人教版数学六年级下册自行车里的数学问题教学设计
2024年人教版数学六年级下册用自行车里的数学优秀教案3篇
人教版数学六年级下册用自行车里的数学优秀教案3篇〖人教版数学六年级下册用自行车里的数学优秀教案第【1】篇〗自行车里的数学教学目标:1.使用所学的圆、比例、排列组合等知识解决问题,理解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
2.经历“提出问题-分析问题-建立数学模型-求解-解释与应用”的解决问题的基本过程,学会使用数学知识解决实际问题的思考方法。
3.加深学生对所学知识及其相互关系的理解,理解数学与生活的密切联系,增强数学应用意识。
教学重点:使用比例知识解决实际问题。
教学难点:理解变速自行车变化出不同速度的方法。
教学过程:一、导入对于自行车的种类,你有哪些理解?让学生从生活实际出发,自由回答。
有普通自行车,还有变速自行车。
二、新授1.探究自行车的速度和内在结构的关系。
⑴猜测,自行车蹬一圈能走多远?⑵分组讨论,怎样才能知道自行车蹬一圈走多远?(能够蹬一圈直接测量。
也能够计算得出。
)⑶观察讨论:前齿轮转过一个齿,后齿轮转过几个齿?你是怎样知道的?前齿轮转动一圈,后齿轮转动几圈?齿轮的齿数与齿轮的转数有什么关系?(前齿轮转过一个齿,后齿轮也转过一个齿,因为链条间的孔与前后两个齿轮的每一个齿相对应。
前齿轮齿数×前齿轮转数=后齿轮齿数×后齿轮转数。
齿轮的齿数与齿轮的转数成反比例。
)⑷引导学生尝试总结蹬一圈的路程的公式。
(蹬一圈的路程=车轮的周长×前轮轮齿数/后齿轮齿数)⑸实际操作、测量、计算,比较两种方法的优劣。
(蹬一圈直接测量,误差比较大。
而根据车轮的周长乘后齿轮转数计算的结果相对准确)2.研究变速自行车能组合出多少种速度。
(课件出示变速自行车的前后齿轮数表)⑴提问:变速自行车的结构是怎样的?变速自行车能组合出多少种速度?(变速自行车游2个前齿轮,6个后齿轮。
根据这个结构和前后齿轮的齿数,能够组合出2×6=12(种)速度,其中有两个速度相同,所以这种变速自行车能变化出11种速度。
六年级下册数学《自行车里的数学》精品教案
六年级下册数学《自行车里数学》精品教案一、教学内容本节课我们将学习人教版六年级下册数学《自行车里数学》。
具体内容为第五章《比例尺、旋转和圆》中第三节“自行车里数学”。
我们将通过自行车实例,探究齿轮、链条、轮径之间数学关系,理解比例尺在实际生活中应用。
二、教学目标1. 知识与技能:掌握自行车齿轮、链条、轮径之间数学关系,能够运用比例尺解决实际问题。
2. 过程与方法:通过实践情景引入,培养学生观察、思考、分析问题能力,提高学生动手操作和解决问题能力。
3. 情感态度与价值观:激发学生学习数学兴趣,培养学生合作意识和创新精神。
三、教学难点与重点教学难点:自行车齿轮、链条、轮径之间数学关系推导和应用。
教学重点:掌握比例尺在实际生活中应用,解决实际问题。
四、教具与学具准备教具:自行车模型、多媒体课件、板书用具。
学具:学生分组准备直尺、圆规、计算器等。
五、教学过程1. 实践情景引入利用自行车模型,让学生观察自行车结构,引导学生思考:自行车齿轮、链条、轮径之间是否存在数学关系?2. 例题讲解(1)展示自行车齿轮、链条、轮径图片,引导学生发现齿轮齿数与轮径关系。
(2)讲解比例尺概念,推导齿轮、链条、轮径之间数学关系。
(3)通过实际例题,让学生动手计算,加深理解。
3. 随堂练习设计两道有关自行车数学关系练习题,让学生独立完成,巩固所学知识。
4. 小组讨论学生分组讨论:在生活中,还有哪些地方用到比例尺?如何应用?六、板书设计1. 自行车里数学2. 内容:(1)齿轮、链条、轮径数学关系(2)比例尺概念及应用(3)例题解析(4)随堂练习七、作业设计1. 作业题目:(1)计算题:已知自行车前齿轮齿数为40,后齿轮齿数为20,前轮直径为2米,求后轮直径。
(2)应用题:小华骑自行车行驶1000米,前齿轮转400圈,求后齿轮转多少圈?2. 答案:(1)后轮直径为1米。
(2)后齿轮转200圈。
八、课后反思及拓展延伸1. 课后反思:本节课学生对自行车里数学表现出浓厚兴趣,能够积极参与课堂讨论,但部分学生对比例尺应用还不够熟练,需要在课后加强练习。
人教版六年级数学下《自行车里的数学》教案
人教版六年级数学下《自行车里的数学》教案一、教学目标1.学生能够理解自行车中的数学原理,包括齿轮的齿数比与自行车行驶的距离之间的关系。
2.学生能够运用所学知识解决与自行车相关的实际问题。
3.培养学生的观察能力、分析能力和数学应用能力。
二、教学内容1.自行车的基本结构与工作原理。
2.前齿轮、后齿轮以及车轮的齿数比与自行车行驶距离的关系。
3.变速自行车的原理及其应用。
三、教学重点与难点•重点:自行车中的数学原理,包括齿轮的齿数比与行驶距离的关系。
•难点:如何将所学知识应用于实际问题中,解决与自行车相关的实际问题。
四、教具和多媒体资源•实物自行车:用于学生观察和测量。
•投影仪:展示相关的图片和视频。
•教学PPT:用于讲解和演示。
五、教学方法1.激活学生的前知:回顾齿轮的基本知识,为学习自行车中的数学原理做铺垫。
2.教学策略:讲解、示范、小组讨论、案例分析。
3.学生活动:测量自行车的各个部分,记录数据,并进行小组讨论和分析。
六、教学过程1.导入:通过展示实物自行车,引导学生观察自行车的结构和工作原理,激发学生的学习兴趣。
2.讲授新课:详细讲解自行车中的数学原理,包括齿轮的齿数比与行驶距离的关系。
通过案例分析,让学生了解变速自行车的原理和应用。
3.巩固练习:提供一些实际问题,让学生运用所学知识进行解答。
例如,计算不同齿轮组合下自行车的行驶距离等。
4.归纳小结:总结本节课的学习内容,强调自行车中的数学原理及其应用。
七、评价与反馈1.设计评价策略:通过课堂小测验、课后作业等方式评价学生的学习效果。
同时,鼓励学生提出自己的问题和困惑,进行有针对性的指导和帮助。
2.为学生提供反馈:根据学生的表现,给予及时的反馈和建议,帮助学生改进学习方法。
同时,可以鼓励学生提出自己的问题和困惑,进行有针对性的指导和帮助。
八、教学反思本节课通过讲解、示范、小组讨论和案例分析等多种教学方法,使学生较好地理解了自行车中的数学原理及其应用。
人教版数学六年级下册《 自行车里的数学》教案2
人教版数学六年级下册《自行车里的数学》教案2一. 教材分析《自行车里的数学》是人教版数学六年级下册的一篇课题,通过生活中常见的自行车为载体,让学生在学习中发现和探索数学问题,提高学生运用数学知识解决实际问题的能力。
本课题主要包括自行车的结构、尺寸、比例等方面的知识,以及自行车运动中的速度、时间、路程等概念。
二. 学情分析六年级的学生已经具备了一定的数学基础,对平面几何、立体几何、计量单位等知识有一定的了解。
但自行车相关的数学问题较为复杂,需要学生运用已学的数学知识进行综合分析。
因此,在教学过程中,教师需要关注学生的学习情况,及时给予引导和帮助。
三. 教学目标1.让学生了解自行车的基本结构和相关尺寸,认识自行车运动中的速度、时间、路程等概念。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生团队合作、沟通交流的能力。
四. 教学重难点1.自行车的结构、尺寸、比例等方面的知识。
2.自行车运动中的速度、时间、路程等概念及其运用。
五. 教学方法1.情境教学法:通过展示自行车图片、实物等,引导学生了解自行车的结构和尺寸。
2.小组合作法:让学生分组讨论自行车相关问题,培养团队合作精神。
3.实例教学法:以实际自行车运动为例,讲解速度、时间、路程等概念。
4.引导发现法:教师引导学生发现自行车中的数学问题,培养学生探索精神。
六. 教学准备1.准备自行车图片、实物等教学资源。
2.准备相关数学知识资料,以便在教学中给予学生引导。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用自行车图片、实物等,引导学生关注自行车中的数学问题,激发学生学习兴趣。
2.呈现(10分钟)展示自行车结构、尺寸、比例等方面的知识,让学生初步了解自行车的相关数学问题。
3.操练(10分钟)让学生分组讨论自行车相关问题,如自行车的比例、尺寸等。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)以实际自行车运动为例,讲解速度、时间、路程等概念。
2023年人教版数学六年级下册用自行车里的数学导学案(精选3篇)
人教版数学六年级下册用自行车里的数学导学案(精选3篇)〖人教版数学六年级下册用自行车里的数学导学案第【1】篇〗《自行车里的数学》教学设计教学目标:1、通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系。
2、经历“提出问题——分析问题——建立数学模型——实际应用”的解决实际问题的过程,获得运用数学解决实际问题的思考方法。
3、通过观察自行车的结构、分析其行进原理,帮助建立数学模型。
4、鼓励学生创新,同时培养学生正确合理的设计观念。
教学重难点:重点:自行车的速度与其内在结构的联系,建立解决问题的数学模型。
难点:齿轮组对自行车前进的影响,数学模型的形成过程。
教学过程一、问题导入自行车里隐藏着哪些数学问题?(1)车架是三角行,具有稳定性。
(2)车轮是圆形,在同一圆中,所有的半径都相等。
(3)自行车是怎样向前运动的?脚蹬——前齿轮带动后齿轮——后齿轮带动后轮——后轮推动前轮前进。
(4)蹬一圈,自行车能走多远呢?变速自行车,前后齿轮有多少种组最新Word合呢?哪种组合能使自行车走的更远?今天我们就来共同研究这个问题。
板书:自行车里的数学。
活动1.研究普通自行车蹬一圈,自行车能走多远呢? 1.师:汇报一下课前布置的测量结果。
自行车蹬一圈到底能走多远?小结:自行车走的距离约是车轮周长的3倍左右。
测量的整个过程复杂,费劲,误差很大。
2:怎样通过自行车内部结构与速度的关系解决这一问题?(1).解决问题的关键是什么?(前齿轮转一圈,后齿轮转几圈.)师;假设前齿轮20个齿,后齿轮10个齿,前齿轮转一圈,后齿轮转几圈?前齿轮的齿数×它的圈数=后齿轮的齿数×它的圈数 20 × 1 = 10 × 2 .小结:转的总齿数一定,齿数与圈数成反比例关系.也就是前齿轮齿数是后齿轮齿数的几倍,后齿轮转的圈数就是前齿轮的几倍. 回答问题,填表. 前轮齿数 48 48 36 后轮齿数 16 12 12 后轮转动圈数 48÷16=3 48÷12=4 36÷12=3 最新Word例题讲解.(1).一辆自行车前齿轮48个齿,后齿轮19个齿,车轮直径71厘米,蹬一圈,自行车能走多远?(惯性除外) 3.14×71×(48÷19) ≈564(厘米)小结:蹬一圈自行车走的距离=车轮的周长×(前齿轮齿数÷后齿轮齿数)(2). 一辆自行车前齿轮26个齿,后齿轮14个齿,车轮半径33厘米,蹬一圈,自行车能走多远?(惯性除外) 3.14×33×2×(26÷14)≈385(厘米) 三、活动2.研究变速自行车的问题.1、刚才我们研究的是普通自行车里数学。
小学六年级数学下册教案:自行车里的数学
小学六年级数学下册教案:自行车里的数学小学六年级数学下册教案:自行车里的数学作为一名教职工,总归要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
怎样写教案才更能起到其作用呢?下面是小编帮大家整理的小学六年级数学下册教案:自行车里的数学,仅供参考,大家一起来看看吧。
小学六年级数学下册教案:自行车里的数学1教学目标:1、运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力3、经历解决问题的基本过程,了解数学与生活的密切关系。
重点难点:运用所学知识解决实际问题。
教学过程:一、揭示课题1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2、自行车里会有数学问题吗?想一想。
二、研究普通自行车的速度与内在结构的关系1、提出问题:两种自行车,各蹬一圈。
能走多远?引出学生对自行车里的数学的研究。
2、分析问题(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的.距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数:后齿轮的齿数)(2)分组收集所需要的数据,带入上述模式,求出答案。
4、汇报结果。
各小组展示并解释本组的研究过程和结果,在比较结果。
三、研究变速自行车能组合出多少种速度?1、提出问题:变速自行车能组合出多少种速度?(1)了解变速自行车的结构。
(有2个前齿轮,6个后齿轮。
)(2)根据这个结构,可以组合出多少种速度?2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远?四、课堂作业1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。
人教新课标六年级数学下册《自行车里的数学》教学设计
人教新课标六年级数学下册《自行车里的数学》教学设计一. 教材分析《自行车里的数学》是人教新课标六年级数学下册的一章内容,主要让学生了解和掌握自行车相关的数学知识。
本章内容主要包括自行车的结构、尺寸、速度、路程等方面的计算。
通过学习本章内容,学生可以提高自己的数学应用能力,培养观察、思考和解决问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对图形的认识、面积、体积、速度、路程等概念有一定的了解。
但部分学生可能对这些概念在自行车中的应用还不够清晰,需要通过实例讲解和操作来进一步巩固。
同时,学生对实际生活中的数学问题感兴趣,容易产生学习动力。
三. 教学目标1.知识与技能目标:让学生了解自行车结构、尺寸、速度、路程等方面的数学知识,学会运用相关公式进行计算。
2.过程与方法目标:培养学生观察、思考和解决问题的能力,提高数学应用水平。
3.情感态度与价值观目标:激发学生对实际生活中数学问题的兴趣,培养学生的团队协作精神和自主学习能力。
四. 教学重难点1.重点:自行车相关数学知识的理解和应用。
2.难点:自行车的尺寸、速度、路程等方面的计算方法。
五. 教学方法1.情境教学法:通过展示自行车图片、实物等,引导学生了解自行车相关数学知识。
2.实例讲解法:通过具体案例,讲解自行车尺寸、速度、路程等方面的计算方法。
3.小组讨论法:分组让学生讨论实际生活中的自行车数学问题,培养团队协作精神。
4.自主学习法:鼓励学生自主探究,提高解决问题能力。
六. 教学准备1.准备自行车图片、实物等教学资源。
2.设计相关数学问题实例。
3.分组安排学生进行讨论。
七. 教学过程1.导入(5分钟)利用自行车图片、实物等,引导学生关注自行车上的数学知识,激发学生学习兴趣。
2.呈现(10分钟)展示自行车相关数学问题实例,如自行车尺寸、速度、路程等方面的计算。
让学生观察并思考这些实例中的数学关系。
3.操练(15分钟)分组让学生讨论实际生活中的自行车数学问题,引导学生运用所学知识解决问题。
人教版数学六年级下册《自行车里的数学》教案
人教版数学六年级下册《自行车里的数学》教案一、教学目标知识与技能1.了解自行车的构造和原理。
2.掌握自行车齿轮的作用和调整方法。
3.了解自行车速度、时间和路程之间的关系。
过程与方法1.通过课堂讨论、实验操作等多种教学方式,培养学生的观察、分析和解决问题的能力。
2.鼓励学生团结合作,共同完成实验和探究的任务。
情感态度与价值观1.培养学生对数学的兴趣和热爱。
2.培养学生合作意识和团队精神。
二、教学重点和难点重点1.自行车齿轮的作用和调整方法。
2.自行车速度、时间和路程之间的关系。
难点1.知识的联系和应用能力的培养。
2.自行车数学问题的实际应用。
三、教学准备1.PowerPoint课件:包括自行车构造图、齿轮示意图等。
2.实验器材:自行车、尺子、速度计等。
3.教学辅助工具:白板、彩色粉笔等。
四、教学过程第一课时:自行车齿轮的作用1.引导学生观察自行车齿轮的构造和作用。
2.老师演示如何调整齿轮,让学生进行操作。
3.学生小组合作完成相关练习,加深理解。
第二课时:自行车速度、时间和路程的关系1.老师以实例引导学生计算自行车的速度、时间和路程之间的关系。
2.学生自行完成练习,并在小组讨论中解决问题。
3.总结本节课内容,展示学生的学习成果。
第三课时:自行车实验1.学生分组进行自行车速度实验,记录数据并进行分析。
2.学生根据实验结果解决相关数学问题,加深对知识的理解。
3.学生小结自行车数学问题的应用,展示实验成果。
五、课堂讨论与总结1.学生进行自行车数学问题的讨论与总结,展示各小组的研究成果。
2.学生回答问题,老师点拨错误,总结本次教学。
六、作业布置1.完成课堂练习和实验报告。
2.各小组制定自行车数学问题的研究计划。
七、教学反思1.分析学生在教学过程中的表现,总结教学经验和不足。
2.总结学生的学习情况,为下节课的教学做好准备。
以上是本次教案的详绤内容,希望对您有所帮助。
人教版数学六年级下册《自行车里的数学》教学设计
人教版数学六年级下册《自行车里的数学》教学设计一. 教材分析《自行车里的数学》是人教版数学六年级下册的一课,主要让学生通过自行车的相关问题,进一步理解和掌握分数的应用、简单的几何图形的计算、以及简单的比例问题。
本课内容与学生的生活实际紧密相连,可以激发学生的学习兴趣,培养学生的观察能力、动手能力和解决问题的能力。
二. 学情分析六年级的学生已经掌握了分数的基本知识,对简单的几何图形计算和比例问题也有了一定的了解。
但是,学生在解决实际问题时,可能会对一些复杂的情况把握不准,需要通过实例让学生进一步理解和掌握。
三. 教学目标1.让学生理解和掌握分数在实际问题中的应用。
2.培养学生解决实际问题的能力。
3.培养学生的观察能力、动手能力和团队协作能力。
四. 教学重难点1.重点:分数在实际问题中的应用。
2.难点:解决实际问题时,对复杂情况的处理。
五. 教学方法1.采用问题驱动的教学方法,让学生在解决问题的过程中,理解和掌握相关知识。
2.采用小组合作的学习方式,培养学生的团队协作能力。
3.运用多媒体辅助教学,直观展示自行车的相关结构,方便学生理解。
六. 教学准备1.准备自行车相关图片、视频等教学资源。
2.准备相关练习题,用于课后巩固。
3.准备黑板、粉笔等教学工具。
七. 教学过程1. 导入(5分钟)教师展示自行车图片,引导学生观察自行车的各个部分,让学生思考自行车中包含的数学知识。
2. 呈现(10分钟)教师通过提问,引导学生思考自行车的相关问题,如:自行车的轮胎为什么是圆形?自行车的链条是如何连接的?等问题。
在解决问题的过程中,引导学生运用分数、几何图形计算和比例等知识。
3. 操练(10分钟)教师提出一些与自行车相关的实际问题,让学生分组讨论,并给出解答。
如:自行车的轮胎半径增加了10%,轮胎的面积增加了多少?等问题。
学生通过小组合作,解决问题,并分享答案。
4. 巩固(10分钟)教师根据学生的回答,进行点评,并给出正确答案。
人教新课标六年级数学下册《自行车里的数学》教案
人教新课标六年级数学下册《自行车里的数学》教案一. 教材分析《自行车里的数学》是人教新课标六年级数学下册的一篇课文,通过介绍自行车中的数学知识,让学生了解和掌握一些基本的数学概念和运算方法。
本文主要围绕自行车的车轮周长、速度、时间和路程等概念展开,通过实例让学生理解这些概念之间的关系,并学会运用它们解决实际问题。
二. 学情分析六年级的学生已经掌握了基本的数学运算方法和简单的应用题解题技巧。
但是,对于速度、时间和路程之间的关系的理解还有待提高。
因此,在教学过程中,教师需要注重引导学生理解和掌握这些概念之间的关系,并通过实际例子让学生学会运用它们解决实际问题。
三. 教学目标1.知识与技能:让学生理解自行车中的数学知识,包括车轮周长、速度、时间和路程等概念,并学会运用它们解决实际问题。
2.过程与方法:通过实例分析和小组合作,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生对数学知识的兴趣,培养学生的观察能力和思考能力。
四. 教学重难点1.重点:让学生理解和掌握自行车中的数学知识,包括车轮周长、速度、时间和路程等概念。
2.难点:让学生学会运用这些数学知识解决实际问题。
五. 教学方法1.情境教学法:通过引入自行车的情景,让学生直观地理解和掌握数学知识。
2.实例分析法:通过具体的实例,让学生学会运用数学知识解决实际问题。
3.小组合作法:通过小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备一些自行车的图片和实物,用于教学演示。
2.准备一些相关的数学知识材料,供学生阅读和参考。
3.准备一些实际的例子,用于引导学生运用数学知识解决实际问题。
七. 教学过程导入(5分钟)教师通过展示一些自行车的图片和实物,引导学生关注自行车中的数学知识。
提问学生:“你们知道自行车中有哪些数学知识吗?”让学生思考并回答。
呈现(10分钟)教师简要介绍自行车中的数学知识,包括车轮周长、速度、时间和路程等概念。
小学六年级下册数学《自行车里的数学》精品教案
小学六年级下册数学《自行车里数学》精品教案一、教学内容本节课我们将探讨人教版小学六年级下册数学《自行车里数学》。
具体内容包括教材第十章第一节,探讨自行车轮子与行驶距离关系,以及如何通过数学计算来理解自行车速度、齿轮比例等。
二、教学目标1. 理解自行车轮子转动与行驶距离关系。
2. 学会使用比例和齿轮原理进行简单数学计算。
3. 培养学生观察、思考及解决问题能力。
三、教学难点与重点教学难点:齿轮比例计算,速度与距离关系。
教学重点:理解自行车轮子转动与行驶距离关系,掌握齿轮比例计算。
四、教具与学具准备1. 教具:自行车模型,齿轮比例演示仪。
2. 学具:学生每人一份齿轮计算练习题,计算器。
五、教学过程1. 实践情景引入:展示自行车模型,提问:“同学们,你们知道自行车轮子转动一圈,自行车会行驶多远?”引导学生思考。
过程细节:让学生观察自行车轮子,尝试测量轮子直径,计算轮子周长。
2. 例题讲解:讲解自行车轮子转动与行驶距离关系,以及齿轮比例计算方法。
过程细节:以自行车为例,讲解轮子周长与行驶距离关系;通过齿轮比例演示仪,讲解齿轮比例计算方法。
3. 随堂练习:学生分组进行齿轮比例计算练习。
过程细节:学生通过计算器计算齿轮比例,教师巡回指导。
4. 小结:回顾本节课所学内容,让学生复述自行车轮子转动与行驶距离关系以及齿轮比例计算方法。
过程细节:教师提问,学生回答。
六、板书设计1. 自行车轮子转动与行驶距离关系。
2. 齿轮比例计算方法。
七、作业设计1. 作业题目:计算自行车轮子直径为60cm,行驶5圈距离。
答案:2820cm2. 作业题目:自行车前齿轮有40齿,后齿轮有20齿,当前齿轮转动一圈,后齿轮转动几圈?答案:2圈八、课后反思及拓展延伸本节课通过实践情景引入、例题讲解、随堂练习等方式,让学生掌握自行车里数学知识。
课后反思:是否还有其他生活中数学现象可以引入教学,拓展学生知识面。
拓展延伸:引导学生观察生活中其他物体齿轮比例,如钟表、汽车变速箱等,解齿轮比例在实际生活中应用。
人教版数学六年级下册《自行车里的数学》教案
人教版数学六年级下册《自行车里的数学》教案一. 教材分析人教版数学六年级下册《自行车里的数学》这一章节,主要让学生在学习自行车相关知识的基础上,运用所学的数学知识解决实际问题。
通过本节课的学习,学生能够了解自行车的结构,掌握自行车的相关尺寸、比例等数学知识,并能够运用这些知识解决实际问题。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和解决问题的能力,对于比例、尺寸等数学概念也有了一定的了解。
但部分学生可能对自行车结构的了解不够,因此在教学过程中需要引导学生了解自行车的基本结构。
三. 教学目标1.知识与技能:让学生了解自行车的结构,掌握自行车的相关尺寸、比例等数学知识,并能够运用这些知识解决实际问题。
2.过程与方法:通过观察、操作、交流等环节,培养学生解决问题的能力。
3.情感态度与价值观:培养学生热爱生活,关注身边的数学,提高学生学习数学的兴趣。
四. 教学重难点1.重点:让学生了解自行车的结构,掌握自行车的相关尺寸、比例等数学知识。
2.难点:如何引导学生运用所学的数学知识解决实际问题。
五. 教学方法1.情境教学法:通过展示自行车图片、实物等,引导学生了解自行车的结构,激发学生的学习兴趣。
2.问题驱动法:提出与自行车相关的数学问题,引导学生探究、解决问题。
3.合作学习法:分组讨论、交流,培养学生团队合作精神。
六. 教学准备1.准备自行车图片、实物等教学资源。
2.设计相关数学问题,准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用自行车图片、实物等,引导学生关注自行车,激发学生的学习兴趣。
提问:“你们知道自行车有哪些部分组成吗?”让学生自由发言,教师总结。
2.呈现(10分钟)展示自行车各部分的尺寸、比例等数据,引导学生观察、思考。
提出问题:“自行车的各个部分之间有什么关系?如何计算自行车的长度、宽度等?”让学生分组讨论、交流,教师巡回指导。
3.操练(10分钟)让学生根据自行车尺寸、比例等知识,计算自行车的长度、宽度等。
人教版小学数学六年级下册 自行车里的数学教学设计 教案
《自行车里的数学》教学设计教材分析《自行车里的数学》是人教版小学数学六年级下册中在“比例”之后安排的一个“综合与实践”活动。
目的是让学生运用所学的圆、比例等知识解决实际问题。
通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
教学目标1.知识与技能:运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,探讨蹬一圈所走的距离,知道变速自行车能变化出多少种速度。
2.过程与方法:引领学生经历“提出问题——分析问题——建立数学模型——解释并应用”基本过程,获得应用数学解决实际问题的思考方法。
3.情感态度与价值观:在自主探究、合作交流的学习过程中获得良好的情感体验,增强学生学好数学、用好数学的意识。
教学重难点1.自行车的速度与其内在结构的联系,建立解决问题的数学模型。
2.齿轮组对自行车前进的影响,数学模型的形成过程。
教法学法教法:讨论法、演示法。
学法:自主学习法、探究学习法、合作学习法。
教学准备:课件自行车等教学过程一、情境导入。
1.播放一段自行车比赛的视频。
(学生欣赏)师:这是什么比赛?(自行车比赛)我们六(5)班有那些同学会骑自行车啊?你们的对自行车有哪些了解呢?(学生充分说出正常的相关知识)2.自行车有那些种类?(普通自行车、变速自行车和电动自行车等)你知道自行车是怎样前进的吗?3.这节课就让我们一起来探究自行车里的数学问题。
(板书课题)二、探究新知(一)研究普通自行车的速度与内在结构的关系1.同学们都知道自行车是怎样前进的了,下面让我们一块看看普通自行车前齿轮是怎样带动后齿轮转动的吧。
(播放视频)2.了解了自行车前进的原理,那么请同学们想一想普通自行车蹬一圈,能走多远?怎么解决这个问题呢?(两人小组交流探讨)(直接测量的方法。
2024年人教版数学六年级下册用自行车里的数学教案3篇
人教版数学六年级下册用自行车里的数学教案3篇〖人教版数学六年级下册用自行车里的数学教案第【1】篇〗. 《自行车里的数学》教学设计教学内容:人教版义务教育课程标准试验教科书第66至67页“自行车里的数学”三维目标:1、知识与技能:理解并掌握自行车“蹬一圈走多远”的计算方法,探索变速自行车的速度与其内在结构的关系。
2、过程与方法:引领学生经历“提出问题——分析问题——建立数学模型——解释并应用”基本过程,获得应用数学解决实际问题的思考方法。
3、情感态度与价值观:在自主探究、合作交流的学习过程中获得良好的情感体验,增强学生学好数学、用好数学的意识。
设计理念:学习知识应是一种主动构建的过程,本节课拟通过解决生活中常见的与自行车有关的问题,使学生进一步了解数学与生活的广泛联系。
经历“提出问题——分析问题——建立数学模型——求解——解释与应用”的解决问题的基本过程,使学生获得解决实际问题的思想方法,加深对所学知识的理解。
教学准备:自行车实物教学过程:一、情景导入师:咱们班的同学有多少人会骑自行车啊?(大部分学生举手)师:你们知道自行车里也含有数学问题吗?老师准备了一俩自行车,谁能从中找出我们学过的知识?(三角形的知识、圆的知识等)师:其实自行车里还蕴含着更为丰富的数学知识,今天我们就一起探究自行车里的数学。
(板书课题)二、研究普通自行车的速度与内在结构的关系师:大家知道自己的自行车蹬一圈能走多远吗?怎样解决这个问题呢?生:可以直接测量。
师:课前我请几位同学对同一辆自行车蹬一圈所行的路程进行了独立测量,请他们来汇报一下测量结果。
生甲:我蹬一圈行了6.5米。
生乙:我行了5.7米。
生丙:我行了8.8米。
生丁:我只行了5.4米。
生:········师:这些同学的测量结果差距很大,说明测量这种方法不太准确,误差很大。
有没有准确一些的方法呢?生:计算。
六年级下册数学人教版自行车里的数学教学设计
4.总结反馈,拓展延伸
-在教学过程中,教师及时总结学生的探究成果,给予肯定和鼓励,增强学生的自信心。
-对学生在探究过程中遇到的问题进行解答,帮助学生巩固所学知识。
-拓展延伸,引导学生思考自行车在其他方面的应用,如环保、交通等,培养学生的综合素质。
2.速度与时间的关系
-讲解速度与时间的概念,阐述速度与时间的关系,如速度一定时,时间越长,行驶的距离越远。
-通过实际案例,让学生学会计算速度、时间和距离。
3.距离的计算
-介绍自行车轮胎的周长与行驶距离的关系,引导学生学会测量轮胎周长。
-讲解如何利用轮胎周长和速度计算行驶距离,使学生掌握距离的计算方法。
5.教学评价
-采用多元化评价方式,关注学生在探究过程中的表现,如观察能力、合作意识、问题解决能力等。
-注重学生的自评和互评,培养学生的自我反思和批判性思维。
四、教学内容与过程
(一)导入新课
1.教学活动设计
-以生活中常见的自行车为切入点,展示自行车的图片,引导学生关注自行车的结构和功能。
-提问:“同学们,你们知道自行车是如何工作的吗?自行车里有哪些数学知识呢?”引发学生对自行车中的数学问题的思考。
二、学情分析
在本章节的教学中,我们需要关注六年级学生的年龄特点、认知水平和兴趣倾向。六年级学生正处于青春期,思维活跃,好奇心强,具备一定的自主学习能力。他们对生活中的事物充满兴趣,尤其是自行车这种日常生活中常见的交通工具。在此基础上,学生对自行车里的数学知识产生好奇心,有利于激发学生的学习兴趣。
从认知水平来看,六年级学生已经掌握了基本的数学知识,如速度、时间、距离等概念,具备一定的逻辑思维能力。然而,他们对自行车内部结构的了解相对有限,对于自行车中涉及的数学原理和计算方法尚需进一步引导。
人教版数学六年级下册第26课自行车里的数学教学设计3篇
人教版数学六年级下册第26课自行车里的数学教学设计3篇〖人教版数学六年级下册第26课自行车里的数学教学设计第【1】篇〗《自行车里的数学》教学设计教学目标:1、通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系。
2、经历“提出问题——分析问题——建立数学模型——实际应用”的解决实际问题的过程,获得运用数学解决实际问题的思考方法。
3、通过观察自行车的结构、分析其行进原理,帮助建立数学模型。
4、鼓励学生创新,同时培养学生正确合理的设计观念。
教学重难点:重点:自行车的速度与其内在结构的联系,建立解决问题的数学模型。
难点:齿轮组对自行车前进的影响,数学模型的形成过程。
教学过程一、问题导入自行车里隐藏着哪些数学问题?(1)车架是三角行,具有稳定性。
(2)车轮是圆形,在同一圆中,所有的半径都相等。
(3)自行车是怎样向前运动的?脚蹬——前齿轮带动后齿轮——后齿轮带动后轮——后轮推动前轮前进。
(4)蹬一圈,自行车能走多远呢?变速自行车,前后齿轮有多少种组最新Word合呢?哪种组合能使自行车走的更远?今天我们就来共同研究这个问题。
板书:自行车里的数学。
活动 1.研究普通自行车蹬一圈,自行车能走多远呢? 1.师:汇报一下课前布置的测量结果。
自行车蹬一圈到底能走多远?小结:自行车走的距离约是车轮周长的3倍左右。
测量的整个过程复杂,费劲,误差很大。
2:怎样通过自行车内部结构与速度的关系解决这一问题?(1).解决问题的关键是什么?(前齿轮转一圈,后齿轮转几圈.)师;假设前齿轮20个齿,后齿轮10个齿,前齿轮转一圈,后齿轮转几圈?前齿轮的齿数×它的圈数=后齿轮的齿数×它的圈数 20 × 1 = 10 × 2 .小结:转的总齿数一定,齿数与圈数成反比例关系.也就是前齿轮齿数是后齿轮齿数的几倍,后齿轮转的圈数就是前齿轮的几倍. 回答问题,填表. 前轮齿数 48 48 36 后轮齿数 16 12 12 后轮转动圈数 48÷16=3 48÷12=4 36÷12=3 最新Word例题讲解.(1).一辆自行车前齿轮48个齿,后齿轮19个齿,车轮直径71厘米,蹬一圈,自行车能走多远?(惯性除外) 3.14×71×(48÷19) ≈564(厘米)小结:蹬一圈自行车走的距离=车轮的周长×(前齿轮齿数÷后齿轮齿数)(2). 一辆自行车前齿轮26个齿,后齿轮14个齿,车轮半径33厘米,蹬一圈,自行车能走多远?(惯性除外) 3.14×33×2×(26÷14)≈385(厘米) 三、活动2.研究变速自行车的问题.1、刚才我们研究的是普通自行车里数学。
六年级数学下册教案《 自行车里的数学》-人教版
六年级数学下册教案《自行车里的数学》-人教版一. 教材分析《自行车里的数学》是人教版六年级数学下册的一章内容,主要让学生了解和掌握自行车相关的数学知识。
本章内容主要包括自行车的结构、自行车的零件、自行车的运动等,通过这些内容让学生运用数学知识解决实际问题,培养学生的数学应用能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于解决实际问题也有了一定的能力。
但是,对于自行车的结构和运动等知识可能了解不多,因此,在教学过程中需要引导学生了解自行车的相关知识,并运用数学知识解决实际问题。
三. 教学目标1.让学生了解自行车的结构和零件,提高学生的观察和描述能力。
2.让学生掌握自行车运动的相关数学知识,提高学生的数学应用能力。
3.培养学生热爱生活,关注身边的数学,培养学生的综合素质。
四. 教学重难点1.自行车结构和相关零件的名称和功能。
2.自行车运动中的数学知识,如速度、时间、路程等。
五. 教学方法1.观察法:让学生观察自行车,了解自行车的结构和零件。
2.讲解法:讲解自行车运动中的数学知识。
3.实践法:让学生动手操作,解决实际问题。
六. 教学准备1.准备一些自行车的图片和视频,用于引导学生观察和理解自行车知识。
2.准备一些关于自行车运动中的数学问题的案例,用于实践操作。
七. 教学过程1.导入(5分钟)利用一些自行车比赛的精彩视频,激发学生的学习兴趣,引导学生关注自行车运动中的数学知识。
2.呈现(10分钟)展示自行车的图片,让学生观察自行车的结构和零件,并讲解自行车的各个部分及其功能。
3.操练(15分钟)让学生分组讨论,每组设计一个关于自行车运动中的数学问题的案例,如计算自行车行驶的路程、速度、时间等。
然后,各组汇报讨论结果,其他组进行评价。
4.巩固(10分钟)针对学生设计的案例,进行讲解和分析,让学生掌握自行车运动中的数学知识。
5.拓展(10分钟)让学生思考:自行车运动中的数学知识还可以应用到哪些方面?引导学生发现数学在生活中的应用。
六年级数学下册《自行车里的数学》教案、教学设计
设想:布置与自行车相关的数学问题作为课后作业,激发学生的探究兴趣,培养他们自主学习的能力。
8.教学评价,关注个体
设想:采用多元化的教学评价方式,关注每个学生的学习过程和成长,鼓励他们不断进步。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,教师通过以下方式激发学生的学习兴趣和探究欲望:
4.生活联系,解决问题
设想:联系生活实际,举例说明自行车中的数学问题,培养学生运用数学知识解决实际问题的能力。
5.情感教育,培养价值观
设想:通过讲解自行车的环保优势,引导学生树立绿色出行的观念,提高他们的环保意识。
6.总结反馈,巩固提高
设想:对本节课所学知识进行总结,了解学生的学习情况,针对性地进行辅导,巩固提高。
5.强化学生的团队合作意识,鼓励他们在小组讨论中互相学习、共同进步。通过以上学情分析,教师可更好地把握教学方向,提高教学效果。
三、教学重难点和教学设想
(一)教学重难点
1.知识与技能方面:自行车轮子周长、直径、半径的计算;速度、时间、路程三者之间的换算;自行车齿轮原理的理解。
重难点:如何让学生将所学的数学知识灵活运用到自行车相关问题的解设计
一、教学目标
(一)知识与技能
1.理解自行车轮子的周长、直径、半径等基本概念,并能运用公式进行计算。
2.掌握速度、时间、路程三者之间的关系,能够运用公式进行换算和解决问题。
3.了解自行车齿轮的原理,理解齿轮比例对速度和力的影响。
4.能够运用所学的数学知识,解决与自行车相关的实际问题,如计算自行车行驶的距离、速度等。
1.注重培养学生的实际问题解决能力,引导学生运用已掌握的数学知识分析自行车中的问题。
人教版数学六年级下册《自行车里的数学》教学设计2
人教版数学六年级下册《自行车里的数学》教学设计2一. 教材分析人教版数学六年级下册《自行车里的数学》教学设计2,主要围绕自行车的相关知识和数学问题进行展开。
本节课的内容包括自行车各部分名称、自行车尺寸的计算、速度与时间的计算等。
通过分析教材,我们可以发现,本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣,培养学生的数学应用能力。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于生活中的数学问题,他们能够主动思考并尝试解决。
然而,对于自行车的相关知识和数学问题的结合,部分学生可能还存在一定的困难。
因此,在教学过程中,我们需要关注学生的个体差异,引导他们积极参与,提高他们的数学应用能力。
三. 教学目标1.知识与技能:让学生了解自行车的各部分名称,掌握自行车尺寸的计算方法,学会速度与时间的换算。
2.过程与方法:通过观察、操作、交流等活动,培养学生的问题解决能力和空间想象能力。
3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的紧密联系,提高学生的数学应用意识。
四. 教学重难点1.重点:自行车的各部分名称,自行车尺寸的计算方法,速度与时间的换算。
2.难点:自行车尺寸的计算方法和速度与时间的换算。
五. 教学方法1.情境教学法:通过展示自行车图片,引导学生观察和思考自行车中的数学问题。
2.活动教学法:学生进行小组讨论,分享自行车相关知识和数学问题的解决方法。
3.引导发现法:教师引导学生发现自行车中的数学问题,并独立解决。
六. 教学准备1.准备自行车图片和相关资料,以便在课堂上进行展示和讲解。
2.准备黑板和粉笔,以便进行板书。
3.准备计时器,以便在课堂上进行时间计算练习。
七. 教学过程1.导入(5分钟)教师展示自行车图片,引导学生观察自行车中的数学问题。
同时,让学生分享自己对自行车的了解,激发学生的学习兴趣。
2.呈现(10分钟)教师讲解自行车的各部分名称,如车架、轮胎、链条等,并解释自行车尺寸的计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《自行车里的数学》教学设计
教学内容:人教版义务教育课程标准试验教科书第67页“自行车里的数学”
一、教学目标
1. 知识与技能目标:巩固比例知识,理解并掌握自行车“蹬一圈走多远”的计算方法,探索变速自行车的速度与其内在结构的关系。
2. 过程与方法目标:经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。
3. 情感、态度与价值观目标:加深学生对所学知识及其相互关系的理解。
培养学生学以致用,做事认真,用数学眼光透视周围事物,增强数学意识。
二、教学重点、难点
教学重点:引导学生理解变速自行车能变速的原理。
教学难点:在实际应用中应根据生活实际解决问题。
三、设计理念:学习知识应是一种主动构建的过程,本节课拟通过解决生活中常见的与自行车有关的问题,使学生进一步了解数学与生活的广泛联系。
经历“提出问题——分析问题——建立数学模型——求解——解释与应用”的解决问题的基本过程,使学生获得解决实际问题的思想方法,加深对所学知识的理解。
四、教学方法:引导探究法
五、教学过程:
(一)、谈话导入
议一议:日常生活中的出行方式。
(设计理念:教学时,密切联系学生的生活实际,提起兴趣增加学生的课堂参与度。
)
找一找:观察自行车寻找隐藏的数学问题。
(从自行车中找出学过的数学知识如:三角形、圆的知识等)
揭示课题:其实自行车里还蕴含着更为丰富的数学知识,今天我们就一起探究自行车里的数学。
(二)、研究普通自行车的速度与内在结构的关系
1、问题1:大家知道自己的自行车蹬一圈能走多远吗?怎样解决这个问题呢?
问题2:直接测量结果差距很大,说明测量这种方法不太准确,误差很大。
有没有准确一些的方法呢?
问题3:蹬一圈是谁转动了一圈?车轮转动的圈数实际是谁的圈数?
(设计理念:开篇设疑,以疑激趣,学生学习欲望高涨,有利于提高注意力。
)2、学生分组讨论后汇报交流。
(1)蹬一圈是指脚踏处的齿轮转一圈
(2)车轮转动的圈数实际是后齿轮转动的圈数
3、问题4:前齿轮转一圈,后齿轮转几圈?
大家注意观察,这两个齿轮通过链条连接在一起。
前齿轮转动一个齿,链条怎么动?后齿轮通过链条连接在一起,也相当于两个咬合的齿轮。
所以,前齿轮的齿数乘圈数等于后齿轮的齿数乘圈数。
所以“前齿轮的齿数×它的圈数=后齿轮的齿数×它的圈数”。
(设计理念:引导学生透过表面现象发现其作为数学问题的本质,进而展开有效的探究。
)
4、问题5:前齿轮转一圈时,后齿轮转的圈数怎样用算式表示?
后轮的圈数=前齿轮的齿数∶后齿轮的齿数
归纳解题思路:自行车蹬一圈走的距离=(前齿轮的齿数∶后齿轮的齿数)×后车轮的周长
(设计理念:通过此轮探究活动,学生的观察能力、逻辑思维能力、归纳概括和语言表达能力都有所提高。
)
(三)、巩固练习
1、蹬一圈能走多远?前齿轮齿数:48,后齿轮齿数:20,车轮直径:70厘米
2、小英家离学校680米,她骑车上学大约要蹬多少圈?
(设计理念:练习设计有层次,在巩固基础知识时适度提高,满足绝大多数学生的学习需要。
)
(四)、研究变速自行车的问题
1、出示变速自行车的主要结构图:有2个前齿轮,6个后齿轮。
分组探究:(1)能变化出多少种速度?
(2)蹬同样的圈数,哪种组合使自行车走得最远?
教师巡视并指导有困难的小组。
2、汇报第一个问题:12种方案。
3、汇报第二个问题:当“前齿轮的齿数∶后齿轮的齿数”比值最大时,走得最远。
(设计理念:通过此轮探究活动,加深学生对自行车速度与其内在结构的关系,突破本课的难点。
)
(五)、思维拓展
一位自行车运动员在比赛时要经过各种路段,你觉得上坡时应怎样搭配前后齿轮?(课件展示)
(设计理念:这是生活中常见问题,通过解决这类问题,可培养学生综合运用所学知识,解决实际问题的能力。
在教学过程中,教师充分利用学生身边的生活现象引入数学知训,会使学生对数学有一种亲近感,感到数学与生活同在,并不神秘。
而且,也会激起学生探求新知的强烈愿望。
同时使学生获得解决实际问题的思想方法,加深对所学知识的理解,突破本课难点。
)
(六)、课堂小结:
通过这节课的学习你有什么收获?
(七)、课后作业:导学案中的课堂达标练习。
六、教学反思
在本节课的设计中,我重视学生已有的生活经验,通过学生自主探究、小组合作学习,让学生主动参与到“提出问题—分析问题—建立数学模型—求解—解释与应用”的过程中,从而感受数学知识的实用价值。
具体体现在:知识容量大,教学过程清晰。
先以回忆与自行车有关的知识为切入点,从学生已有的知识储备和生活经验出发,为学习自行车里的数学做好铺垫。
然后通过质疑引入例题组织教学,让学生在说一说、试一试的活动中分两个层次由浅及深地全程参与到“蹬一圈能走多远”、“前齿轮转一圈后齿轮转几圈”的问题讨论过程中。
让学生在教师的引导下,通过仔细的观察、讨论交流、归纳总结,建立数学模型并收集数据计算出结果。
最后通过一组同步练习巩固新知,通过一组开放题的练习拓展学生思维,进一步提高学生能力。
不足:本课内容较为抽象,在教学时缺少实际操作的实验环节不利于学生的理解。