第六章 非晶态与准晶材料
第六章 非晶态与半晶态材料
高分子链的运动是以链段为单元的,是蠕动。高分 子链在分子内旋转作用下可采取各种可能的形态,如 取不同的构象,如伸直链、无规线团、折叠链、螺旋 链等。
高分子 链构象
构象是由分子内热运动引起的物理现象,是不断改变的, 具有统计性质。因此讲高分子链取某种构象是指的是它取这 种构象的几率最大。
(3)氢键
如果高分子链的分子内或分子间可以形成氢键,
氢键的影响比极性更显著,可大大增加分子链的刚
性。
(4)链的长短 如果分子链较短,内旋转产生的构象数小,刚 性大。如果分子链较长,主链所含的单键数目多, 因内旋转而产生的构象数目多,柔顺性好。 链长超过一定值后,分子链的构象服从统计规 律,链长对柔顺性的影响不大。
2.聚合物的结构
I. 高分子的链结构 高分子的二级结构: (1)高分子的大小(即分子量) (2)高分子链的形态(构象)
高分子链中的单键可内旋转,每个键的空间
i+1 i
位置受其键角的限制,但是离第一个键越远,
其空间位置的任意性越大,两者空间位置的相 互关系越小,可以想象从第i+1个键起,其空
间位置的取向与第一个键完全无关,因此高分
特点:聚合物中晶区与非晶区同时存 在,同一条高分子链可以是一部分结 晶,一部分不结晶;并且同一高分子 链可以穿透不同的晶区和非晶区。
折叠链模型
3.影响结晶度的因素
热固性聚合物不会结晶。
热塑聚合物部分结晶的能力取决于分子是否容 易移动并有效地堆垛在一起形成长程有序的难易。
影响聚合物链堆垛效率的因素: 侧基的尺寸 链分支的程度 立构规整度 重复单元的复杂性
聚合物串晶是一种类似于串珠式的多晶体。
第6章 非晶合金
组元间电负性及原子尺寸相差越大 (10%~20%),越容易形成非晶态。 由一种过渡金属或贵金属和类金属元素(B, C,N,P 非晶材料的制备
如前所述,非晶态固体与晶态固体相比,从微 观结构讲有序性低;从热力学讲,自由能要高,因而 是一种亚稳态。基于这样的特点,制备非晶态固体必 须解决下述两个问题: (1)必须形成原子或分子混乱排列的状态; (2)必须将这种热力学上的亚稳态在一定的温度 范围内保存下来,使之不向晶态转变。 基于上述特点,最常见的非晶态制备方法有液 相急冷和从稀释态凝聚等,包括蒸发、离子溅射、辉 光放电和电解沉积等,近年来还发展了离子轰击、强 激光辐照和高温压缩等新技术。 下面我们主要从原理方面介绍几种方法。
只有三T曲线前端即鼻尖对
T
结晶相
应析出10-6体积分数的晶体的 时间是最少的。为避免析出10
-6分数的晶体所需的临界冷却
t
速率可由下式近似求出
临界冷却速度(dT/dt)c≈△Tn/τn,△Tn=TMTn,Tn和τn分别是三T图曲线头部(Nose of Curve)之点的温度和时间。
非晶材料是亚稳材料中的一个重要分支。 近年来远离平衡态的亚稳材料已成为最活跃 的领域之一. 一是不少新的制备技术的出现,大大扩展获得 各种亚稳材料的手段; 二是世界高科技的发展,要求各种各样具有特 异性能的新材料来满足其需要; 三是理论领域的深人,使科技人员对非晶的认 识和对非平衡态的理解,指导和推动了非晶 材料的研究。
原子在非晶合金中的扩散会受到扩散基体自身 结构、化学成分、扩散原子种类等诸多因素的 影响。弛豫对非晶合金扩散的影响取决样品的 制备方法,即与它的热历史有关。一般来说, 弛豫所产生的结构变化对扩散的影响是微小的, 所以测量难度很大。对那些制备过程中已经产 生自弛豫的非晶合金来说,弛豫对其扩散没有 明显影响。
非晶合金与准晶
非晶合金 与 准晶1.非晶态合金的发现长期以来,提到合金指的就是晶态合金。
提到非晶 态,指的是玻璃态的硅酸盐。
上个世纪六十年代,非 晶态合金的出现,改变了这种情况。
60年代初Duwez等发展了溅射淬火技术,用快速冷 却的方法,使液态合金的无序结构冻结起来,形成非 晶态合金Au3Si,对传统的金属结构理论是一个不小的 冲击,由于非晶态合金具有许多优良性能:高强度、 良好的软磁性、耐腐蚀性等,很快成为重要的功能材 料,获得很快发展。
2.非晶态合金的结构特征非晶态合金与晶态合金最大的区别在于长程无 序。
晶态合金只要了解一个晶胞中原子的排布,由 于周期性,固体中所有原子的排布都知道了。
而非 晶态合金结构特点为短程有序、长程无序,即某一 个第一近邻、第二近邻原子是有固定排列的,而更 远的原子是无序的。
从X射线衍射强度图可以看出, 晶态有明确、锐利的衍射峰,而非晶态只有较圆滑 的峰,后面是一些不可分辨的曲线,即非晶态合金 不能从X射线衍射中获得太多的信息,目前用径向分 布函数来表征非晶态合金结构。
晶态材料与非晶态材料数值密度函数随距离变 化的示意图2.非晶态合金的结构特征非晶态固体与晶态固体相比,结构上的最本质的差别 是不存在长程有序性。
组成晶体的粒子在宏观尺度上 规则排列的周期性,就称为长程有序性。
在非晶态固体中,原子位置的空间分布并不是无规 则的,而是存在一种局域关联性,因此,在非晶态固 体中存在着极为明显的短程有序性。
所谓短程有序 性,就是在原子周围小区域内原子排列的规则性,一 般是用在任一特定原子的最近邻的原子数(即配位数) 来表示。
①非晶合金具有比普通金属更高的强度。
②非晶态合金因其结构呈长程无序,故在物理 性能上与晶态合金不同,显示出异常情况。
③非晶合金比普通金属具有更强的耐化学腐蚀 能力。
非晶态合金是均匀的多元固溶体,不 存在晶界、第二相、析出物等结构缺陷,有 利于抗化学腐蚀。
非晶态合金与晶态合金最大的区别在于长程无 序。
准晶非晶液晶单晶
结构特点性能应用制备法准晶概念随着材料技术的发展,出现了一类结构不符合晶体的对称条件,但呈一定的周期性有序排列新的原子聚集状态的固体,这种状态被称为准晶态,此固体称为准晶。
结构既不同于晶体,也不同于非晶态,原子分布不具有平移对称性,但仍有一定的规则,且呈长程的取向性有序分布,可认为是一种准周期性排列。
一位准晶:原子有二维是周期分布的,一维是准晶周期分布。
一维准晶模型————菲博纳奇(fibonacci)序列其序列以L→L+S S →L(L,S分别代表长短两段线段)的规律增长,若以L为起始项,则会发现学列中L可以成双或成单出现,而S只能成单出现,序列的任意项均为前两项之和,相邻的比值逐渐逼近i,当n →∞时,i=(1+√5)/2二维准晶:一种典型的准晶结构是三维空间的彭罗斯拼图(Penrose)。
二维空间的彭罗斯拼图由内角为36度、144度和72度、108度的两种菱形组成,能够无缝隙无交叠地排满二维平面。
这种拼图没有平移对称性,但是具有长程的有序结构,并且具有晶体所不允许的五次旋转对称性。
三维准晶:原子在三维上的都是准周期分布包括二十面体准晶,立方准晶。
性能准晶室温下表现为硬而脆,韧性较低,准晶材料密度低于其晶态时的密度,比热容比晶态大。
准晶大多由金属元素构成,由金属元素形成的晶体,他们的导电性是人所共知的,金属晶体这些导电性质相比,准晶体一般具有较大的电阻,当温度不太高是,准晶的电阻随温度的增加而减少,实验发现,准晶的导电性随样品质量的改善而降低。
其电阻率甚高,电阻温度系数甚小,电阻随温度的变化规律也各不相同。
应用准晶材料的性能特点是较高的硬度,低摩擦系数,不粘性,耐腐,耐热和耐磨等,但是准经材料的本质脆性大大限制了其应用,目前准经材料的应用主要作为表面改性材料或者作为增强相弥散分布与结构材料中,准经材料在表面改性材料中的应用将准晶材料以涂层,耐热,耐磨,低的摩察系数,耐腐,特殊的光学性能,从而改变材料表面的性质,优化整体材料的性能。
2-7非晶和准晶、纳米晶态固体结构
同色顶点相接
格点旳 排列无 周期性, 但到处 具有5次 对称性
准晶构造类型
a.一维准晶 在一种取向是准周期性而其他两个取向
是周期性,存在于二十面体或十面体与结晶 相之间发生相互转变旳中间状态。
b.二维准晶 由准周期有序旳原子层周期地堆垛而构成,
是将准晶态和晶态旳构造特征结合在一起。 存在8、10 和 12 次对称
1.准晶态旳构造
准晶是准周期晶体旳简称,它是一种无平 移周期性但有位置序旳晶体。
有无方法能够铺砌成具有五重对称性旳 无空隙地面?
面积之比为 1.618:1
具有5次 对称轴
1974年penrose提出利用两种夹角分别为72、 72、144、72 和 36、72、36、216度旳四边 形能够将平面铺满.相当于将一种菱形切开成上 述两个四边形。这种图形具有5次对称性。
旳固体材料。
(1)各向同性;
(2)介稳性 有析晶(晶化)旳倾向; (3)熔融态向玻璃态转化旳过程是可逆旳与 渐变旳;
(4)无固定旳熔点;
(5)熔融态向玻璃态转化时物理、化学性质 随温度变化旳连续性。
2、玻璃旳形成条件
A:玻璃形成旳动力学条件
硅酸盐、硼酸盐、磷酸盐等无机熔体或一定成 份旳合金只有冷凝速度不小于一定旳临界速度 才干转变为玻璃。
金属键物质,在熔融时失去联络较弱旳电子, 以正离子状态存在。金属键无方向性并在金属晶 格内出现最高配位数(12),原子相遇构成晶格 旳几率最大,最不易形成玻璃。
纯粹共价键化合物多为分子构造。在分子内 部,由共价键连接,分子间是无方向性旳范德华 力。一般在冷却过程中质点易进入点阵而构成份 子晶格。
所以以上三种键型都不易形成玻璃。
c.二十面体准晶
晶体 非晶体 准晶体
结晶质(crystalline):
是内部质点(原子、离子或分子)在三 维空间成周期性平移重复排列的固态物质。 即具有格子构造的固态物质。
1 显晶质:借助于肉眼或一般放大镜能分 辨出结晶颗粒者。 2 隐晶质:用一般放大镜无法分辨出结晶 颗粒者。
二、非晶质体的概念
非晶质体(non-crystal): ➢是内部质点在三维空间不作周期性重复排列的
三、准晶体的概念
准晶体(quasicrystal): 是内部质点的排布具长程有序(远程规 律),但不具有三维周期性重复的格子构造的 固体。
§ 2 空间格子
一、空间格子的导出
空间格子: 表示晶体内部结构中质点在周期
性重复规律的三维无限的几何图形。
对实际晶体结构作抽象:
1 在晶体结构中任选一几何点。
2
在结构中找出与此点相当的几何点,这样一
系列的点称相当点。
相当点(等同点):在晶体结构中的位置及环 境均完全相同的点。
3 将相当点从晶体结构中抽象出来,构成一个 空间点阵。
4 以三组不共面的直线将阵点连接起来,即形 成了三维格子状的空间格子。
二、空间格子的要素
1.结点
➢ 空间格子中的点,代表晶体结构中的相当点, 为几何点。
§ 3 晶体的基本性质
1. 自限性 晶体在自由空间中生长时,能自发地形成封
闭的凸几何多面体外形。 晶面:晶体表面上自发长成的平面。 晶棱:晶面的交棱。
2. 均一性 同一晶体的任一部位的性质都是相同的。
注意:
1)晶体的均一性是由其格子构造决 定的,称为结晶均一性。
2)非晶质体也具均一性,但它是宏 观统计、平均近似的,称为统计均一性。
不同的方向或位置上有规律地重复出 现。
第六章 准晶材料的制备技术 材料制备技术
• (2)热传导特性
• ①与普通金属材料相比,准晶的热导率都很低,在室温下准晶的热导 率要比普通的铝合金低两个数量级,可以与常见的隔热材料ZrO2相媲 美。
• ②准晶材料的热阻值随着温度升高而下降,即具有负的温度系数,热 扩散系数和比热容均随着温度升高而增大。 • ③准晶样品质量越好,结构越完善,其热导性能就越差。 • ④结构复杂的准晶类似相得导热性能接近于准晶。 • (3)光传导特性 • ①与普通的金属材料相比,结构完好的准晶样品的光传导特性,显得 非常特殊,在较低的频率范围内,准晶的光导率很小,且在104cm-1时 有很宽的峰值。 • ②在二维的准晶材料中,光导率对其结构的各向异性很敏感。
• 6.1.3.2表面特性
• 表面性能主要由其表层的化学成分和原子排列方式所决定,由于准晶 表面结构比较独特,由此引发的表面行为如氧化行为、润湿行为和摩 擦行为等也与众不同。 • (1)氧化行为特性 • 迄今为止发现的准晶材料,绝大多数为铝系准晶。而Al是极易氧化的 活泼元素,因而研究铝基准晶氧化表面的结构和成分的变化规律意义 重大。实验研究发现,在相同条件下,准晶相表面的氧化现象明显低 于铝合金和相近成分的晶体相。当准晶在室温下长期暴露在干燥空气 孔,氧化层平均厚度为2~3nm。但在潮湿空气和较高温度下氧化层会 进一步加深(厚度为6~7nm),并且化学成分也因此而变化,表层铝 的摩尔分数随之增大(Al可达90%,摩尔分数)。 • (2)不粘特性 • 准晶材料的不粘性,实质上是热力学中润湿性的问题,与准晶的表面 能有关。最近的研究发现,准晶的最外层原子没有重构现象和准晶在 费米能级处的电子态密度很低(即准晶在费米能级处存在伪能隙)是 造成其表面能很低的主要原因。
• (3)摩擦特性 • 准晶材料的摩擦磨损行为的研究相对开展较早,这主要是由于镀膜和 热喷涂技术的日臻完善。在相同环境和实验条件下,块体Al-Cu-Fe准 晶和其准晶涂层的显微硬度与摩擦系数大致相近,而准晶的显微硬度 却要比铝合金高一个数量级,但摩擦系数仅为铝合金的1/3。此外, 当对准晶材料进行往复摩擦实验时,其摩擦系数还会逐渐降低,且磨 痕上的微裂纹会自动愈合,这显示了准晶具有一定的应力塑性。
单晶多晶非晶微晶无定形准晶的区别要理解这几个概念首先要理解...
原因是波矢k的分立化。这个跟普通的半导体绝缘体中的禁带,是不同的概念。
晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。
再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因为它的应力应变曲线很特别。前面说了,从液态到到固态有个成核长大的过程,我不让他成核呢,直接到固态,得到非晶,这需要很快的冷却速度。所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新的合金配方,因为不同的合金配方有不同的非晶形成能力,通常有Tg参数表征,叫玻璃化温度。非晶没有晶粒,也就没有晶界一说。也有人曾跟我说过非晶可以看成有晶界组成。那么另一方面,我让他成核,不让他长大呢,不就成了纳米晶。
现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶。单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶。单晶只有一套衍射斑点;多晶的话,取向不同会表现几套斑点,标定的时候,一套一套来,当然有可能有的斑点重合,通过多晶衍射的标定可以知道晶粒或者两相之间取向关系。如果晶粒太小,可能会出现多晶衍射环。非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别。
材料科学基础 第6章 非晶态与半晶态材料
当主链中由共轭双键组成时,由于共轭双键因 电子云重叠不能内旋转,因而柔顺性差,是刚性链。 如聚乙炔、聚苯:
CH=CH-CH=CH-CH=CH
聚乙炔
聚苯
因此,在主链中引入不能内旋转的芳环、芳杂 环等环状结构,可提高分子链的刚性。
(2)侧基:
侧基的极性越大,极性基团数目越多,相互作用
越强,单键内旋转越困难,分子链柔顺性越差。
第三节 粘性变形
在玻璃转变温度以上和在热力学熔化温度以下 的非晶态材料的结构是过冷液体,因此,这些材料 的很多性质与液体相似。这些性质不同于晶态固体 的弹性性质。例如,在Tg以上,无定形材料对所 加的力的响应是与时间相关的,而在Tg以下相应 的响应是与时间无关的。
固体和液体对切应力的响应:
固体: =G=Gy/x
C曲线是液体冷却到熔点 之下的某一温区开始和完成 结晶的时间。C曲线的鼻部表 示开始结晶的最短时间;在 鼻部的上方,温度越高,过 冷越小,因此开始结晶所需 要的时间就越长;在鼻部的 下方,温度越低,液体的粘 滞性越高,开始结晶所需要 的时间就越。
为了避免结晶而获得非晶 态,冷却到C曲线鼻部之下所 花的时间必须短于鼻部位览 所确定的时间。
《材料科学基础》
第六章 非晶态与半晶态材料
第一节 前言
非晶:原子在空间的排列无周期性和平移对称性, 短程有序而长程无序结构的固体。 种类:大多数热固性塑料、透明聚合物、橡胶、氧 化物和金属玻璃等。
理论上讲,如果熔体冷却的速度足够快以抑制 晶体的形成,任何一种材料都会形成非晶。
非晶态固体不含晶界。
第二节 玻璃转变温度
高分子链中的单键可内旋转,每个键的空间 位置受其键角的限制,但是离第一个键越远, 其空间位置的任意性越大,两者空间位置的相 互关系越小,可以想象从第i+1个键起,其空 间位置的取向与第一个键完全无关,因此高分 子链可看作是由多个包含i个键的段落自由连 接组成,这种段落成为链段。
材料科学基础:第6章 非晶态与半晶态材料
按分子间键合类型: 热塑性聚合物(TP): 分子链间有二次键 热固性聚合物(TS):在主链上一次键
“在这个TS聚合 物中由现存的3 个等同键合位 置与每一个酚 单体连接而构 成三维一次键 网络”
2.聚合物的结构
I. 高分子的链结构 高分子的二级结构: (1)高分子的大小(即分子量) (2)高分子链的形态(构象)
高分子 链构象
构象是由分子内热运动引起的物理现象,是不断改变的, 具有统计性质。因此讲高分子链取某种构象是指的是它取这 种构象的几率最大。
Ⅱ.高分子的柔顺性
高分子链能够通过内旋转作用改变其构象的性能 称为高分子链的柔顺性。 高分子链能形成的构象数越 多,柔顺性越大。
由于分子内旋转是导致分子链柔顺性的根本原因, 而高分子链的内旋转又主要受其分子结构的制约,因 而分子链的柔顺性与其分子结构密切相关。
CH2CH2 柔顺性:聚乙烯
CH2CH2CH2CHCH2 Cl
>
氯化聚乙烯
>
CH2CH Cl
聚氯乙烯
非极性侧基的体积越大,内旋转位阻越大,柔
顺性越差;
CH2CH H
柔顺性:聚乙烯
CH2 CH CH3
> 聚丙烯
CH2CH Ph
>
聚苯乙烯
对称性侧基,可使分子链间的距离增大,相互作
用减弱,柔顺性大。侧基对称性越高,分子链柔顺
性越好。如:
CH2 CH CH3
CH3 CH2C
《材料科学基础》
第六章 非晶态与半晶态材料
第一节 前言
非晶:原子在空间的排列无周期性和平移对称性, 短程有序而长程无序结构的固体。 种类:大多数热固性塑料、透明聚合物、橡胶、氧 化物和金属玻璃等。
准晶、纳米晶、非晶和液晶结构
(2)无规则网络学说
学说要点: a:形成玻璃的物质与相应的晶体类似,形成相似的 三维空间网络。
b:这种网络是由离子多面体通过桥氧相连,向三维 空间无规律的发展而构筑起来的。
c:电荷高的网络形成离子位于多面体中心,半径大 的变性离子,在网络空隙中统计分布,对于每一个变 价离子则有一定的配位数。
离子键化合物在熔融状态以单独离子存在, 流动性很大,凝固时靠静电引力迅速组成晶格。 离子键作用范围大,又无方向性,且离子键化合 物具有较高的配位数(6、8),离子相遇组成晶 格的几率较高,很难形成玻璃。
金属键物质,在熔融时失去联系较弱的电子, 以正离子状态存在。金属键无方向性并在金属晶 格内出现最高配位数(12),原子相遇组成晶格 的几率最大,最不易形成玻璃。
折射率等
第三类性质:玻璃的导热系数和弹性系数等
Tg :玻璃形成温度,又称脆性温度。它是玻 璃出现脆性的最高温度,由于在这个温度下可 以消除玻璃制品因不均匀冷却而产生的内应力, 所以也称退火温度上限。
Tf :软化温度。它是玻璃开始出现液体状态 典型性质的温度。相当于粘度109dPa·S,也是 玻璃可拉成丝的最低温度。
二是双辊法,此法也生产带状制品。与单辊法不同的 是,液体状金属喷射到两辊间隙处,进行双面冷却和 压延。
三是水中拉丝法。金属玻璃丝有独特的用途,但难以 用上述的辊面冷却方法制作,故常用水中拉丝法制作, 即把液体金属连续注入冷却水中,直接获得金属玻璃 丝。
此外,晶体材料在高能辐照或机械驱动作用下 也会发生非晶转变。
准晶体目前的应用包括耐磨涂层、不黏涂层、 热阻涂层(引擎绝热)、高效热电转换、聚合物 母体合成、选择性太阳能吸收和储氢等,主要 有铝系合金准晶体、Ti(zr)基准晶二大体系。
无机材料科学基础 第六章 非晶态固体
第一节 熔 体
• 一、对熔体的一般认识 • 二、熔体的性质 • 三、熔体的形成
NJ University of Technology
第一节 熔 体
一、对熔体的一般认识 (一)液体 液体具有流动性和各相同性, 液体具有流动性和各相同性,与气体 相似,又具有较大凝聚力和很小的压缩性, 相似,又具有较大凝聚力和很小的压缩性, 则又与固体相似。 则又与固体相似。液体的结构在气化点和 凝固点之间变化很大,在高温( 凝固点之间变化很大,在高温(接近气化 时与气体相近, 点)时与气体相近,在稍高于熔点时与晶 体接近。因此, 体接近。因此,液体内部的质点排列并不 像气体那样杂乱无章, 像气体那样杂乱无章,相反具有某种程度 的规律性。即近程有序远程无序。 的规律性。即近程有序远程无序。
NJ University of Technology
Si- 间电负性差值为1.7,此时Si- 键约有52% Si-O间电负性差值为1.7,此时Si-O键约有52% 1.7 Si 52 共价键和48 的离子键。 48% 共价键和48%的离子键。 Si-O键的键合方式决定它有以下特点: Si- 键的键合方式决定它有以下特点: 高键能: Si- 键能在熔体中持久存在。 高键能:使Si-O键能在熔体中持久存在。 方向性:键有明显的取向性, 方向性:键有明显的取向性,因而可以形成一 定的结构。 定的结构。 低配位:一个原子所能形成的键的数目较少, 低配位:一个原子所能形成的键的数目较少, 所以配位数小。 所以配位数小。 键有韧性:键角可以在一定范围内绕轴转动。 键有韧性:键角可以在一定范围内绕轴转动。
NJ University of Technology
气体
晶体非晶准晶在结构上的异同
晶体非晶准晶在结构上的异同
晶体、非晶体和准晶体是固体材料中常见的三种结构形态。
它们在
结构上有着明显的异同,下面将分别进行介绍。
一、晶体
晶体是由原子、离子或分子按照一定的规律排列而成的固体材料。
晶
体的结构具有高度的有序性和周期性,其内部原子排列呈现出一定的
对称性。
晶体的结构可以用晶格和基元来描述,晶格是指晶体中原子、离子或分子排列的空间周期性结构,基元是指晶格中最小的重复单元。
晶体的结构可以通过X射线衍射等方法进行表征。
二、非晶体
非晶体是由原子、离子或分子无规则排列而成的固体材料。
非晶体的
结构缺乏周期性,其内部原子排列呈现出无序性。
非晶体的结构可以
用连续分布函数来描述,连续分布函数是指非晶体中原子、离子或分
子的位置分布函数。
非晶体的结构可以通过透射电镜等方法进行表征。
三、准晶体
准晶体是介于晶体和非晶体之间的一种结构形态。
准晶体的结构具有
一定的周期性,但是其周期性不如晶体那么完美,同时也存在着一定
的无序性。
准晶体的结构可以用准晶体晶格和准晶体基元来描述,准
晶体晶格是指准晶体中原子、离子或分子排列的空间周期性结构,准
晶体基元是指准晶体中最小的重复单元。
准晶体的结构可以通过透射
电镜等方法进行表征。
总的来说,晶体、非晶体和准晶体在结构上有着明显的异同。
晶体具
有高度的有序性和周期性,非晶体缺乏周期性,准晶体介于两者之间。
三者的结构可以用不同的方法进行表征,这些方法也反映了它们的结
构特点。
第六章 非晶态与准晶材料
平移对称性:当晶体从一个点阵平移到另一个点阵,整个晶体结构完
全自相重合,就像晶体未发生移动一样。
旋转对称性:当晶体质点绕旋转轴转一定角度,再平行与此轴平移一
定距离后,整个晶体中的质点均与完全相同的质点重合,晶体的构形又完全重
合。
School of Materials Science & Engineering Dalian University of Technology
一般的非晶态形成存在气态、液态和固态三者之间的相互转变。图 中粗黑箭头表示物态之间的平衡转变。空心箭头表示非晶态转变。
1. 非晶态固体的形成规律
(1)热力学规律 对于非晶态,从固态到液态, 一般没有明显的熔化温度,存
在一个玻璃化温度Tg。
玻璃化温度:Tg,粘度相当于1013泊时的温度。 热力学熔点:Tm,晶态材料固态到液态的转变温度。 过冷度:ΔT, ΔT =Tm-Tg
二.非晶态材料的结构模型
由于目前还不能唯一并精确的确定非晶固体中原子的三 维排列情况,故只能采用模型方法勾画可能的原子排布,然 后将由模型得出的性质与实验比较,再据此修改模型,最终 确定非晶固体的组成,并由建立的模型来讨论非晶态固体的 微观结构。我们在此只介绍两种简单流行的结构模型。
1 微晶模型
4 非晶态材料在微观结构特征:
(1)只存在小区间范围内的短程有序,在近程或次近邻的原子
间的键合(如配位数、原子间距、键角、键长等)具有某种 规律性,但没有长程序结构。
(2) 非晶态材料的电子衍射是漫散的中心衍射斑点。X射线衍射
图上非晶没有特征峰。但由于短程有序,仍存在择优性衍射, 出现非晶态馒头峰。
凝固时,快速越过晶体形成温度Tm而进入玻璃转化温度Tg,
2.2 晶态与非晶态材料
化学强化处理
◦ 在玻璃表面进行离子交换使玻璃强化的方法统称 为化学钢化。 ◦ 原理是把玻璃组成中的Na+置换为半径较大的K+, 由于这种置换作用,将其抵抗拉应力的压应力层 预先置入玻璃表面,实现了玻璃强化的目的。 ◦ 将普通玻璃置于欲置换离子的熔岩中,在高温下 进行离子交换处理是一种使玻璃化学钢化的方法。
太阳能电池
玛瑙
硅酸盐 种类很多,结构也很复杂,通常可用二氧 化硅和金属氧化物的形式来表示其组成。 硅酸钠:Na2SiO3可以写成Na2O · SiO2 高岭石:Al2(Si2O5)(OH)4 Al2O3 · 2SiO2 · 2H2O 钙长石:CaAl2SiO6 CaO · Al2O3 · SiO2 正长石: K2Al2Si6O16 K2O ·Al2O3 ·6SiO2
CCC强制认证(安全玻璃、陶瓷砖放射性) 产品自愿性认证(水泥、玻璃和陶瓷等50类建材产品) 体系认证(质量管理体系、环境管理体系、职业健康安全管理体系) 汽车玻璃零配安装服务认证
中国安全玻璃认证中心简介
中国安全玻璃认证中心: ※1989年11月就开始开展汽车安全玻璃安全认证工作。 ※ 2002年4月经国家认证认可监督管理委员会授权对汽 车、建筑和机车用安全玻璃实施CCC强制认证。 ※认证中心在汽车安全玻璃方面,拥有国内知名的技术 专家和众多技术人员,熟悉了解产品的生产工艺和检测 技术。 享受政府特贴专家2人、 博士7人、工程硕士33人、 管理学硕士5人、教授级 高工13人、高级工程师 及工程师84人等专业技 术人才,计100余人
玻璃的命名
•
由两种以上玻璃形成体氧化物组成的玻璃, 以其含量多少来命名。 ◦ 举例:在SiO2 , B2O3 , Al2O3 作玻璃形成体 构成的玻璃中,如果氧化物含量SiO2 > B2O3 > Al2O3 叫做铝硼硅酸盐。
晶态和非晶态
第9页/共49页
2、层间嵌入某些离子、原子或分子
某些层状晶体层间是以Van De Wauls力结合, 容易在层间插入原子或分子材料,从而形成非整 比化合物。
3、晶体吸收某些小原子
D=Kλ/(B-B0)cosθ 式中:D是晶粒粒径; λ是X射线波长;K为一固 定常数数值约为0.9;B0为晶粒较大时衍射线半高 宽,B为待测样品衍射线半高宽(2 θ标度的峰), B-B0要以弧度表示。
第27页/共49页
2、玻璃
玻璃是高温下熔融,熔融体在冷却过程中黏度 逐渐增大、不析晶、室温下保持熔体结构的非晶固 体。
第24页/共49页
晶体与非晶态固体的根本区别,在于其内部 结构的周期性,以及因此而生的对称性、X射线 的衍射效应。
晶体结构的周期性表现为长程有序。非晶态 固体则是一种长程无序结构,这种无序可表现为 两种形式:一为组成粒子在空间位置上的排列无 序;二是多元体系中不同组分无规则地随机分布, 也称成分无序。
在理想的环境中,晶体可以生长成凸多面 体,此凸多面体的晶面数(F)、晶棱数(E)和顶点 数(V)之间的关系符合下式:
F+V=E+2 如:四面体:F=4,V=4,E=6
八面体:F=8,V=6,E=12 三角双锥:?
第3页/共49页
晶体的外形既受内部结构(点阵排列方式) 制约,又在一定程度上受外因(温度、压力、 浓度、杂质)的影响。但同一种晶体的每两个 相应界面的夹角是不受外界条件的影响,保持 恒定不变。这个规律称为“晶面角守恒定律”
第11页/Байду номын сангаас49页
1、液晶和塑晶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特点。非晶态材料不同于液体,类晶区不能移动,没有流动性。这样
的材料成为非晶态材料
特点:长程无序,短程有序。
非晶态固体中的无序并不是绝对的“混乱”,而是破坏了有序系 统的某些对称性,形成了一种有缺陷、不完整的短程有序。 晶体 非晶
3 比较气态、液态、非晶态、晶态中原子分布
设非晶态固体由一种原子构成 ,以某原子中心作为原点, 在r→ r+dr球壳内的平均原子数为:
平移对称性:当晶体从一个点阵平移到另一个点阵,整个晶体结构完
全自相重合,就像晶体未发生移动一样。
旋转对称性:当晶体质点绕旋转轴转一定角度,再平行与此轴平移一
定距离后,整个晶体中的质点均与完全相同的质点重合,晶体的构形Materials Science & Engineering Dalian University of Technology
表 非晶态合金和晶态不锈钢在10%FeCl3·10H2O溶液中的腐蚀速率
非晶态材料是一种大有前途的新材料,
但也有不如人意之处。其缺点主要表现在
两方面,一是由于采用急冷法制备材料,
使其厚度受到限制;二是热力学上不稳定,
受热有晶化倾向。
6.2
准
晶
一、晶体的对称性
在自然界的晶体中,晶体最显著特点就是对称,对称就是几何形体中相同部分 有规律地重复出现。不同的晶体也许会出现不同的排列方式,但都是简单的平 移重复而已。
非晶体的电子衍射花样
单晶是一套排列整齐的衍射斑点,斑点分布在平行四边形 网络格点上。多晶是取向不同的几套衍射斑点(晶粒变小, 成环),非晶没有环。
(a)单晶体
(b)多晶体
气体:近程无序,远程无序,在进行X射线分析时,只能得到 一条近乎水平的衍射背底谱线。
I
非晶体材料:近程有序,远程无序,由于近程原子的有序排列, 在配位原子密度较高原子间距对应的 2θ 附近产生非晶散射峰。 近程原子有序度越高,则配位原子密度较高,原子间距对应的 非晶散射峰越强,且散射峰越窄。
早期晶体学家们都根深蒂固地认为,五重或七重以上的对称不符合自然规律。 三维空间,不能形成晶体材料。
二、准晶的发现
1984年,美国国家标准局Shechtman在Al-Mn合金中观测到五次对称电子衍射图的
相。
Al-Mn合金
电子衍射图
衍射图表明: 1 这些合金相的衍射斑点在某个方向上按一定规则排 列,是高度有序。 2 衍射斑点的间距不等,说明原子排列是非周期的。 3 不同于传统晶体的衍射特点。
气体、液体——无序结构 气体特点:长程无序,短程无序。
液体特点:长程无序,短程有序。
2 非晶态材料的基本定义
非晶:介于晶体和液体之间有序度的一种聚集态。它不像晶态物质在
三维空间具有周期性和平移对称性,非晶是长程无序的。但由于原子 间的相互关联作用,使每个原子在几纳米-几十纳米内,与邻近原子在 化学键长、键角与晶体相似,称为类晶区,因此非晶具有短程有序的
晶体中原子的三维周期排列方式可以概括为14种空间 点阵。德国科学家在1850年总结出晶体的平移周期性 ,受这种平移对称约束、晶体的旋转对称只能有1、2
、3、4、6等5种旋转轴,只有这样的晶体结构才能形
成晶体材料。晶体中原子排列是不允许出现5次或6次
以上的旋转对称性的,因为这样的晶体结构不能铺满
三.非晶态材料的制备
制备非晶态的过程就是防止结晶的过程。非晶态固体与晶 态固体相比 微观结构——有序性低;
热力学——非晶态的混乱度大于晶态,自由能要高,
因而是一种亚稳态。
制备非晶态固体必须解决下述两个问题:
(1)必须形成原子或分子混乱排列的状态;
(2)必须将这种热力学上的亚稳态在一定的温度范围
内保存下来,使之不向晶态转变。
4 非晶态材料在微观结构特征:
(1)只存在小区间范围内的短程有序,在近程或次近邻的原子
间的键合(如配位数、原子间距、键角、键长等)具有某种 规律性,但没有长程序结构。
(2) 非晶态材料的电子衍射是漫散的中心衍射斑点。X射线衍射
图上非晶没有特征峰。但由于短程有序,仍存在择优性衍射, 出现非晶态馒头峰。
二.非晶态材料的结构模型
由于目前还不能唯一并精确的确定非晶固体中原子的三 维排列情况,故只能采用模型方法勾画可能的原子排布,然 后将由模型得出的性质与实验比较,再据此修改模型,最终 确定非晶固体的组成,并由建立的模型来讨论非晶态固体的 微观结构。我们在此只介绍两种简单流行的结构模型。
1 微晶模型
理想晶体:短程有序,长程有序,衍射谱线是布拉格方向对 应的 2θ 处产生没有宽度的衍射线条。
I
2θ
实际晶体:由于存在晶体缺陷等破坏晶体完整性的因素,导 致衍射谱线的峰值强度降低,峰形变宽。
(3)非晶材料在电子显微镜下看不到晶粒间界、晶格缺陷等形 成的衍衬反差。 (4)任何体系的非晶态固体与其对应的晶态材料相比,都是 亚稳态。当温度升高时,在某个很窄的温度区间,原子重排 会发生明显的结构相变 。
晶体
短程有序,长程有序
液体
非晶
可以看出,非晶态的分布函数与完全无序分布的气态和长 程有序的晶态的分布函数差别很大,与液态相似。这说明非 晶态在结构上与液态相似,原子排列是短程有序的。非晶态 的第一峰更尖,说明非晶态的短程有序比液态更突出。从总 体结构上非晶态是长程无序的,在宏观上可将其看作均匀、 各向同性的。
2018/11/20
四.非晶态材料制备
要获得非晶态,最根本的条件是要有足够快的冷却速度。为 了达到一定的冷却速度,已经发展了许多技术。制备非晶态 材料的方法可归纳为三大类: 真空蒸发
从气态制备非晶
磁控溅射
气相沉积
物 质 三 态
从液态制备非晶 从固态制备非晶
液体急冷法 粉末冶金法
2 从气态中制备非晶
RDF (r ) dr 4 r dr (r )
2
RDF(r):原子径向分布函数 p(r):离原点r处的原子的平均数值密度
原子径向分布函数:
RDF (r ) 4 r 2 (r )
p0:单位体积中原子的平均个数,即平均数值密度
RDF (r) 4 r 0
2
RDF (r )
单位时间t内结晶的体积率表示为:
VL/V= πBI3t4/3
B——成核速率 I——晶体生长速率 以 VL/V=10-6为判据, 若达到此值,析出的晶体就可以检验出; 若小于此值,结晶可以忽略,形成非晶态。
VL/V= πBI3t4/3
根据公式可以求出,系统达到一定的结晶比例( 10-6 ) 时, 所对应的冷却时间及冷却温度。 绘 制 时 间 ( Time ) - 温 度 ( Temperature ) - 转 变
(Transation)的“TTT曲线”。
临界冷却速率:
Tm TN Rc tn
只有大于临界冷却速率才会形成非晶。
几种金属及合金的熔点Tm、玻化温度Tg、临界冷却速度Rc
非晶态合金
Tm(K) Tg(K)
1725 1628 425 600
Rc (K/s)
3×1010 2.6×107
Ni Fe91B9
球近可能紧密堆积,排列无规则; 结构中不包含可以容纳一个球的间隙;
球与球之间关系性很弱。
硬球随即密堆时,存在五种多面体(四面体、八面体、三棱柱、阿基米 德反棱柱、四方十二面体),多面体的的每个面均为近似等边三角形。
这五种多面体堆积时, 按一定的几率出现,从而构成短程有序,长程无
序的非晶态固体。
第六章 非晶态与准晶材料
本章内容
6.1 非晶态材料 6.2 准晶材料
6.1 非晶态材料
一.非晶态材料的结构
1 有序态和无序态
根据组成物质的原子模型,自然界中物质状态分为有序结构 和无序结构两大类。 晶体——有序结构,晶体的阵点构成有规则的三维周期点阵, 具有平移对称性。
特点:长程有序,短程有序。
一般的非晶态形成存在气态、液态和固态三者之间的相互转变。图 中粗黑箭头表示物态之间的平衡转变。空心箭头表示非晶态转变。
1. 非晶态固体的形成规律
(1)热力学规律 对于非晶态,从固态到液态, 一般没有明显的熔化温度,存
在一个玻璃化温度Tg。
玻璃化温度:Tg,粘度相当于1013泊时的温度。 热力学熔点:Tm,晶态材料固态到液态的转变温度。 过冷度:ΔT, ΔT =Tm-Tg
Co75Si15B10
Ge Fe79Si10B11 Ni75Si18B7 Pd82Si18 Pd77.5Cu6Si16.5
1393
1210 1419 1340 1071 1015
785
750 818 782 657 653
3.5×105
5×105 1.8×105 1.1×105 2.8×104 320
(a)四面体 (b)八面体 (c)三棱柱(3个半 八面体) (d)阿基米德 反棱柱(2个半八面体) (e)四方十二面体
类型
数目百分比 体积百分比
四面体
八面体 三棱柱(3个半八面体) 阿基米德反棱柱(2个半八面体) 四方十二面体
73%
20.3% 3.2% 0.4% 3.1%
48.4 %
26.9 % 7.8 % 2.1 % 14.8 %
非晶态的形成:热力学上, 只有当液体(熔体)冷却温
度在玻璃化温度 Tg 以下时, 非晶态才趋于稳定。
晶态物质从液态到固态的过程: 在液态环境下,随着温度的降低,首先形成临界晶核, 在扩散的作用下,晶核生长形成晶态材料。
若要从液态的冷却中形成非晶态材料:控制形成晶核。 在液体凝固时要抑制晶体相的形核,要求熔体从熔点Tm以上
凝固时,快速越过晶体形成温度Tm而进入玻璃转化温度Tg,
这样液体的无序状态就被保存下来,成为非晶的固态。