 、∠C 的对边.(1)已知a =3,b =3,求C ,∠A ,∠B .(2)已知b =5,c =10,求a ,∠A ,∠B .(3)已知∠A=45°,c =8,求a ,b ,∠B .[生]解:(1)根据勾股定理c .=23332222=+=+b a .又∵tanA ∴∠A=b a =33=1, ∴∠A=45°. 又∵∠A+∠B =90,∴∠B =45°.(2)根据勾股定理,得a=355102222=-=-b c ,又∵sinB =21105==c b ∴∠B=30°. 又∵∠A+∠B=90°∴∠A=60°.(3)∵sinA=ca ∴=csinA=8×sin45°=42, 又∵cosA =c b ∴b=c ·cosA =8×cos45°=42, 又∵∠A+∠B =90°,∴∠B=45°.[师]实践证明,在直角三角形中,已知除直角外的两个元素(至少有一个是边),利用直角三角形中特殊的边的关系、角的关系、边角关系,就可求出其余所有元素.因此,在现实生活中,如测量、建筑、工程技术和物理学中,常遇到的距离、高度、角度都可以转化到直角三角形中,这些实际问题的数量关系往往就归结为直角三角形中边和角的关系问题.接下来,我们看问题4:如何测量一座楼的高度?你能想出几种办法?[生]有四种方法:第一种:用太阳光下的影子来测量.因为在同一时刻,物体的高度与它的影子的比值是一个定值.测量出物体的高度和它的影子的长度,再测出高楼在同一时刻的影子的长度.利用物体的高度:物体影子的长度=高楼的高度,高楼影子的长度.便可求出高楼的高.第二种:在地面上放一面镜子,利用三角形相似,也可以测量出楼的高度.第三种:用标杆的方法.第四种:利用直角三角形的边角关系求楼的高度.[师]下面就请同学们对本章的内容小结,建立本章内容框架图.[师生共析]本章内容框架如下:Ⅱ.随堂练习1.计算(1)︒-︒︒-︒45cos 60sin 45sin 30cos (2)sin 230°+2sin60°+tan45°-tan60°+cos 230°;(3)原式=.60tan 60tan 60tan 212︒-︒+︒-解:(1)原式=22232223--=1; (2)原式=(21)2+2×23+1-3+(23)2; =4331341+-++ =1+1=2(3)原式=︒-︒-60tan )60tan 1(2=|1-tan60°|-tan60°=tan60°-1-tan60°=-1.2.如图,大楼高30 m ,远处有一塔BC ,某人在楼底A 处测得塔顶的仰角为60°,爬到楼顶D 测得塔顶的仰角为30°,求塔高BC 及楼与塔之间的距离AC(结果19确到0.0l m).解:没AC=x ,BC =y ,在Rt △ABC 中,tan60°=xy ,① 在Rt △BDE 中.tan30°=x y 30-,② 由①得y =3x ,代入②得33=xx 303 . x=153≈25.98(m).将x =153代入y=3x=3×153 =45(m).所以塔高BC 为45 m ,大楼与塔之间的距离为25.98 m .Ⅲ.课时小结本节课针对回顾与思考中的四个问题作了研讨,并以此为基础,建立本章的知识框植架结构图.进一步体验三角函数在现实生活中的广泛应用.Ⅳ.课后作业复习题A 组1,2,5,6,8B 组2.3,4,5,6Ⅴ.活动与探究如图.AC 表示一幢楼,它的各楼层都可到达;BD 表示一个建筑物,但不能到达.已知AC 与BD 地平高度相同,AC 周围没有开阔地带,仅有的测量工具为皮尺(可测量长度)和测角器(可测量仰角、俯角和两视线间的夹角).(1)请你设计一个测量建筑物BD 高度的方案,要求写出测量步骤和必要的测量数据(用字母表示),并画出测量示意图:(2)写出计算BD 高度的表达式.[过程]利用测量工具和直角三角形的边角关系来解决.这里的答案不唯一,下面只写出一种方法供参考.[结果]测量步骤(如图):①用测角器在A 处测得D 的俯角α;②用测角器在A 处测得B 的仰角β ③用皮尺测得AC=am .(2)CD=αtan a ,BE=αtan a ·tan β, BD=a+αβtan tan a . 板书设计回顾与思考本章内容结构框架图:。

新北师大版九年级数学下册《一章 直角三角形的边角关系 回顾与思考》教案_1

新北师大版九年级数学下册《一章 直角三角形的边角关系  回顾与思考》教案_1

第一章直角三角形的边角关系《回顾与思考(第1课时)》教学设计一、学生知识状况分析学生的认知水平:学生在本章以前的学习中,已经掌握了直角三角形三边之间的关系(勾股定理),三角之间的关系(两锐角之和为900),以及有30°角的特殊直角三角形的边角关系,即;直角三角形中,30°角所对的直角边是斜边的一半.而通过本章的学习,学生已更深入的学到了直角三角形的边角关系,基本掌握了特殊角(30°,45°,60°)的三角函数值,并能用三角函数将直角三角形的边与角联系起来,解直角三角形.还会应用三角函数知识解决生活中的实际问题.学生活动感知基础:学生已经经历了对特殊角三角函数值的探究及总结过程,利用计算器进行任意锐角的度数与其对应的三角函数值的互换的操作,也能把简单的实际问题转化为数学问题.因此,学生能熟练使用计算器,具备了一定的探究能力,解决实际问题的能力也有了一定的提升.二、教学任务分析本节课是本章的复习课,主要是让学生熟练掌握本章各知识点并能解决实际问题,同时逐步渗透“转化思想、数形结合思想、方程思想、从特殊到一般的思想、数学的建模思想.”加深学生对本章知识的理解,提升学生应用本章知识的能力.知识与技能:1.以问题的形式梳理本章的内容,通过实例进一步掌握锐角三角函数的定义,并能熟练掌握特殊角的三角函数值.使学生进一步会运用三角函数知识解直角三角形,并能解决与直角三角形有关的实际问题.2.提升学生操作计算器解决实际问题的能力.过程与方法:在练习过程中,使学生进一步体会数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.情感与态度:通过本节课的学习,让学生在熟练掌握知识的基础上提升他们解决实际问题能力,培养学生学习数学的兴趣.重点:能综合运用直角三角形的边角关系解决实际问题.提高知识的理解水平和综合能力.突出策略:通过例题讲解和练习的分析与知识归纳,加深学生对本章知识的理解.难点;能根据实际问题设计活动方案.及时地把有关知识上升为数学经验,形成个性化的学习技能.突破策略:通过例题及练习的思考与分析提升学生的能力.本章主要数学思想方法:数形结合思想:此部分内容经常用到数形结合思想,对于每一个题都可结合图形分析,会更清楚简捷.数与形相结合,是问题清晰,思路简捷有条理,是几何知识中最常用的思想方法之一,也是最应该坚持实施的方法.从特殊到一般的思想;锐角三角函数中包含了特殊角的三角函数值,对于三角函数之间的关系和转化,都可从特殊角开始.转化思想:把直角三角形的线段比,转化为三角函数值或面积的比.数学的建模思想:解直角三角形的实际应用,即将实际问题“数学化”,构建直角三角形来解决问题.教学方法:启发式、合作交流式.教学手段:多媒体课件、学案三、教学过程分析本节课设计了四个教学环节:知识回顾构建体系——知识应用解决问题——课堂小结能力提升——布置作业巩固所学.第一环节知识回顾构建体系活动内容:展示图片设计意图:上节课后,布置作业:让学生完成本章知识框架图,主要是让学生回顾基础知识,为下一环节的知识巩固作铺垫。

北师大版九年级数学下册第一章直角三角形的边角关系复习教学设计

北师大版九年级数学下册第一章直角三角形的边角关系复习教学设计
6.评价多元,注重过程:注重学生在学习过程中的表现,采用多元化评价方式,关注学生的知识掌握、能力提升和情感态度价值观的培养。
7.教学策略:
a.采用启发式教学,引导学生主动探究,发现规律。
b.结合多媒体教学手段,如动画、图片等,形象直观地展示直角三角形的性质和判定方法。
c.设计具有挑战性的问题,激发学生的求知欲,培养他们解决问题的能力。
1.学生对基础知识的掌握程度,查漏补缺,巩固直角三角形的基本概念和性质。
2.培养学生运用三角函数解决实际问题的能力,注异化教学,提高学生的整体水平。
4.激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养学生的自主学习能力。
在教学过程中,教师应关注学生的心理特点,营造轻松愉快的学习氛围,使学生在愉悦的情感中掌握知识,提高能力。同时,注重培养学生的合作意识和团队精神,提高学生在集体中的沟通与协作能力。
d.定期组织课堂小结,帮助学生巩固所学知识,提高学习效果。
四、教学内容与过程
(一)导入新课
在导入新课阶段,我将通过一个简单的实际问题来激发学生的兴趣和好奇心。我会向学生展示一张学校升旗仪式的照片,并提问:“同学们,你们知道我们学校的旗杆有多高吗?”这个问题与学生的日常生活紧密相关,能够吸引他们的注意力。接下来,我会引导学生思考如何用数学方法来解决这个问题,自然引出直角三角形的边角关系。
在学生完成练习后,我会挑选部分习题进行讲解,分析解题思路和方法,帮助学生发现并纠正错误。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课的主要内容,包括直角三角形的定义、性质、判定方法以及三角函数的应用。我会让学生分享自己在小组讨论和课堂练习中的收获和困惑。
此外,我还会强调数学知识在实际生活中的应用价值,鼓励学生在日常生活中多观察、多思考,将所学知识用于解决实际问题。通过这样的总结归纳,学生能够对直角三角形的边角关系有一个更加全面和深入的理解。

北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教案

北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教案

北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教案一. 教材分析北师大版九年级数学下册第一章《直角三角形的边角关系——回顾与思考》主要介绍了直角三角形的性质,包括锐角三角函数的概念、直角三角形的边角关系等。

本章内容是初中数学的重要知识点,为后续学习三角形相似、解直角三角形等知识打下基础。

二. 学情分析九年级的学生已经掌握了三角形的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。

但学生在学习过程中,可能对锐角三角函数的理解和应用存在困难,因此需要通过本章内容的学习,帮助学生巩固直角三角形的性质,提高解题能力。

三. 教学目标1.理解直角三角形的性质,掌握锐角三角函数的概念。

2.学会运用直角三角形的性质解决实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.重点:直角三角形的性质,锐角三角函数的概念。

2.难点:锐角三角函数的应用,解直角三角形。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。

六. 教学准备1.教学课件:制作直角三角形性质、锐角三角函数的课件。

2.教学素材:提供相关案例,如实际问题、例题等。

3.学习工具:准备好直角三角形、锐角三角函数的相关资料。

七. 教学过程1.导入(5分钟)利用生活中的实例,如测量身高、测距等,引出直角三角形的性质和锐角三角函数的概念。

激发学生的学习兴趣,引导学生思考直角三角形在实际生活中的应用。

2.呈现(15分钟)呈现直角三角形的性质和锐角三角函数的定义,通过动画、图片等形式展示,帮助学生直观地理解。

同时,给出相关案例,让学生体会直角三角形性质和锐角三角函数在实际问题中的作用。

3.操练(15分钟)针对直角三角形的性质和锐角三角函数,设计一系列练习题。

让学生独立完成,巩固所学知识。

教师及时批改、讲解,解答学生的疑问。

4.巩固(10分钟)通过小组合作学习,让学生运用直角三角形的性质和锐角三角函数解决实际问题。

北师大版数学九年级下册第一章直角三角形的边角关系回顾与思考教学设计

北师大版数学九年级下册第一章直角三角形的边角关系回顾与思考教学设计
3.引导学生探索直角三角形边角关系在其他数学领域中的应用,如坐标系中的斜率与截距问题。
-学生能够将直角三角形的边角关系与坐标系中的直线方程联系起来,理解斜率与直角三角形中角度的关系。
(二)过程与方法
1.通过问题驱动的教学方法,激发学生的探究兴趣,引导学生主动参与讨论和思考。
-教师提出具有挑战性的问题,鼓励学生通过小组合作、讨论的形式,共同寻找解决问题的策略。
(五)总结归纳
在总结归纳环节,我会与学生共同回顾本节课所学的知识点,包括:
1.勾股定理及其在非标准直角三角形中的应用。
2.三角函数的定义、性质及其在直角三角形中的应用。
3.直角三角形的边角关系在坐标系中的应用。
同时,鼓励学生分享自己在学习过程中的收获和困惑,以便对教学方法和策略进行调整。通过这样的总结归纳,帮助学生形成完整的知识结构,提升数学思维能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:
-理解并熟练运用勾股定理及其在直角三角形中的应用。
-掌握正弦、余弦、正切函数的定义及其在直角三角形中的具体运用。
-能够将直角三角形的边角关系与坐标系中的直线方程建立联系。
这些重点知识是学生构建数学知识体系的基础,也是解决实际问题的关键。
2.难点:
-在实际问题中识别和应用勾股定理,特别是在非标准直角三角形中的运用。
-学生能够通过构造直角三角形,运用勾股定理解决与长度、面积相关的实际问题。
2.培养学生运用三角函数解决实际问题的能力,掌握正弦、余弦、正切函数的定义及其在直角三角形中的应用。
-学生能够准确描述正弦、余弦、正切函数的定义,并能够在直角三角形中正确标识对应的角度和边。
-学生能够运用三角函数解决实际问题,例如计算物体的高度、距离等。

北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教学设计

北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教学设计

北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教学设计一. 教材分析北师大版九年级数学下册第一章《直角三角形的边角关系——回顾与思考》主要包括两大部分内容:一是对直角三角形边角关系的回顾,包括勾股定理的发现和证明,以及直角三角形的性质;二是对直角三角形边角关系的思考,包括锐角三角函数的概念和应用,以及三角函数的图像和性质。

本章内容是初中数学的重要内容,是学生进一步学习高中数学的基础。

通过本章的学习,学生应掌握直角三角形的边角关系,理解锐角三角函数的概念和应用,为学习高中数学打下基础。

二. 学情分析九年级的学生已经学习了直角三角形的性质,对勾股定理有一定的了解,但对其证明方法和应用可能还不够深入。

对于锐角三角函数,学生可能第一次接触,对其概念和应用可能存在一定的困难。

三. 教学目标1.回顾直角三角形的边角关系,加深对勾股定理的理解,掌握直角三角形的性质。

2.学习锐角三角函数的概念和应用,理解三角函数的图像和性质。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:直角三角形的边角关系,锐角三角函数的概念和应用。

2.教学难点:勾股定理的证明,锐角三角函数的图像和性质。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作交流,发现和总结直角三角形的边角关系。

2.使用多媒体教学,展示勾股定理的证明过程,直观地展示锐角三角函数的图像和性质。

3.结合实例,引导学生运用直角三角形的边角关系和锐角三角函数解决实际问题。

六. 教学准备1.多媒体教学设备。

2.勾股定理的证明课件。

3.锐角三角函数的图像和性质的课件。

4.与直角三角形和锐角三角函数相关的练习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾直角三角形的性质,引出本节课的主题——直角三角形的边角关系。

2.呈现(10分钟)利用多媒体展示勾股定理的证明过程,引导学生理解并掌握勾股定理。

3.操练(10分钟)让学生独立完成与勾股定理相关的练习题,巩固所学知识。

北师大版九年级数学下全册详细教案(含答案)

北师大版九年级数学下全册详细教案(含答案)

第一章 直角三角形的边角关系1.1 锐角三角函数 第1课时 正切1.理解正切的定义,运用正切值的大小比较生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.(重点)2.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.阅读教材P2~4,完成预习内容. (一)知识探究1.在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA ,即tanA =∠A 的对边∠A 的邻边.2.tanA 的值越大,梯子越陡.3.坡面的竖直高度与水平距离的比称为坡度(或坡比). (二)自学反馈1.在Rt △ABC 中,∠C =90°,AC =12,BC =5,那么tanA 等于(C) A.513 B.1213 C.512 D.1252.如图,有一个山坡在水平方向上前进100 m ,在竖直方向上就升高60 m ,那么山坡的坡度i =tan α=35.活动1 小组讨论例 如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?解:甲梯中,tan α=5132-52=512.乙梯中,tan β=68=34. 因为tan β>tan α,所以乙梯更陡.求正切值一定要在直角三角形中进行,并且一定要分清锐角的对边与邻边.活动2 跟踪训练1.如图,下面四个梯子最陡的是(B)2.如图,在边长为1的小正方形组成的网格中,点A 、B 、O 为格点,则tan ∠AOB =(A) A.12 B.23 C.105 D.533.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且a =24,c =25,则tanA =247、tanB =724.4.如图,某人从山脚下的点A 走了300 m 后到达山顶的点B ,已知点B 到山脚的垂直距离为70 m ,求山的坡度0.24.(结果精确到0.01)活动3 课堂小结 1.正切的定义.2.梯子的倾斜程度与tanA 的关系(∠A 和tanA 之间的关系).3.数形结合的方法,构造直角三角形的意识.第2课时 锐角三角函数1.理解正弦函数和余弦函数的意义,能根据边长求出锐角的正弦值和余弦值,准确分清三种函数值的求法.(重点)2.经历探索直角三角形中边角关系的过程,进一步理解当锐角度数一定,则其对边、邻边、斜边三边比值也一定.能根据直角三角形中的边角关系,进行简单的计算.阅读教材P5~6,完成预习内容. (一)知识探究1.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ;∠A 的对边与斜边的比叫做∠A 的正弦,即sinA =a c .∠A 的邻边与斜边的比叫做∠A 的余弦,即cosA =bc.2.锐角A 的正弦、余弦、正切叫做∠A 的三角函数.3.sinA 的值越大,梯子越陡;cosA 的值越小,梯子越陡.锐角三角函数是在直角三角形的前提下.(二)自学反馈1.如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sinA 的值是(A) A.513 B.1213 C.512 D.1352.如图,在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为(A)A.4B.2 5C.181313D.1213133.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3、b =4,则sinB =45,cosB =35,tanB =43.活动1 小组讨论例1 如图,在Rt △ABC 中,∠B =90°,AC =200,sinA =0.6,求BC 的长.解:在Rt △ABC 中, ∵sinA =BC AC ,即BC200=0.6,∴BC =200×0.6=120.例2 如图,在Rt △ABC 中,∠C =90°,AC =10,cosA =1213,求AB 的长及sinB.解:在Rt △ABC 中, ∵cosA =ACAB ,即10AB =1213,∴AB =656. ∴sinB =AC AB =cosA =1213.这里需要注意cosA =sinB.活动2 跟踪训练1.如图,某厂房屋顶呈人字架形(等腰三角形),已知AC =8,DB =43,CD ⊥AB 于点D ,求sinB 的值.解:∵△ABC 是等腰三角形,∴BC =AC =8. ∵CD ⊥AB ,∴∠CDB =90°,∴CD =BC 2-BD 2=82-(43)2=4, ∴sinB =CD BC =48=12.2.如图,在△ABC 中,CD ⊥AB ,垂足为D.若AB =12,CD =6,tanA =32,求sinB +cosB的值.解:在Rt △ACD 中,∵CD =6,tanA =32,∴AD =4,∴BD =AB -AD =8.在Rt △BCD 中,BC =82+62=10,∴sinB =CD BC =35,cosB =BD BC =45,∴sinB +cosB =75.活动3 课堂小结学生试述:这节课你学到了些什么?1.2 30°,45°,60°角的三角函数值1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算,能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(重点)阅读教材P8~9,完成预习内容. 自学反馈完成下面的表格:sin α cos α tan α 30°12323345° 22 22 1 60°32123活动1 小组讨论 例1 计算:(1)sin30°+cos45°;(2)sin 260°+cos 260°-tan45°. 解:(1)原式=12+22=1+22.(2)原式=34+14-1=0.sin 230°表示(sin30°)2,即sin30°·sin30°,这类计算只需将三角函数值代入即可.例2 一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)解:根据题意可知,∠AOD =12∠AOB =30°,AO =2.5 m.∴OD =OAcos30°=2.5×32=2.165(m). ∴CD =2.5-2.165≈0.34(m).∴最高位置与最低位置的高度差约为0.34 m. 活动2 跟踪训练 1.计算:(1)2sin30°+3tan30°+tan45°;(2)cos 245°+tan60°cos30°.解:(1)原式=2+ 3. (2)原式=2. 2.如图,某同学用一个有60°的直角三角板估测学校旗杆AB 的高度,他将60°角的直角边水平放在1.5 m 高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D ,B 的距离为5 m ,则旗杆AB 的高度大约是多少米?(精确到1 m ,3取1.73)解:由已知可得四边形CDBE 是矩形,∴CE =DB =5 m ,BE =CD =1.5 m. 在Rt △ACE 中,∵tan ∠ACE =AECE,∴AE =CE ·tan ∠ACE =5·tan60°=53,∴AB =53+1.5=8.65+1.5=10.15≈10 (m), 即旗杆AB 的高度大约是10 m. 活动3 课堂小结学生试述:这节课你学到了些什么?1.3 三角函数的计算1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.阅读教材P12~14,完成预习内容. 自学反馈1.已知tan α=0.324 9,则α约为(B)A.17°B.18°C.19°D.20°2.已知tan β=22.3,则β=87°25′56″.(精确到1″)活动1 小组讨论例1 如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200 m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01 m)解:在Rt △ABC 中,∠ACB =90°,∴BC =ABsin α=200×sin16°≈55.13(m).例2 为了方便行人推自行车过某天桥,市政府在10 m 高的天桥两端修建了40 m 长的斜到.这条斜道的倾斜角是多少?解:在Rt △ABC 中,sinA =BC AC =1040=14.∴∠A ≈14°28′.答:这条斜道的坡角α是14°28′.在直角三角形ABC 中,直接用正弦函数描述∠CBA 的关系式,再用计算器求出它的度数.活动2 跟踪训练1.用计算器计算:(结果精确到0.000 1) (1)sin36°; (2)cos30.7°;(3)tan20°30′; (4)sin25°+2cos61°-tan71°. 解:(1)0.587 8;(2)0.859 9;(3)0.373 9;(4)-1.512 0.2.在Rt △ABC 中,若∠C =90°,BC =20,AC =12.5,求两个锐角的度数(精确到1°). 解:∵∠C =90°,BC =20,AC =12.5, ∴tanB =AC BC =12.520=0.625,用计算器计算,得∠B ≈32°,∴∠A =90°-32°=58°. 活动3 课堂小结1.本节学习的数学知识:利用计算器求锐角的三角函数值或锐角的度数.2.本节学习的数学方法:培养学生一般化意识,认识特殊和一般都是事物属性的一个方面.3.求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,故数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.1.4 解直角三角形1.了解什么叫解直角三角形.2.掌握解直角三角形的根据,能由已知条件解直角三角形.(重点)阅读教材P16~17,完成预习内容. (一)知识探究1.在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.2.直角三角形中的边角关系:三边之间的关系a 2+b 2=c 2;两锐角之间的关系∠A +∠B =90°;边与角之间的关系:sinA =a c ,cosA =b c ,tanA =a b ,sinB =b c ,cosB =a c ,tanB =ba .3.在Rt △ABC 中,∠C =90°,已知∠A 与斜边c ,用关系式∠B =90°-∠A ,求出∠B ,用关系式sinA =ac求出a.(二)自学反馈1.在Rt △ABC 中,∠C =90°,sinA =35,则BC ∶AC =(A)A.3∶4B.4∶3C.3∶5D.4∶52.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为(B)A.5cos αB.5cos αC.5sin αD.5sin α活动1 小组讨论例1 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a =15,b =5,求这个三角形的其他元素.解:在Rt △ABC 中,a 2+b 2=c 2,a =15,b =5,∴c =a 2+b 2=(15)2+(5)2=2 5.在Rt △ABC 中,sinB =b c =525=12.∴∠B =30°.∴∠A =60°.例2 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且b =30,∠B =25°,求这个三角形的其他元素(边长精确到1).解:在Rt △ABC 中,∠C =90°,∠B =25°,∴∠A =65°.∵sinB =b c ,b =30,∴c =bsinB≈71.∵tanB =b a ,b =30,∴a =b tanB =30tan25°≈64.活动2 跟踪训练1.根据下列条件解直角三角形.(1)在Rt △ABC 中,∠C =90°,c =43,∠A =60°. 解:∵∠A =60°,∴∠B =90°-∠A =30°.∵sinA =a c ,∴a =c ·sinA =43·sin60°=43×32=6,∴b =c 2-a 2=(43)2-62=2 3. (2)在Rt △ABC 中,∠C =90°,a =6,b =2 3.解:∵∠C =90°,a =6,b =23, ∴c =a 2+b 2=62+(23)2=4 3. ∵tanA =a b =623=3,∴∠A =60°,∴∠B =90°-∠A =90°-60°=30°.2.如图,在△ABC 中,AD ⊥BC 于点D ,AB =8,∠ABD =30°,∠CAD =45°,求BC 的长.解:∵AD ⊥BC 于点D , ∴∠ADB =∠ADC =90°.在Rt △ABD 中,∵AB =8,∠ABD =30°, ∴AD =12AB =4,BD =3AD =4 3.在Rt △ADC 中,∵∠CAD =45°,∠ADC =90°, ∴DC =AD =4,∴BC =BD +DC =43+4. 活动3 课堂小结学生试述:这节课你学到了些什么?1.5 三角函数的应用 第1课时 方位角问题能运用解直角三角形解决航行问题.阅读教材P19有关方位角问题,完成预习内容. 自学反馈1.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.2.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是250米.活动1 小组讨论例 如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?解:如图,过点A 作AD ⊥BC 交BC 的延长线于点D. 在Rt △ABD 中,∵tan ∠BAD =BDAD,∴BD =AD ·tan55°.在Rt △ACD 中,∵tan ∠CAD =CDAD ,∴CD =AD ·tan25°. ∵BD =BC +CD ,∴AD ·tan55°=20+AD ·tan25°. ∴AD =20tan55°-tan25°≈20.79>10.∴轮船继续向东行驶,不会遇到触礁危险.应先求出点A 距BC 的最近距离,若大于10则无危险,若小于或等于10则有危险.活动2 跟踪训练1.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为(A)A.402海里B.403海里C.80海里D.406海里2.如图所示,A 、B 两城市相距100 km.现计划在这两座城市间修筑一条高速公路(即线段AB).经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50 km 为半径的圆形区域内,请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:3≈1.732,2≈1.414)解:计划修筑的这条高速公路不会穿越保护区.理由如下:过点P 作PC ⊥AB ,C 是垂足. 则∠APC =30°,∠BPC =45°,AC =PC ·tan30°,BC =PC ·tan45°. ∵AC +BC =AB ,∴PC ·tan30°+PC ·tan45°=100, 即33PC +PC =100,(33+1)PC =100, ∴PC =33+3×100=50×(3-1.732)≈63.40>50.∴计划修筑的这条高速公路不会穿越保护区.解这类题目时,首先弄清楚方位角的含义;其次是通过作垂线构造直角三角形,将问题转化为解直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?第2课时仰角、俯角问题1.理解仰角、俯角等概念,并会把类似于测量建筑物高度的实际问题抽象成几何图形.2.能利用解直角三角形来解其他非直角三角形的问题.阅读教材P19想一想,完成预习内容.(一)知识探究1.仰角、俯角:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.2.解决实际应用问题时,常作的辅助线:构造直角三角形,解直角三角形.(二)自学反馈1.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞机飞行高度AC =1 200 m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(D)A.1 200 mB.1 200 2 mC.1 200 3 mD.2 400 m2.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(D)A.200米B.2003米C.2203米D.100(3+1)米活动1 小组讨论例如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m至B处.测得仰角为60°.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)解:∵∠DAB =30°,∠DBC =60°, ∴BD =AB =50 m.∴DC =BD ·sin60°=50×32=253≈43(m). 答:该塔高约为43 m. 活动2 跟踪训练1.我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB 水平距离60米(BD =60米)处有一居民住宅楼,该居民住宅楼CD 高15米,在该住宅楼顶C 处测得此危房屋顶A 的仰角为30°,请你通过计算说明在实施定向爆破危房AB 时,该居民住宅楼有无危险?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域,参考数据:2≈1.414,3≈1.732)解:没有危险,理由如下: 在△AEC 中,∵∠AEC =90°, ∴tan ∠ACE =AECE.∵∠ACE =30°,CE =BD =60, ∴AE =203≈34.64(米).又∵AB =AE +BE ,BE =CD =15, ∴AB ≈49.64(米).∵60>49.64,即BD>AB ,∴在实施定向爆破危房AB 时,该居民住宅楼没有危险.2.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB.(结果保留根号)解:作CF ⊥AB 于点F ,设AF =x 米, 在Rt △ACF 中,tan ∠ACF =AFCF,则CF =AF tan ∠ACF =x tan α=xtan30°=3x ,在直角△ABE 中,AB =x +BF =4+x(米),在直角△ABE 中,tan ∠AEB =AB BE ,则BE =AB tan ∠AEB =x +4tan60°=33(x +4)米.∵CF -BE =DE ,即3x -33(x +4)=3. 解得x =33+42.则AB =33+42+4=33+122(米).答:树高AB 是33+122米.活动3 课堂小结1.本节学习的数学知识:利用解直角三角形解决实际问题.2.本节学习的数学方法:数形结合、数学建模的思想.第3课时 坡度问题1.能运用解直角三角形解决斜坡问题.2.理解坡度i =坡面的铅直高度坡面的水平宽度=tan 坡角.阅读教材P19做一做,完成预习内容. 自学反馈1.如图所示,斜坡AB 和水平面的夹角为α.下列命题中,不正确的是(B) A.斜坡AB 的坡角为α B.斜坡AB 的坡度为BCABC.斜坡AB 的坡度为tan αD.斜坡AB 的坡度为BCAC2.如图,一人乘雪橇沿30°的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s =10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为(C)A.72 mB.36 3 mC.36 mD.18 3 m活动1 小组讨论例 某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4 m ,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01 m)解:根据题意可得图形,如图所示: 在Rt △ABD 中,sin40°=AD AB =AD4,∴AD =4sin40°=4×0.64=2.56, 在Rt △ACD 中,tan35°=AD CD =2.56CD ,CD = 2.56tan35°=3.66,tan40°=AD BD =2.56BD ,BD = 2.56tan40°≈3.055 m.∴CB =CD -BD =3.66-3.055≈0.61(m). ∴楼梯多占了0.61 m 长一段地面. AC =ADsin35°≈4.46 m.∴AC -AB =4.46-4=0.46(m). ∴调整后的楼梯会加长0.46 m. 活动2 跟踪训练1.如图,某公园入口处原有三级台阶,每级台阶高为18 cm ,深为30 cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是210cm.2.如图,水库大坝的横断面是梯形,坝顶宽6 m ,坝高23 m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i ′=1∶2.5,求斜坡AB 的坡角α,坝底宽AD 和斜坡AB 的长.(精确到0.1 m)解:如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F , 在Rt △ABE 和Rt △CDF 中,BE AE =13,CF FD =12.5,∴AE =3BE =3×23=69(m),FD =2.5CF =2.5×23=57.5(m). ∴AD =AE +EF +FD =69+6+57.5=132.5(m).∵斜坡的坡度i=13≈0.333 3,∴BEAE =0.333 3,即tan α=0.333 3.∴α≈18°26′. ∵BE AB =sin α,∴AB =BE sin α≈230.316 2≈72.7(m). 答:斜坡AB 的坡角α约为18°26′,坝底宽AD 为132.5 m ,斜坡AB 的长约为72.7 m.这类问题,首先要弄清楚坡度、坡角等名词的含义;其次,要将梯形予以分割,分割成特殊的四边形和直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?1.6 利用三角函数测高会利用直角三角形的边角关系测物体的高度.(重点)阅读教材P22~23,完成预习内容. 自学反馈1.测量倾斜角可用测倾器.简单的测倾器由度盘、铅锤和支杆组成.活动1 小组讨论例1 测量底部可以到达的物体的高度下面是活动报告的一部分,请填写“测得数据”和“计算”两栏中未完成的部分.课题测量旗杆高测量示 意图测得 数据 测量项目 第一次 第二次 平均值 BD 的长 24.19 m 23.97 m 24.08 m 测倾器的高 CD =1.23 m CD =1.19 m 1.21 m 倾斜角α=31°15′α=30°45′α=31°计算,旗杆高AB(精确到0.1 m)AB =AE +BE =CEtan31°+CD=24.08×tan31°+1.21=15.7(m) 例2 测量底部不可以到达的物体的高度.如图,小山上有一座铁塔AB ,在D 处测得点A 的仰角为∠ADC =60°,点B 的仰角为∠BDC =45°;在E 处测得A 的仰角为∠E =30°,并测得DE =90米,求小山高BC 和铁塔高AB(精确到0.1米).解:在△ADE 中,∠E =30°,∠ADC =60°, ∴∠E =∠DAE =30°. ∴AD =DE =90米.在Rt △ACD 中,∠DAC =30°,则CD =12AD =45米,AC =AD ·sin ∠ADC =AD ·sin60°=453米.在Rt △BCD 中,∠BDC =45°,则△BCD 是等腰直角三角形. BC =CD =45米,∴AB =AC -BC =453-45≈32.9米.答:小山高BC 为45米,铁塔高AB 约为32.9米. 活动2 跟踪训练为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索: 实践一:根据《自然科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图(1)的测量方案:把镜子放在离树(AB)8.7(米)的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树A B 的高度(精确到0.1米)实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪一架,请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是①④. (2)在图(2)中画出你的测量方案示意图;(3)你需要测得示意图中哪些数据,并分别用a ,b ,c ,α,β等表示测得的数据a ·tan α+1.5.(4)写出求树高的算式:AB =AB =a ·tan α+1.5.解:实践一:∵∠CED =∠AEB ,CD ⊥DB ,AB ⊥BD , ∴△CED ∽△AEB , ∴CD AB =DE BE. ∵CD =1.6米,DE =2.7米,BE =8.7米, ∴AB =1.6×8.72.7≈5.2(m).实践二:(1)在距离树AB 的a 米的C 处,用测角仪测得仰角α,测角仪为CD.再根据仰角的定义,构造直角三角形ADE ,求得树高出测角仪的高度AE ,则树高为AE +BE.(2)如图.活动3 课堂小结学生试述:这节课你学到了些什么?第三章圆3.1 圆1.回顾圆的基本概念.2.理解并掌握与圆有关的概念:弦、直径、半圆、等圆、等弧等.(重点)3.结合实例,理解平面内点与圆的三种位置关系.(难点)阅读教材P65~66,完成预习内容.(一)知识探究1.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.2.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.(二)自学反馈1.下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个2.如图所示,图中共有2条弦.3.在平面内,⊙O的半径为5 cm,点P到圆心的距离为3 cm,则点P与⊙O的位置关系是点P在圆内.活动1 小组讨论例1 ⊙O的半径为2 cm,则它的弦长d的取值范围是0<d≤4_cm.直径是圆中最长的弦.例2⊙O中若弦AB等于⊙O的半径,则△AOB的形状是等边三角形.与半径相等的弦和两半径构造等边三角形是常用数学模型.例3 已知AB=4 cm,画图说明满足下列条件的图形.(1)到点A和B的距离都等于3 cm的所有点组成的图形;(2)到点A和B的距离都小于3 cm的所有点组成的图形;(3)到点A的距离大于3 cm,且到点B的距离小于2 cm的所有点组成的图形.解:(1)如图1,分别以点A和B为圆心,3 cm为半径画⊙A与⊙B,两圆的交点C、D 为所求;图1 图2(2)如图1,分别以点A和点B为圆心,3 cm为半径画⊙A与⊙B,两圆的重叠部分为所求;(3)如图2,以点A为圆心,3 cm为半径画⊙A,以点B为圆心,2 cm为半径画⊙B,则⊙B中除去两圆的重叠部分为所求.活动2 跟踪训练1.已知⊙O的半径为4,OP=3.4,则P在⊙O的内部.2.已知点P在⊙O的外部,OP=5,那么⊙O的半径r满足0<r<5.3.如图,图中有1条直径,2条非直径的弦,圆中以A为一个端点的优弧有4条,劣弧有4条.这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.4.如图,已知矩形ABCD的边AB=3 cm、AD=4 cm.(1)以点A为圆心,4 cm为半径作⊙A,则点B、C、D与⊙A的位置关系怎样?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是什么?解:(1)点B在⊙A内,点C在⊙A外,点D在⊙A上;(2)3<r<5.(2)问中B、C、D三点中至少有一点在圆内,是指哪个点在圆内?至少有一点在圆外是指哪个点在圆外?活动3 课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?3.2 圆的对称性1.理解圆的轴对称性及其中心对称性.2.通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系.(重难点)阅读教材P70~71,完成预习内容.(一)知识探究1.圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.在同圆或等圆中,如果两个圆心角,两条弦,两条弧中有一组量相等,那么它们所对应的其余各组量也相等.(二)自学反馈1.圆是轴对称图形,它有无数条对称轴,其对称轴是任意一条过圆心的直线.2.在⊙O 中,AB 、CD 是两条弦.(1)如果AB =CD ,那么AB ︵=CD ︵,∠AOB =∠COD ; (2)如果AB ︵=CD ︵,那么AB =CD ,∠AOB =∠COD ; (3)如果∠AOB =∠COD ,那么AB =CD ,AB ︵=CD ︵.活动1 小组讨论例 如图,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD ︵=CE ︵.BE 与CE 的大小有什么关系?为什么?解:BE =CE.理由是:∵∠AOD =∠BOE ,∴AD ︵=BE ︵. 又∵AD ︵=CE ︵, ∴BE ︵=CE ︵. ∴BE =CE.活动2 跟踪训练1.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =75°,则∠BAC =30°.2.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AOC.证明:∵AB ︵=AC ︵,∴AB =AC.又∵∠ACB =60°,∴△ABC 为等边三角形. ∴AB =AC =BC.∴∠AOB =∠BOC =∠AOC.3.如图,已知在⊙O 中,BC 是直径,AB ︵=DC ︵,∠AOD =80°,求∠AOB 的度数.解:∵AB ︵=DC ︵, ∴∠AOB =∠DOC. ∵∠AOD =80°,∴∠AOB =∠DOC =12(180°-80°)=50°.活动3 课堂小结圆心角、弧、弦是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.*3.3 垂径定理1.通过圆的轴对称性质的学习,理解垂径定理及其推论.(重点).2.能运用垂径定理及其推论计算和证明实际问题.(难点)阅读教材P74~75,完成预习内容. (一)知识探究1.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A 、B 两点;②AB ⊥CD 交CD 于E ;那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.2.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (二)自学反馈1.如图,弦AB ⊥直径CD 于E ,相等的线段有:AE =EB ,CO =DO ;相等的弧有:AD ︵=DB ︵,AC ︵=BC ︵,CAD ︵=CBD ︵.2.在⊙O 中,直径为10 cm ,圆心O 到AB 的距离OC 为3 cm ,则弦AB 的长为8_cm.活动1 小组讨论例 如图,一条公路的转弯处是一段圆弧(即图中CD ︵,点O 是CD ︵所在圆的圆心),其中CD =600 m ,E 为CD ︵上一点,且OE ⊥CD ,垂足为F ,EF =90 m ,求这段弯路的半径.解:连接OC.设弯路的半径为R m ,则OF =(R -90)m. ∵OE ⊥CD ,∴CF =12CD =12×600=300(m).在Rt △OCF 中,根据勾股定理,得OC 2=CF 2+OF 2,即 R 2=3002+(R -90)2. 解得R =545.所以,这段弯路的半径为545 m.常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.活动2 跟踪训练1.如图,在⊙O 中,弦AB =4 cm ,点O 到AB 的距离OC 的长是2 3 cm ,则⊙O 的半径是4_cm.2.CD 是⊙O 的直径,AB 是弦,且AB ⊥CD ,垂足是E ,如果CE =2、AB =8,那么ED =8,⊙O 的半径r =5.3.已知:如图,线段AB 与⊙O 交于C 、D 两点,且OA =OB.求证:AC =BD.证明:作OE ⊥AB 于E.则CE =DE. ∵OA =OB ,OE ⊥AB , ∴AE =BE.∴AE -CE =BE -DE , 即AC =BD.过圆心作垂径是圆中常用辅助线.活动3 课堂小结用垂径定理及其推论进行有关的计算.3.4 圆周角和圆心角的关系第1课时 圆周角定理及其推论11.理解圆周角的定义,会区分圆周角和圆心角.(重点)2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆推论1,能在证明或计算中熟练地应用它们处理相关问题.(难点)阅读教材P78~80,完成预习内容. (一)知识探究1.顶点在圆上,它的两边与圆还有另一个交点的角叫做圆周角.2.圆周角的度数等于它所对弧上的圆心角度数的一半.3.同弧或等弧所对的圆周角相等. (二)自学反馈1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则∠BAC =50°.2.如图所示,点A 、B 、C 在圆周上,∠A =65°,则∠D =65°.活动1 小组讨论例1 如图所示,点A 、B 、C 在⊙O 上,连接OA 、OB ,若∠ABO =25°,则∠C =65°.例2 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO =32°,则∠COB =64°.(1)求圆周角通常先求同弧所对的圆心角.(2)求圆心角可先求对应的圆周角.(3)连接OC ,构造圆心角的同时构造等腰三角形.活动2 跟踪训练1.如图,锐角△ABC 的顶点A ,B ,C 均在⊙O 上,∠OAC =20°,则∠B =70°.2.OA 、OB 、OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC.证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角, ∴∠AOB =2∠ACB. 同理∠BOC =2∠BAC. ∵∠AOB =2∠BOC. ∴∠ACB =2∠BAC.求圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.活动3 课堂小结圆周角的定义、定理及推论.第2课时 圆周角定理的推论2、31.进一步探索直径所对的圆周角的特征,并能应用其进行简单的计算与证明.(重点)2.掌握圆内接四边形的有关概念及性质.(难点)阅读教材P81(问题解决)~83(议一议),完成预习内容. (一)知识探究1.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.2.四个顶点都在圆上的四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆;圆内接四边形的对角互补.(二)自学反馈1.如图,在⊙O 的内接四边形ABCD 中,若∠BAD =110°,则∠BCD 等于(C) A.110° B.90° C.70° D.20°2.如图,AB 是⊙O 的直径,∠A =35°,则∠B 的度数是55°.活动1 小组讨论例1 如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为(C) A.30° B.45° C.60° D.75°例2 如图,四边形ABCD 是⊙O 的内接四边形,∠CBE 是它的外角,若∠D =120°,则∠CBE 的度数是120°.例3 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD.证明:连接BE ,∵AE 是⊙O 的直径, ∴∠ABE =90°, ∴∠BAE +∠E =90°. ∵AD 是△ABC 的高, ∴∠ADC =90°, ∴∠CAD +∠C =90°. ∵AB ︵=AB ︵,∴∠E =∠C.∵∠BAE +∠E =90°,∠CAD +∠C =90°, ∴∠BAE =∠CAD.涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.活动2 跟踪训练1.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(D)A.1B. 2C. 3D.22.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.3.如图,在⊙O的内接四边形ABCD中,∠BCD=110°,则∠BOD=140度.4.如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O于C,求∠A 的度数.解:∵∠AOD=130°,∴∠BOD=50°.∵BC∥OD,∴∠B=∠BOD=50°.∵AB是⊙O的直径,∴∠ACB=90°.∴∠A=90°-∠B=40°.活动3 课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师强调:①直径所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③在圆周角定理运用中,遇到直径,常构造直角三角形.。

北师大版数学九年级下册第一章直角三角形的边角关系回顾与思考第1课时说课稿

北师大版数学九年级下册第一章直角三角形的边角关系回顾与思考第1课时说课稿
2.引入三角函数:以实际情境为例,引导学生了解三角函数的定义,并通过图示、计算器等方式,让学生直观感受正弦、余弦、正切函数的数值变化。
3.探索边角关系:组织学生分组讨论,探讨直角三角形中边与角的关系,引导学生发现并理解三角函数在直角三角形中的应用。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
作业的目的是巩固所学知识,培养学生的实际应用能力,同时激发学生的学习兴趣和探究精神。
五、板书设计与教学反思
(一)板书设计
我的板书设计将采用结构化布局,主要内容分为三部分:回顾部分、新知部分和总结部分。风格上追求清晰、简洁,突出重点。
1.回顾部分:板书左侧,列出勾股定理和三角函数的定义,以提纲形式呈现,方便学生快速回忆。
北师大版数学九年级下册第一章直角三角形的边角关系回顾与思考第1课时说课稿
一、教材分析
(一)内容概述
本节课选自北师大版数学九年级下册第一章《直角三角形的边角关系》的第一课时。这一章节在整个课程体系中具有承上启下的作用,既是对前面所学勾股定理、三角函数等知识的巩固,也是为后续学习解直角三角形、相似三角形等打下基础。本节课的主要知识点包括:回顾勾股定理和三角函数的定义,探索直角三角形中边与角的关系,以及运用这些关系解决实际问题。
1.让学生总结本节课所学知识点,分享自己的学习心得。
2.组织学生互相评价,发现彼此的优点和不足。
3.教师针对学生的总结和评价,给予针对性的反馈和建议,强调重点知识,纠正错误观念。
(五)作业布置
课后作业布置如下:
1.完成课后练习题,巩固勾股定理和三角函数的应用。
2.结合生活实际,设计一道关于直角三角形的实际问题,并运用所学知识解决。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章小结与复习
【学习目标】
1.理解三角函数的定义,识记特殊三角函数值,根据条件熟练解直角三角形.
2.通过对本章知识进行旧知回顾,对本章知识结构有系统认识.
【学习重点】
熟练记忆特殊角的三角函数值,根据条件选择适当方法解直角三角形.
【学习难点】
情景导入 生成问题
知识结构框图:
解直角三角形⎩⎪⎪⎪⎨⎪
⎪⎪⎧直角三角形边角关系⎩⎪⎨⎪⎧锐角三角函数⎩⎪⎨⎪⎧正切正弦、余弦
30°、45°、60°角的三角函数值一般三角函数值的计算⎩⎪⎨⎪⎧利用计算器求三角函数值利用计算器求角度解直角三角形⎩⎪⎨⎪⎧已知两边解直角三角形
已知一边和一锐角解直角三角形三角函数的应用⎩⎪⎨⎪⎧方位角问题俯角、仰角问题
坡度问题利用三角函数测高 自学互研 生成能力
知识模块一 锐角三角函数
范例1:如图,在矩形ABCD 中,点E 在AB 上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的F 处,若AB =4,BC =5,则tan ∠AFE 的值为( C ) A .43B .45C .34D .45
,(范例1题图))
,(仿例1题图))
仿例1:如图,四边形A BCD 中,AD ∥BC ,CA 是∠BCD 的平分线,且AB⊥AC,AB =4,AD =6,则tan B 等于
( B )
A .23
B .22
C .114
D .554
仿例2:tan 30°·tan 60°+2(sin 45°-1)2=3-2.
知识模块二 解直角三角形
范例2:长为4m 的梯子在墙上与地面成45°角,作业时调整为60°角(如图),则梯子的顶端沿墙面升高了(23-22)m .
,(范例2题图)) ,(仿例题图))
仿例:将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是2536cm 2. 知识模块三 三角函数的应用
范例3:(徐州中考)如图,轮船从点A 处出发,先航行至位于点A 的南偏西15°且与点A 相距100km 的点B 处,再航行至位于点B 的北偏东75°且与点B 相距200km 的点C 处.
(1)求点C 与点A 的距离;(精确到1km )
(2)确定点C 相对于点A 的方向.(参考数据:2≈1.414,3≈1.732)
解:(1)过A 作AD⊥BC 于点D ,∠A BC =75°-15°=60°.
在Rt △ABD 中求得AD =503,BD =50,∴CD =150.
在Rt △ADC 中,由勾股定理得AC =1003≈173(km ).
(2)由AB 2+AC 2=BC 2
,∠BAC =90°,∴∠FAC =75°,
∴点C 位于点A 的南偏东75°方向.
仿例:如图,小明在大楼30m 高(即PH =30m )的窗口P 处进行观测,测出坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i(即tan ∠ABC)为1∶3,点P ,H ,B ,C ,A 在同一个平面上,点H ,B ,C 在同一条直线上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度数等于30°;
(2)求A ,B 两点间的距离(结果精确到0.1m ,参考数据:3≈1.732).
解:(1)30;(2)由题意得:∠PBH=60°,∠APB =45°,∵∠ABC =30°,∴∠ABP =90°,在Rt △PHB 中,PB =PH sin ∠PBH
=203,在Rt △PBA 中,AB =PB =203≈34.6. 答:A ,B 间距离约为34.6m .
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一锐角三角函数
知识模块二解直角三角形
知识模块三三角函数的应用
检测反馈达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思查漏补缺
1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

相关文档
最新文档