八年级数学(下)学期 第一次月考测试卷含答案

合集下载

鲁教版八年级(下)第一次月考数学试卷(含解析)

鲁教版八年级(下)第一次月考数学试卷(含解析)

2019-2020学年八年级(下)第一次月考数学试卷(五四学制)一、选择题(本大题共10小题,共30.0分)1.(3分)下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线互相垂直的矩形是正方形D.对角线相等的菱形是正方形2.(3分)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间3.(3分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OCD的度数为()A.35°B.40°C.45°D.50°4.(3分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2B.3C.4D.55.(3分)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB ⊥AB,交CD于点E.若DE=6,则AD的长为()A.6B.8C.10D.无法确定6.(3分)将a根号外的因式移到根号内,得()A.B.﹣C.﹣D.7.(3分)下列根式中,不能与合并的是()A.B.C.D.8.(3分)若x+1与x﹣1互为倒数,则实数x为()A.0B.C.±1D.±9.(3分)制造一种产品,原来的成本是每件200元,由于连续两次降低成本,现在每件产品的成本是162元,则平均每次降低成本()A.8%B.10%C.15%D.20%10.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°二、填空题(本大题共8小题,共32.0分)11.(4分)最简二次根式与是同类二次根式,则a=.12.(4分)方程(x﹣3)(x﹣9)=0的根是.13.(4分)已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为.14.(4分)若a是方程3x2+2x﹣1=0的解,则代数式3a2+2a﹣2019的值为.15.(4分)若有意义,则a的取值范围为16.(4分)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=4,则菱形ABCD的周长为.17.(4分)如图,四边形ABCD是平行四边形,AC与BD相交于点O,AB=AD,添加一个条件:,可使它成为正方形.18.(4分)一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:.三、计算题(本大题共2小题,共16.0分)19.(8分)(1);(2).20.(8分)解方程:(1)x2﹣7x﹣1=0;(2)x(2x﹣5)=4x﹣10四、解答题(本大题共5小题,共42.0分)21.(8分)如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=4时,求AF的长度.22.(8分)已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形;(2)求出此时菱形的边长.23.(8分)阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=024.(8分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的长方形花圃.(1)设花圃的一边AB为xm,则BC的长可用含x的代数式表示为m;(2)当AB的长是多少米时,围成的花圃面积为63平方米?25.(10分)观察下列运算过程:…请运用上面的运算方法计算:.参考答案一、选择题(本大题共10小题,共30.0分)1.(3分)下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线互相垂直的矩形是正方形D.对角线相等的菱形是正方形【分析】根据平行四边形、菱形、正方形的判定和性质一一判断即可.【解答】解:A.对角线互相平分的四边形是平行四边形,此选项正确;B.对角线互相垂直且平分的四边形是菱形,此选项错误;C.对角线互相垂直的矩形是正方形,此选项正确;D.对角线相等的菱形是正方形,此选项正确.故选:B.2.(3分)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间【分析】首先化简二次根式进而得出的取值范围进而得出答案.【解答】解:÷﹣1=﹣1=﹣1,∵7<<7.5,∴6<﹣1<6.5,故选:D.3.(3分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OCD的度数为()A.35°B.40°C.45°D.50°【分析】根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出∠DAB=90°,AB∥CD,求出∠OAB=∠DAB﹣∠OAD=35°,由平行线的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,AB∥CD,∴∠OAB=∠DAB﹣∠OAD=90°﹣55°=35°,∠OCD=∠OAB=35°,故选:A.4.(3分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2B.3C.4D.5【分析】作BF⊥DC于F,如图,易得四边形BEDF为矩形,再证明△ABE≌△CBF得到BE=BF,S△ABE=S△CBF,则可判断四边形BEDF为正方形,四边形BEDF的面积=四边形ABCD的面积,然后根据正方形的面积公式计算BE的长.【解答】解:作BF⊥DC于F,如图,∵∠CDA=90°,BE⊥AD,BF⊥DF,∴四边形BEDF为矩形,∴∠EBF=90°,即∠EBC+∠CBF=90°,∵∠ABC=90°,即∠EBC+∠ABE=90°,∴∠ABE=∠CBE,在△ABE和△CBF中,∴BE=BF,S△ABE=S△CBF,∴四边形BEDF为正方形,四边形BEDF的面积=四边形ABCD的面积,∴BE==4.故选:C.5.(3分)如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB ⊥AB,交CD于点E.若DE=6,则AD的长为()A.6B.8C.10D.无法确定【分析】作BF⊥AD与F,就可以得出BF∥CD,就可以得出四边形BCDF是矩形,进而得出四边形BCDF是正方形,就有BF=BC,证明△BCE≌△BAF就可以得出AF=CE,进而得出结论.【解答】解:作BF⊥AD与F,∴∠AFB=BFD=90°,∵AD∥BC,∴∠FBC=∠AFB=90°,∵∠C=90°,∴∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=∠FBC,∴∠ABE﹣∠FBE=∠FBC﹣∠FBE,∴∠CBE=∠FBA.在△BCE和△BAF中,∴△BCE≌△BAF(ASA),∴CE=F A.∵CD=BC=8,DE=6,∴DF=8,CE=2,∴F A=2,∴AD=8+2=10.故选C.6.(3分)将a根号外的因式移到根号内,得()A.B.﹣C.﹣D.【分析】直接利用二次根式的性质得出a的符号,进而变形得出答案.【解答】解:a=﹣=﹣.故选:B.7.(3分)下列根式中,不能与合并的是()A.B.C.D.【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选:C.8.(3分)若x+1与x﹣1互为倒数,则实数x为()A.0B.C.±1D.±【分析】首先根据倒数定义可得:(x+1)(x﹣1)=1,再去括号,两边同时开平方即可.【解答】解:由题意得:(x+1)(x﹣1)=1,去括号得:x2﹣1=1,移项得:x2=2,两边直接开平方得:x=±,故选:D.9.(3分)制造一种产品,原来的成本是每件200元,由于连续两次降低成本,现在每件产品的成本是162元,则平均每次降低成本()A.8%B.10%C.15%D.20%【分析】设平均每次降低成本的百分率为x的话,经过第一次下降,成本变为200(1﹣x)元,再经过一次下降后成本变为200(1﹣x)(1﹣x)元,根据两次降低后的成本是162元列方程求解即可.【解答】解:设平均每次降低成本的百分率为x,根据题意得:200(1﹣x)(1﹣x)=162,解得:x=0.1或1.9(不合题意,舍去)即:x=10%故选:B.10.(3分)如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.【解答】解∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);过点D分别作BC,CD边上的高为AE,AF.则AE=AF(两纸条相同,纸条宽度相同);∵平行四边形ABCD中,S△ABC=S△ACD,即BC×AE=CD×AF,∴BC=CD,即AB=BC.故B正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).∴∠ABC=∠ADC,∠BAD=∠BCD(菱形的对角相等),故A正确;AB=CD,AD=BC(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.二、填空题(本大题共8小题,共32.0分)11.(4分)最简二次根式与是同类二次根式,则a=5.【分析】根据最简二次根式与同类二次根式的定义列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a=15,解得:a=5.故答案为:5.12.(4分)方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.13.(4分)已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为1.【分析】先设x2+y2=t,则方程即可变形为t2+5t﹣6=0,解方程即可求得t即x2+y2的值.【解答】解:设x2+y2=t,则原方程可化为:t2+5t﹣6=0即(t+6)(t﹣1)=0∴t=﹣6(舍去)或t=1,即x2+y2=1.故答案是:1.14.(4分)若a是方程3x2+2x﹣1=0的解,则代数式3a2+2a﹣2019的值为﹣2018.【分析】利用a是方程3x2+2x﹣1=0的解得到3a2+2a=1,然后利用整体代入的方法计算3a2+2a﹣2019的值.【解答】解:∵a是方程3x2+2x﹣1=0的解,∴3a2+2a﹣1=0,∴3a2+2a=1,∴3a2+2a﹣2019=1﹣2019=﹣2018.故答案为﹣2018.15.(4分)若有意义,则a的取值范围为a≤4且a≠﹣2【分析】二次根式的被开方数是非负数且分式的分母不等于零.【解答】解:依题意得:4﹣a≥0且a+2≠0,解得a≤4且a≠﹣2.故答案是:a≤4且a≠﹣2.16.(4分)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=4,则菱形ABCD的周长为32.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=4,∴AB=8,∴菱形ABCD的周长是:4×8=32,故答案为:32.17.(4分)如图,四边形ABCD是平行四边形,AC与BD相交于点O,AB=AD,添加一个条件:∠BAD=90°,可使它成为正方形.【分析】根据正方形的判定即可得结论.【解答】解:因为四边形ABCD是平行四边形,AB=AD,所以▱ABCD是菱形,如果∠BAD=90°,那么四边形ABCD是正方形.故答案为:∠BAD=90°.18.(4分)一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:10cm.【分析】设正方形的边长是xcm,根据面积相应地增加了44cm2,即可列方程求解.【解答】解:设正方形的边长是xcm,根据题意得:(x+2)2﹣x2=44,解得:x=10.故答案为:10cm.三、计算题(本大题共2小题,共16.0分)19.(8分)(1);(2).【分析】(1)直接利用二次根式的性质以及负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用二次根式的性质分别化简,进而结合二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式=2﹣3×﹣2﹣1×=2﹣﹣2﹣=﹣2;(2)原式=[3+4×﹣(﹣)]×=(3+2﹣+)×=(2+3)×=6+3.20.(8分)解方程:(1)x2﹣7x﹣1=0;(2)x(2x﹣5)=4x﹣10【分析】(1)可用公式法进行求解;(2)观察原方程,方程的左右两边都含有2x﹣5,因此可先移项,然后用提取公因式法进行求解.【解答】解:(1)a=1,b=﹣7,c=﹣1;b2﹣4ac=53;x=;x1=,x2=;(2)原方程可化为:x(2x﹣5)﹣2(2x﹣5)=0;(2x﹣5)(x﹣2)=0,x﹣2=0或2x﹣5=0;解得:x1=2,x2=.四、解答题(本大题共5小题,共42.0分)21.(8分)如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.(1)求证:四边形DECO是矩形;(2)连接AE交BD于点F,当∠ADB=30°,DE=4时,求AF的长度.【分析】(1)先证四边形DECO是平行四边形,再根据菱形的性质求出∠DOC=90°,即可得出结论;(2)证△AFO≌△EFD(AAS),得OF=DF,由直角三角形的性质得OD=AO=4,则OF=OD=2,再根据勾股定理求出AF即可.【解答】(1)证明:∵DE∥AC,CE∥BD,∴四边形DECO是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形DECO是矩形;(2)解:如图,∵四边形ABCD是菱形,∴AO=OC,AC⊥BD,∵四边形DECO是矩形,∴OC=DE=4,∴AO=4,∵DE∥AC,∴∠F AO=∠DEF,在△AFO和△EFD中,,∴△AFO≌△EFD(AAS),∴OF=DF,∵∠ADB=30°,∴OD=AO=4,∴OF=OD=2,∴AF===2.22.(8分)已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形;(2)求出此时菱形的边长.【分析】(1)根据题意△=0,构建方程,解方程即可.(2)把m=1代入方程,解方程即可解决问题.【解答】解:(1)四边形ABCD为菱形,则方程有两个相等的实数根,∴△=b2﹣4ac=(﹣m)2﹣4(﹣)=0,即m2﹣2m+1=0,解得m=1,所以当m=1时,四边形ABCD为菱形.(2)把m=1代入原方程得x2﹣x+=0,解得所以菱形的边长为.23.(8分)阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=0【分析】当绝对值内的数不小于0时,可直接去掉绝对值,而当绝对值内的数为负数时,去绝对值时,绝对值内的数要变为原来的相反数.本题要求参照例题解题,要先对x的值进行讨论,再去除绝对值将原式化简.【解答】解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.(2)当x≥2时,原方程可可化为x2+2x﹣4﹣3=0,解得x1=﹣1+(舍去),x2=﹣1﹣(舍去).当x<2时,原方程化为x2﹣2x+4﹣3=0,解得x1=x2=1综上所述,原方程的根是x1=x2=1.24.(8分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的长方形花圃.(1)设花圃的一边AB为xm,则BC的长可用含x的代数式表示为(30﹣3x)m;(2)当AB的长是多少米时,围成的花圃面积为63平方米?【分析】(1)设AB的长为xm,则平行一墙的一边长为(30﹣3x)m,该花圃的面积为x (30﹣x)m2;进而用含x的代数式表示BC即可;(2)令该面积等于63平方米,求出符合题意的x的值,即是所求AB的长.【解答】解:(1)BC的长可用含x的代数式表示为(30﹣3x)m.故答案为:(30﹣3x);(2)依题意有x(30﹣3x)=63.解得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去.故当AB的长是7米时,围成的花圃面积为63平方米.25.(10分)观察下列运算过程:…请运用上面的运算方法计算:.【分析】先分母有理化,然后合并即可.【解答】解:原式=+++…++=.。

福建省龙岩市第七中学2023-2024学年八年级下册第一次月考数学试题(含解析)

福建省龙岩市第七中学2023-2024学年八年级下册第一次月考数学试题(含解析)

2023-2024学年第二学期八年级数学练习(一)一、单选题(每小题4分,共40分)1( )A .B .C .D .2.下列四组数中,不是勾股数的是( )A .,,B .,,C .,,D .,,3.已知菱形的两条对角线,则菱形的面积为( )A .48B .40C .24D .204.下列计算正确的是( )ABC .D5.已知两条线段长分别为3,4,那么能与它们组成直角三角形的第三条线段长是( )A .5B C .5或 D .46.下列命题的是真命题的是( )A .有一个角是直角的四边形是矩形B .邻边相等的平行四边形是矩形C .两条对角线相等的四边形是矩形D .三个角等于90度的四边形是矩形7.如图,中,,现将沿进行翻折,使点A 刚好落在,则的长为( )A .B .C .2D .8.如图,在正方形中,点,点,则点的坐标为( )1x ≤1x ≥1x >1x <15a =8b ==17c 6a =8b =10c =6a =5b =8c =9a =12b =15c =ABCD 8,6AC BD ==ABCD =3=(22=2=-Rt ABC 90,3,4A AB AC ∠=︒==ABC BD BC CD 522532ABCD (2,0)A (0,4)B DA .B .C .D .9.如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△PAE 周长的最小值是( )A .3B .4C .5D .610.如图,四边形是矩形,点在边上,平分且,垂足为点,连接并延长交于点,连接交于点,连接交于点,有下列结论:①;②垂直且平分;③;④;⑤.其中正确的结论有( )个.A .1B .2C .3D .4二、填空题(每小题4分,共24分)11的计算结果是 .12.直角三角形一直角边为12cm ,斜边长为13cm ,则它的面积为13.已知平行四边形ABCD 的周长是28cm ,AC 和BD 交于O ,△OAB 的周长比△OBC 的周长小2cm ,则AB = .14.如图,矩形的对角线交于点O ,,则的长(6,2)(5,2)(6,3)(5,3)ABCD F BC AF BAD ∠AD AF =DE AF ⊥E BE CD G DF BG H EC DF I AFD CFD ∠=∠DF EC EFC EHD ≌AB EG =67.5EGC ∠=︒2cm ABCD AC BD ,260AB AOB =∠=︒,BD为 .15.如图,,D 为AB 的中点,点E 为AF 的中点,使E 、C 、D 共线,且,若,则AB 的长为 .16.如图,在平面直角坐标系中有一个边长为的正方形,边,分别在轴、轴上,如果以对角线为边作第二个正方形,再以对角线为边作第三个正方形,,照此规律作下去,则点的坐标为 .三、解答题(每小题4分,共8分)17.计算:(2)18.如图,在正方形网格中,每个小正方形的边长均是1,A ,B ,C 为格点(每个小正方形90ACB ∠= 14CE CD =10BF =1OABC OA OC x y OB 11OBB C 1OB 122OB B C ⋯6B (33+-的顶点叫格点).(1)填空:线段___________,___________,___________;(2)判断的形状,并说明理由.19.如图,已知四边形ABCD 是平行四边形,BE ⊥AC , DF ⊥A C ,求证:AE =CF .20.如图,甲乙两船从港口同时出发,甲船以10海里/时速度向北偏东航行,乙船向南偏东航行,5小时后,甲船到达岛,乙船到达岛,若、两岛相距130海里,问乙船的航速是多少?21.在等腰三角形中,,点D 是中点,点E 是中点.过点A 作交的延长线于点F .(1)试判断四边形的形状,并加以证明;AB =BC =AC =ABC A 48︒42︒C B C B ABC AB AC =BC AD AF BC ∥BE ADCF(2)若,,求四边形的面积.22.如图,为矩形的对角线,按要求完成下列各题.(1)用直尺和圆规作出的垂直平分线,分别交于点,垂足为.(不写作法,仅保留作图痕迹);(2)连接和.求证:四边形是菱形;23.【信息阅读】的式子,可以按如下方法化简:.,还可以这样化简:.【问题解决】利用上述方法解决下列问题:= ;(2)化简:;24.阅读理解:【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?17AB=30BC=ADCFBD ABCDBD AD BC,E F,O BE DF BFDE==1===1====-【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积 + 4个直角三角形的面积,从而得数学等式: ;(用含字母a 、b 、c 的式子表示)化简证得勾股定理:【初步运用】(1)如图1,若b=2a ,则小正方形面积:大正方形面积= ;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a= 4,b= 6此时空白部分的面积为 ;【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图3的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a 、b 、c 之间的关系,写出此等量关系式及其推导过程.知识补充:如图4,含60°的直角三角形,对边y :斜边x =定值k25.平面直角坐标系中有正方形AOBC ,O 为坐标原点,点A 、B 分别在y 轴、x 轴正半轴上,点P 、E 、F 分别为边BC 、AC 、OB 上的点,EF ⊥OP 于M .(1)如图1,若点E 与点A 重合,点A 坐标为(0,8),OF =3,求P 点坐标;(2)如图2,若点E 与点A 重合,且P 为边BC 的中点,求证:CM =2CP ;(3)如图3,若点M 为线段OP 的中点,连接AB 交EF 于点N ,连接NP ,试探究线段OP 与NP 的数量关系,并证明你的结论.222+=a b c参考答案与解析1.B 【分析】根据二次根式的被开方数是非负数,可得不等式,解不等式可得答案.得:,解得:.故选:B .【点拨】本题考查了二次根式有意义的条件,注意被开方数为非负数.2.C【分析】根据勾股定理逐项验证即可得到答案.【解答】解:A 、,,,,即,,,是勾股数,不符合题意;B 、,,,,即,,,是勾股数,不符合题意;C 、,,,,即,,,不是勾股数,符合题意;D 、,,,,即,,,是勾股数,不符合题意;故选:C .【点拨】本题考查勾股定理的应用,熟练掌握勾股定理是解决问题的关键.3.C【分析】根据菱形的面积等于两对角线积的一半求解. 【解答】解:由已知可得:菱形 ABCD 的面积为故选C .10x -≥1x ≥ 2215225a ==22864b ==2217289c ==22564289∴+=222+=a b c ∴15a =8b ==17c 22636a ==22864b ==2210100c ==3664100∴+=222+=a b c ∴6a =8b =10c = 22636a ==22525b ==22864c ==36256164∴+=≠222a b c +≠∴6a =5b =8c = 22981a ==2212144b ==2215225c ==81144225∴+=222+=a b c ∴9a =12b ==15c 68242⨯=,【点拨】本题考查菱形的应用,熟练掌握菱形对角线的性质及菱形面积的各种求法是解题关键.4.C【分析】根据同类二次根式,二次根式的除法,二次根式的乘法,算术平方根计算,即可求解.【解答】A不是同类二次根式,无法合并,故本选项错误,不符合题意;BC 、,正确,故本选项符合题意;D,故本选项错误,不符合题意;故选:C .【点拨】本题主要考查了同类二次根式,二次根式的除法,二次根式的乘法,算术平方根,熟练掌握相关知识点是解题的关键.5.C【分析】本题考查了勾股定理,分两种情况:当两条线段均为直角边时;当线段为斜边,线段为直角边时;利用勾股定理计算即可.【解答】解:当两条线段均为直角边时,则与它们组成直角三角形的第三条线段长,当线段为斜边,线段为直角边时,则与它们组成直角三角形的第三条线段长综上所述,两条线段长分别为3,4,那么能与它们组成直角三角形的第三条线段长是5或,故选:C .6.D【分析】利用矩形的判定定理分别对每个选项进行判断后即可确定正确的选项.【解答】解:A 、有一个角是直角的平行四边形是矩形,故原命题错误,是假命题;B 、邻边相等的平行四边形是菱形,故原命题错误,是假命题;C 、两条对角线相等的平行四边形是矩形,故原命题错误,是假命题;D 、三个角等于90°的四边形是矩形,正确,是真命题;故选:D .=(22=2435==43==【点拨】此题主要考查了命题的真假,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.7.B【分析】将沿进行翻折,使点A 刚好落在上,则,,在直角中,根据勾股定理,即可得到一个关于CD 的方程,即可求得.【解答】解:设,则,在中,,,在中,即:解得:,故选:B .【点拨】本题考查了勾股定理和折叠的问题,解题的关键是根据勾股定理把求线段的长的问题转化为方程问题.8.A【分析】通过证明得到,即可求得点的坐标.【解答】解:如下图所示,过点D ,作垂直于x 轴,交x 轴于点E ,∵,,∴,∵,,∴,ABC BD BC AD A D '=AB A B '=Rt A DC '△CD x =4A D ADx ¢==-Rt ABC 5BC ==532ACB C AB B C A B ¢¢\=-=-=-=Rt A DC ' 222A D A C CD ''+=()22242x x -+=52x =ABO DAE ≌2,4DE OA AE OB ====D DE (2,0)A (0,4)B ==OA 2,OB 490OAB DAE ∠+∠=︒90OAB OBA ∠+∠=︒DAE ABO ∠=∠∵,∴,∴,∴,∴点的坐标为,故选:A .【点拨】本题考查直角坐标、正方形和全等三角形的性质,解题的关键是证明.9.D【分析】连接AC 、CE ,CE 交BD 于P ,此时AP +PE 的值最小,求出CE 长,即可求出答案.【解答】解:连接AC 、CE ,CE 交BD 于P ,连接AP 、PE ,∵四边形ABCD 是正方形,∴OA =OC ,AC ⊥BD ,即A 和C 关于BD 对称,∴AP =CP ,即AP +PE =CE ,此时AP +PE 的值最小,所以此时△PAE 周长的值最小,∵正方形ABCD 的边长为4,点E 在边AB 上,AE =1,∴∠ABC =90°,BE =4﹣1=3,由勾股定理得:CE =5,∴△PAE 的周长的最小值是AP +PE +AE =CE +AE =5+1=6,故选:D .【点拨】本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难ABO DAE BOA AED BA AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABO DAE AAS ≌2,4DE OA AE OB ====6OE OA AE =+=D (6,2)ABO ADE ≌△△题型.10.C【分析】由矩形的性质可得,,得出,由等腰三角形的性质得出,故①正确;由得,由线段垂直平分线的性质可得②正确;由,,得不可能是等边三角形,得,故③错误;由等腰三角形的性质可判断④;由全等三角形的性质及长方形的性质可得为等腰直角三角形,求出,再根据平行线的性质可得,可判定⑤正确.【解答】解:四边形是矩形,,,,,,,故①正确;,,,,在的垂直平分线上,在和中,,,,点在的垂直平分线上,垂直且平分,故②正确;平分,,,,又,不可能是等边三角形,AD BC ∥90BCD ∠=︒ADF CFD ∠=∠AFD ADF ∠=∠Rt Rt DEF DCF ≌EF CF =45EDC ∠=︒ED DC =EDC △ED EC ≠AED △67.5ABE ∠=︒67.5EGC ABE ∠=∠=︒ ABCD AD BC ∴∥90BCD ∠=︒∴∠=∠ADF CFD AD AF = AFD ADF ∴∠=∠AFD CFD ∴∠=∠AFD CFD ∠=∠ DE AF ⊥DC BC ⊥DE DC ∴=D ∴CE Rt DEF Rt DCF △DE DC DF DF=⎧⎨=⎩Rt Rt (HL)DEF DCF ∴ ≌EF CF ∴=∴F CE DF ∴CE AF BAD ∠45DAF ∴∠=︒45ADE ∴∠=︒45EDC ∴∠=︒ED DC = EDC ∴△,错误;故③错误;,,,,,,故④错误;,,为等腰直角三角形,,,,又,,,,,,,故⑤正确.故选:C .【点拨】本题主要考查全等三角形的判定和性质,等腰三角形的判定与性质,矩形的性质,线段垂直平分线的性质等知识,熟练掌握矩形的性质是解题的关键.11【分析】根据二次根式的乘法法则进行计算即可..【点拨】本题考查二次根式的乘法,掌握运算法则是解题的关键.12.30ED EC ∴≠EFC EHD ∴ ≌AB CD = ED CD =AB ED ∴=45EDG ∠=︒ ED EG ∴≠AB EG ∴≠45DAF ∠=︒ DE AF ⊥AED ∴ AE DE ∴=Rt Rt (HL)DEF DCF ≌DE DC ∴=AB DC = AB AE =∴ABE AEB ∴∠=∠45BAE ∠=︒ 67.5ABE ∴∠=︒AB DC ∥67.5EGC ABE ∴∠=∠=︒==【分析】根据勾股定理求得其另一直角边的长,再根据面积公式即可求得其面积.【解答】解:∵直角三角形一直角边为12cm ,斜边长为13cm ,∴另一直角边=,∴面积=×5×12=30 (cm 2).故答案为:30.【点拨】本题考查了勾股定理解三角形,解决本题的关键是根据勾股定理求得另一直角边的长.13.6cm【分析】根据平行四边形的性质可得AB +BC =14cm ,OA =OC ,再根据△OAB 的周长比△OBC的周长小2cm ,即可求得.【解答】解:∵平行四边形ABCD 的周长为28cm ,∴AB +BC =14cm ,OA =OC ,∵△OAB 的周长比△OBC 的周长小2cm ,∴,∴AB =6cm ,BC =8cm .故答案为:6cm .【点拨】本题考查了平行四边形的性质,三角形的周长,利用二元一次方程组求解,采用方程思想是解决本题的关键.14.4【分析】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键,首先根据矩形的性质,可得;接下来再根据和,即可判断为等边三角形;根据等边三角形的性质,可得,即可作答.【解答】解:∵四边形是矩形,12()()2cm OB OC BC OA OB AB BC AB ++-++=-=12OA OB AC ==60AOB ∠=︒OA OB =AOB 22AB OA AC OA ===,ABCD∴,又∵,∴为等边三角形,∴.故答案为4.15.8【分析】先根据三角形中位线定理可得,再根据可得,然后根据直角三角形斜边上的中线等于斜边的一半即可得.【解答】解:点为中点,点为中点,且,,,,,点为中点,.故答案为:8.【点拨】本题主要考查了三角形中位线定理、直角三角形斜边上的中线等于斜边的一半等知识点,熟练掌握三角形中位线定理是解题关键.16.【分析】本题考查了坐标规律,正方形的性质,勾股定理;根据勾股定理求出的长,利用正方形的每一条对角线都把它分成两个全等的等腰直角三角形得出的坐标,再根据题意和图形可看出每经过一次变化,都逆时针旋转的坐标.【解答】解:正方形边长为,,,正方形是正方形的对角线为边,,12OA OB AC ==60AOB OA OB ∠=︒=,AOB 22224AB OA BD AC OA =====⨯=,152DE BF ==14CE CD =4CD = D AB E AF 10BF =152DE BF ∴==14CE CD = 445CD DE ∴==90ACB ∠=︒ D AB 28AB CD ∴==()8,8-OB B 45︒6B OABC 1OB ∴=()1,1B 11OBB C OABC OB ∴212O B ==点坐标为,同理可知,点坐标为,根据题意和图形可看出每经过一次变化,都逆时针旋转点在第四象限的角平分线上,,点,纵坐标是,点的坐标为故答案为:.17.(2)【分析】本题考查了二次根式的混合运算,熟练掌握运算法则是解此题的关键.(1化简,再计算减法即可;(1)先根据平方差公式和二次根式的除法计算,然后计算加减即可.【解答】(1;(2)解:.18.(1;(2)直角三角形;理由见解析.【分析】(1)根据勾股定理即可求解;(2)根据勾股定理的逆定理即可求解.【解答】解:(1)AC =5.5;(2)△ABC 为直角三角形,理由如下:∵AB 2=5,BC 2=20,AC 2=25,∴AB 2+BC 2=AC 2,∴1B ()0,232OB ==∴2B ()2,2-45︒∴6B 76OB =∴6B 78=78=-∴6B ()8,8-()8,8-2-=((223339832+-=-=--=-5AB =BC =∴△ABC 为直角三角形.【点拨】此题考查了勾股定理和勾股定理的逆定理,熟练掌握勾股定理和勾股定理的逆定理是解本题的关键.19.见解析【分析】可证明ABE CDF ,即可得到结论.【解答】证明:∵四边形ABCD 是平行四边形∴AB =CD ,AB CD∴∠BAC =∠DCA∵BE AC 于E ,DF AC 于F∴∠AEB =∠DFC =90°在ABE 和CDF 中 ,∴ABE CDF (AAS )∴AE =CF【点拨】此题考查平行四边形的性质和全等三角形的判定及性质,掌握平行四边形的性质和全等三角形的判定是解决问题的关键.20.24海里/小时【分析】利用方向角的意义和平角的定义得到∠BAC =90°,则利用勾股定理可计算出AB =120海里,然后计算乙船的航速.【解答】解:依题意:,从而可得:,在中,,由已知得:(海里),(海里),从而可得:(海里),乙船的速度为:(海里/时),答:乙船的速度为24海里/小时.【点拨】本题考查了勾股定理解决航海问题,熟练掌握勾股定理时解题的关键.21.(1)四边形是矩形,证明见解析≌ ∥⊥⊥ BAE DCF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩≌ 484290︒+︒=︒()180484290BAC ∠=︒-︒+︒=︒Rt ABC 222AB AC BC +=10550AC =⨯=130BC =120AB =120524÷=ADCF(2)120【分析】(1)由证明,得,证得四边形为平行四边形,再由等腰三角形“三线合一”得,则,根据矩形的判定定理可证得结论;(2)根据等腰三角形的性质得到,勾股定理求得,然后根据矩形的面积公式即可得到结论.【解答】(1)解:四边形是矩形;证明:∵E 是的中点,∴,∵,∴,在和中,,∴;∴,∵点D 是中点,∴,∴,又∵,∴四边形是平行四边形,∵,点D 是中点,∴,∴,∴四边形是矩形;(2)解:∵,点D 是中点,∴,,∴,AAS AEF DEB ≌△△AF DB =ADCF AD BC ⊥90ADC ∠=︒1152BD CD BC ===AD ADCF AD AE DE =AF BC ∥AFE DBE ∠=∠AEF △DEB AFE DEB AEF DEB AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEF DEB ≌△△AF DB =BC CD DB =CD AF =AF BC ∥ADCF AB AC =BC AD BC ⊥90ADC ∠=︒ADCF AB AC =BC 1152BD CD BC ===AD BC ⊥90ADC ∠=︒∴,∴四边形的面积.【点拨】本题考查了矩形的判定和性质、平行四边形的判定、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握矩形的判定与性质,证明三角形全等是解题的关键.22.(1)见解析(2)见解析【分析】本题考查了作图—复杂作图、线段垂直平分线的性质、菱形的判定、矩形的性质、三角形全等的判定与性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)根据要求作出图形即可;(2)由线段垂直平分线的性质得出,,由矩形的性质得出,证明得出,即可得证.【解答】(1)解:如图,直线即为所作,;(2)证明:垂直平分线段,,,四边形为矩形,,,在和中,,,,8AD ===ADCF 158120=⨯=OB OD =EF BD ⊥EDO FBO ∠=∠()ASA EDO FBO ≌OE OF =EF EF BD OB OD ∴=EF BD ⊥ ABCD AD BC ∴∥EDO FBO ∴∠=∠EDO FBO △EDO FBO BO DOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA EDO FBO ∴ ≌OE OF ∴=,四边形是平行四边形,,四边形是菱形.23.(2)②44【分析】(1)根据材料的方法即可求解,(2)①根据材料的方法:利用平方差公式进行分母有理化即可求解,②先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案.【解答】(1(2)②原式=.【点拨】本题主要考查了分母有理化,解题的关键是找准有理化因式.24.[探索新知]:;[初步运用]:(1)5:9;(2)28; [迁移运用] :,证明详见解析.OB OD = ∴BFDE EF BD ⊥ ∴BFDE===+ 1=+ 144==221()42a b c ab +=+⨯222a b ab c +-=【分析】[探索新知]分别表示出大正方形,小正方形,直角三角形面积,再由面积关系可得关系式;[初步运用](1)将b=2a 代入可推出,即小正方形面积为大正方形面积=,可求出比值;(2)空白部分面积为小正方形面积减去2个直角三角形面积;[迁移运用]大正三角形面积=三个全等三角形面积+小正三角形面积,分别求出面积代入关系式化简即可.【解答】[探索新知]大正方形边长为,所以面积=,小正方形的边长为,所以面积=,直角三角形的面积=,由大正方形的面积=小正方形的面积 + 4个直角三角形的面积可得[初步运用](1)将b=2a 代入得,∴,即小正方形面积为大正方形面积=,∴ 小正方形面积:大正方形面积=:=5:9(2)∵a= 4,b= 6∴小正方形面积=,直角三角形面积=∴空白部分面积=小正方形面积-两个直角三角形面积=[迁移运用]由补充知识可得大正三角形的高为,小正三角形的高为,全等三角形的高为,则由大正三角形面积=三个全等三角形面积+小正三角形面积可得∴【点拨】本题考查勾股定理的证明和应用,根据图形得出面积关系是解题的关键.222+=a b c 22=5c a 25a ()229+=a b a ()a b +2()a b +c 2c 12ab 221()42a b c ab +=+⨯222+=a b c ()2222+=a a c 22=5c a 25a ()229+=a b a 25a 29a 22222=+4652=+=c b a 11=46=1222⨯⨯ab 52212=28-⨯()+k a b kc ka 111()()3222+⋅+=⨯⋅+⋅a b k a b b ka c kc 22()3a b ab c +=+222a b ab c +-=25.(1);(2)证明见解析;(3),证明见解析【分析】(1)证明△OAF ≌△BOP (ASA ),得出OF=PB=3,则P 点坐标可求出;(2)取的中点,连接交于,连接,利用,证得四边形为平行四边形,然后根据直角三角形斜边中线等于斜边的一半求得MN=AN ,用HL 定理证明,从而求得为的垂直平分线,使问题得解;(3)过点作交于点,交于点,连接,由矩形和正方形的性质求得为等腰直角三角形,从而求得,,利用垂直平分线的性质求得ON=NP ,然后根据HL 定理证得,然后利用全等三角形的性质求得,即为等腰直角三角形,从而使问题得解.【解答】解:∵A (0,8),∴OA=8,∵EF ⊥OP 于M ,∴∠OMF=90°,∴∠MOF+∠OFM=90°,∵∠OFM+∠OAF=90°,∴∠MOF=∠OAF .∵OA=OB ,∠AOF=∠OBP ,∴△OAF ≌△BOP (ASA ),∴OF=PB=3,∴P (8,3);(2)取的中点,连接交于,连接∵在正方形AOBC 中,OA=BC=AC ,且点P 为BC 中点∴,(83)P,OP =OA N CN AM H MN PC ON =PC ON ∥OPCN AHN MHN R t △≌R t △CN AM N HG AC OA H BC G ON AHN AH NH =OH NG =Rt ONH Rt NPG △≌△90ONH PNG ∠+∠=︒ONP △OA N CN AM H MN12PC BC =12ON OA =∴,∴四边形为平行四边形∴∵EF ⊥OP∴又∵N 为OA 中点∴在Rt △AOM 中,MN=AN在Rt △AHN 和Rt △MHN 中,MN=AN ,NH=NH∴∴,为的垂直平分线∴(3)过点作交于点,交于点,连接由题意可知四边形AHGC 是矩形且四边形AOBC 为正方形∴HG=AC=OA在正方形AOBC 中,∠OAB=45°∴为等腰直角三角形∴,由EF ⊥OP 于M 且M 为OP 的中点∴MN 垂直平分OP∴ON=NP在Rt △ONH 和Rt △NPG 中∴∴,,PC ON =PC ON∥OPCN CN OP∥CN AM⊥AHN MHNR t △≌R t △AH MH =CN AM 2AC CM CP==N HG AC OA H BC G ONAHN AH NH =OH NG=OH NG ON NP=⎧⎨=⎩Rt ONH Rt NPG△≌△ON PN =GNP HON ∠=∠HNO GPN∠=∠∵∴∴∴为等腰直角三角形∴.【点拨】本题是四边形综合题,考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定及性质,等腰三角形的性质等知识,解答时正确作出辅助线,证明三角形全等是关键.90ONH NOH ∠+∠=︒90ONH PNG ∠+∠=︒90ONP ∠=︒ONP△OP =。

北师大版八年级数学下册第一次月考试卷(含答案)

北师大版八年级数学下册第一次月考试卷(含答案)

八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。

新人教版八年级数学(下)第一次月考测试卷

新人教版八年级数学(下)第一次月考测试卷

哈密市第九中学2010-2011学年第二学期八年级数学(下)第一次月考测试卷 (时间90分钟 满分100分)一、选择题(每小题3分,共30分)1.下列各式:2a ,3x ,πy +5,()2314x +,b a b a -+,)(1y x m -,2xx中,是分式的共有( )A .1个B .2个C .3个D .4个 2.根据分式的基本性质,分式b a a--可变形为( ) A .ba a--B .b a a +C . ba a --D .ba a+-3.若把分式3xx y+中的x 、y 的值均扩大为原来的2倍,则分式的值( ) A .不变 B .扩大4倍 C .扩大2倍 D .缩小2倍 4.已知x ≠y ,下列各式与x yx y-+相等的是( ).A.()5()5x y x y -+++B.22x yx y -+ C. 222()x y x y -- D.2222x y x y -+ 5.计算22()ab ab的结果为( ) A.b B .aC.1D.1b6.分式方程1212x x =--( ).A.无解B.有解x=1C.有解x=2D.有解x=0 7.若分式21x +的值为正整数,则整数x 的值为( )A.0B.1C.0或1D.0或-18.一水池有甲乙两个进水管,若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开,那么注满空池的时间是( )(A )11a b + (B )1ab (C )1a b + (D )aba b+ 9. “5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?若设原计划每天修x 米,则所列方程正确的是( )A .12012045x x-=+B .12012045x x -=+ C .12012045x x -=- D .12012045x x -=- 10.若关于x 的方程4233k x x x -+=--无解,则k 的值为( ) A .3 B .1 C .-1 D .0二、填空题(每小题3分,共15分)11.当x 时,分式23xx +有意义。

八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)

八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)

八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。

八年级数学(下册)第一次月考数学试卷(含答案解析) (4)

八年级数学(下册)第一次月考数学试卷(含答案解析) (4)

八年级(下)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分&#215;10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.2016-2017学年江苏省淮安市盱眙县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】根据全等三角形的判定可以添加条件∠1=∠2.【解答】解:条件是∠1=∠2,∴∠ABE=∠DBC,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故选D5.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A图有两边相等,而夹角不一定相等,二者不一定全等;B图与三角形ABC有两边及其夹边相等,二者全等;C图有两边相等,而夹角不一定相等,二者不一定全等;D图与三角形ABC有两角相等,二者不一定全等;故选B6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【考点】全等三角形的判定.【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选D.7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC ∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【考点】全等三角形的性质.【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∴∠BAD=∠DAE+∠EAB=77°.故选D.二、填空题题(3分&#215;10=30分)9.我国国旗上的五角星有5条对称轴.【考点】轴对称的性质.【分析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠F,再根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=80°,∠C=75°,∴∠D=∠A=80°,∠F=∠C=75°,∴∠E=180°﹣∠D﹣∠F=25°.故答案为:25.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:AB=DC.【考点】全等三角形的判定.【分析】条件是AB=DC,根据SAS推出即可.【解答】解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为5厘米.【考点】全等三角形的应用.【分析】首先利用SAS定理判定△AOB≌△A′OB′,然后再根据全等三角形对应边相等可得A′B′=AB=5cm.【解答】解:连接AB,∵把两根钢条A′B、AB′的中点连在一起,∴AO=A′O,BO=B′O,在△ABO和△A′B′O中,∴△AOB≌△A′OB′(SAS),∴A′B′=AB=5cm,故答案为:5.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有3对全等三角形.【考点】全等三角形的判定.【分析】由已知易得△ABD≌△ACD,从而运用全等三角形性质及判定方法证明△BDE≌△CDE,△ABE≌△ACE.【解答】解:图中的全等三角形共有3对.∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴BE=CE,在△ABE与△ACE中,,∴△ABE≌△ACE(SSS).故答案为:3.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=10°.【考点】全等三角形的判定与性质.【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=40°,求出∠EAC的度数,然后即可求出∠AEC的度数.【解答】解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,在Rt△CAE与△RtDAE中,,∴Rt△CAE≌Rt△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=40°,∴∠CAB=90°﹣40°=50°,∴∠EAC=10°.故答案为:10.16.如图:作∠AOB的角平分线OP的依据是SSS.(填全等三角形的一种判定方法)【考点】作图—基本作图;全等三角形的判定.【分析】根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.【解答】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.【考点】作图—应用与设计作图;全等图形.【分析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,并且图形要保证为相同即可.【解答】解:如下图所示:21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【考点】全等三角形的性质.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠D=∠A,全等三角形对应边相等可得DO=AO,再根据三角形的内角和定理列式计算即可求出∠DCO,BD=BO+DO计算即可得解.【解答】解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.【考点】全等三角形的判定与性质.【分析】由已知两对边相等,加上公共边AB=AB,利用SSS得到三角形ABC与三角形ABD全等,利用全等三角形对应角相等得到∠CAB=∠DAB,即可得证.【解答】证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.【考点】全等三角形的判定与性质.【分析】欲证明AD=BC,只要证明△ACB≌△CAD即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据两个等腰直角三角形的性质得:AB=AC,AD=AE,∠BAC=∠EAD=90°,由等式性质得:∠BAE=∠CAD,根据SAS证明两三角形全等;(2)由等腰直角三角形得两锐角为45°,再由全等三角形的性质得:∠ACD=∠B=45°,所以∠BCD=90°,则CD⊥BE.【解答】证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定与性质.【分析】直接利用全等三角形的判定与性质分别得出△MOE≌△NOD(SAS),△MDC≌△NEC(AAS),△DOC≌△EOC(SSS),进而得出答案.【解答】解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是矩形;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.【考点】四边形综合题;全等三角形的判定与性质;平行四边形的判定;矩形的判定;旋转的性质.【分析】思考与实践:(1)根据矩形的定义:有一个角是直角的平行四边形是矩形进行判断即可;(2)取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,根据旋转后三角形的一条边与四边形的一边在同一条直线上,构成平行四边形.发现与运用:=S□ABGH即可;(1)过点E作AB的平行线,交BC于点G,交AD的延长线于点H,得出S梯形ABCD(2)分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.【解答】解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),∴S△DEH =S△CEG,∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH 一起拼接到△FBH位置即可.。

人教版2021-2022学年八年级数学下册第一次月考测试题(附答案)

人教版2021-2022学年八年级数学下册第一次月考测试题(附答案)

2021-2022学年八年级数学下册第一次月考测试题(附答案)一、选择题(共30分)1.下列二次根式中是最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.4•=4B.5•5=5C.4•2=6D.4•=4 3.若代数式在实数范围内有意义,则x的取值范围是()A.x<3B.x≤3C.x>3D.x≥34.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.35.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.806.如图,在△ABC中,AB=AC,AD是BC边上的高.已知AB=5,BC=8,则AD的长为()A.6B.5C.4D.37.如图,四边形ABCD是矩形,BC=1,则点M表示的数是()A.2B.C.D.8.已知△ABC的三边分别长为a、b、c,且满足(a﹣17)2+|b﹣15|+c2﹣16c+64=0,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形9.若直角三角形的两条直角边各扩大一倍,则斜边()A.不变B.扩大一倍C.扩大两倍D.扩大四倍10.如图,已知1号,4号两个正方形的面积和为7,2号,3号两个正方形的面积和为4,则a,b,c三个方形的面积和为()A.10B.13C.15D.22二、填空题(共24分)11.在,,中与可以合并的二次根式是.12.已知直角三角形的两边长为3、2,则另一条边长是.13.如果=1﹣2a,则a的取值范围是.14.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.15.如图,一只蚂蚁从长、宽都是6,高是16的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长为.16.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为.三、解答题(共66分)17.计算:(1);(2).18.分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.19.先化简,后求值:÷(1﹣),其中x=2+1.20.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.21.已知x=2+,y=2﹣,求下列各式的值:(1)x2+xy+y2;(2).22.[阅读材料]我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用秦九韶公式可以更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地求出答案,即三角形的三边长分别为a、b、c,则其面积S=(秦九韶公式),此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a、b、c,记p=,则其面积S =(海伦公式),虽然这两个公式形式上有所不同,但它们本质是等价的,计算各有优劣,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.[解决问题](1)当三角形的三边a=7,b=8,c=9时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.(2)当三角形的三边a=,b=2,c=3时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.23.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(门槛)一尺,不合四寸,问门广几何?其大意:如图,推开双门(大小相同),双门间隙CD=4寸,点C、点D与门槛AB的距离CE=DF=1尺(1尺=10寸),求AB的长.24.如图,在Rt△ABC中,∠C=90°,AC=BC,在Rt△ABD中,∠D=90°,AD与BC 交于点E,且∠DBE=∠DAB.求证:(1)∠CAE=∠DBC;(2)AC2+CE2=4BD2.25.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,在A处测得C港在北偏东45°方向上,在B处测得C港在北偏西60°方向上,且AB=(400+400)千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据≈1.41,≈1.73,≈2.24)参考答案一、选择题(共30分)1.解:A、被开方数含开得尽的因数或因式,故A不符合题意;B、被开方数含开得尽的因数或因式,故B不符合题意;C、被开方数不含分母,被开方数不含开得尽的因数或因式,故C符合题意;D、被开方数含开得尽的因数或因式,故D不符合题意;故选:C.2.解:A、4•=4×3=12,错误;B、5•5=5×5×=25,错误;C、4•2=4×2×=8,错误;D、正确.故选:D.3.解:由题意得,3﹣x≥0,解得,x≤3,故选:B.4.解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.5.解:∵∠AEB=90°,AE=6,BE=8,∴AB===10,∵四边形ABCD是正方形,∴S正方形ABCD=AB2=102=100,∵S△AEB=AE•BE=×6×8=24,∴S阴影=S正方形ABCD﹣S△AEB=100﹣24=76,∴阴影部分的面积是76,故选:C.6.解:在△ABC中,AB=AC,AD⊥BC,BC=8,则BD=CD=BC=4.在直角△ABD中,AB=5,BD=4,由勾股定理,得AD===3.故选:D.7.解:AC==,AM=AC=,点M表示的数是﹣1.故选:D.8.解:∵(a﹣17)2+|b﹣15|+c2﹣16c+64=0,∴(a﹣17)2+|b﹣15|+(c﹣8)2=0,∴a﹣17=0,b﹣15=0,c﹣8=0,∴a=17,b=15,c=8,∵82+152=172,∴△ABC是以a为斜边的直角三角形;故选:A.9.解:设一直角三角形直角边为a、b,斜边为c,则a2+b2=c2;扩大2倍后,直角三角形直角边为2a、2b,则根据勾股定理知斜边为:=2c.即直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.故选:C.10.解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选:C.二、填空题(共24分)11.解:=2,=2,=3,则与可以合并的二次根式是,故答案为:12.解:①长为2的边是直角边,长为3的边是斜边时:第三边的长为:=;②长为2、3的边都是直角边时:第三边的长为:=,所以第三边的长为:或,故答案为:或.13.解:∵=|2a﹣1|,∴|2a﹣1|=1﹣2a,∴2a﹣1≤0,∴a≤.故答案为a≤.14.解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△ECD(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.AB==2;如图(2)所示:AB==20.由于2>20,所以最短路径为20cm.故答案为:20cm.16.解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故答案为:3.三、解答题(共66分)17.解:(1)原式=10﹣6+4=20﹣9+4=15;(2)原式=+﹣2=4+﹣2=4﹣.(2)如图2所示:19.解:原式====,当时,原式==.20.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.21.解:∵x=2+,y=2﹣,∴x+y=4,xy=1,∴(1)x2+xy+y2=(x+y)2﹣xy=42﹣1=15;(2)===4.22.解:(1)∵p==12,∴由海伦公式得:S===12;(2)由秦九韶公式得:S====.23.解:设AE=BF=x寸,则AC=(x+2)寸,∵AE2+CE2=AC2,∴x2+102=(x+2)2,解得:x=24,则AB=24+24+4=52(寸),答:AB的长为52寸.24.证明:(1)∵∠ACB=∠D=90°,∴∠CEA+∠CAE=∠BED+∠CBD=90°,∴∠CEA=∠BED,∴∠CAE=∠DBC;(2)延长BD交AC延长线于点F,∵∠DBE=∠DAB,∴∠DAB=∠CAE,在△ADB和△ADF中,,∴△ADB≌△ADF(ASA),∴BD=DF,∴BF=2BD,在△ACE和△BCF中,,∴△ACE≌△BCF(ASA),∴AE=BF,∴AE=2BD,在Rt△ACE中,AC2+CE2=AE2,∴AC2+CE2=(2BD)2=4BD2.25.解:(1)海港C受台风影响,理由:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠CAD=45°,∴∠ACD=45°,∴AD=CD,∵∠DBC=30°,∴BD=CD,∵AB=(400+400)千米,∴AB=AD+BD=CD+CD=400+400,∴CD=400千米,∵以台风中心为圆心,周围600千米以内为受影响区域,∴海港C受台风影响;(2)当EC=600km,FC=600km时,正好影响C港口,∵ED==200(km),∴EF=400km,∵台风的速度为20千米/小时,∴400÷20≈45(小时).答:台风影响该海港持续的时间大约为45小时.。

2020-2021学年度八年级下学期数学第一次月考试卷(含答案)

2020-2021学年度八年级下学期数学第一次月考试卷(含答案)

八年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第十六章《二次根式》~第十七章《勾股定理》班级姓名得分一、选择题(本大题共12小题,每小题4分,共48.0分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑、涂满)1.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A. 0.7米B. 1.5米C. 2.2米D. 2.4米2.实数a,b在数轴上对应点的位置如图所示,且|a|>|b|,则化简√a2+|a+b|的结果为()A. 2a+bB. −2a−bC. bD. 2a−b3.若式子√x−1在实数范围内有意义,则x的取值范围是()x−2A. x≥1且x≠2B. x≤1C. x>1且x≠2D. x<14.关于√8的叙述正确的是()A. 在数轴上不存在表示√8的点B. √8=√2+√6C. √8=±2√2D. 与√8最接近的整数是35.已知△ABC中,∠C=90°,若a+b=14cm,c=10cm,则△ABC的面积是().A. 24cm2B. 36cm2C. 48cm2D. 60cm26.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好能与点C重合.若BC=5,AC=6,则BD的长为()A. 1B. 2C. 3D. 47.若a=√7+√6,b=√7−√6,则a2021⋅b2022的值等于()A. √7−√6B. √6−√7C. 1D. −18.若√45n是整数,则正整数n的最小值是().A. 4B. 5C. 6D. 79.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A. 12mB. 13mC. 16mD. 17m10.如图,字母B所代表的正方形的面积是()A. 12cm2B. 15cm2C. 144cm2D. 306cm211.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三、股四、则弦五”的记载。

人教版八年级下学期第一次月考数学试卷含答案解析

人教版八年级下学期第一次月考数学试卷含答案解析

八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。

人教版数学八年级(下)第一次月考测试卷(含答案)

人教版数学八年级(下)第一次月考测试卷(含答案)

人教版数学八年级(下)第一次月考测试卷(含答案)一.选择题(每小题3分,共30分)1.(3分)下列计算不正确的是()A.B.C.D.=2+32.(3分)下列根式中,属于最简二次根式的是()A.B.C.D.3.(3分)有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1,,.其中勾股数有()A.1组B.2组C.3组D.4组4.(3分)下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3D.三个角满足关系∠B+∠C=∠A5.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,AD为△ABC的高,则AD的长为()A.B.C.D.6.(3分)如图,在平面直角坐标系中,点P坐标为(﹣3,2),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.﹣5和﹣4之间C.3和4之间D.4和5之间7.(3分)国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.(3分)如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k9.(3分)如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形ABCD与正方形EFGH,连结DF.若S正方形ABCD=5,EF=BG,则DF的长为()A.2B.C.3D.10.(3分)如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.二.填空题(每小题3分,共15分)11.(3分)式子在实数范围内有意义,则实数x的取值范围是.12.(3分)α=﹣的倒数是.13.(3分)在△ABC中,若AB=AC=5,BC=6,则AC边上的高h=.14.(3分)若关于x的一元一次不等式组无解,则a的取值范围是.15.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.三.解答题(共9小题,共72分)16.(6分)计算:(1);(2).17.(6分)已知最简二次根式和可以合并,你能求出使有意义的x的取值范围吗?18.(6分)如图,有一个池塘,其底边长为10尺,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'.请你计算这个池塘水的深度和这根芦苇的长度各是多少?19.(8分)如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE 和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉,经测量,∠EDC=90°,DC=3,CE=5,BD=7,AB=8,AE=1,求四边形ABDE的面积.20.(8分)如图,在梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.求AB的长.21.(8分)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c 的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.22.(10分)实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|2﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.23.(11分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P从点A出发,以每秒1cm的速度沿折线A﹣C﹣B运动,设运动时间为t秒(t>0).(1)当点P在AB边的垂直平分线上时,求t的值;(2)当点P在∠BAC的平分线上时,求t的值.24.(12分)规律探索题:细心观察如图,认真分析各式,然后解答问题.;(S1是△OA1A2的面积);;(S2是△OA2A3的面积);;(S3是△OA3A4的面积);…(1)请用含有n(n为正整数)的等式S n=;(2)推算出OA10=;(3)求出的值.参考答案一.选择题(每小题3分,共30分)1.D;2.C;3.A;4.C;5.D;6.A;7.D;8.D;9.B;10.C;二.填空题(每小题3分,共15分)11.x>5;12.+;13.;14.a≥1;15.6;三.解答题(共9小题,共72分)16.(1);(2).;17.x≥2.;18.;19.四边形ABDE的面积为18.;20.6.;21.;22.(1);(2)±.;23.;24.;.。

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________第I卷(选择题共40分)一.单选题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。

1.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( )2.若a<b<0,则下列条件一定成立的是( )A.ab<0B.a+b>0C.ac<bcD.a+c<b+c3.下列各式由左边到右边的变形中,是因式分解的为( )A.a2-16+3a=(a-4)(a+4)+3aB.10x2-5x=5x(2x-1)C.x2-4x+4=x(x-4)+4D.a(m+n)=am+an4.不等式x>4的解集在数轴上表示正确的是( )A. B. C. D.5.在平面直角坐标系中,已知点A的坐标为(1,4),如果将点A向右平移2个单位长度得到点A’,则点A’的坐标为( )A.(1,2)B.(1,6)C.(-1,4)D.(3,4)6.多项式12a3b-8ab2c的公因式是( )A.4a2B.4abC.2a2D.4abc7.下列多项式能用平方差公式进行因式分解的是( )A.x2-1B.x2+4C.x+9D.x2-6x8.下列多项式能直接用完全平方公式进行因式分解的是( )A.9x2-16y2B.4x2-4x+1C.x2+xy+y2D.9-3x+x29.如图,将△ABC绕点A逆时针旋转角a(0°<a<180°)得到△MDE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25,则旋转角a的度数是( )A.70°B.60°C.50°D.40°(第9题图) (第10题图)10.如图,将点A 1(1,1)向上平移1个单位,再向右平移2个单位,得到点A 2;将点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;将点A 3向上平移4个单位,再向右平移8个单位,得到点A 4……按这个规律平移得到点A n ,则点A 2024的横坐标为( )A.22024B.22004-1C.22023-1D.2203+1第II 卷(非选择题 共110分)二.填空题:(每题4分,共24分)11.用适当的符号表示下列关系:a 是正数 .12.因式分解:a 2+4a= .13.若m>n ,则m -n 0(填">"或"="或"<").14.若一次函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b<0的解集是 .(第14题图) (第15题图) (第16题图)15.如图,将周长为10cm 的△ABC 沿 BC 方向平移得到△DEF ,连接AD ,四边形ABFD 的周长为15cm ,则平移的距离为 cm.16.如图,长方形ABCD 中,AB=5,BC=12,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B’处,当△CEB'为直角三角形时,BE 的长为 .三.解答题(共10小题,86分)17.(4分)解下列不等式,并把不等式的解集在数轴上表示出来:-x -1≤3x -518.(6分)解不等式组{x -3(x -1)>11+3x 2>x -1,并写出它的所有非负整数解.19.(每题3分,共18分)因式分解:(1)8m 2n+2mn (2)-15a ³b 2+9a 2b 2-3ab 3 (3)4a 2-1(4)a 2-4ab+4b 2 (5)3x 3-12x (6)mx 2+2m 2x+m 320.(6分)先分解因式,再求值:2x(a-2)-y(2-a),其中a=2,x=1.5,y=-2.21.(6分)在如图所示的平面直角坐标系中,已知点4(1,2),B(3,1).(1)C点的坐标为.(2)将三角形ABC先向下平移4个单位,在向左平移3个单位,得到三角形A1B1C1,画出三角A1B1C1:(3)三角形A1B1C1的面积为。

江苏省泰州市泰州中学附属初级中学2023-2024学年八年级下学期第一次月考模拟数学试题(解析版)

江苏省泰州市泰州中学附属初级中学2023-2024学年八年级下学期第一次月考模拟数学试题(解析版)

八年级数学第一次月度检测模拟试卷第Ⅰ卷(选择题)一、选择题:本题共5小题,每小题3分,共15分.在每小题给出的选项中,只有一项是符合题目要求的.1. 下列四个图案中,既是轴对称图形又是中心对称图形的图案是( )A. B. C. D.【答案】B【解析】【分析】本题考查中心对称图形和轴对称图形的知识,解题的关键是掌握中心对称图形的定义和轴对称图形的定义,进行判断,即可.【详解】中心对称图形的定义:旋转后能够与原图形完全重合,∴A 、是中心对称图形,不是轴对称图形,不符合题意;B 、即是中心对称图形也是轴对称图形,符合题意;C 、即不是中心对称图形也不是轴对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故选:B .2. 为了解某地一天内的气温变化情况,比较适合使用的统计图是( )A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数分布直方图【答案】B【解析】【分析】根据题意中的“变化情况”直接选择折线统计图.【详解】为了解某地一天内的气温变化情况,180应选择的统计图是折线统计图,故选:B .【点睛】本题考查了条形统计图,扇形统计图,折线统计图,频数直方图的概念,根据实际选择合适的统计图,根据题意中的“变化情况”选择统计图是解题的关键.折线统计图用折线的起伏表示数据的增减变化情况不仅可以表示数量的多少,而且可以反映数据的增减变化情况.3. □ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A. BE =DFB. AE =CFC. AF //CED. ∠BAE =∠DCF 【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =DF ,∴OE =OF ,∴四边形AECF 是平行四边形,故不符合题意;B 、如图所示,AE =CF ,不能得到四边形AECF 是平行四边形,故符合题意;C 、如图,∵四边形ABCD 是平行四边形,∴OA =OC ,∵AF //CE ,∴∠FAO =∠ECO ,又∵∠AOF =∠COE ,∴△AOF ≌△COE,∴AF =CE ,∴四边形AECF 是平行四边形,故不符合题意;D 、如图,∵四边形ABCD 是平行四边形,∴AB =CD ,AB //CD ,∴∠ABE =∠CDF ,又∵∠BAE =∠DCF ,∴△ABE ≌△CDF ,∴AE =CF ,∠AEB =∠CFD ,∴∠AEO =∠CFO ,∴AE //CF ,∴四边形AECF 是平行四边形,故不符合题意,故选B .【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.4. 在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为( )A. 60,1B. 60,60C. 1,60D. 1,1【答案】A【解析】【分析】本题是频数与频率基础应用题,难度一般,主要考查学生对频数与频率的定义的理解和运用能力. 根据频数与频率的定义即可得到结果.【详解】解:在对个数据进行整理的频率分布表中,各组的频数之和等于,频率之和等于1,故选A .5. 如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB,则旋的6060转角的度数为( )A. 30°B. 40°C. 50°D. 65°【答案】C【解析】【分析】根据两直线平行,内错角相等可得∠ACC ′=∠CAB ,根据旋转的性质可得AC ′=AC ,然后利用等腰三角形两底角相等求∠CAC ′,再根据∠CAC ′、∠BAB ′都是旋转角解答.【详解】解:∵CC ′∥AB ,∴∠ACC ′=∠CAB =65°,∵△ABC 绕点A 旋转得到△AB ′C ′,∴AC =AC ′,∴∠CAC ′=180°-2∠ACC ′=180°-2×65°=50°,∴∠CAC ′=∠BAB ′=50°故选:C .【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.二、填空题:本题共10小题,每小题3分,共30分6. 函数x 的取值范围是__________.【答案】x ≥-2且x ≠1【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出结论.【详解】解:由题意可得解得x ≥-2且x ≠1故答案为:x ≥-2且x ≠1.【点睛】此题考查的是求自变量的取值范围,掌握二次根式有意义的条件和分式有意义的条件是解决此题的关键.y =2010x x +≥⎧⎨-≠⎩7. 一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率是________.【答案】【解析】【分析】先求出总球的个数,再根据概率公式进行计算即可得出答案.【详解】解:∵有两个红球和一个黄球,共3个球,∴从中任意取出一个是黄球的概率是;故答案为.【点睛】本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.8. “校园安全”受到全社会的广泛关注,某校对400名学生和家长就校园安全知识的了解程度进行了随机抽样调查,并绘制成如图所示的统计图(不完整),根据统计图中的信息,若全校有2050名学生,请你估计对校园安全知识达到“非常了解”和“基本了解”的学生有______人.【答案】1350【解析】【分析】本题考查的是条形统计图运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 求得调查的学生总数,则可得对“校园安全”知识达到“非常了解”和“基本了解”所占的比例,利用求得的比例乘以2050即可得到.【详解】解:∵调查的家长的总人数是:(人)∴调查的学生的总人数是:(人)对“校园安全“知识达到“非常了解”和“基本了解”的学生是(人),全校2050学生中达到“非常了解”和“基本了解”的学生人数为:(人).故答案为:.9. 在中,,则的度数为______.【答案】##135度1313138377314195+++=400195205-=2055416135--=13520501350205´=1350ABCD Y :A B ∠∠=3:1C ∠135︒【解析】【分析】本题考查平行四边形的知识,根据平行四边形的性质,则,则,再根据,求出,;最后根据平行四边形的性质,即可.【详解】∵四边形是平行四边形,∴,,∴,∵,∴,,∴.故答案为:.10. 如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x - 6上时,线段BC 扫过的面积为_______【答案】16【解析】【分析】根据题意,线段扫过的面积应为一平行四边形的面积,其高是的长,底是点平移的路程.求当点落在直线上时的横坐标即可.【详解】解:如图所示.AD BC ∥180A B ∠+∠=︒:A B ∠∠=3:1A ∠B ∠ABCD AD BC ∥A C ∠=∠180A B ∠+∠=︒:A B ∠∠=3:1135A ∠=︒45B ∠=︒135C ∠=︒135︒BC AC C C 26y x =-点、的坐标分别为、,.,,∴由勾股定理可得:..点在直线上,,解得.即...即线段扫过的面积为16.故选:C .【点睛】此题考查平移的性质及一次函数的综合应用,解决本题的关键是明确线段扫过的面积应为一平行四边形的面积.11. 如图,将绕点顺时针旋转后得到,点与点是对应点,点与点是对应点.如果,那么______°.【答案】【解析】A B (1,0)(4,0)3AB ∴=90CAB ∠=︒ 5BC =4AC =4A C ∴''= C '26y x =-264x ∴-=5x =5OA '=514CC ∴'=-=4416BCC B S ''∴=⨯= BC BC ABC A 80︒ADE V B D C E 35EAB ∠=︒DAC ∠=125【分析】本题考查旋转的性质,解题的关键是掌握:旋转变换只改变图形的位置不改变图形的形状与大小.据此解答即可.【详解】解:∵将绕点顺时针旋转后得到,∴,∵,∴,∴.故答案为:.12. 在平行四边形中,,已知,,将沿翻折至,使点落在平行四边形所在的平面内,连接.若是直角三角形,则的长为______.【答案】或【解析】【分析】根据平行四边形中,,要使是直角三角形,则,,画出图形,分类讨论,即可.【详解】当,,延长交于点,∵四边形是平行四边形,∴,,∴,∵沿翻折至,∴,,∴,,∴,在中,,设,∴,ABC A 80︒ADE V 80CAE ∠=︒35∠=︒BAE 803545EAD CAB CAE BAE ∠=∠=∠-∠=︒-︒=︒453545125DAC CAB BAE DAE ∠=∠+∠+∠=︒+︒+︒=︒125ABCD AB BC <30B ∠=︒AB =ABC AC AB C 'V B 'ABCD B D 'AB D 'V BC 23AB BC <AB C 'V 90B AD '∠=︒90AB D '∠=︒①90B AD '∠=︒AB BC <B A 'BC G ABCD AD BC ∥AD BC =90B AD B GC ''∠=∠=︒ABC AC AB C 'V AB AB '==30B AB C '∠=∠=︒BC B C'=12AG AB ==2B C GC '=B G AB AG ''=+==Rt B GC ' 222B C B G CG ''=+GC x =2B C x '=∴,解得:,∴,∴;当时,设交于点,∵四边形是平行四边形,∴,,∵沿翻折至,∴,,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴,∴,∵,,∴,()2222x x =+32x =3B C '=3BC =②90AB D '∠=︒AD B C 'O ABCD AD BC ∥AD BC =ABC AC AB C 'V BC B C '=2BCA ∠=∠AD BC B C '==AD BC ∥1BCA ∠=∠12BCA ∠=∠=∠AO CO =DO B O '=3=4∠∠AOC DOB '∠=∠1234∠=∠=∠=∠'∥AC B D 90B AC BAC '∠=∠=︒30B ∠=︒AB =12AC BC =设,∴,∴,∴解得:,∴.综上所述,当的长为或时,是直角三角形.【点睛】本题考查平行四边形、直角三角形的知识,解题的关键是掌握平行四边形的性质,直角三角形的性质,等腰三角形的性质,直角三角形中,所对的直角边是斜边的一半,即可.13. 如图,平行四边形,点F 是上的一点,连接平分,交于点E ,且点E 是的中点,连接,已知,则__.【答案】4【解析】【分析】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及等腰三角形的性质的综合运用,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等进行推算.延长交于点,判定,即可得出,再根据三线合一即可得到即可解答.详解】解:如图,延长交于点,【AC x =2BC x =222BC AC AB =+()2222x x =+1x =2BC =BC 23AB D 'V 30︒ABCD BC 60AF FAD AE ∠=︒,,FAD ∠CD CD EF 53AD CF ==,EF =AE BC ,G ADE GCE △≌△5CG AD AE GE ===,FE AG ⊥AE BC ,G∵点是的中点,∴,∵平行四边形中,,∴,∵,∴,∴,∵平分,,∴,∴,∵是的中点,∴,∴中,,故答案为:.14. 在平面直角坐标系中,一次函数的图像过和两点,该一次函数的表达式为______;若该一次函数的图像过点,则的值为______.【答案】① ②. 【解析】【分析】本题考查待定系数法求一次函数解析式,一次函数图像上点的坐标特征,分别将点和点的坐标代入得到关于、的二元一次方程组,求解即可;将点代入所求得的一次函数表达式即可得到的值.掌握待定系数法确定一次函数解析式是解题的关键.【详解】解:∵一次函数的图像过和两点,.E CD DE CE =ABCD AD BC ∥D ECG ∠=∠AED GEC ∠=∠()ASA ADE GCE ≌5CG AD AE GE ===,AE FAD ∠AD BC ∥1302FAE DAE G DAF ∠=∠=∠=∠=︒358AF GF ==+=E AG FE AG ⊥Rt AEF 142EF AF ==4xOy ()0y kx b k =+≠()0,5A ()1,2B -(),11C m m 35y x =+2A B ()0y kx b k =+≠k b (),11C m m ()0y kx b k =+≠()0,5A ()1,2B -∴,解得:,该一次函数的表达式为,∵该一次函数的图像过点,∴,解得:.故答案为:;.15. 如图,E 为外一点,且,,若,则的度数为______.【答案】##度【解析】【分析】根据四边形内角和求出度数,再借助平行四边形的性质可知即可得到结果.【详解】解:在四边形中,,,所以.四边形是平行四边形,.故答案为:.【点睛】本题主要考查了平行四边形的性质、四边形内角和,解题的关键是掌握特殊四边形的角度问题,一般借助旋转转化角,进行间接求解.三、解答题:本题共10小题,共80分.解答应写出文字说明,证明过程或演算步骤.16. 某同学在解关于的分式方程,去分母时,由于常数漏乘了公分母,最后解得,试求的值,并求出该分式方程正确的解.【答案】,52b k b =⎧⎨-+=⎩35k b =⎧⎨=⎩35y x =+(),11C m 1135m =+2m =35y x =+2ABCD Y EB BC ⊥ED CD ⊥65E ∠=︒A ∠115︒115360︒C ∠A C ∠=∠BCDE 65E ∠=︒90EBC EDC ∠=∠=︒360659090115C ∠=︒-︒-︒-︒=︒ ABCD 115A C ∴∠=∠=︒115︒360︒x 3622x m x x -+=--6=1x -m 2m =177x =【解析】【分析】本题考查分式方程,根据题意,按照该同学的解法解这个分式方程,将解代入,求出的值.再将值代入原方程,求出其正确的解即可.求出的值、掌握解分式方程的步骤是求解题的关键.【详解】解:由题意得,是该同学去分母后得到的整式方程的解,∴,解得:,∴.方程两边同乘以,得:,解得:,检验:当时,代入得:,∴是该分式方程正确的解.17. 先化简,再求值:(1),其中;(2),其中.【答案】(1), (2),【解析】【分析】本题考查分式的化简求值:(1)先根据分式的加法法则,进行化简,再代值计算即可;(2)先根据分式的加法法则,进行化简,再根据,得到,代入计算即可.【小问1详解】解:=1x -m m m =1x -36x m -+=36x m -+=2m =32622x x x -+=--()2x -()3622x x -+-=177x =177x =()2x -1732077-=≠177x =221211a a a a a -+-+-2a =2224224n m mn m n n m n m +++--15m n =11a a +-322n m n m +-11915m n =5n m =221211a a a a a -+-+-,当时,原式;【小问2详解】,,,原式.18. 如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (-3,2),B (-1,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180,画出旋转后对应的△A 1B 1C ;(2)平移△ABC ,若A 的对应点A 2的坐标为(-5,-2),画出平移后的△A 2B 2C 2;(3)若将△A 2B 2C 2绕某一点旋转可以得到△A 1B 1C ,请直接写出旋转中心的坐标.()()21111a a a a -=+--111a a a =+--11a a +=-2a =21321+==-2224224n m mn m n n m n m +++--()()()()()()()()2224222222n n m m n m mnn m n m n m n m n m n m -+=+++-+-+-()()22422422n mn mn m mn n m n m -+++=+-()()()2222n m n m n m +=+-22n m n m+=- 15m n =5n m ∴=∴1010119m m m m +=-=︒【答案】(1)答案见解析;(2)答案见解析;(3)(-1,0).【解析】【分析】(1)根据图中的网格结构分别找出点A、B绕点C旋转180°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C平移后的位置,然后顺次连接即可;(3)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)△A1B1C如图所示;(2)△A2B2C2如图所示;(3)如图所示,旋转中心为(﹣1,0).【点睛】本题考查作图﹣旋转变换,作图﹣平移变换.19. 某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A ,B ,C ,D 四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D 班选择环境保护的学生人数,并补全折线统计图;(3)若该校共有学生4000人,试估计该校选择文明宣传的学生人数.【答案】(1);(2)15人,见解析;(3)1520人【解析】【分析】(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A ,B ,C 三个班选择环境保护的学生人数即可得出D班选择环境97.2保护的学生人数,进而补全折线图;(3)先求出四个班中选择文明宣传的百分比,用4000乘以样本中选择文明宣传的学生所占的百分比即可.【详解】解:(1)由折线图可得选择交通监督的各班学生总数为12+15+13+14=54人,在四个班人数的百分比为54÷200×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数=;(2)由扇形统计图中选择环境保护的占30%,∴选择环境保护的学生人数为200×30%=60人,∴D 班选择环境保护的学生人数为60-15-14-16=15(人),补全折线统计图如图;(3)四个班中选择文明宣传的学生人数所占百分比为1-30%-5%-27%=38%,该校4000人选择文明宣传的学生人数为:(人).【点睛】本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.20. 已知,按要求完成下列尺规作图(不写作法,保留作图痕迹).(1)如图①,B ,C 分别在射线、上,求作;(2)如图②,点是内一点,求作线段,使P 、Q 分别在射线、上,且点O 是的中点.【答案】(1)见解析(2)见解析【解析】36027%97.2⨯= 400038%1520⨯=MAN ∠AM AN ABDC O MAN ∠PQ AM AN PQ【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.(1)分别以、点为圆心,以、为半径画弧,两弧相交于点,则四边形满足条件;(2)连接,以点O 为圆心,为半径画弧,交延长线于点G ,再作,交于,连接并延长交于,则满足条件.【小问1详解】解:如图①,平行四边形为所作;∵,∴四边形为平行四边形;【小问2详解】图②,为所作.∵,,,∴,∴,即点是的中点.21. 2016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?【答案】(1)该商家购进第一批纪念衫单价是30元;(2)每件纪念衫的标价至少是40元.【解析】【分析】(1)设未知量为x ,根据所购数量是第一批购进量的2倍得出方程式,解出方程即可得出结论,此题得以解决.-B C AC AB D ABDC AO AO AO PGA OAN ∠=∠GP AM P PO AN Q PQ ABDC ,AB CD AC BD ==ABDC PQ POG QOA ∠=∠OA OP =PGA OAN ∠=∠()ASA OPG OQA ≌OP OQ =O PQ(2)设未知量为y ,根据题意列出一元一次不等式,解不等式可得出结论.【详解】(1)设该商家购进第一批纪念衫单价是x 元,则第二批纪念衫单价是(x +5)元,由题意,可得:,解得:x =30,检验:当x =30时,x (x +5)≠0,∴原方程的解是x =30答:该商家购进第一批纪念衫单价是30元;(2)由(1)得购进第一批纪念衫的数量为1200÷30=40(件),则第二批的纪念衫的数量为80(件)设每件纪念衫标价至少是a 元,由题意,可得:40×(a ﹣30)+(80﹣20)×(a ﹣35)+20×(0.8a ﹣35)≥640,化简,得:116a ≥4640解得:a ≥40,答:每件纪念衫的标价至少是40元.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解决此类题的关键是要根据题意找出题目中的等量或不等量关系,根据关系列方程或不等式解决问题.22. 如图,在平行四边形ABCD 中,点E 、F 在对角线BD 上,且BE =DF ,(1)求证:AE =CF ;(2)求证:四边形AECF 是平行四边形.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据平行四边形的性质可得AB =CD ,AB ∥CD ,然后可证明∠ABE =∠CDF ,再利用SAS 来判定△ABE ≌△DCF ,从而得出AE =CF .(2)首先根据全等三角形的性质可得∠AEB =∠CFD ,根据等角的补角相等可得∠AEF =∠CFE ,然后证明AE ∥CF ,从而可得四边形AECF 是平行四边形.【详解】(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD.1200280025x x ⨯=+∴∠ABE =∠CDF .在△ABE 和△CDF 中,,∴△ABE ≌△DCF (SAS ).∴AE =CF .(2)∵△ABE ≌△DCF ,∴∠AEB =∠CFD ,∴∠AEF =∠CFE ,∴AE ∥CF ,∵AE =CF ,∴四边形AECF 是平行四边形.【点睛】此题考查了平行四边形的判定与性质,解题的关键是掌握平行四边形的判定方法与性质.23. 如图,在平行四边形ABCD 中,E ,F 为BC 上两点,且BE=CF ,AF=DE求证:(1)△ABF ≌△DCE ;(2)四边形ABCD 是矩形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF ,根据平行四边形的性质得AB=DC .利用“SSS”得△ABF ≌△DCE .(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C ,从而得到一个直角,问题得证.【详解】(1)∵BE=CF ,BF=BE+EF ,CE=CF+EF ,∴BF=CE .∵四边形ABCD 是平行四边形,∴AB=DC.AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩在△ABF 和△DCE 中,∵AB=DC ,BF=CE ,AF=DE ,∴△ABF ≌△DCE .(2)∵△ABF ≌△DCE ,∴∠B=∠C .∵四边形ABCD 平行四边形,∴AB ∥CD .∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD 是矩形.24. 如图,已知,点 D 在 y 轴的负半轴上,若将沿直线折叠,点 B 恰好落在 x 轴正半轴上的点 C 处.(1)求直线的表达式;(2)求 C 、D 坐标;(3)在直线上是否存在一点 P ,使得 ? 若存在,直接写出点 P 的坐标;若不存在,请 说明理由.【答案】(1) (2), (3)存在,或【解析】【分析】本题考查的是一次函数综合运用,涉及到图形折叠、面积的计算等,(1)将点A 、B 的坐标代入一次函数表达式,即可得到直线的表达式;(2)由题意得:,故点,设点D 的坐标为,根据,即可得到m 的值;(3)由是的()()3004A B ,,,DAB AD AB DA 10PAB S = 443y x =-+()80C ,()06D -,()14-,()54,y kx b =+AB 5AC AB ==()80C ,()0m ,CD BD =,即可求解.【小问1详解】解:设一次函数表达式:,将点的坐标代入得:,解得:,故直线的表达式为:;【小问2详解】解:,,由题意得: ,,,故点,设点D 的坐标为:,,解得:,故点;【小问3详解】解:存在,理由如下:PAB BDP BDA S S S =- y kx b =+()()3004A B ,,,034k b b =+⎧⎨=⎩434k b ⎧=-⎪⎨⎪=⎩AB 443y x =-+()()3004A B ,,,5AB ∴=CD BD =5AC AB ==358OC OA AC ∴=+=+=()80C ,()0m ,CD BD = 4m\=-6m =-()06D -,设直线的表达式为,由点、的坐标代入得:,解得:,直线的表达式为:,,,,,,点P 在直线上,设,,解得:或5,即点P 的坐标为:或.25. 如图1,在ABC 中,BD 是AC 边上的中线,将DBA 绕点D 顺时针旋转α(0°<α<180°) 得到DEA (如图2),我们称DEA 为DBC 的“旋补三角形”.DEA 的边EA 上的中线DF 叫做DBC 的“旋补中线”.AD 11y k x b =+()30A ,()06D -,111036k b b =+⎧⎨=-⎩1126k b =⎧⎨=-⎩AD 26y x =-()04B ,()06D -,10BD ∴=1103152ABD S \=´´= 10PAB S = DA (),26P a a -13102PAB BDP BDA S S S BD a \=-=´´-= 1a =()14-,()54,(1)在图2,图3,图4中,DEA 为DBC 的“旋补三角形”,DF 是DBC 的“旋补中线”.①如图2,∠BDE +∠CDA = °;②如图3,当DBC 为等边三角形时,DF 与BC 的数量关系为DF = BC ;③如图4,当∠BDC =90°时,BC =4时,则DF 长为 ;(2)在图2中,当DBC 为任意三角形时,猜想DF 与BC 的关系,并给出证明.(3)如图5,在四边形ABCD 中,∠C =90°,∠D =150°,BC =12,CD =DA =6,BE ⊥AD ,E 为垂足.在线段BE 上是否存在点P ,使PDC 是PAB 的“旋补三角形”?若存在,请作出点P ,不需证明,简要说明你的作图过程.【答案】(1)①180;②;③2(2);证明见解析 (3)存在.见解析【解析】【分析】(1)①依据,可得;②当为等边三角形时,可得是等腰三角形,,,再根据,即可得到中,,进而得出;③当时,时,易得,即可得到中,;(2)延长至,使得,连接,,判定四边形是平行四边形,进而得到,再判定,即可得到,进而得出;(3)延长,,交于点,作线段的垂直平分线,交于,交于,连接、、,由定义知当,且时,是的“旋补三角形”,据此进行证明即可.【小问1详解】解:①∵∠ADE +∠BDC =180°,1212DF BC =180ADE BDC ∠+∠=︒180BDE CDA ∠+∠=︒DBC ∆ADE ∆120ADE ∠=︒30E ∠=︒DF AE ⊥Rt DEF ∆12DF DE =12DF BC ==90BDC ∠︒4BC =ADE CDB ∆∆≌Rt ADE ∆122DF AE ==DF G FG DF =EG AG AGED BDC DEG ∠=∠DGE CDB SAS ∆∆≌()BC DG =1122DF DG BC ==AD BC F BC PG BE P BC G PA PD PC PA PD PB PC ==,180DPA CPB ∠+∠=︒PDC ∆PAB ∆∴∠BDE +∠CDA =180°,故答案为:180;②当△DBC 为等边三角形时,BC =DB =DE =DC =DA ,∠BDC =60°,∴△ADE 是等腰三角形,∠ADE =120°,∠E =30°,又∵DF 是△ADE 的中线,∴DF ⊥AE ,∴Rt △DEF 中,DF =DE ,∴DF =BC ,故答案为:;③∵BD 是AC 边上的中线,∴,∵∠BDC =90°,∴ ,在△ADE 和△CDB 中,,∴△ADE ≌△CDB ,∴AE =BC =4,∴Rt △ADE 中,DF =AE =2,故答案为:2;【小问2详解】猜想:DF =AE .证明:如图2,延长DF 至G ,使得FG =DF ,连接EG ,AG ,121212AD CD =90EDA BDC ∠=∠=︒AD CD EDA BDC DE BD =⎧⎪∠=∠⎨⎪=⎩1212∵EF =FA ,FG =DF ,∴四边形AGED 是平行四边形,∴,GE =AD =CD ,∴∠GED +∠ADE =180°,又∵∠BDC +∠ADE =180°,∴∠BDC =∠DEG ,在△GED 和△CDB 中,,∴△DGE ≌△CDB (SAS ),∴BC =DG ,∴DF=DG =BC ;【小问3详解】存在.理由:如图5,延长AD ,BC ,交于点F ,作线段BC 的垂直平分线PG ,交BE 于P ,交BC 于G ,连接PA 、PD 、PC ,由定义知当PA =PD ,PB =PC ,且∠DPA +∠CPB =180°时,△PDC 是△PAB 的“旋补三角形”,∵∠ADC =150°,EG DA ∥DE BD GED CDB GE CD =⎧⎪∠=∠⎨⎪=⎩1212∴∠FDC =30°,在Rt △DCF 中,∵CD =DCF =90°,∠FDC =30°,∴CF =2,DF =4,∠F =60°,在Rt △BEF 中,∵∠BEF =90°,BF =14,∠FBE =30°,∴EF =BF =7,∴DE =EF −DF =3,∵AD =6,∴AE =DE ,又∵BE ⊥AD ,∴PA =PD ,PB =PC ,在Rt △BPG 中,∵BG =BC =6,∠PBG =30°,∴PG =∴PG =CD ,又∵,∠PGC =90°,∴四边形CDPG 是矩形,∴∠DPG =90°,∴∠DPE +∠BPG =90°,∴2∠DPE +2∠BPG =90°,即∠DPA +∠BPC =180°,∴△PDC 是△PAB 的“旋补三角形”.【点睛】本题属于四边形综合题,主要考查了全等三角形的判定和性质、平行四边形的判定和性质、含30°角直角三角形的性质、等边三角形的判定和性质、矩形的判定和性质等知识的综合运用,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.1212CD PG ∥。

2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷+答案解析 (1)

2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷+答案解析 (1)

2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列汽车标志中既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.为了解我县初中2012级8300名学生的体育成绩,抽查了其中1700名学生的体育成绩进行统计分析.下面叙述正确的是()A.8300名学生是总体B.每名学生是总体的一个个体C.1700名学生的体育成绩是总体的一个样本D.以上调查是普查3.关于矩形的性质,下面说法错误的是()A.矩形的中点四边形是菱形B.两条对角线相等的平行四边形是矩形C.菱形的两条对角线互相垂直平分D.两组对角分别相等且一组邻边也相等的四边形是正方形4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为必然事件的是()A.两枚骰子向上一面的点数和大于1B.两枚骰子向上一面的点数和等于3C.两枚骰子向上一面的点数和等于7D.两枚骰子向上一面的点数和大于125.如图,四边形ABCD是菱形,顺次连接菱形各边的中点E、F、G、,则说法正确的是()A.EFGH是菱形B.EFGH是正方形C.EFGH是矩形D.EFGH是平行四边形6.如图,在正方形OABC中,点B的坐标是,点E、分别在边、上,,若EO 平分则E点的横坐标是()A.2B.3C.D.二、填空题:本题共10小题,每小题3分,共30分。

7.下面调查中,最适合采用普查的是__________填序号①对全国中学生心理健康现状的调查②对菏泽市中学生视力情况的调查③对《新闻联播》节目收视率的调查④对某校七年班同学身高情况的调查8.如图,一张圆桌共有3个座位,甲、乙、丙3人随机坐到这3个座位上,则甲和乙相邻而坐为__________事件填“确定”或“随机”9.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出__________球的可能性最大.10.如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为__________米.11.如图,四边形ABCD中,,要使四边形ABCD为平行四边形,则需添加一个条件,这个条件可以是:__________.12.如图,菱形ABCD的对角线、相交于点O,过点A作于点H,连接若,,则OH的长为__________.13.如图,在四边形ABCD中,,垂足为点若四边形ABCD 的面积为13,则__________.14.如图,在中,,D为AB上不与点A,B重合的一个动点,过点D 分别作于点E,于点F,则线段EF的最小值为__________.15.如图,在矩形ABCD中,,,点E、F分别为AD、CD边上的点,且EF的长为4,点G为EF的中点,点P为BC上一动点,则的最小值为_________________.16.如图,在边长为4的正方形ABCD中,点E为边BC的中点,点F为边AB上的动点,以EF为一边在EF的右上方作等边三角形FEG,当CG最小时,的周长为__________.三、解答题:本题共10小题,共80分。

八年级下第一次月考数学测试卷

八年级下第一次月考数学测试卷

八年级(下)第一次月考数学试题卷(时间:100分钟 总分:100分)一、选择题(每小题2分,共20分)请将你认为正确的选择支的代号填在下面的表格里1、在x 1、21、212+x 、πxy3、y x +3、m a 1+中分式的个数有( )A 、2个B 、3个C 、4个D 、5个2、下列约分正确的是 ( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 3、利用分式的基本性质将xx x22-变换正确的是( )A 、2122-=-x x x xB 、 22222-=-x xx x xC 、 222-=-x x x x xD 、222-=-x xx x x4、下列分式中,最简分式是( )A. 223a a ++B. 22a b a b -- C. 412()a a b - D. xyx5、下列函数是反比例函数的是 ( ) A 、y=3x B 、y=x6C 、y=x 2+2xD 、y=4x+8 6、下列将0.0000012用科学计数法表示正确的是( )A 、0.12×10-5B 、1.2×10-6C 、 12×10-7D 、1.2×10-97、下列各式计算正确的是( ) A 、 853a aa =⋅- B 、253--=⋅a a a C 、853a aa =+- D 、253--=+a a a班级 学号 姓名------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -)11(1xx x -÷-=⎪⎭⎫ ⎝⎛--23242+-x x 11x 2+-x 8、对分式2y x ,23x y ,14xy通分时, 最简公分母是( ) A .24x 2y3B .12x2y2C.24xy2D.12xy29、反比例函数xy 2-=经过( ) A 、一、三象限 B 、二、四象限 C 、二、三象限 D 、三、四象限 10、如图,函数k kx y +=与ky x=在同一坐标系中,图象只能是下图中的( )二、填空题(把正确的答案填在相应的横线上,每个空格2分,共26分)11、计算:()=-01 __________ 12、已知反比例函数y=kx 的图象过点(-2,1),则k=______.13、当x 时,分式 有意义, 当x 时,分式的值为零。

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)

2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷1、选择题:(本题共10小题,每小题2分,共20分)1.下列二次根式是最简二次根式的是( )A. B. C. D.14128132.下列各式正确的是( )A. B.(−4)×(−9)=−4×−916+94=16×94C.D. 449=4×494×9=4×93.若,则( )y =x−2+4−2x−3x +y =A. B. C. D. 15−5−14.用配方法解一元二次方程时,下列变形结果正确的是 ( )x 2−4x−3=0A. B. C. D. (x−2)2=1(x−2)2=7(x−4)2=1(x−4)2=75.若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )x (k−1)x 2+4x +1=0k A. B. 且 C. 且 D. k <5k <5k ≠1k ≤5k ≠1k >56.如果一组数据2、3、4、5、x 的方差与另一组数据101,102,103,104,105的方差相等,那么x 的值( )A. 6 B. 1C. 6或1D. 无法确定7.若,,则( )x +1x=60<x <1x−1x=A. B. C. D. −2−2±2±28.如图,中,对角线、相交于点,交于点,连接,若的周长▱ABCD AC BD O OE ⊥BD AD E BE ▱ABCD 为,28则的周长为( )△ABE A. B. C. D. 282421149.已知a,b,c 满足( )4a 2+2b−4=0,b 2−4c +1=0,c 2−12a +17=0,则a 2+b 2+c 2的值为A. B. C.14 D.201621429410.新定义:关于的一元二次方程与称为“同族二次方程”如x a 1(x−m )2+k =0a 2(x−m )2+k =0.与是“同族二次方程”现有关于的一元二次方程2021(x−3)2+4=03(x−3)2+4=0.x 与是“同族二次方程”,那么代数式能取2(x−1)2+1=0(a +2)x 2+(b−4)x +8=0ax 2+bx +2024的最小值是( )A. B. C.2018D. 202320242019二、填空题:(本题共10小题,每小题3分,共30分)11.要使根式有意义,则的取值范围是__________.x +4x−2x 12.已知三角形的两边长分别为和,第三边长是方程的根,则这个三角形的周长36x 2−6x +8=0是 .13.计算: .(2−5)2023(2+5)2024=14.一个多边形的内角和比它的外角和的倍少,这个多边形的边数是 .3180∘15.若是完全平方式,则的值为__________.x 2+2(m−1)x +16m 16.已知一组数据,,,,的平均数是,方差是,那么另一组数据,,x 1x 2x 3x 4x 5213x 1−23x 2−2,,的平均数__________, 方差__________.3x 3−23x 4−23x 5−217.设,是方程的两个实数根,则________.a b x 2+x−2024=0a 2+2a +b =18.已知,则的值为 ________(x 2+y 2+2)(x 2+y 2+4)=15x 2+y 219.对于实数、,我们用符号表示,两数中较小的数,如,p q min{p,q}p q min {1,2}=1若,则 .min{(x +1)2,x 2}=4x =20.如图,在▱中,,是的中点,作,垂足在线段上,连接、ABCD AD =2AB F AD CE ⊥AB E AB EF ,CF 则下列结论中,; ;①2∠DCF =∠BCD ②EF =CF; .其中正确的是________.③S △BEC =2S △CEF ④∠DFE =3∠AEF 三、解答题:(本题共7小题,共50分)21.本小题分计算或选用适当的方法解下列方程(10)(1)(2)(2+3)(2−3)(−3)0−27+|1−2|.(3)(2x−1)2=1(4)(x−5)2=3(x−5)22.本小题6分已知的三条边长,,,在下面的方格图内()△ABC AB =2AC =412BC =251254×4画出,使它的顶点都在格点上每个小方格的边长均为.△ABC (1).(1)画出△ABC 求的面积.(2)△ABC 求点到边的距离.(3)A BC 23.本小题8分某校八(1)班甲、乙两名男生在5次引体向上测试中有效次数记录如下:()甲:8,8,7,8,9;乙:5,9,7,10,9.甲、乙两人引体向上的平均数、众数、中位数、方差如下表所示:平均数众数中位数方差甲8b 80.4乙a9C3.2(1)表中a= ,b= ,c=______ (2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是 班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是__________________. (3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数 ,中位数 ,方差 (均填“变大”“变小”或“不变”).24.本小题4分如图,在平行四边形中,对角线,相交于点,过点的直线分别()ABCD AC BD O O 交,于点,AD BC E F.求证:。

2022-2023学年山东省菏泽市高新区八年级(下)第一次月考数学试卷+答案解析(附后)

2022-2023学年山东省菏泽市高新区八年级(下)第一次月考数学试卷+答案解析(附后)

2022-2023学年山东省菏泽市高新区八年级(下)第一次月考数学试卷1. 已知a ,b ,c ,d 是实数,若,,则( )A. B. C. D.2. 若等腰三角形的两边长分别是3cm 和5cm ,则这个等腰三角形的周长是( )A. 8cmB. 13cmC. 8cm 或13cmD. 11cm 或13cm3. 如图,中边AB 的垂直平分线分别交BC ,AB 于点D ,E ,,的周长为9cm ,则的周长是( )A. 10cmB. 12cmC. 15cmD. 17cm4. 不等式的解集在数轴上表示为( )A.B.C. D.5. 如图,,BP 和CP 分别平分和,AD 过点P ,且与AB 垂直.若,则点P 到BC 的距离是( )A. 8B. 6C. 4D. 26. 已知m ,n 为常数,若的解集为,则的解集是( )A. B.C.D.7. 在中,,,BC 边上的高,则另一边BC 等于( )A. 10B. 8C. 6或10D. 8或108. 如图,中,,,的平分线BE交AD于点F,AG平分给出下列结论:①;②;③;④正确结论是( )A. ①②B. ①②④C. ②④D. ②③④9. 不等式的正整数解是__________.10. 等腰三角形一腰上的高与另一腰的夹角为,则它的顶角为______.11. 对于任意实数a、b,定义一种运算:a※例如,2※请根据上述的定义解决问题:若不等式3※,则不等式的正整数解是______.12. 对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是______.13. 如图,在中,,,,线段,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当______时,和全等.14. 解不等式:15. 当x取何正整数值时,代数式与的值的差大于16. 如图,在中,,AD是BC边上的中线,于点求证:17. 如图,在中,,AD平分,于点E,点F在AC上,求证:18. 如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即,且P到OA,OB两条公路的距离相等.19. 如图,已知长方形ABCD中,,在边CD上取一点E,将折叠使点D恰好落在BC边上的点F,求CE的长.20. 2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?21. 如图,AD是的角平分线,DE、DF分别是和的高.试说明AD垂直平分EF;若,,,求DE的长.22. 学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.求A,B两种奖品的单价;学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的请设计出最省钱的购买方案,并说明理由.23. 已知:如图,在中,,,,动点P从点B出发沿射线BC以的速度移动,设运动的时间为t秒.求BC边的长;当为直角三角形时,求t的值;当为等腰三角形时,求t的值.答案和解析1.【答案】A【解析】解:A选项,,,,故该选项符合题意;B选项,当,,时,,故该选项不符合题意;C选项,当,,时,,故该选项不符合题意;D选项,当,,时,,故该选项不符合题意;故选:根据不等式的性质判断A选项;根据特殊值法判断B,C,D选项.本题考查了实数大小比较,掌握不等式的两边同时加上或减去同一个整式或相等的整式,不等号的方向不变是解题的关键.2.【答案】D【解析】【分析】本题考查等腰三角形的性质及三角形的三边关系,对腰长和底边长进行分类讨论是解题的关键.分:当3cm是腰长时,当5cm是腰长时,两种情况进行讨论,再用三角形的三边关系验证即可.【解答】解:当3cm是腰长时,3,3,5能组成三角形,此时这个等腰三角形的周长是11cm;当5cm是腰长时,5,5,3能组成三角形,此时这个等腰三角形的周长是则这个等腰三角形的周长是11cm或故选:3.【答案】C【解析】分析:由中,边AB的垂直平分线分别交BC、AB于点D、E,,根据线段垂直平分线的性质,即可求得,,又由的周长为9cm,即可求得的值,继而求得的周长.解:中,边AB的垂直平分线分别交BC、AB于点D、E,,,ⅹ,的周长为9cm,,的周长为:,故选:此题考查了线段垂直平分线的性质,三角形的周长等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.4.【答案】C【解析】解:不等式的解集为,数轴表示为:,故选先求得不等式的解集为,根据等号判定圆圈为实心,选择即可.本题考查了不等式的解法和数轴表示,熟练掌握解不等式是解题的关键.5.【答案】C【解析】解:过点P作于E,,,,和CP分别平分和,,,,,,故选:过点P作于E,根据角平分线上的点到角的两边的距离相等可得,,那么,又,进而求出本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.6.【答案】D【解析】解:由的解集为,不等号方向改变,且,,;由得,所以;故选第一个不等式的方向改变,说明不等式两边除以的m小于0,由解集是,可以继续判断n 的符号;就可以得到第二个不等式的解集.本题考查解一元一次不等式,当未知数的系数是负数时,两边同除以未知数的系数需改变不等号的方向.同理,当不等号的方向改变后,也可以知道不等式两边除以的是一个负数.7.【答案】C【解析】【分析】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.分两种情况考虑,如图所示,分别在直角三角形ABD与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,,,,在和中,根据勾股定理得:,,此时;如图2所示,,,,在和中,根据勾股定理得:,,此时,则BC的长为6或故选:8.【答案】B【解析】解:,,,,,故①正确;是的平分线,,,,,又对顶角相等,,故②正确;,只有时,故③错误;,,平分,,故④正确.综上所述,正确的结论是①②④.故选:根据同角的余角相等求出,再根据等角的余角相等可以求出;根据等腰三角形三线合一的性质求出本题考查了三角形的内角和定理,直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.9.【答案】1,2,3【解析】【分析】先解不等式,求出其解集,再根据解集判断其正整数解.本题考查了一元一次不等式的整数解,会解不等式是解题的关键.【解答】解:,去括号,得移项,得合并同类项,得系数化为1,得故其正整数解为1,2,故答案为1,2,10.【答案】或【解析】【分析】此题主要考查等腰三角形的性质.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形外部时,顶角是;当高在三角形内部时,顶角是11.【答案】1【解析】解:※,,为正整数,故答案为:根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出是解题的关键.12.【答案】【解析】解:第一次的结果为:,没有输出,则,解得:故x的取值范围是故答案为:表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.13.【答案】5或10【解析】解:当或10时,和全等,理由是:,,,①当时,在和中,②当时,在和中,故答案为:5或当或10时,和全等,根据HL定理推出即可.本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,14.【答案】解:去括号得,,移项合并同类项得,,解得【解析】利用不等式的基本性质,先将不等式去括号,然后移项合并同类项,把系数化为1,得到x的取值范围.本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.15.【答案】解:依题意得:,去分母,得:,去括号,得:,移项,得:,合并同类项,得:,系数化为1,得:,2,3,【解析】根据题意列出关于x的一元一次不等式,先去分母,然后通过移项、合并同类项、化系数为1进行解答即可.本题考查了解一元一次不等式.根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为16.【答案】证明:,AD是BC边上的中线,是边BC上的高,AD是的角平分线,又,,又,【解析】由,判断出三角形ABC为等腰三角形,根据等腰三角形三线合一的性质可得,根据同角的余角相等可得:,再根据等量关系得到考查了余角的性质,等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.17.【答案】证明:平分,,,,在和中,,≌,【解析】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.因为,,所以,又因为AD平分,所以,已知,则可根据SAS判定≌,根据全等三角形的性质即可得到结论.18.【答案】解:如图,点P为所作.【解析】作的角平分线和线段CD的垂直平分线,它们的交点为P点.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了线段垂直平分线的性质.19.【答案】解:四边形ABCD是矩形,,,根据题意得:,,,,设,则,在中由勾股定理得:,即,,,在中由勾股定理可得:,即,,,即【解析】要求CE的长,应先设CE的长为x,由将折叠使点D恰好落在BC边上的点F可得,所以,;在中由勾股定理得:,已知AB、AF的长可求出BF的长,又,在中由勾股定理可得:,即:,将求出的BF的值代入该方程求出x的值,即求出了CE的长.本题主要考查运用勾股定理、全等三角形、方程思想等知识,根据已知条件求指定边长的能力.20.【答案】解:设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,依题意得:,解得:答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件个,依题意得:,解得:答:购进的“冰墩墩”挂件不能超过70个.【解析】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价进货数量,结合购进“冰墩墩”摆件和挂件共180个且共花费了11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件个,利用总利润=每个的销售利润销售数量购进数量,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.21.【答案】证明:是的角平分线,,,,在和中,,,,而,垂直平分EF;,,,,,【解析】点拨先利用角平分线的性质得,利用“HL”证明得到,然后根据线段垂直平分线的判定方法即可得到结论;根据三角形的面积公式即可求得DE的长.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了直角三角形全等的判定方法、线段垂直平分线的判定.22.【答案】解:设A奖品单价为x元,B奖品单价为y元,根据题意,得,,奖品单价30元,B奖品单价15元;设购买A奖品z个,则购买B奖品为个,购买奖品的花费为W元,由题意可知,,,,当时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少.【解析】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.设A奖品单价为x元,B奖品单价为y元,根据题意列出方程组,即可求解;设购买A奖品z个,则购买B奖品为个,购买奖品的花费为W元,由题意可知,,,根据一次函数的性质,即可求解.23.【答案】解:在中,,;由题意知,①当为直角时,点P与点C重合,,即;②当为直角时,,,,在中,,在中,,即:,解得:,故当为直角三角形时,或;①当时,;②当时,,;③当时,,,,在中,,所以,解得:,综上所述:当为等腰三角形时,或或【解析】直接根据勾股定理求出BC的长度;当为直角三角形时,分两种情况:①当为直角时,②当为直角时,分别求出此时的t值即可;当为等腰三角形时,分三种情况:①当时;②当时;③当时,分别求出BP的长度,继而可求得t值.本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握勾股定理的应用,以及分情况讨论,注意不要漏解.。

重庆市巴蜀中学校2023-2024学年八年级下学期第一次月考数学试题(含解析)

重庆市巴蜀中学校2023-2024学年八年级下学期第一次月考数学试题(含解析)

数学一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1( )A .5B .-5C .±5D .252.下列计算正确的是( )A .B .C .D .3.下列四组数中,是勾股数的是( )A .10,8,6B .,,CD .10,15,4.已知中,,则的度数是( )A .B .C .D .5.点在一次函数的图象上,则点不可能在( )A .第四象限B .第三象限C .第二象限D .第一象限6.已知一组数据是8,4,7,,10,其平均数是7.4,则的值为( )A .7.4B .8C .9D .107的结果应在( )A .13和14之间B .14和15之间C .15和16之间D .25和26之间8.正比例函数与一次函数在同一坐标系中的图象可能是( )A .B .3412x x x ⋅=842x x x ÷=()336x x =222(2)4xy x y -=23242520-ABCD Y 130A C ∠+∠= D ∠5065115o130M 37y x =-M a a (y kbx =y kx b =+C .D .9.如图,在菱形中,对角线、交于点,点是的中点,若,,则菱形的面积是( )A .48B .36C .24D .1810.某超市计划购进A ,B 两种水果,其中A 种水果的进价比B 种水果的进价低3元,用1200元购进A 种水果的数量是用800元购进B 种水果数量的2倍,求A 种水果的进价.若设A 种水果的进价为元,则根据题意可列方程为( )A.B .C .D .11.如图,在四边形中,,,、的平分线、交于点.若,,则四边形的周长为( )A .38B .40C .44D .5612.已知甲、乙两车同时分别从相距的、两地相向而行,乙车途经服务站加油后.发现此时与甲车相距,乙车改变速度继续行驶小时后与甲车相遇.甲车到达地后立即原路返回,结果比乙车晚小时到达地.如图是两车距出发地的距离.与行驶时间之间的函数图象,则下列说法:(1),(2)点的坐标为,(3)直线的解析式为,(4)甲车返回的速度为(5)甲车返回途中乙车ABCD AC BD O G AB 2.5OG =8BD =ABCD x 120080023x x ⨯=+120080023x x ⨯=-120080023x x =⨯-120080023x x =⨯+ABCD AB CD 90A ∠= ABC ∠BCD ∠BE CE AD E 14BC =12AD =ABCD 320km A B 80km 47B 65A ()km y ()h x 80m =H ()6,0CD 6040y x =-100km /h从地出发后小时和小时都与甲车相距.其中正确的有( )A .5个B .4个C .3个D .2个二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.13.国内某大学芯片研究学院研发出了厚度约为0.000019米的芯片,用科学记数法表示数据0.000019应为.14.将直线向上平移6个单位后的函数表达式是 .15.分解因式: .16.函数的自变量的取值范围是 .17.已知,是一次函数图象上的两个点,当时,用“”连接,,的大小关系是.18.如图,将长方形放置于平面直角坐标系中,点与原点重合,点、分别在轴和轴上,点.连接,并将沿翻折至长方形所在平面上,点的对应点为点,则点的坐标为.19.已知关于的一元一次不等式组有且仅有4个整数解,且使关于的分式方程有整数解,则符合条件的所有整数的值之和为 .20.对于一个各数位上的数字均不为零且互不相等的数,将它各个数位上的数字分别平B 37839820km 32y x =-+2312x y y -=y =x ()111,P x y ()222,P x y 34y x =-+120x x <<<41y 2y ABCO O A C y x ()8,4B -BO ABO BO ABCO A E E x 3312373x x a x x -⎧+>⎪⎨⎪-≤-⎩y 34133y a yy y ++=--a m方后取其个位数字,得到一个新的数,称为的“精品数”,并规定,(其中、为非零常数).例如,其各个数位上的数字分别平方后的数的个位数字分别是6、9、5,则475的“精品数”.已知,,则 ;对于一个两位数(的各数位上的数字均不为零且互不相等),在的十位数字和个位数字中间插入一个数,得到一个新的三位数,若是的9倍,且三位数是的“精品数”,则所有的值的和为.三、解答题:(本大题共7个小题,21题10分,22题8分,23-26每小题10分,27题12分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.21.计算题:;(2)22.如图,在中,是对角线.(1)尺规作图:作线段的垂直平分线,分别交、、于点、、,连接和(用尺规作图,并在图中标明相应的字母,保留作图痕迹);(2)在(1)的条件下,求证四边形是菱形(请补全下面的证明过程,将答案写在答题卡对应的番号后).证明:∵垂直平分,∴.又∵四边形是平行四边形,∴①________n n m ()f m am bn =+a b 475m =695n =()48f =-()1418f =-()268f =s s s k s 's 's t s '()f t 212-⎛⎫+ ⎪⎝⎭222164211a a a a a a ⎛⎫--÷+ ⎪+++⎝⎭ABCD Y BD BD EF BD AD BC O E F BE DF EBFD EF BD BO DO =ABCD∴.在和中,②________∴,∴③________∵垂直平分,∴,④________∴,∴四边形是菱形.23.生态城市你我同创,绿色生活万家共享.为了宣传环保知识,我校八年级二班以此为契机举行了“环保知识知多少”的主题活动,共有道题,满分分.参加活动的学生分为两组,每组学生均为名.赛后根据成绩得到不完整的统计图表(如图),已知成绩统计表中,满足.组名学生成绩统计表成绩(分)人数请根据所给信息,解答下列问题:(1)________;________;(2)组同学的平均分是________分;OBF ODE ∠=∠BOF DOE OBF ODE OB OD ∠=∠⎧⎨=⎩()ASA BOF DOE ≌EF BD BE DE =BE ED DF FB ===EBFD 1060,A B 10m n 3m n =A 1030405060n 1m 1m =n =A(3)组同学的平均分是________分.如果依据平均成绩确定获胜组,你觉得________组获胜.24.如图,直线与轴相交于点,与轴相交于点,直线与直线相交于点,交轴于点.(1)求直线的解析式;(2)求直线、直线和轴所围成的三角形的面积;(3)根据图象,直接写出关于的不等式的解集.25.如图,在中,,,,点为直角边,边上一动点,现从点出发,沿着的方向运动至点处停止.设点运动的路程为,的面积为.(点不与点、重合)(1)求与的函数表达式,并写出自变量的取值范围;(2)根据这个函数的图象,写出该函数的一条性质:________结合函数图象,当时,直接写出的值.26.如图,在平面直角坐标系中,直线与轴交于点A ,与轴交于点B ,直线与轴交于点,与轴交于点,,.B y kx b =+x ()4,0A y B 21y x =-AB (),3C m xD AB 21y x =-AB x x 21x kx b -<+Rt ABC △90ACB ∠=︒4BC =2AC =P BC CA B B C A →→A P x APB △y P B A y x x 3APB S = x xOy 11:32l y x =-+x y 2l x C y D 9AC =2OD OC =(1)求直线的解析式;(2)连接,点为直线上一动点,若有,请求出点坐标,(3)点为直线上一动点,点为轴上一动点,请间在平面直角坐标系中是否存在点,使得以点、、、为顶点的四边形是以为边的正方形?若存在,请直接写出点K 的坐标;若不存在,请说明理由.27.如图,在锐角中,,,的角平分线、交于点.(1)如图,若,,求的长;(2)如图,在平面内将线段绕点顺时针方向旋转,得到线段,使得.连接,点为的中点,连接.求证:;(3)如图,在平面内将线段绕点顺时针方向旋转(即)得到线段,点、分别是线段、上的动点,且,若取最小值时,直接写出的面积.CD AD Q CD 5QAD OAB S S =△△Q M 1l N y xOy K M N C K MN ABC =60B ∠︒AB BC <ABC CE AD O 17OC =4OD =CD 2AC C CF 120BCF ∠=︒OF G OF CG ()12CG AO CO =+3AC C 75︒75ACF ∠=︒CF M N AC CF CM =AC =MN CMN参考答案与解析1.A【分析】根据开平方的运算法则计算即可.,故选:A .【点拨】本题考查了开平方运算,关键是掌握基本的运算法则.2.D 【分析】本题考查的是同底数幂的乘法,除法,幂的乘方,积的乘方,掌握以上运算的运算法则是解题的关键.同底数幂的乘法:底数不变,指数相加,从而可判断A ,同底数幂的除法:底数不变,指数相减,从而可判断B ,幂的乘方:底数不变,指数相乘,从而可判断C ,积的乘方:把积中的每个因式分别乘方,再把所得的幂相乘,可判断D ,从而可得答案.【解答】解:A .,原计算错误,不符合题意;B .,原计算错误,不符合题意;C .,原计算错误,不符合题意;D .,原计算正确,符合题意;故选:D .3.A 【分析】本题考查了勾股数的定义,解题的关键是掌握两数平方和等于第三个数平方的三个正整数是勾股数.【解答】解:A 、∵,∴10,8,6是勾股数,符合题意;B 、∵,∴,,不是勾股数,不符合题意;C 、D 、∵不是正整数,347x x x ⋅=844x x x ÷=()339x x =222(2)4xy x y -=2226810+=()()()222222345+≠23242520-∴10,15,不是勾股数,不符合题意;故选:A .4.C【分析】本题考查平行四边形的性质,根据平行四边形对角相等、邻角互补的性质平行四即可求出,进而可求出.【解答】解:在中,,,∵,∴,∴,故选:C .5.C【分析】本题考查了一次函数图象与系数的关系,牢记“,的图象在一、三、四象限”是解题的关键.利用一次函数图象与系数的关系可得出一次函数的图象经过第一、三、四象限,结合点在一次函数的图象上可得出点不可能在第二象限.【解答】解:∵一次函数中的,∴一次函数的图象经过第一、三、四象限,又∵点在一次函数的图象上,∴点不可能在第二象限.故选:C .6.B 【分析】本题考查了算术平均数的概念.熟记“公式:”是解决本题的关键.利用平均数公式计算即可求出a 的值.【解答】解:根据题意,得,解得,20-A ∠D ∠ABCD A C ∠∠=180A D ∠+∠= 130A C ∠∠=︒+65A C ∠∠==︒180115D A ∠∠=︒-=︒0k >0b y kx b ⇔=+<37y x =-M 37y x =-M 37y x =-3070k b =>=-<,37y x =-M 37y x =-M ()121n x x x x n=++⋅⋅⋅+847107.45a ++++=⨯8a =故选:B .7.C 【分析】本题考查了无理数的大小估算,解题的关键是:熟练掌握算术平方根的估算.先计算,根据算术平方根的知识进行估算,即可求解.∴,∴,故选:.8.D 【分析】本题考查了一次函数、正比例函数的图象.根据正比例函数图象所在的象限判定k 的符号,根据一次函数图象所经过的象限确定k 的符号,确定正比例函数的图象判定选项是否正确.【解答】解:∵正比例函数经过原点,故C 错误;A 、一次函数经过第一、二、三象限.故,,则,则正比例函数图象经过第一、三象限,故本选项图象不合题意;B 、一次函数经过第一、二、四象限.故,,则,则正比例函数图象经过第二、四象限,故本选项图象不合题意;D 、一次函数经过第一、三、四象限.故,,则,则正比例函数图象经过第二、四象限,故本选项图象符合题意;故选D .9.C 【分析】本题考查了菱形的性质、直角三角形斜边上中线的性质以及勾股定理等知识,熟练掌握菱形的两条对角线互相垂直平分是解题的关键.根据菱形的性质和已知条件可得是((10+=<<56<<151016<+<C kb y kbx =y kx b =+0k >0b >0kb >y kbx =y kx b =+0k <0b >0kb <y kbx =y kx b =+0k >0b <0kb <y kbx =OG斜边上的中线,由此可求出的长,再根据勾股定理可求出的长,最后根据菱形的面积等于对角线乘积的一半计算即可.【解答】解:∵菱形,∴,,,∵,,∴,,∴,∴,∴菱形的面积是.故选:C .10.D【分析】本题考查了列分式方程解实际问题的应用,解答时根据条件建立方程是关键.根据用1200元购进A 种水果的数量是用800元购进B 种水果数量的2倍,列方程即可.【解答】解:设A 种水果的进价为元,则B 种水果的进价为元,由题意,得,.故选:D .11.B【分析】本题考查全等三角形、平行线和角平分线的性质,构造辅助线、熟练掌握全等三角形的判定和性质是解决问题的关键.过点作,根据角平分线可证明得到,,从而推算出四边形的周长等于【解答】解:如下图所示,过点作,Rt AOB △AB OA ABCD AC BD ⊥2AC AO =12BO BD =2.5OG =8BD =25AB OG ==4BO =3AO ==26AC AO ==ABCD 1242AC BD ⋅=x ()3x +120080023x x =⨯+E EH AB ⊥(ASA)CED CEH △≌△CD CH =CD CH =ABCD 2AD BC+E EH AB ⊥的平分线交于点E ,∴,∵,,∴,,∵,∴,∴,同理可得:,∵,∴四边形的周长为,故选:B .12.B【分析】由甲车函数图象经过点,可计算甲车去时速度,由“此时与甲车相距,乙车改变速度继续行驶小时后与甲车相遇”,可计算甲车返回速度,即可判断说法(4),由甲车去时速度,及甲车函数图象经过点,可计算得值,即可判断说法(1),由“甲车比乙车晚小时到达地”,及甲车函数图象经过点,可计算乙车到达地时间,即可判断说法(2),由点的坐标,可得点的坐标,由“此时与甲车相距,乙车改变速度继续行驶小时后与甲车相遇”,可计算乙改变后的速度,设直线的解析式为:,代入点的坐标,求出直线的解析式,即可判断说法(3),由“甲车比乙车晚小时到达地”,可以得到,甲车并没有追上乙,当甲车返回途中距离地时,两车相距,用甲车到达地的时间减去甲车开的时间,即可判断说DCB ∠AD DCE HCE ∠=∠AB CD 90A ∠= 90CDA ∠=︒90CDE CHE ∠=∠=︒∴CE CE =(ASA)CED CEH △≌△CD CH =AB BH =14AB DC BH CH BC +=+==ABCD 12141440AD AB DC BC AD BC BC +++=++=++=()4,32080km 47()1,m m 65A ()7.2,0A H D 80km 47()h 60km /v =乙CD 60y x b =+D CD 65A A 20km 20km A 20km法(5),本题考查了一次函数的实际应用,解题的关键是:从图中提取信息.【解答】解:由图可知,甲车去时速度为:,甲车返回速度为:,故说法(4)正确,∴,故说法(1)正确,∵甲车比乙车晚小时到达地,∴点的横坐标为:,∴点的坐标为:,故说法(2)正确,∴点的坐标为:,设乙车的速度为:,则:,解得:,设直线的解析式为:,将点代入,得:解得:,∴直线的解析式为:,故说法(3)正确,∵甲车比乙车晚小时到达地,∴甲车并没有追上乙,∴当甲车返回途中距离地时,两车相距,,故说法(5)错误,综上所述,(1)、(2)、(3)、(4)正确,(5)错误,故选:.13.【分析】本题主要考查科学记数法.科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正整数;当原数的绝对值时,n 是负整数.【解答】解:,()h 320480km /÷=()()h 3207.240m 10k /÷-=()80180km m =⨯=65A H 67.265-=H ()6,0D ()6,320()km /h v 乙()480807v +⨯=乙()h 60km /v =乙CD 60y x b =+()6,320D 320606b =⨯+40b =-CD 6040y x =-65A A 20km 20km ()7.2201007h -÷=B 51.910-⨯10n a ⨯110a ≤<10≥1<50.000019 1.910-=⨯故答案是:.14.【分析】本题考查了一次函数图象与几何变换,直接根据“上加下减”的原则进行解答即可.一次函数(k 、b 为常数,)的图象为直线,当直线平移时k 不变,当向下平移个单位,则平移后直线的解析式为,理解“上加下减”是解题的关键.【解答】解:由“上加下减”的原则可知,把一次函数的图象向上平移6个单位后的函数表达式是:.故答案为:.15.【分析】提取公因式,应用平方差公式,即可求解,本题考查了分解因式,解题的关键是:熟练掌握分解因式的方法.【解答】解:,故答案为:.16.且##且【分析】本题考查了函数自变量的范围,解题的关键是一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.根据被开方数大于或等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,,且解得:且.故答案为:且.17.【分析】本题考查的是一次函数图象上点的坐标特点,熟知一次函数中,51.910-⨯38y x =-+y kx b =+0k ≠m y kx b m =+-32y x =-+32638y x x =-++=-+38y x =-+()()322y x x +-()()()2231234322x y y y x y x x -=-=+-()()322y x x +-2x ≥4x ≠4x ≠2x ≥360x -≥40x -≠2x ≥4x ≠2x ≥4x ≠214y y <<()0y kx b k =+≠当时随的增大而增大是解答此题的关键.由一次函数可知,,随的增大而减小,及当时,求解即可.【解答】解:一次函数中的,∴该直线经过第一,二,四象限,随的增大而减小,当时,,又∵点,是一次函数图象上的两个点,且,∴即.故答案是:18.【分析】本题考查轴对称,勾股定理,等腰三角形的判定及性质.设与交点为点D ,过点E 作轴于点F ,由可得,,由长方形与折叠的性质可得,从而,设,则,,在中,根据勾股定理得,代入即可解得,根据的面积可求得,进而在中,根据勾股定理可求得,结合点E 的位置可得点E 的坐标.【解答】解:设与交点为点D ,过点E 作轴于点F ,∵,∴,,∵在长方形中,,∴,∵由折叠有,0k >y x 34y x =-+40k =>y x 0x =4y =34y x =-+30-<40,>y x 0x =y =3044y =-⨯+=()111,P x y ()222,P x y 34y x =-+120x x <<124y y >>214y y <<214y y <<.1612,55⎛⎫-- ⎪⎝⎭BE OC EF x ⊥()8,4B -4AO BC ==8AB OC ==ABCO BOD DBO ∠=∠BD OD =OD x =8CD x =-BD x =Rt BCD 222BC CD BD +=5OD BD ==ODE 125EF =Rt OEF △165OF ==BE OC EF x ⊥()8,4B -4AO BC ==8AB OC ==ABCO AB OC ∥ABO COB ∠=∠ABO EBO ∠=∠∴,∴,设,则,,∵在长方形中,,∴在中,,即,解得,∴,由折叠可得,∴,∵或,∴,即,∴,∵轴,∴在中,,∴点E 的坐标为.故答案为:.19.【分析】解不等式组,根据“仅有4个整数解”,确定的取值范围,根据“是整数”,确定的取值,解分式方程,根据“有整数解”,确定为奇数,最终确定的取值,相加,即可求解,本题考查了,根据分式方程及不等式组,求待定字母的取值,解题的关键是:熟练掌握分式方程及不等式组的解法.【解答】解:解不等式组,解得:,BOD DBO ∠=∠BD OD =OD x =8CD OC OD x =-=-BD x =ABCO 90BCO ∠=︒Rt BCD 222BC CD BD +=()22248x x +-=5x =5OD BD ==4OE OA ==8EB AB ==853DE BE BD =-=-=12ODE S OD EF =⋅ 12ODE S OE DE =⋅ 1122OD EF OE DE ⋅=⋅1154322EF ⨯=⨯⨯125EF =EF x ⊥Rt OEF △165OF ===1612,55⎛⎫-- ⎪⎝⎭1612,55⎛⎫-- ⎪⎝⎭12a a a y a a 3312373x x a x x -⎧+>⎪⎨⎪-≤-⎩5310x a x <⎧⎪+⎨≥⎪⎩∵仅有4个整数解,∴,解得:,∴整数的值为:,,,,,,,,,,解方程,解得:,且,∵有整数解,∴为奇数,且,∴整数的值为: ,,,,∴符合条件的所有整数的值之和为:,故答案为:.20.【分析】本题考查有理数的计算和新定义问题;准确理解题意,根据三位数的特点,能用字母表示数,再结合数的特点逐步确定各位数字的具体数是解题的关键.(1)分别求出4与14的“精品数”,代入中,联立方程组即可求出a 、b 的值,从而确定的表达式,再求出的“精品数”是,代入所求的表达式即可;(2)设s 的十位数字为a ,个位数字为b ,分别表达出,由题意可得等式,再根据b 的取值与等式成立的条件确定,由此列式计算,从而确定;再结合t 是的“精品数”,进一步确定t 的值,从而求解.【解答】解:(1)4的“精品数”是6,∴;14的“精品数”是164,∴;∵,∴,∴,即:30110a +<≤37a -<≤a 2-1-0123456734133y a y y y ++=--32a y +=3y ≠y a 3a ≠a 1-157a 115712-+++=12660-236s '()f m am bn =+()f m 268m =464n =1001010s a k b s a b '=++=+,()10010910a k b a b ++=+5b =s 's '46m n ==,1416m n ==,()f m am bn =+846181416a b a b -=+⎧⎨-=+⎩12a b =⎧⎨=-⎩()2f m m n=-∵的“精品数”是,∴;(2)设s 的十位数字为a ,个位数字为b ,由题意可知,,∵是s 的9倍,∴,∴,∵,∴,∴,∵,,∴满足条件的a 与k 为:或或,∴s '为135,315,224,∵t 是的“精品数”,∴t 为195,915,446,对应“精品数”为115,115,666,∵,∴,,∴所有的值的和为.故答案为:;.21.(1)(2)【分析】本题考查了二次根式、分式的运算以及负整数指数幂,268m =464n =()2682682464660f =-⨯=-10010s a k b '=++10s a b =+s '()10010910a k b a b ++=+()54a k b +=09b <≤5b =4a k +=19a ≤≤19k ≤≤13a k =⎧⎨=⎩22a k =⎧⎨=⎩31a k =⎧⎨=⎩s '()2f m m n =+()195195211535f =-⨯=-()9159152115685f =-⨯=()4464462666886f =-⨯=-()f t (35)685(886)236-++-=660-23641a a -+(1)先化简二次根式以及负整数指数幂,再算乘法,最后算加减;(2)先通分 ,再将除法化为乘法计算.【解答】(1(2)22.(1)作图见解析(2),,,【分析】(1)分别以点B ,D 为圆心,以大于为半径画弧,分别交于两点,在过两点作直线,交于点O ,交于点E ,交于点F ,连接,;(2)先确定,再根据平行四边形的性质得,进而得出,根据“”得出,可得,然后根据线段垂直平分线的性质得,,最后根据“四条边相等的四边形是菱形”得出答案.【解答】(1)如图所示.212-⎛⎫ ⎪⎝⎭5443=+⨯-44=+-=222164211a a a a a a ⎛⎫--÷+ ⎪+++⎝⎭()()()22244411a a a a a a a +-++-=÷++()()()244141a a a a a +-+=⨯++41a a -=+AD BC ∥DOE BOF ∠=∠DE BF =BF DF=12B D BD AD BC BE DF BO DO =AD BC ∥OBF ODE ∠=∠ASA BOF DOE △△≌DE BF =BE DE =BF DF =(2)∵垂直平分,∴.∵四边形是平行四边形,∴,∴.在和中,,∴,∴.∵垂直平分,∴,,∴,∴四边形是菱形.故答案为:,,,.【点拨】本题主要考查了尺规作线段垂直平分线,全等三角形的性质和判定,线段垂直平分线的性质,菱形的判定,灵活选择判定定理是解题的关键.23.(1);(2)(3);EF BD BO DO =ABCD AD BC ∥OBF ODE ∠=∠BOF DOE OBF ODE OB ODDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩()BOF DOE ASA ≌DE BF =EF BD BE DE =BF DF =BE DE DF BF ===EBFD AD BC ∥DOE BOF ∠=∠DE BF =BF DF =624647B【分析】(1)根据每组学生均为名求出的和,由即可求解;(2)根据加权平均数的计算方法可以解答本题;(3)根据角度占比计算组名学生竞赛成绩的平均分,与组比较即可得出答案.【解答】(1)根据题意得:解得:(2) 平均分是(分)(3) 根据扇形统计图可知,组学生竞赛成绩为分的角度为:所以平均分是(分)因为所以组竞赛成绩较好.【点拨】本题考查了二元一次方程组的解以及统计表和扇形统计图的运用,掌握扇形统计图直接反映部分占总体的百分比大小是关键.24.(1)(2)(3)【分析】(1)将,代入直线,求出得值,将点,,代入直线,就出、得值,即可求解,(2)将,代入,求出点坐标,计算,即可求解,(3)结合图象,找出直线,在直线下方所对应的得范围,即可求解,本题考查了,待定系数法求一次函数解析式,求直线围成的图形面积,根据直线交点求不等式的解集,解题的关键是:熟练掌握数形结合的思想.【解答】(1)10,m n 3m n =B 10A 31110m n n m =⎧⎨+++=⎩26n m =⎧⎨=⎩()3024015066011046⨯+⨯+⨯+⨯÷=B 60360180367272︒-︒-︒-︒=︒1803672725040603047360360360360︒︒︒︒⨯+⨯+⨯+⨯=︒︒︒︒4647<B 362y x =-+2142x <(),3C m 21y x =-m ()2,3C ()4,0A y kx b =+k b 0y =21y x =-D CDA S 21y x =-y kx b =+x解:将,代入直线,得:,解得:,将点,,代入直线,得:,解得:,∴直线的解析式为:,(2)解:当时,,解得:,∴点,,(3)解:根据图象得,当时,,25.(1)(2)见解析(3)或【分析】本题主要考查了动点问题的函数图象,求函数关系式等等:(1)分当时,当时,两种情况讨论求解即可;(2)根据(1)所求画出对应的函数图象,再根据函数图象求解即可;(3)根据函数图象求解即可.【解答】(1)解:当时,点P 在上运动,∴,∵,∴;当时,点P 在上运动,∴,∵,∴;(),3C m 21y x =-321m =-2m =()2,3C ()4,0A y kx b =+3204k b k b =⋅+⎧⎨=⋅+⎩326k b ⎧=-⎪⎨⎪=⎩AB 362y x =-+0y =021x =-12x =1,02D ⎛⎫ ⎪⎝⎭112143224CDA S ⎛⎫=⨯-⨯= ⎪⎝⎭ 2x <21x kx b -<+()()0421246x x y x x ⎧≤≤⎪=⎨-+<≤⎪⎩3x =92x =04x ≤≤46x <≤04x ≤≤BC BP x =90ACB ∠=︒()1042y AC BP x x =⋅=≤≤46x <≤AC 426AP x x =+-=-90ACB ∠=︒()1212462y AP BC x x =⋅=-+<≤综上所述,(2)解:函数图象如下所示,由函数图象可知,在时,y 有最大值4;(3)解:由函数图象可知,当时,或.26.(1)(2)或(3)或或或【分析】(1)待定系数法求直线的解析式;(2)利用割补思想, 问题转化为的面积,分两种情况讨论,点Q 在延长线上和点Q 在延长线上;(3)利用分类讨论的思想,然后将正方形的存在性问题转化为构造“一线三等角”的全等,利用全等三角形的性质,得出对应边相等,建立等量关系.【解答】(1)解:(1)当时,,.当时,,,.,()()0421246x x y x x ⎧≤≤⎪=⎨-+<≤⎪⎩4x =3APB S = 3x =92x =26y x =+49148,99⎛⎫ ⎪⎝⎭()5,4--()1,3-()5,5-()3,3()3,3-CD ACQ CD DC 0x =3y =(0,3)B ∴0y =1032x =-+6x =(6,0)A ∴9= AC,.,,.设直线的解析式为,则,解得:,;(2)解:设 ,∵,∴,而 ①点Q 在延长线上时,则,∴,Q 在x 轴上方,解得:,∴,解得:,∴ ;②点Q 在延长线上时,则,∴,Q 在x 轴下方,解得:,∴,解得:,∴ ,综上所述,点Q 的坐标为或.3OC ∴=(3,0)C ∴-2OD OC = 6OD ∴=(0,6)D ∴CD y kx b =+306k b b -+=⎧⎨=⎩26k b =⎧⎨=⎩26y x ∴=+(),26Q m m +5QAD OAB S S =△△1634525QAD S =⨯⨯⨯=△196272ACD S =⨯⨯=△CD 14527742ACQ Q S AC y =+==⋅ 17492Q y =⨯⨯1489Q y =148269m +=499m =49148,99Q ⎛⎫ ⎪⎝⎭DC 14527182ACQ Q S AC y =-==⋅ 11892Q y =⨯⨯4Q y =-264m +=-5m =-()5,4Q --49148,99⎛⎫ ⎪⎝⎭()5,4--(3)存在,理由:设点,①当时,如图,作于点,作于点..∵正方形,.,,,,.,解得或,或.当时,同理,,∴,,∴,∴当时,同理可求②当时,如图过点作,作于点,作于点.1,32M n n ⎛⎫-+ ⎪⎝⎭90CMN ∠=︒ME OC ⊥E NF EM ⊥F 90CEM MFN ∴∠=∠=︒MN CM ∴=90CME ECM ∠+∠=︒ 90CME FMN ∠+∠=︒ECM FMN ∴∠=∠CEM FMN ∴△≌△ME NF ∴=∴1|3|||2n n -+=2n =6n =-(2,2)M ∴(6,6)M -()6,6M -MEC CGK △≌△3KG EC ==6CG ME ==3OG =()3,3K (2,2)M ()5,5K -90CNM ∠=︒N EF OA ∥ME EF ⊥E CF EF ⊥F同理可证:,,.设,,解得:或0或(舍)或.当时,同理:,∴,∴,当,同理可求.综上所述,点K 的坐标为或或或.【点拨】本题考查了一次函数与几何综合,全等三角形的判定与性质,坐标与图形的性质,数形结合以及分类讨论是解决本题的关键.27.(1)(2)证明见解析;【分析】()过作于点,由平分,平分,得出,然后用所对直角边是斜边的一半和勾股定理求解即可;()延长至,使得,连接,延长至,使得,证明和即可求解;CEM FMN △≌△CF NE ∴=ME NF =(0,)N a ∴1|3|32a n +-=||||n a =4n =12-(4,1)M ∴(0,3)M (4,1)M MEN KGM △≌△4,413NE MG ME KG ====-=()1,3K -(0,3)M ()3,3K -()1,3-()5,5-()3,3()3,3-CD =1D DK OC ⊥K AD BAC ∠CE ACB ∠60COD ∠=︒30︒2CG I GI CG =FI AD H OC OH =()SAS OCG FIG ≌()SAS ACH IFC ≌()过作,过作交于点,连接,延长交于点,则,由旋转性质可得,,【解答】(1)解:过作于点,∴∵平分,平分,∴,,∵,,∴,∴,∴,则,∴,∴在中,由勾股定理得:,同理:(2)如图,延长至,使得,连接,延长至,使得,∵点为的中点,3N NP MC ∥C CP MN ∥P PF MN FP Q CM NP ==AC FC ==2PN CM ==1CP =PQ =D DK OC ⊥K 90OKD ∠=︒AD BAC ∠CE ACB ∠12DAC BAC ∠=∠12ACE ACB ∠=∠180BAC ACB B ∠+∠+∠=︒=60B ∠︒120BAC ACB ∠+∠=︒()1602DAC ACE ACB BAC ∠+∠=∠+∠=︒60COD DAC ACE ∠=∠+∠=︒30ODK ∠=︒122OK OD ==725CK OC OK =-=-=Rt ODK △222224212DK OD OK =-=-=CD ===CG I GI CG =FI AD H OC OH =G OF∴,∴,,∴,∴,由()得,∴是等边三角形,∴,设,则,∵,∴,∴,在和中,,∴,∴,即,∴;(3)如图,过作,过作交于点,连接,延长交于点,∴四边形时平行四边形,,∴,∴,()SAS OCG FIG ≌FI OC =OCG FIG ∠=∠FI OC ∥180IFC OCF ∠+∠=︒160COD ∠=︒OCH △CH OC IF ==BCO OCA x ∠=∠=60ACH x ∠=︒+120BCF ∠=︒120OCF x ∠=︒-60IFC x ACH ∠=︒+=∠ACH CFI △CH FI ACH IFC AC CF =⎧⎪∠=∠⎨⎪=⎩()SAS ACH IFC ≌AH IC =2AO CO CG +=()12CG AO CO =+N NP MC ∥C CP MN ∥P PF MN FP Q MNPC 75CNP ∠=︒CM NP ==105FNP ∠=︒∴点在与成得直线上运动,∴当时,最小,即最小,∴,,∴,是等腰直角三角形,∵设,∴,,解得:∴,,∴的面积为:【点拨】本题考查了旋转的性质,三角形的内角和,全等三角形的判定与性质,等边三角形的判定与性质,用所对直角边是斜边的一半和勾股定理,解题的关键是熟练掌握以上知识的的应用.P FC 45︒CP FP ⊥CP MN NQ FP ⊥60PNQ ∠=︒NQ FQ =FCP AC FC ==NQ FQ x ==PQ =2P N x =x 2PN CM ==1CP =PQ =CMN )11122CP PQ ⨯==30︒。

八年级下册第1次月考试题--数学(含答案) (18)

八年级下册第1次月考试题--数学(含答案) (18)

八年级数学(下册)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或173.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为164.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.138.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.如果等腰三角形的一个角等于80°,则它的顶角等于度.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为cm.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=度.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积cm2.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.18.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是(填序号);(2)证明:23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是;(2)若∠BAC=128°,则∠DAE的度数是.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,在某一时刻也能够使△BPD 与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.3.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为16【考点】等腰三角形的判定.【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解:解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=70°时,∠A=∠C=40°,当顶角为∠A=40°时,∠B=∠C=70°,所以B选项正确.当AB=AC=3,BC=63+3=6,不能构成三角形,所以C选项错误.当AB=3、BC=8,周长为16,AC=5,所以D选项错误.故选B.4.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点【考点】角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等解答即可.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形三条边的距离相等的点是三角形三条角平分线的交点,故选:A.6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC 的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.8.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个【考点】等腰三角形的判定.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB=,然后即可确定C点的位置.【解答】解:如图,AB==,∴当△ABC为等腰三角形,则点C的个数有8个,故选C.9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论.故选A.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.12.如果等腰三角形的一个角等于80°,则它的顶角等于80或20.度.【考点】等腰三角形的性质;三角形内角和定理.【分析】当等腰三角形的一个角等于80°时,分2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角与其相等,②当等腰三角形的顶角等于80°,时,利用三角形内角和定理即可求出答案.【解答】解;当等腰三角形的一个角等于80°时,则有2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角等于80°时,②当等腰三角形的顶角等于80°时则它的底角为:=20°故答案为:80或20.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为105°.【考点】轴对称的性质.【分析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=40°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣35°=105°.故答案为:105°14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为3cm.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,从而得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴DE=CD,∵CD=3cm,∴DE=3cm,即点D到AB的距离为3cm.故答案为:3.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积18cm2.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线定义和平行线性质求出∠EOB=∠EBO,∠FCO=∠FOC,根据等腰三角形的判定得出OE=BE,OF=FC,求出BC长,根据三角形的面积公式求出即可.【解答】解:∵∠B与∠C的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC,∵△ABC的周长比△AEF的周长大12cm,∴(AC+BC+AC)﹣(AE+EF+AF)=12,∴BC=12cm,∵O到AB的距离为3cm,∴△OBC的面积是cm×3cm=18cm2.,故答案为:18.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为5.【考点】等腰三角形的性质.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=15°,∴∠GEF=∠FGE=30°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是15°,第二个是30°,第三个是45°,四个是60°,五个是75°,六个是90°就不存在了.所以一共有5个.故答案为518.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【考点】轴对称-最短路线问题;等腰三角形的性质.【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,=×BC×AD=×AB×CN,∴S△ABC∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质结合网格得出符合题意的图形即可.【解答】解:如图所示:.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为14.【考点】作图-轴对称变换.【分析】(1)先作出各点关于直线MN的对称点,再顺次连接即可;(2)利用矩形的面积减去三角形的面积即可.【解答】解:(1)如图所示;(2)S六边形AA′B′C′CB=3×6﹣×2×1﹣×2×1﹣×2×1﹣×2×1=18﹣1﹣1﹣1﹣1=14.故答案为:14.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【考点】作图—应用与设计作图.【分析】到AB、BC距离相等的点在∠ABC的平分线上,到点A、D的距离相等的点在线段AD的垂直平分线上,AD的中垂线与∠B的平分线的交点即为点P的位置.【解答】解:如图所示:点P即为所求.22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是①(填序号);(2)证明:【考点】全等三角形的判定与性质.【分析】(1)利用全等三角形的判定定理选出合适的条件即可;(2)利用SSS进而判断出全等三角形,得出AB∥ED即可.【解答】解:(1)选择①AB=ED或③∠ACB=∠DFE即可.故答案为:①(答案不唯一);(2)证明:∵FB=CE,∴BC=EF,在△ABC和△EFD中,∴△ABC≌△EFD(SSS),∴∠B=∠E,∴AB∥ED.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是10;(2)若∠BAC=128°,则∠DAE的度数是76°.【考点】线段垂直平分线的性质.【分析】(1)由在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,易得AE=BE,AF=CF,即可得BC=△AEF周长;(2)由∠BAC=128°,可求得∠B+∠C的值,即可得∠BAE+∠CAF的值,继而求得答案.【解答】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∵△ADE周长是10,∴BC=BE+EF+CF=AE+EF+AF=10;故答案为:10;(2)∵AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=128°,∴∠B+∠C=180°﹣∠BAC=52°,∴∠BAE+∠CAF=∠B+∠C=52°,∴∠FAE=∠BAC﹣(∠BAE+∠CAF)=76°,故答案为:76°.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?【考点】等边三角形的性质;全等三角形的性质;等腰三角形的判定.【分析】(1)根据全等三角形的性质得到CO=CD,∠BCO=∠ACD,由等边三角形的性质得到∠ACB=60°,求得∠OCD=∠ACB=60°;即可得到结论;(2)根据等边三角形的性质和周角的定义解答即可;(3)分三种情况::①要使AO=AD,需∠AOD=∠ADO,根据周角的定义得到∠ADO=α﹣60°,得到方程190°﹣α=α﹣60°求得α=125°;②要使OA=OD,需∠OAD=∠ADO.由于∠AOD=190°﹣α,∠ADO=α﹣60°,于是得到α﹣60°=50°求得α=110°;③要使OD=AD,需∠OAD=∠AOD.由于190°﹣α=50°于是得到α=140°.【解答】解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO=CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°﹣110°﹣90°﹣60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣100°﹣60°﹣α=200°﹣α,∠ADO=α﹣60°,∴200°﹣α=α﹣60°∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=40°,∴α﹣60°=40°∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°﹣α=40°∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,或100°,150°或160°时,△AOD是等腰三角形26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= 3:1.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.【考点】含30度角的直角三角形;等腰三角形的性质;等边三角形的性质.【分析】(1)根据三角形内角和定理推知∠A=30,∠C=90°.(2)根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB;(3)如图3,连接AD.利用等腰三角形的性质、垂直的定义推知∠B=∠ADE=30°,然后由”30度角所对的直角边是斜边的一半“分别求得BE、AE的值;(4)如图4,根据全等三角形的判定定理SAS可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到∠PBQ=30°,根据直角三角形的性质即可得到.【解答】解:(1)∵∠A:∠B:∠C=1:2:3,且∠A+∠B+∠C=180°,∴∠A=30,∠C=90°,∴BC=AB=.故填:;(2)如图2,∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故填:15cm;(3)如图3,连接AD.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,AE=AD,∴BE:EA=BD:AD,又∵BD=AD,∴BE:AE=3:1.故填:3:1.(4)BP=2PQ.理由如下:∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 1.5cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?【考点】全等三角形的判定;等腰三角形的性质.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;②假设△BPD≌△CPQ,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴vQ===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(下)学期 第一次月考测试卷含答案
一、选择题
1.下列根式是最简二次根式的是( )
A. 4
B. x2 1
C. 1 2
D. 4 0.5
2.若 a 是最简二次根式,则 a 的值可能是( )
A. 2
B. 2
3.下列运算中,正确的是 ( )
C. 3 2
D. 8
A.5 3 -2 3 =3
B.2 2 ×3 2 =6
x2=14
∴x=± 14 . ∵ 4 7 + 4 7 >0,∴x= 14 .
【点睛】 本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题 型.
23.阅读下面的解答过程,然后作答:
有这样一类题目:将 a 2 b 化简,若你能找到两个数 m 和 n,使 m2+n2=a 且 mn= b , 则 a+2 b 可变为 m2+n2+2mn,即变成(m+n)2,从而使得 a 2 b 化简. 例如:∵ 5+2 6 =3+2+2 6 =( 3 )2+( 2 )2+2 6 =( 3 + 2 )2
A. 16 =±4
B.± 16 =4
-4
C.1﹣2a
D.2a﹣1
C. 3 2 6 D. 3 2 3 2
B. 12 3 6 D. (2)2 2
C. 2 6 6 D. 4 27 8 =
8
2
3
11.已知
,那么满足上述条件的整数 的个数是( ).
A.4
B.5
12.下列计算正确的是( )
2
∴ 52 6 = 3 2 = 3 + 2
请你仿照上例将下列各式化简
(1) 4 2 3 ,(2) 7 2 10 . 【答案】(1)1+ 3 ;(2) 5 2 .
【分析】 参照范例中的方法进行解答即可. 【详解】
解:(1)∵ 4 2 3 12 2 3 ( 3)2 (1 3)2 ,
∴ 4+2 3 = (1 3)2 1 3 ; (2)∵ 7 2 10 ( 5)2 2 5 2 ( 2)2 ( 5 2)2 ,
B. 2 3
C. 18
D. 2 9
7.已知实数 a 在数轴上的位置如图所示,则化简| a | (a -1)2 的结果为( )
A.1
B.﹣1
8.下列运算中,正确的是( )
A. 3 2 5 B. 3 2 1
9.下列各式计算正确的是( )
A. 5 3 2 C. 3 2 3 2
10.下列各式中,正确的是( )
的值;由
5 4
n 1 n
1
n 1 n 1可得
的值;
n 1 n
(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再 寻求规律可得答案.
【详解】
1
解:(1)因为 5 4
5
4
1,所以
5
=
4
5
4;
因为 n 1 n
1
n 1
n 1,所以 n 1
n3 3=1 二、填空题
B. 2 3= 5
C. 2 1 = 2 2
D. 3 2 2=5 2
13.已知
x 1 3 ,且 0 x 1,则 x
x2
6x 9x
1
______.
14.已知 m 2 m 3 0 ,若整数 a 满足 m a 5 2 ,则 a __________.
C.3 3 ÷ 3 =3
D.2 3 +3 2 =5 5
4.下列式子中,属于最简二次根式的是( )
A. 9
B. 1 3
5.下列运算正确的是( )
C. 20
D. 7
A. 7 3 2
B. 52 5
C. 12 3 2
D. 3 8 10 2
6.下列根式中,与 3 是同类二次根式的是( )
A. 12
m 3 n 3 m n 3m 5n 2 p m n p ,则 p __________.
20.若 a、b 为实数,且 b=
三、解答题
a2 1 1 a2 +4,则 a+b=_____. a7
21.先阅读材料,再回答问题:
因为 2 1 2 1 1,所以 1 2 1;因为 3 2 3 2 1,所以 2 1
x2=10
∴x= 10 . ∵ 3 5 3 5 >0,∴ 3 5 3 5 = 10 . 请利用上述方法,求 4 7 4 7 的值.
【答案】 14
【分析】 根据题意给出的解法即可求出答案即可. 【详解】
设 x= 4 7 + 4 7 , 两边平方得:x2=( 4 7 )2+( 4 7 )2+2 4 7 ? 4 7 , 即 x2=4+ 7 +4﹣ 7 +6,
故答案为: 5 4 ; n 1 n ;
(2) 1 1
1
2 1 3 2
100 99
2 1 3 2 4 3 99 98 100 99
100 1 10 1 9 .
【点睛】 本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.
22.求 3 5 3 5 的值. 解:设 x= 3 5 3 5 ,两边平方得: x2 ( 3 5 )2 ( 3 5 )2 2 (3 5)(3 5) ,即 x2 3 5 3 5 4 ,
翻译为_____________,计算结果为_______________.
16.若 2x﹣1= 3 ,则 x2﹣x=_____.
3
17.已知:x=
5+
,则
2
2 可用含 x 的有理系数三次多项式来表示为:
2 =_____.
18.若 x + y = 5 + 3 , xy = 15 - 3 ,则 x+y=_______. 19.已知实数 m 、 n 、 p 满足等式
1 3 2 ;因为 4 3 4 3 1,所以 1 4 3 .
3 2
4 3
(1)以此类推 1

1

5 4
n1 n
(2)请用你发现的规律计算式子 1 1
1
的值.
2 1 3 2
100 99
【答案】(1) 5 4 , n 1 n ;(2)9
【分析】
1
(1)仿照例子,由 5 4 5 4 1可得
15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了 400 余年,直至 1637 年法国数学家笛卡儿在他的《几何学》中开始使用“ ”表示算数平 方根.我国使用根号是由李善兰(1811-1882 年)译西方数学书时引用的,她在《代数备
旨》中把图 1 所示题目翻译为: 16a2x 4a2x ?则图 2 所示题目(字母代表正数)
相关文档
最新文档