七年级下册数学第四单元的知识点
人教版初一七年级数学第四单元知识点及单元测试
第四章图形的认识初步知识框架本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角. 本章书涉及的数学思想:1.分类讨论思想。
在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。
2.方程思想。
在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。
在研究角的概念时,要充分体会对射线旋转的认识。
在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。
在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。
4.1.1立体图形与平面图形第1课时几何图形能力提升1.下列所列举的物体,与圆锥的形状类似的是()A.足球B.字典C.易拉罐D.标枪的尖头2.下列图形属于柱体的是()3.在如图所示的几何体中,由四个面围成的几何体是()4.下列第一行所示的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如由a,b组成的图形记作a☉b,那么由此可知,下面第二行的图中可以记作a☉d的是()5.下图各几何体中,是三棱柱的是.(只填序号)6.圆柱由个面围成;圆锥由个面围成.它们的底面是,侧面是.7.如图,用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.8.有一个几何体,形状如图所示,这个几何体的面数为.创新应用★9.请利用图中的几何体拼出汽车、凉亭、蘑菇等图案,并和同伴一起交流,尽量拼出最多的图案.第2课时几何图形的三种形状图与展开图能力提升1.下列四个图中,是三棱锥的表面展开图的是()2.下列图形经过折叠,能围成圆锥的是()3.将右面正方体的平面展开图重新折成正方体后,“共”字对面的字是()A.阖B.家C.幸D.福4.骰子是一种特殊的数字立方体(如图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()5.下图是从不同方向看某一几何体得到的平面图形,则这个几何体是.6.根据下列多面体的平面展开图,填写多面体的名称:(1),(2),(3).7.将下图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去.(填序号)8.如图,画出所给几何体的从正面看、左面看和上面看得到的图形.创新应用★9.如图是火箭腾空的立体图形(火箭圆柱底面的周长不等于圆柱的高),请你画出火箭的平面展开图.★10.如图,水平放置的长方体的底面是边长为2和4的长方形,从左边看该长方体,得到的图形的面积是6,试求该长方体的体积.4.1.2点、线、面、体能力提升1.如左下图,绕虚线旋转得到的实物图是()2.下列几何体中,有6个面的几何图形有()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱.A.1个B.2个C.3个D.4个3.如果一个直棱柱有12个顶点,那么它的面的个数是()A.10B.9C.8D.74.下列说法正确的有()①四面体的各个面都是三角形;②圆柱、圆锥的底面都是圆;③圆柱是由两个面围成的;④长方体的面不可能是正方形.A.1个B.2个C.3个D.4个5.观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()6.薄薄的硬币在桌面上转动时,看上去像球,这说明了.7.航天飞机拖着“长长的火焰”,我们用数学知识可解释为点动成线.用数学知识解释下列现象:(1)一只小蚂蚁爬行留下的路线可解释为.(2)电动车车辐条运动形成的图形可解释为.8.如图,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,所得几何体从正面看的图形的面积是 cm2.9.观察如图所示的图形,写出下列问题的结果:(1)这个图形的名称是;(2)这个几何体有个面,有个底面,有个侧面,底面是形,侧面是形.(3)侧面的个数与底面多边形的边数有什么关系?10.用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形都存在着某种联系,用线将它们连起来.11.观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a,b,c之间有什么关系吗?请写出关系式.★12.如图所示,长方形绕虚线旋转一周后,形成的图形是什么?旋转半周呢?创新应用★13.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.4.2直线、射线、线段第1课时直线、射线、线段能力提升1.下列说法中错误的是()A.过一点可以作无数条直线B.过已知三点可以画一条直线C.一条直线通过无数个点D.两点确定一条直线2.射线OA,射线OB表示同一条射线,下面正确的是()3.图中共有条线段.4.看图填空:(1)点C在直线AB ;(2)点O在直线BD ,点O是直线与直线的交点;(3)过点A的直线共有条,它们是.5.如图所示,在线段AB上任取D,E,C三个点,则这个图中共有条线段.6.木工检验木条的边线是否是直的,常常用眼睛从木条的一端向另一端望去,如果看到两个端点及这条边线中的各点都重合于一点,那么这条边线就是直的,你可以同伙伴试一试这种方法,并说一说其中的道理.7.按下列语句画出图形.(1)直线l经过A,B,C三点,点C在点A与点B之间;(2)经过点O的三条直线a,b,c;(3)两条直线AB与CD相交于点P;(4)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q.★8.阅读下表:3解答下列问题:(1)根据表中规律猜测线段总数N与线段上的点数n(包括线段两个端点)有什么关系?(2)根据上述关系解决如下实际问题:有一辆客车往返于A,B两地,中途停靠三个站点,如果任意两站间的票价都不同,问:①有多少种不同的票价?②要准备多少种车票?第2课时线段的性质能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是()A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为()A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是()BCA.CD=AC-BDB.CD=12AB-BD D.CD=AD-BCC.CD=125.下面给出的4条线段中,最长的是()A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC= .8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?4.3角4.3.1角能力提升1.下列说法中正确的是()A.两条射线组成的图形叫做角B.角是一条线段绕它的一个端点旋转而成的图形C.有公共端点的两条线段组成的图形叫做角D.角是一条射线绕着它的端点旋转而成的图形2.如图,O是直线AB上一点,图中小于180°的角的个数为()A.7B.9C.8D.103.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°(第2题图)(第3题图)4.若∠1=75°24',∠2=75.3°,∠3=75.12°,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对5.由2点15分到2点30分,钟表的分针转过的角度是()A.30°B.45°C.60°D.90°6.(1)32.6°= °';(2)10.145°= °' ″;(3)50°25'12″= °.7.小明说:我每天下午3:00准时做“阳光体育”活动.则下午3:00这一时刻,时钟上分针与时针所夹的角等于.8.指出图中所示的小于平角的角,并把它们表示出来.★9.如图,从点O引出的5条射线OA,OB,OC,OD,OE组成的图形中共有几个角?创新应用★10.观察下图,回答下列问题.(1)在∠AOB 内部任意画1条射线OC ,则图①中有 个不同的角; (2)在∠AOB 内部任意画2条射线OC ,OD ,则图②中有 个不同的角; (3)在∠AOB 内部任意画3条射线OC ,OD ,OE ,则图③中有 个不同的角; (4)在∠AOB 内部任意画10条射线OC ,OD ,…,则共形成 个不同的角.4.3.2 角的比较与运算能力提升1.如图,如果∠AOB=∠COD ,那么 ( )A.∠α>∠βB.∠α<∠βC.∠α=∠βD.∠α+∠β=∠COD2.如图,OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,则下列各式中正确的是( )A.∠COD=12∠AOC B.∠AOD=23∠AOB C.∠BOD=13∠AOB D.∠BOC=32∠AOB3.如图,把矩形ABCD 沿EF 对折后使两部分重合,若∠1=50°,则∠BFE=( ) A.70° B.65° C.60° D.50°4.用一副三角板,不可能画出的角度是( ) A.15° B.75° C.165° D.145°5.已知∠AOB=30°,∠BOC=45°,则∠AOC=( ) A.15° B.75° C.15°或75° D.不能确定6.如图,将一副三角尺折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB= .7.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是.8.如图,∠AOC=40°,∠BOD=50°,OM,ON分别是∠AOC,∠BOD的角平分线,则∠MON= .9.计算:(1)153°19'42″+26°40'28″;(2)90°3″-57°21'44″;(3)33°15'16″×5.★10.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.★11.如图,∠1∶∠2∶∠3∶∠4=1∶1∶3∶4,求∠1,∠2,∠3,∠4的度数.创新应用★12.在飞机飞行时,飞行的方向是用飞行路线与实际的南北方向线之间的夹角大小来表示的.如图,用AN(南北线)与飞行线之间顺时针方向夹角作为飞行方向角,从A到达B的飞行方向角为35°,从A到C的飞行方向角为60°,从A到D的飞行方向角为145°,试求AB与AC之间夹角及AD与AC之间夹角的大小.4.3.3余角和补角能力提升1.如图,A,O,B三点在一条直线上,已知∠AOD=25°,∠COD=90°,则∠BOC的度数为()A.25°B.85°C.115°D.155°2.如果∠AOB+∠BOC=90°,∠BOC+∠COD=90°,那么∠AOB与∠COD的关系是()A.互余B.互补C.相等D.不能确定3.如图,点O在直线AB上,∠COB=∠DOE=90°,则图中相等的角的对数是()A.3B.4C.5D.74.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是() A.右转80°B.左转80°C.右转100°D.左转100°5.在直线AB上任取一点O,过点O作射线OC,OD,使∠COD=90°,当∠AOC=30°时,∠BOD的大小是()A.60°B.120°C.60°或90°D.60°或120°6.如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2= .7.如图,射线OP表示的方向是.8.如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,∠1与∠2的和总是保持不变,则∠1与∠2的和是度.9.学校、电影院、公园在平面图上的标点分别为A,B,C,如果电影院在学校的正东方向上,公园在学校的南偏西25°的方向上,那么平面图上的∠CAB= 度.10.互余的两个角的度数之比为3∶7,则这两个角的度数分别是多少?11.如图,一只蚂蚁从点O出发,沿北偏东45°的方向爬行2.5 cm,碰到障碍物(记作B)后折向北偏西60°的方向爬行3 cm(此时位置记作点C).(1)画出蚂蚁的爬行路线;(2)求出∠OBC的度数.(注:如图,,∠1=∠2)★12.如图所示,已知O是直线AB上一点,∠AOE=∠FOD=90°,OB平分∠COD,图中与∠DOE互余的角有哪些?与∠DOE互补的角有哪些?并说明理由.创新应用★13.按如图所示的方法折纸,然后回答问题:(1)∠2是多少度的角?为什么?(2)∠1与∠3有何关系?(3)∠1与∠AEC,∠3和∠BEF分别有何关系?★14.根据互余和互补的定义知,20°角的补角为160°,余角为70°,160°-70°=90°;25°角的补角为155°,余角为65°,155°-65°=90°;50°角的补角为130°,余角为40°,130°-40°=90°;75°角的补角为105°,余角为15°,105°-15°=90°……观察以上几组数据,你能得到什么结论?写出你的结论.4.4课题学习设计制作长方体形状的包装纸盒能力提升1.如图所示,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是()2.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.社D.会★3.用边长为1的正方形纸板制成一副七巧板(如图①所示),将它拼成“小天鹅”图案(如图②所示),则图②中∠ABC+∠GEB=()A.360°B.270°C.225°D.180°4.如图所示的是一个正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使得它们折叠后所成正方体相对的面上的两数相同,则填入正方形A,B,C内的三个数依次为.5.图中的甲、乙是否是几何体的平面展开图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.★6.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)创新应用★7.如图所示,壁虎在一个圆柱形油罐的下底边沿A处,它发现在B处有一只苍蝇,壁虎决定尽快捉到这只苍蝇,获得一顿美餐.请问壁虎从A处到B处的最短路线是什么?。
七年级数学第四单元知识点
七年级数学第四单元知识点七年级数学第四单元主要讲解了关于比例的知识点,涉及比例的基本概念、比例的性质、比例的应用等方面。
本文将详细介绍七年级数学第四单元的知识点,帮助同学们更好地理解课本内容。
一、比例的基本概念比例是指两个同类量的比较,通常用 a:b 或 a/b 的形式表示,其中 a 和 b 都是同类量。
在比例 a:b 中,a 称为前项,b 称为后项。
比例具有四个相等的基本性质,即:1.前项乘以同一数,后项也要乘以这个数;2.后项减少,前项也要减少同样的比例;3.前项增加,后项也要增加同样的比例;4.后项乘以同一数,前项也要乘以这个数。
二、比例的性质1.比例如果两个比例的前项和后项相等,那么这两个比例是相等的。
例如:a:b = c:d,且 a+c = b+d,就有 a:b = c:d。
2.反比例如果两个比例的前项和后项成反比例关系,那么两个比例是反比例。
例如:a:b = c:d,且 ab=cd,就有 a:b = d:c。
3.合比合比就是把两个比例相加(减)后得到的比例。
例如:a:b 和 c:d 合比是 (a+c):(b+d)。
三、比例的应用1.比例的等式排比原理,就是处理两个或者多个有关系的比例时,必须使它们的单位相同。
例如:将 2 分钟换成秒,可以用 1 分钟 = 60 秒,就有 2 分钟 = 120 秒。
2.比例的倍数如果 a:b = c:d,那么 a 与 b 的比值为 m,c 与 d 的比值为 n,则 m/n 就是 a 与 c 的比值。
例如:某地块面积比例为1:2,$10000 可以买到 2 平方米,那么 $30000 可以买到多少平方米呢?1:2 = 约束 3:6,那么 2 平方米的价格是 $10000,1 平方米的价格就是 $5000,那么 $30000 就可以买到 6 平方米。
以上便是七年级数学第四单元的知识点内容介绍,希望同学们能够掌握好这些知识点,提高自己的数学水平。
浙教版七年级下册数学第四单元知识点汇总
浙教版七年级下册数学第四单元知识点汇
总
4.1 二元一次方程
1.定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
2.在二元一次方程中,任意给出一个未知数的值,总能求出另一个未知数的一个唯一确定的值,所以二元一次方程有无数解.
4.2 二元一次方程组
1、二元一次方程组
含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
4.3 解二元一次方程组
一、目标与要求
1.认识二元一次方程和二元一次方程组。
2.了解二元一次方程和二元一次方程组的解,会求二元
一次方程的正整数解。
3.会用代入法解二元一次方程组。
4.4 二元一次方程组的应用
1.二元一次方程:含有()未知数(元)并且未知数的次数是()的整式方程.
2. 二元一次方程组:由2个或2个以上的()组成的方程组叫二元一次方程组.
3.二元一次方程的解:适合一个二元一次方程的()未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有()个解.
七年级下册数学第四单元知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!。
+++第四章++三角形++单元教学设计++2023-2024学年北师大版七年级数学下册
北师大版七年级下册第四章三角形单元教学设计一、单元分析1、本单元知识框架图2、单元教材分析三角形是最简单的多边形,也是研究其它多边形的基础,在解决实际问题中也有着广泛的应用。
全等三角形是学生进一步学习几何图形的基础。
三角形全等的条件使用方便,但要让学生确信这些事实,还需要进行充分的探索。
因此,在教学时重心应落在“探索”二字上。
在探索图形性质过程中,使学生经历画图、观察、比较、推理、交流等活动,给学生充分的实践和探究的空间,目的是使学生通过自己的探索和与同伴的交流发现三角形的有关结论,积累了数学活动经验,进一步发展空间观念和推理能力,增强了动手操作与说理的相互结合,逐步培养学生逻辑思考能力和有条理的表达。
3、单元学情分析七年级学生在学习了“相交线与平行线”过程中,学生已经积累了一些几何学习和活动经验,具有一定的说理能力,能就简单问题进行有条理的思考与表达。
本单元内容分4个主题,分别探究三角形的性质、边角关系、全等及应用。
同时,七年级学生正处于求知欲、探索欲强烈的年龄,他们对身边的事物充满了好奇,他们非常喜欢动手操作,有较强的表现欲。
因此,教学时可充分调动学生的探索欲望,激发他们的求知欲,使学生积极探索,同时学生也具备了一定的归纳总结的表达能力,基本上能在教师的引导下就某一探索展开讨论。
4、单元教学目标1)熟悉三角形的概念及三角形的三条重要线段,掌握全等图形的性质,三角形全等的判定条件及利用三角形的全等测距离;2)在熟悉用尺规作三角形的基础上培养实践能力,学会用学过的数学知识解决实际问题,提升应用能力;3)熟悉利用三角形的全等解决简单4)合理运用三角形全等的条件解决一些简单问题,培养学生分析问题和解决问题的能力,培养学生的小组合作意识和合作能力;5)通过观察、操作、想象、推理、交流等活动,发展空间观念,进一步积累数学活动经验,发展推理能力和有条理的表达能力;6)培养学生合作意识,进一步提高分析的实际问题,领会数学的应用价值,培养学习数学的兴趣;解决问题的能力,让学生感受到数学来源于生活,又服务于生活的意识,提高审题能力,理解数学的应用价值,培养学习数学的兴趣。
初一下数学知识点
初一下学期的数学知识点主要包括以下几个方面:
1. 有理数:有理数是可以表示为两个整数的比的数,包括整数和分数。
学生需要掌握有理数的四则运算,包括加法、减法、乘法和除法。
2. 整式的加减:整式是由常数、变量、加、减、乘等运算符号组成的代数式。
学生需要学会整式的合并同类项和去括号等基本运算。
3. 一元一次方程:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。
学生需要掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。
4. 图形初步认识:学生需要初步认识线段、角、相交线、平行线等基本图形,了解它们的基本性质和判定方法。
5. 数据的收集与整理:学生需要学会如何收集、整理和描述数据,包括数据的分类、频数、频率、直方图等基本概念和方法。
以上是初一下学期数学的主要知识点,通过学习这些知识点,学生可以打下坚实的数学基础,为后续的数学学习做好准备。
(必考题)初中数学七年级数学下册第四单元《三角形》检测(包含答案解析)(4)
一、选择题1.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 2.已知三角形的两边长分别为3和8,且周长恰好是5的倍数,那么第三边的长为( ) A .4B .9C .14D .4或93.如图,12AB =,CA AB ⊥于A ,DB AB ⊥于B ,且4AC cm =,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P ,Q 两点同时出发,运动______分钟后CAP 与PQB △全等( )A .4或6B .4C .6D .54.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是( )A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF5.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为( )A .100B .80C .60D .506.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°7.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20° 8.下列各组数中,不可能成为一个三角形三边长的是( )A .2,3,4B .5,7,7C .5,6,12D .6,8,10 9.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ) A .4cmB .5cmC .9cmD .13cm10.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠B=∠DB .BE=DFC .AD=CBD .AD ∥BC 11.若a ,b ,c 为△ABC 的三边长,且满足|a ﹣5|+(b ﹣3)2=0,则c 的值可以为( ) A .7 B .8C .9D .1012.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .30二、填空题13.已知ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别为边AB 、AC 上的动点,且90EDF ∠=︒,连接EF ,下列说法正确的是______.(写出所有正确结论的序号)①270BEF CFE ∠+∠=︒;②ED FD =;③EF FC =;④12ABCAEDF S S =四边形14.如图,Rt ABC 和Rt EDF 中,AE CF =,在不添加任何辅助线和字母的情况下,请你添加一个条件__________使Rt ABC 和Rt EDF 全等.15.如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BDCD=_______.16.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.17.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.18.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.19.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.20.如果三角形的两边长为1和5,第三边长为整数,那么三角形的周长为_____.三、解答题21.在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,AD 是ABC ∆的中线,7,5,AB AC ==求AD 的取值范围.我们可以延长AD 到点M ,使DM AD =,连接BM ,易证ADC MDB ∆≅∆,所以BM AC =.接下来,在ABM ∆中利用三角形的三边关系可求得AM 的取值范围,从而得到中线AD 的取值范围是 ;(2)如图2,AD 是ABC 的中线,点E 在边AC 上,BE 交AD 于点,F 且AE EF =,求证:AC BF =;(3)如图3,在四边形ABCD 中,//AD BC ,点E 是AB 的中点,连接CE ,ED 且CE DE ⊥,试猜想线段,,BC CD AD 之间满足的数量关系,并予以证明.22.(问题情境)(1)如图1,在四边形ABCD 中,AB AD =,90B D ︒∠=∠=,120BAD ︒∠=.点E ,F 分别是BC 和CD 上的点,且60EAF ︒∠=,试探究线段BE ,EF ,DF 之间的关系.小明同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,再证明AEF AGF ≅△△,进而得出EF BE DF =+.你认为他的做法 ;(填“正确”或“错误”).(探索延伸)(2)如图2,在四边形ABCD 中,AB AD =,70B ︒∠=,110D ︒∠=,100BAD ︒∠=,点E ,F 分别是BC 和CD 上的点,且50EAF ︒∠=,上题中的结论依然成立吗?请说明理由.(思维提升)(3)小明通过对前面两题的认真思考后得出:如图3,在四边形ABCD 中,若AB AD =,180B D ︒∠+∠=,12EAF BAD ∠=∠,那么EF BE DF =+.你认为正确吗?请说明理由.23.如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,点E ,F 在线段AD 上,且2DF AF =,12BAC ∠=∠=∠.若BE 的长为5,求AD 的长.24.如图,在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒,点A 、E 、B 、D 在同一直线上,BC 、EF 交于点M ,AC DF =,AB DE =. 求证:(1)CBA FED ∠=∠; (2)AM DM =.25.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明. (1)____________; (2)____________.26.如图,AB AD =,AC AE =,CAE BAD ∠=∠.求证:B D ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据三角形全等的性质与路程、速度、时间的关系式求解. 【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CPBD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩,解之得:14t v =⎧⎨=⎩,∴点Q的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.2.B解析:B【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,可得第三边的范围,再找出是5倍数的数即可.【详解】∵三角形的两边长分别为3和8∴5<第三边长<11∴11<周长<22∵周长恰好是5的倍数∴周长是15或20∴第三边长是4或9∵3,4,8不能组成三角形∴第三边是9故选B.【点睛】本题考查知识点是三角形三边关系,记住三边关系式解题关键.3.B解析:B【分析】分当△CPA≌△PQB时和当△CPA≌△PQB时,两种情况进行讨论,求得BQ和BP的长,分别求得P和Q运动的时间,若时间相同即可,满足全等,若不等,则不能成立.【详解】解:当△CPA≌△PQB时,BP=AC=4(米),则BQ=AP=AB-BP=12-4=8(米),A的运动时间是:4÷1=4(分钟),Q的运动时间是:8÷2=4(分钟),则当t=4分钟时,两个三角形全等;当△CPA≌△QPB时,BQ=AC=4(米),AP=BP=12AB=6(米),则P运动的时间是:6÷1=6(分钟),Q运动的时间是:4÷2=2(分钟),故不能成立.总之,运动4分钟后,△CPA 与△PQB 全等, 故选B . 【点睛】本题考查了全等三角形的判定,注意分△CPA ≌△PQB 和△CPA ≌△QPB 两种情况讨论是关键.4.C解析:C 【分析】根据全等三角形的判定方法一一判断即可; 【详解】A 、根据ASA ,可以推出△ABC ≌△DEF ,本选项不符合题意.B 、根据AAS ,可以推出△ABC ≌△DEF ,本选项不符合题意. C 、SSA ,不能判定三角形全等,本选项符合题意.D 、根据SAS ,可以推出△ABC ≌△DEF ,本选项不符合题意. 故选:C . 【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法;5.A解析:A 【分析】首先证明∠A=∠DEC ,然后可利用AAS 判定△ABE ≌△ECD ,进而可得EC=AB=60m ,再求出BE 的长,然后利用路程除以速度可得时间. 【详解】 解:∵∠AED=90°, ∴∠AEB+∠DEC=90°, ∵∠ABE=90°, ∴∠A+∠AEB=90°, ∴∠A=∠DEC , 在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ECD (AAS ), ∴EC=AB=60m , ∵BC=160m , ∴BE=100m ,∴小华走的时间是100÷1=100(s ), 故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE≌△ECD.6.A解析:A【分析】根据已知ACB≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.7.B解析:B【分析】根据正方形的性质得到AB=AD,∠BAD=90︒,由旋转的性质推出ADE≌ABF,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90︒,由旋转得ADE≌ABF,∴∠FAB=∠EAD,∴∠FAB+∠∠BAE=∠EAD+∠BAE,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B.【点睛】此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键.8.C解析:C【分析】判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A.∵2+3>4,∴能组成三角形,故A错误;B.∵5+7>7,∴不能组成三角形,故B错误;C.∵5+6<12,∴不能组成三角形,故C正确;D.∵6+8>10,∴能组成三角形,故D错误;故选:C.【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.9.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x,则9-4<x<4+9即5<x<13,∴当x=7时,能与4cm、9cm长的两根木棒钉成一个三角形,故选:C.【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.10.C解析:C【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【详解】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∠B=∠D,∠AFD=∠CEB,AF=CE,满足AAS,能判定△ADF≌△CBE;B、BE=DF,∠AFD=∠CEB,AF=CE,满足SAS,能判定△ADF≌△CBE;C、AD=CB,AF=CE,∠AFD=∠CEB,满足SSA,不能判定△ADF≌△CBE;D、AD∥BC,则∠A=∠C,又AF=CE,∠AFD=∠CEB,满足ASA,能判定△ADF≌△CBE;故选:C.【点睛】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.A解析:A【分析】根据非负数的性质列方程求出a、b的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c的取值范围,然后解答即可.【详解】解:∵|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,解得a=5,b=3,∵5﹣3=2,5+3=8,∴2<c<8,∴c的值可以为7.故选:A.【点睛】本题考查了非负数的性质以及三角形的三边关系.注意:几个非负数的和为0时,这几个非负数都为0.12.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ADE中可求得∠EAD,则可求得∠BAC.【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC≌△ADE,∴∠BAC=∠EAD=80°,故选:A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.二、填空题13.①②④【分析】根据补角的性质计算可得①;连接D证明根据三角形全等的性质判断可得后面的结果;【详解】;故①正确;连接AD∵∴又∵点为的中点∴即又∵∴又∵∴在△BED和△AFD中∴∴ED=FD;故②正确解析:①②④【分析】根据补角的性质计算可得①;连接D,证明BED AFD≅△△,根据三角形全等的性质判断可得后面的结果;【详解】()()BEF CFE AEB AEF AFC AFE,∠+∠=∠-∠+∠-∠()()AEB AFC AEF AFE=∠+∠-∠+∠,()360180A =︒-︒-∠,36090270=︒-︒=︒;故①正确;连接AD ,∵90BAC ∠=︒,AB AC =,∴90B C ∠=∠=︒,又∵点D 为BC 的中点,∴BD AD =,90BDA ∠=︒,45DAC ∠=︒,即EBD DAF ∠=∠,又∵90EDF ∠=︒,∴90EDA ADF ,又∵90BDA BDE EDA ∠=∠+∠=︒,∴BDE ADF ∠=∠,在△BED 和△AFD 中,EBD DAF BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴BED AFD ≅△△,∴ED=FD ;故②正确;∵BED AFD ≅△△,∴△△BED ADF S S =, 则四边形△△△△△△12AEDF AED ADF AED BED ABD ABC S S S S S S S =+=+==, 故④正确;当点E 移动到点A 时,此时点F 与点C 重合,很明显此时EF=AC ,FC=0,即≠EF FC ; 故③错误;故答案为①②④.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.14.(答案不唯一)【分析】根据三角形全等判定条件即可得解;【详解】当时满足条件;∵∴∴在和中∴;故答案是:(答案不唯一)【点睛】本题主要考查了全等三角形的判定条件准确分析判断是解题的关键解析:BC DF =(答案不唯一)【分析】根据三角形全等判定条件即可得解;【详解】当BC DF =时满足条件;∵AE CF =,∴AE EC CF EC +=+,∴AC EF =,在Rt ABC 和Rt EDF 中,AC EF BC DF=⎧⎨=⎩, ∴Rt ABC Rt EDF ≅;故答案是:BC DF =(答案不唯一).【点睛】本题主要考查了全等三角形的判定条件,准确分析判断是解题的关键.15.或2【分析】分两种情况:(1)当点D 位于CB 延长线上时如图:过点E 作AP 延长线的垂线于点M 可证可得由等腰三角形的性质可得AC=BC 根据线段的和差关系可证的结论;(2)当点D 位于CB 之间时如图过点E 作 解析:25或2 【分析】 分两种情况:(1)当点D 位于CB 延长线上时,如图:过点E 作AP 延长线的垂线于点M ,可证ADC △AEM ≌△,EMP △BCP ≌△,可得,AM CD PC PM ==,由等腰三角形的性质可得AC=BC ,根据线段的和差关系可证的结论;(2)当点D 位于CB 之间时,如图过点E 作AP 的垂线于点N ,可证ADC △AEN ≌△,ENP △BCP ≌△,可得,AN CD PC PN ==,由等腰三角形的性质可得AC=BC ,根据线段的和差关系可证的结论;【详解】(1)当点D 位于CB 延长线上时,如图:过点E 作AP 延长线的垂线于点M ,ABC 为等腰直角三角形AC BC ∴=90BCP ACD AME ∴∠=∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAM ∴∠+∠=︒ADC EAM ∴∠=∠AD AE =∴在ADC 和AEM △中ADC EAM ACD AME AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAM∴CD MA =,AC EM =EM BC ∴=BPC EPM ∠=∠∴在BCP 和EMP 中BCP EMP BPC EPM BC EM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴EMP △BCP ≌△PC PM ∴=CD AM =,3AC PC =,AC BC =∴设PC PM x ==3AC BC x ∴==5CD AM x ∴==CD BD BC =+2BD x ∴=2255BD xCD x∴==(2)当点D位于CB之间时,如图:过点E作AP的垂线于点N,ABC为等腰直角三角形AC BC∴=90ACD ANE∴∠=∠=︒90ADC DAC∴∠+∠=︒AE AD⊥90DAE∴∠=︒90DAC EAN∴∠+∠=︒ADC EAN∴∠=∠AD AE=∴在ADC和AEN△中ADC EANACD ANEAD AE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAN∴CD NA=,AC EN=EN BC∴=BPC EPN∠=∠∴在BCP和ENP中BCP ENPBPC EPNBC EN∠=∠⎧⎪∠=∠⎨⎪=⎩∴ENP△BCP≌△PC PN∴=CD AN=,3AC PC=,AC BC=∴设PC PN x==3AC BC x∴==CD AN x∴==CD BC BD =-2BD x ∴= 22BD x CD x∴== 故答案为:25或2. 【点睛】本题主要考查了全等三角形的判定和性质,解题关键是利用三角形全等和线段的和差得出所求线段之间的关系,同时运用分类讨论的思想.16.【分析】延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 交CE 于点N 根据平行的性质得由得再根据三角形的外角的性质得即可求出和的数量关系【详解】解:如图延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 解析:1483E G ∠=︒-∠【分析】延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,根据平行的性质得G BAG GCD ∠=∠+∠,由3BAF BAG ∠=∠,3DCE DCG ∠=∠,得333G BAG DCG ∠=∠+∠,再根据三角形的外角的性质得E EMA EAF BAF ∠+∠=∠-∠,即可求出E ∠和G ∠的数量关系.【详解】解:如图,延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,∵//AB CD ,∴////BH GN CD ,∴BAG AGN ∠=∠,NGC GCD ∠=∠,EMA ECD ∠=∠,∵G AGN NGC ∠=∠+∠,∴G BAG GCD ∠=∠+∠,∵3BAF BAG ∠=∠,3DCE DCG ∠=∠,∴333G BAG DCG ∠=∠+∠,∵EAB E EMA ∠=∠+∠,EAB EAF BAF ∠=∠-∠,∴E EMA EAF BAF ∠+∠=∠-∠,∴E ECD EAF BAF ∠+∠=∠-∠,∴31483E DCG BAG ∠+∠=︒-∠,∴()14833E BAG DCG ∠=︒-∠+∠,∴1483E G ∠=︒-∠.故答案是:1483E G ∠=︒-∠.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是通过平行线的性质和三角形外角的性质找到角与角之间的数量关系.17.55°【分析】由∠AFD =145°可求得∠CFD=35°证明Rt △BDE ≌△Rt △CFD 根据对应角相等推知∠BDE=∠CFD=35°进而可求出∠EDF 的值【详解】解:∵∠DFC+∠AFD=180°∠解析:55°【分析】由∠AFD =145°可求得∠CFD=35°,证明Rt △BDE ≌△Rt △CFD ,根据对应角相等推知∠BDE=∠CFD=35°,进而可求出∠EDF 的值.【详解】解:∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE ⊥AB ,DF ⊥BC ,∴∠BED=∠CDF=90°,在Rt △BDE 与△Rt △CFD 中,BE CD BD CF =⎧⎨=⎩, ∴Rt △BDE ≌△Rt △CFD (HL ),∴∠BDE=∠CFD=35°,∴∠EDF =180°-90°-35°=55°.故答案是:55°.【点睛】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.18.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中, ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.19.145【分析】由已知角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小从而得到∠AOF 的值【详解】解:∵∵OE 平分∠AOC ∴∵OF ⊥OE 于点O ∴∠EOF =90°∴∠AOF =∠AOE+∠EOF =55解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.20.【分析】先根据三角形的三边关系定理求得第三边的取值范围;再根据第三边是整数确定三角形的周长【详解】解:设第三边为a 根据三角形的三边关系得:5﹣1<a <5+1即4<a <6∵a 为整数∴a 的值为5则三角形解析:【分析】先根据三角形的三边关系定理求得第三边的取值范围;再根据第三边是整数确定三角形的周长.【详解】解:设第三边为a ,根据三角形的三边关系,得:5﹣1<a <5+1,即4<a <6,∵a 为整数,∴a 的值为5,则三角形的周长为1+5+5=11.故答案为:11.【点睛】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.三、解答题21.(1)16AD <<;(2)见解析;(3)CD BC AD =+,证明见解析【分析】(1)延长AD 到点M ,使DM AD =,连接BM ,即可证明ADC MDB ∆≅∆,则可得BM AC =,在ABM ∆中,根据三角形三边关系即可得到AM 的取值范围,进而得到中线AD 的取值范围;(2)延长AD 到点,M 使DM AD =,连接BM ,由(1)知ADC MDB ≅,则可得M CAD BM AC ∠=∠=,,由AE EF =可知,CAD AFE ∠=∠,由角度关系即可推出BMF BFM ∠=∠,故BM BF =,即可得到AC BF =;(3)延长CE 到F ,使EF EC =,连接AF ,即可证明AEF BEC ∆≅∆,则可得EAF B AF BC ∠=∠=,,由//AD BC ,以及角度关系即可证明点,,F A D 在一条直线上,通过证明Rt DEF △≌DEC Rt △,即可得到FD CD =,进而通过线段的和差关系得到CD BC AD =+.【详解】(1)延长AD 到点M ,使DM AD =,连接BM ,∵AD 是ABC ∆的中线,∴DC DB =,在ADC ∆和MDB ∆中,AD MD =,ADC MDB =∠∠,DC DB =,∴ADC MDB ∆≅∆,∴BM AC =,在ABM ∆中,AB BM AM AB BM -+<<,∴7575AM -+<<,即212AM <<,∴16AD <<;(2)证明:延长AD 到点,M 使DM AD =,连接BM ,由(1)知ADC MDB ≅,∴M CAD BM AC ∠=∠=,,AE EF =,CAD AFE ∴∠=∠,MFB AFE ∠=∠,MFB CAD ∴∠=∠,BMF BFM ∴∠=∠,BM BF ∴=,AC BF ∴=,(3)CD BC AD =+,延长CE 到F ,使EF EC =,连接AF ,AE BE AEF BEC =∠=∠,,AEF BEC ∴∆≅∆,EAF B AF BC ∴∠=∠=,,//AD BC ,180BAD B ∴∠+∠=︒,180EAF BAD ∴∠+∠=︒,∴点,,F A D 在一条直线上,CE ED ⊥,∴90DEF DEC ==︒∠∠,∴在Rt DEF △和DEC Rt △中,EF EC =,DEF DEC ∠=∠,DE DE =,∴Rt DEF △≌DEC Rt △,FD CD ∴=,∵FD AD AF AD BC =+=+,CD BC AD ∴=+.【点睛】本题考查了三角形中线、全等三角形的证明和性质、三角形的三边关系、等腰三角形的性质、平行线的性质、平角的概念、线段的和差关系等,正确的作出辅助线以及综合运用以上知识是解答本题的关键.22.(1)正确;(2)成立,理由见解析;(3)正确,理由见解析.【分析】(1)延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题; (2)成立,证明方法同(1):延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题;(3)正确,证明方法同(2):延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题.【详解】解:(1)正确.理由:如图1,延长FD 到点G ,使DG BE =,连接AG .∵90B ADF ︒∠=∠=,∴90ADG ADF B ∠=∠=∠=︒,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵120BAD ︒∠=,60EAF ︒∠=,∴∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF ,∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+;(2)(1)题中的结论依然成立;理由:如图2,延长FD 到点G ,使DG BE =,连接AG .∵110ADF ︒∠=,70B ︒∠=,∴18011070ADG B ∠=︒-︒=︒=∠,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵100BAD ∠=︒,50EAF ∠=︒,∴∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF ,∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+;(3)正确,理由:如图3,延长FD 到点G ,使DG BE =,连接AG .∵180B ADF ︒∠+∠=,180ADG ADF ∠+∠=︒,∴ADG B ∠=∠,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF ,∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+.【点睛】本题是三角形的综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.23.【分析】解:由∠1=∠2=∠BAC ,得到∠BAE=∠ACF ,∠ABE=∠CAF 从而证明△ABE ≌△CAF(ASA).得到AF=BE ,再根据DF=2AF ,BE 的长为5,求得AD 的长.【详解】解:∵12BAC ∠=∠=∠,且1BAE ABE ∠=∠+∠,2CAF ACF ∠=∠+∠, ∠BAC=∠BAE+∠CAF ,∴∠BAE=∠ACF ,∠ABE=∠CAF .在ABE △和CAF 中,BAE ACF AB CA ABE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABE CAF ASA ≌△△. ∴AF BE =∵2DF AF =,BE 的长为5,∴10DF =,5AF BE ==,∴51015AD AF DF =+=+=.【点睛】本题考查了全等三角形的性质和判定,解题的关键是熟悉掌握全等三角形的性质和证明. 24.(1)见解析;(2)见解析【分析】(1)根据HL 定理可得Rt △ABC ≌ Rt △DEF ,从而得到∠CBA=∠FED ;(2)由(1)所得结论和已知条件可以证得△AEM ≌△DBM ,从而可得AM=DM .【详解】证明:(1)在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒AC DF AB DE=⎧⎨=⎩ ∴()Rt Rt HL ABC DEF ≌△△∴CBA FED ∠=∠.(2)∵CBA FED ∠=∠∴ME MB =,且AEMDBM ∠=∠ 又∵AB DE =∴AB EB DE EB -=-即AE DB =在AEM △和DBM △中AE DB AEM DBM ME MB =⎧⎪∠=∠⎨⎪=⎩∴()AEM DBM SAS △≌△∴AM DM =.【点睛】本题考查三角形全等的判定和性质,熟练掌握三角形全等的判定定理HL 、SAS 及三角形全等的性质是解题关键.25.(1)∠ADE=∠ADF ;证明见解析;(2)AE=AF ;证明见解析.【分析】(1)∠ADE=∠ADF ,根据DE ⊥AB ,DF ⊥AC 及AD 为∠BAC 的角平分线,即可证得∠ADE=∠ADF ;(2)AE=AF ,根据(1)可知证明△AED ≌△AFD ,即可证得AE=AF .【详解】(1)结论1:∠ADE=∠ADF ,证明如下:∵DE ⊥AB ,DF ⊥AC ,∴∠AED=∠AFD=90︒,∵AD 为∠BAC 的角平分线,∴∠EAD=∠FAD ,∴∠ADE=∠ADF ;(2)结论2:AE=AF ,证明如下:由(1)可知:△AED ≌△AFD ,∴AE=AF .【点睛】本题考查全等三角形的性质和判定,解题的关键是灵活运用全等三角形的判定和性质解决问题.26.见解析【分析】先证明BAC DAE ∠=∠,再根据“SAS”证明ABC ADE △≌△即可.【详解】证明:CAE BAD ∠=∠,CAE EMB BAD EAB ∴∠+∠=∠+∠,即BAC DAE ∠=∠.在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴≌.B D ∴∠=∠.【点睛】题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.。
七年级北师大数学第四单元知识点
七年级北师大数学第四单元知识点七年级数学的第四单元是一个重要的知识点,它是建立在前面三个单元的基础上,这个知识点包括了有理数、加减有理数、数轴、等式与不等式、带有绝对值的等式与不等式这几个方面,下面我们来一一了解一下。
有理数我们首先来了解有理数,有理数就是带分数、分数、整数和负整数。
它们用在数轴上,我们可以更好地理解和使用这些数。
有理数之间有大小关系,大于零的数叫做正数,小于零的数叫做负数。
加减有理数在加减有理数中,我们需要知道正数和负数的加减法。
当两个正数相加时,结果为正;当两个负数相加时,结果为负;当一个正数和一个负数相加时,结果的正负性取决于它们的大小。
同样的方法可以应用于减法。
数轴数轴是一条直线,用于表示有理数。
它的左半部分是负数,右半部分是正数。
原点表示 0。
我们将每个数对应到数轴上,以便比较大小。
等式与不等式等式与不等式是我们生活中最基本的方程式。
一个等式需要两个数之间的关系,例如2+2=4。
当两端的值相等时,一个等式成立。
如果两端的值不相等,则等式不成立。
同样的方法可以应用于不等式。
带有绝对值的等式与不等式绝对值的概念是数与 0 的距离,不具有方向的概念。
我们使用绝对值符号“| |”表示。
如果一个数是正数,它的绝对值就是它本身;如果一个数是负数,它的绝对值就是它的相反数,也就是正数形式。
如果一个数带有绝对值符号,有可能存在两个解。
总结在七年级数学的第四单元,我们学习了有理数、加减有理数、数轴、等式与不等式、带有绝对值的等式与不等式。
这些知识点在我们后面的学习和生活中都有很大的帮助。
七年级下册数学知识点1-4单元(湘教版)
七年级数学下册知识点归纳【湘教版】第一章 二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:已知二元一次方程组当a 1/a 2 ≠ b 1/b 2 时,有唯一解; 当a 1/a 2 = b 1/b 2 ≠ c 1/c 2时,无解; 当a 1/a 2 = b 1/b 2 = c 1/c 2时,有无数解。
例如:对应方程组:① ② ③例:判断下列方程组是否为二元一次方程组:① ② ③ ④3、用含一个未知数的代数式表示另一个未知数:用含X 的代数式表示Y ,就是先把X 看成已知数,把Y 看成未知数;用含Y 的代数式表示X ,则相当于把Y 看成已知数,把X 看成未知数。
例:在方程 2x + 3y = 18 中,用含x 的代数式表示y 为:___________,用含y 的代数式表示x 为:____________。
4、根据二元一次方程的定义求字母系数的值:要抓住两个方面:①、未知数的指数为1,②、未知数前的系数不能为0例:已知方程 (a-2)x^(/a/-1) – (b+5)y^(b^2-24) = 3 是关于x 、y 的二元一次方程,求a 、b 的值。
(必考题)初中数学七年级数学下册第四单元《三角形》测试(包含答案解析)(5)
一、选择题1.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个 2.下列长度的三条线段,能组成三角形的是( )A .5,6,11B .3,4,8C .5,6,10D .6,6,13 3.已知三角形的一边长为8,则它的另两边长分别可以是( )A .4,4B .17,29C .3,12D .2,9 4.已知三角形的两边长分别为3和8,且周长恰好是5的倍数,那么第三边的长为( ) A .4B .9C .14D .4或95.已知图中的两个三角形全等,则∠α等于( )A .50°B .60°C .70°D .80°6.如图,ABC A BC '≌,110A '∠=︒,30ABC ∠=︒,则ACB =∠( )A .40︒B .20︒C .30D .45︒7.如图,已知AOB ∠,观察图中尺规作图的痕迹,可以判定111COD C O D ≌,其判定的依据是( )A .SSSB .SASC .ASAD .AAS8.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法:①三角形有且只有一条中线;②三角形的高一定在三角形内部;③三角形的两边之差大于第三边;④三角形按边分类可分为等腰三角形和不等边三角形.其中错误的说法是( ) A .①②B .①③C .①②③D .①②③④9.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①②去10.下列各组条件中,不能判定A ABC B C '''≌△△的是( )A .AC A C BCBC C C '''''==∠=∠ B .A A BC B C AC A C '''''∠=∠== C .AC A C AB A B A A '''''==∠=∠D .AC A C A A C C ''''=∠=∠∠=∠11.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( )A .4cmB .5cmC .9cmD .13cm12.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S二、填空题13.如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BDCD=_______.14.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).15.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)16.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.17.如图,已知四边形ABCD 中,10AB =厘米,8BC =厘米,12CD =厘米,B C ∠=∠,点E 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为______厘米/秒时,能够使BEP △与CPQ 全等.18.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________19.如图,OA ⊥OB ,∠BOC =30°,OD 平分∠AOC ,则∠BOD =_____度.20.三角形的两条边长分别是2cm ,8cm ,第三边为奇数,则其周长为________.三、解答题21.已知ABC 的周长为37cm ,AD 是BC 边上的中线,23AC BC =.(1)如图,当15AB cm =时,求BD 的长. (2)若14AC cm =,能否求出DC 的长?为什么?22.如图,CE AB ⊥于点,E BF AC ⊥于点,F CE 交BF 于点,D 且BD CD =.()1如果已知65BAC ∠=︒,求BDC ∠的度数;()2在图中补全射线,AD 并证明射线AD 是BAC ∠的平分线.23.如图,在平面内有三个点、、A B C(1)根据下列语句画图: ①连接AB ; ②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.24.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC 的面积是__________;(每个小正方形的边长为1) (2)ABC 是格点三角形.①在图2中画出一个与ABC 全等且有一条公共边BC 的格点三角形; ②在图3中画出一个与ABC 全等且有一个公共点A 的格点三角形. 25.在Rt ABC △中,90C ∠=︒,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ⊥(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ⊥时,求证:PDA DBC △≌△; (2)如图②,当PD AB ⊥于点F 时,求此时t 的值.26.△ABC 中,三个内角的平分线交于点O ,过点O 作OD ⊥OB ,交边BC 于点D . (1)如图1,猜想∠AOC 与∠ODC 的关系,并说明你的理由; (2)如图2,作∠ABC 外角∠ABE 的平分线交CO 的延长线于点F . ①求证:BF ∥OD ;②若∠F =35°,求∠BAC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用SAS证明△DAC≌△BAE,利用三角形内角和定理计算∠BOD的大小即可.【详解】△与AEC都是等边三角形,∵ABD∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB,∴∠DAC =∠BAE,∴△DAC≌△BAE,∴BE=CD,∴结论①正确;∵△DAC≌△BAE,∴∠ADC =∠ABE,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;∠=∠,无法证明BDO CEO∴结论③错误;故选C.【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理,熟练运用等边三角形的性质证明三角形的全等是解题的关键.2.C解析:C【分析】根据三角形的两边和大于第三边解答.【详解】A、5+6=11,故不能构成三角形;B、3+4<8,故不能构成三角形;C、5+6>10,故能构成三角形;D、6+6<13,故不能构成三角形;故选:C.【点睛】此题考查三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.3.D解析:D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可.【详解】A、∵4+4=8,∴构不成三角形;B、29−17=12>8,∴构不成三角形;C、∵12−3=9>8,∴构不成三角形;D、9−2=7<8,9+2=11>8,∴能够构成三角形,故选:D.【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.4.B解析:B【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,可得第三边的范围,再找出是5倍数的数即可.【详解】∵三角形的两边长分别为3和8∴5<第三边长<11∴11<周长<22∵周长恰好是5的倍数∴周长是15或20∴第三边长是4或9∵3,4,8不能组成三角形∴第三边是9故选B.【点睛】本题考查知识点是三角形三边关系,记住三边关系式解题关键.5.C解析:C 【分析】利用全等三角形的性质及三角形内角和可求得答案. 【详解】 解:如图,∵两三角形全等, ∴∠2=60°,∠1=52°, ∴∠α=180°-50°-60°=70°, 故选:C . 【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.6.A解析:A 【分析】根据全等三角形对应角相等即可求解; 【详解】∵ABC A BC '∆≅∆ , ∴ ∠A=∠A '=110°, ∵∠ABC=30°,∴∠ACB=180°-110°-30°=40°, 故选:A . 【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应角相等是解题的关键;7.A解析:A 【分析】由作法易得OD =O 1D 1,OC =O 1C 1,CD =C 1D 1,根据SSS 得到三角形全等. 【详解】解:在△COD 和△C 1O 1D 1中,111111CO C O DO D O CD C D=⎧⎪=⎨⎪=⎩, ∴111COD C O D ≌(SSS ).故选:A . 【点睛】本题考查了全等三角形的判定方法SSS 的运用,熟练掌握三角形全等的判定是正确解答本题的关键.8.C解析:C 【分析】三角形有三条中线对①进行判断;钝角三角形三条高,有两条在三角形外部,对②进行判断;根据三角形三边的关系对③进行判断;根据三角形的分类对④进行判断. 【详解】①三角形有三条中线,故①错误;②钝角三角形三条高,有两条在三角形外部,故②错误; ③三角形的任意两边之差小于第三边,故③错误;④三角形按边分类可分为等腰三角形、不等边三角形,故④正确; 综上,选项①②③错误, 故选:C . 【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别.9.C解析:C 【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解. 【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带③去. 故选:C . 【点睛】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.10.B解析:B【分析】根据全等三角形的判定逐一分析即可.【详解】解:A、根据SAS即可判定全等,该项不符合题意;B、根据SSA不能判定全等,该项符合题意;C、根据SAS即可判定全等,该项不符合题意;D、根据ASA即可判定全等,该项不符合题意;故选:B.【点睛】本题考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键.11.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x,则9-4<x<4+9即5<x<13,∴当x=7时,能与4cm、9cm长的两根木棒钉成一个三角形,故选:C.【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.12.A解析:A【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【详解】解:易得OC=O C',OD=O′D',CD=C′D',∴△OCD≌△O′C′D′,∴∠A′O′B′=∠AOB,所以利用的条件为SSS,故选:A.【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点,熟练掌握三角形全等的性质是解题的关键.二、填空题13.或2【分析】分两种情况:(1)当点D 位于CB 延长线上时如图:过点E 作AP 延长线的垂线于点M 可证可得由等腰三角形的性质可得AC=BC 根据线段的和差关系可证的结论;(2)当点D 位于CB 之间时如图过点E 作 解析:25或2 【分析】 分两种情况:(1)当点D 位于CB 延长线上时,如图:过点E 作AP 延长线的垂线于点M ,可证ADC △AEM ≌△,EMP △BCP ≌△,可得,AM CD PC PM ==,由等腰三角形的性质可得AC=BC ,根据线段的和差关系可证的结论;(2)当点D 位于CB 之间时,如图过点E 作AP 的垂线于点N ,可证ADC △AEN ≌△,ENP △BCP ≌△,可得,AN CD PC PN ==,由等腰三角形的性质可得AC=BC ,根据线段的和差关系可证的结论;【详解】(1)当点D 位于CB 延长线上时,如图:过点E 作AP 延长线的垂线于点M ,ABC 为等腰直角三角形AC BC ∴=90BCP ACD AME ∴∠=∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAM ∴∠+∠=︒ADC EAM ∴∠=∠AD AE =∴在ADC 和AEM △中ADC EAM ACD AME AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAM∴CD MA =,AC EM =EM BC ∴=BPC EPM ∠=∠∴在BCP 和EMP 中BCP EMP BPC EPM BC EM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴EMP △BCP ≌△PC PM ∴=CD AM =,3AC PC =,AC BC =∴设PC PM x ==3AC BC x ∴==5CD AM x ∴==CD BD BC =+2BD x ∴= 2255BD x CD x ∴== (2)当点D 位于CB 之间时,如图:过点E 作AP 的垂线于点N ,ABC 为等腰直角三角形AC BC ∴=90ACD ANE ∴∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAN ∴∠+∠=︒ADC EAN ∴∠=∠AD AE =∴在ADC 和AEN △中ADC EAN ACD ANE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAN∴CD NA =,AC EN =EN BC ∴=BPC EPN ∠=∠∴在BCP 和ENP 中BCP ENP BPC EPN BC EN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ENP △BCP ≌△PC PN ∴=CD AN =,3AC PC =,AC BC =∴设PC PN x ==3AC BC x ∴==CD AN x ∴==CD BC BD =-2BD x ∴=22BD x CD x∴== 故答案为:25或2. 【点睛】本题主要考查了全等三角形的判定和性质,解题关键是利用三角形全等和线段的和差得出所求线段之间的关系,同时运用分类讨论的思想.14.或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.16.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.3或【分析】分两种情况讨论依据全等三角形的对应边相等即可得到点Q 的运动速度【详解】解:设点P运动的时间为t秒则BP=3tCP=8-3t∵点为的中点厘米∴AE=BE=5厘米∵∠B=∠C∴①当BE=CP解析:3或15 4【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8-3t,∵点E为AB的中点,10AB 厘米,∴AE=BE=5厘米,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8-3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8-3t,解得t=43,∴点Q的运动速度为5÷43=154厘米/秒;故答案为:3厘米/秒或154厘米/秒.【点睛】本题考查了全等三角形的性质和判定的应用,解决问题的关键是掌握全等三角形的对应边相等.18.(-20)或(24)或(-24)【分析】根据全等三角形的判定和已知点的坐标画出图形即可得出答案【详解】如图所示:有三个点符合∵点A(20)B(04)∴OB=4OA=2∵△BOC与△AOB全等∴OB=解析:(-2,0)或(2,4)或(-2,4)【分析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(-2,0),C2(-2,4),C3(2,4).故答案为(2,4)或(-2,0)或(-2,4).【点睛】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C的位置分情况讨论.19.30【分析】本题首先利用垂直性质以及角分线性质求证2∠BOD与∠BOC 的关系继而将已知代入求解∠BOD【详解】∵OA⊥OB∴∠AOB=90°即∠AOD+BOD=90°;∵OD平分∠AOC∴∠AOD=解析:30【分析】本题首先利用垂直性质以及角分线性质求证2∠BOD与∠BOC的关系,继而将已知代入求解∠BOD.【详解】∵OA⊥OB,∴∠AOB=90°,即∠AOD+BOD=90°;∵OD平分∠AOC,∴∠AOD=∠DOC,即∠BOD+∠BOC+BOD=90°,即2∠BOD+∠BOC=90°∵∠BOC=30°,∴∠BOD=30°.故答案为:30.【点睛】本题考查垂直以及角分线的性质,解题关键在于角的互换,其次注意计算仔细即可. 20.17cm 或19cm 【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和【详解】解:8-2<第三边<8+2⇒6<第三边<10这个范围的奇数是7和9所以三角形的周长是2+8+7=17(cm解析:17cm 或19cm【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.【详解】解:8-2<第三边<8+2⇒6<第三边<10,这个范围的奇数是7和9,所以三角形的周长是2+8+7=17(cm )或2+8+9=19(cm )故答案为:17cm 或19cm .【点睛】本题考查了三角形的三边关系,首先根据题意求出第三边,然后再求出周长,难度较小.三、解答题21.(1)6cm ;(2)不能求出DC 的长,理由见解析【分析】(1)根据23AC AB =,15AB cm =及ABC 的周长为37cm ,可求得BC ,再根据三角形中线的性质解答即可;(2)利用(1)中的方法,求得BC 的长度,然后根据构成三角形的条件,可判断出△ABC 不存在,进而可知没法求DC 的长.【详解】解:(1)∵23AC AB =,15AB cm =, ∴215103AC cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=, ∴()3737151012BC AB AC cm =--=--=,又∵AD 是BC 边上的中线, ∴()1112622BD BC cm ==⨯=; (2)不能,理由如下: ∵23AC AB =,14AC cm =, ∴()314212AB cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=,∴()373721142BC AB AC cm =--=--=,∴BC+AC=16<AB=21,∴不能构成三角形,故不能求出DC 的长.【点睛】此题考查三角形的中线、三角形的周长、构成三角形的条件,关键是根据三角形中线的性质解答.22.()1115;()2见解析【分析】(1)先求出25B ∠=︒,再根据垂直计算即可;(2)先证明()∆≅∆BDE CDF AAS ,得到DE DF =,再根据垂直和角平分线的性质计算即可;【详解】解:()1⊥BF AC ,65BAC ∠=︒,25B ∴∠=︒,又CE AB ⊥,115BDC B BED ∴∠=∠+∠=;()2如图,射线AD 即为所求;证明:CE AB ⊥,BF AC ⊥,90BED CFD ∴∠=∠=︒,BDE CDF ∠=∠,DB DC =, ()∴∆≅∆BDE CDF AAS ,DE DF ∴=,DE AB ∵⊥,DF AC ⊥,AD ∴是BAC ∠的平分线.【点睛】本题主要考查了角平分线的性质和全等三角形的判定与性质,准确分析计算是解题的关键.23.(1)见解析;(2)AB BC CD AB BD AD ++>+>【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC,然后以点C为圆心,BC为半径画弧,交射线AC于点D,连接BD;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB即为所求;②如图,直线BC即为所求;③如图,射线AC,点D,线段BD即为所求(2)如图,在△BCD中,BC+CD>BD∴AB BC CD AB BD++>+在△ABD中,AB+BD>AD∴AB BC CD AB BD AD++>+>【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.24.(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6,故答案为:6;(2)①如图,'A BC即为所求,②如图,''AB C 即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.25.(1)见解析;(2)8秒【分析】(1)根据垂直及角之间的关系证明出PDA CBD ∠=∠,又有90PAD C ∠=∠=︒,=6AD BC =,根据三角形全等的判定定理则可证明PDA DBC △≌△.(2)根据垂直及角之间的关系证明APF DAF ∠=∠,又因为90PAD C ∠=∠=︒,AD BC =,则可证明PAD ACB △≌△,所以8cm AP AC ==,即t=8秒.【详解】(1)证明:PD BD ⊥,90PDB ∴∠=︒,即90BDC PDA ∠+∠=︒又90C ∠=︒,90BDC CBD ∠+∠=︒ PDA CBD ∴∠=∠又AE AC ⊥,90PAD ∴∠=︒90PAD C ∴∠=∠=︒又6cm BC =,6cm AD =AD BC ∴= 在PAD △和DCB 中PAD C AD CBPDA DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩()PDA DBC ASA ∴△≌△(2)PD AB ⊥,90AFD AFP ∴∠=∠=︒,即90PAF APF ∠+∠=︒又AE AC ⊥,90PAF DAF ∴∠+∠=︒ APF DAF ∴∠=∠又90PAD C ∠=∠=︒,AD BC =在APD △和CAB △中 APD CAB PAD C AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()PAD ACB AAS ∴△≌△8cm AP AC ∴==即8t =秒.【点睛】本题主要考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用角之间的关系是解题关键.26.(1)∠AOC =∠ODC ,理由见解析;(2)①见解析;②70°【分析】(1)根据角平分线的定义得到∠OAC +∠OCA =12(180°−∠ABC ),∠OBC =12∠ABC ,由三角形的内角和得到∠AOC =90°+∠OBC ,∠ODC =90°+∠OBD ,于是得到结论; (2)①由角平分线的性质得到∠EBF =90°−∠DBO ,由三角形的内角和得到∠ODB =90°−∠OBD ,于是得到结论;②由角平分线的性质得到∠FBE =12(∠BAC +∠ACB ),∠FCB =12ACB ,根据三角形的外角的性质即可得到结论. 【详解】(1)∠AOC =∠ODC ,理由:∵三个内角的平分线交于点O ,∴∠OAC+∠OCA =12(∠BAC+∠BCA )=12(180°﹣∠ABC ), ∵∠OBC =12∠ABC , ∴∠AOC =180°﹣(∠OAC+∠OCA )=90°+12∠ABC =90°+∠OBC , ∵OD ⊥OB ,∴∠BOD =90°,∴∠ODC =90°+∠OBD ,∴∠AOC =∠ODC ;(2)①∵BF 平分∠ABE ,∴∠EBF =12∠ABE =12(180°﹣∠ABC )=90°﹣∠DBO , ∵∠ODB =90°﹣∠OBD ,∴∠FBE =∠ODB ,∴BF∥OD;②∵BF平分∠ABE,∴∠FBE=12∠ABE=12(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=12∠ACB,∵∠F=∠FBE﹣∠BCF=12(∠BAC+∠ACB)﹣12∠ACB=12∠BAC,∵∠F=35°,∴∠BAC=2∠F=70°.【点睛】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.。
2024年人教版七年级下册数学第四单元课后基础训练(含答案和概念)
2024年人教版七年级下册数学第四单元课后基础训练(含答案和概念)试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. |3|D. |3|2. 下列各数中,最小的数是()A. |3|B. |3|C. 3D. 33. 如果a<0,那么下列各数中,最大的数是()A. aB. aC. |a|D. |a|4. 下列各数中,有理数是()A. √1B. √2C. πD. 1.0100100015. 下列各数中,无理数是()A. 0.333B. 1.212121C. √9D. √56. 下列各式中,正确的是()A. (3)^2 = 9B. (3)^2 = 9C. |3^2| = 9D. |3^2| = 97. 若|a|=5,则a的值可能是()A. 5B. 5C. 3D. 38. 若a<0,b<0,那么下列各式中,正确的是()A. a+b>0B. ab>0C. ab>0D. a/b>09. 下列各式中,结果为负数的是()A. (3)×(4)B. (3)÷(4)C. (3)÷4D. (3)×410. 若a<0,b>0,那么下列各式中,结果为正数的是()A. a+bB. abC. abD. a/b二、判断题:1. 相反数的绝对值相等。
()2. 负数的绝对值是正数。
()3. 互为相反数的两个数和为0。
()4. 任何有理数的平方都是正数。
()5. 任何两个有理数的乘积都是正数。
()6. 任何两个有理数的和都是正数。
()7. 任何两个负数的乘积都是正数。
()8. 任何两个负数的和都是负数。
()9. 任何两个正数的差都是正数。
()10. 任何两个负数的差都是负数。
()三、计算题:1. 计算:|5| + 3 (2)2. 计算:4 × 5 ÷ (2)3. 计算:(3 7) × (3)4. 计算:2^3 + 4 ÷ 25. 计算:|8 + 4| ÷ 26. 计算:3 × (6) + 27. 计算:5^2 ÷ (5)8. 计算:4 (3)^29. 计算:|7| ÷ (7)10. 计算:(8 14) ÷ (2)11. 计算:3 × (4) + 7 ÷ (1)12. 计算:|5 6| × 213. 计算:2^4 ÷ (2)14. 计算:5 + 15 ÷ (3)15. 计算:8 ÷ (2) (3)^216. 计算:|9| ÷ 3 + 417. 计算:7 × (8) ÷ 418. 计算:6 9 ÷ 319. 计算:5 × (3) + 12 ÷ (4)20. 计算:4^2 + 16 ÷ (4)四、应用题:1. 小明和小华比赛跳远,小明的成绩比小华少3米,小华的成绩是4.2米。
七年级三四单元知识点总结
七年级三四单元知识点总结在初中阶段,七年级的学生需要掌握许多知识点,并且这些知识点很多都是后续学习的基础。
本文就给大家总结一下七年级数学第三、四单元的重点知识。
一、有理数的认识
1. 自然数、整数、分数、小数的概念及其在数轴上的位置。
2. 有理数的定义,以及有理数与有理数的加减乘除运算。
3. 有理数的绝对值及其性质。
4. 有理数的大小比较。
二、代数式和代数式的加减
1. 一元一次代数式及其类型。
2. 代数式的加减,包括同类项的加减和异类项的加减。
三、方程及方程的解法
1. 方程的概念,方程组的概念。
2. 一元一次方程的解法,包括等式两侧同时加减同一数、等式
两侧同时乘、除以同一非零数。
3. 一元一次方程组的解法。
四、图形的认识
1. 四边形、三角形的概念及其分类。
2. 直角三角形、等腰三角形、等边三角形、全等三角形的性质。
3. 矩形、正方形、平行四边形、菱形的性质。
五、比例和百分数
1. 比例的概念,包括比例的性质、比例的简化与扩大。
2. 百分数的概念及其转化。
3. 百分数与实际问题的应用。
六、统计与概率
1. 数据的搜集、整理和分析,包括资料的整理、频数表和频率
表的制作、简单的数据分析。
2. 事件、概率的概念及其计算。
以上就是七年级数学第三、四单元的重点知识点,学生们应掌握这些知识并多练习题,以提高自己的数学水平。
同时,也要注意数学思维的培养,不断思考和探索,不断地向前发展!。
七年级数学四单元知识点总结
七年级数学四单元知识点总结数学是一门重要的学科,也是学生在学习过程中难度较大的一门学科之一。
七年级的数学学科,四单元的知识点是学习者学习过程中重要的一部分,下面将为你从四个角度总结七年级数学四单元知识点。
一、函数的定义和表示方法
函数在数学中起着重要的作用。
在七年级数学中,我们主要学习两种函数的表示方式,一种是表格法,一种是图形法。
而函数的定义是,对于一对以上的数据或变量,它们之间的一种特定关系,其中一个变量的值总是由另一个变量的值所唯一确定。
二、多项式的概念和运算法则
多项式在数学中也是十分重要的一个概念,它由一个或多个项组成,同一个多项式的各项之间只有系数和次数不同。
我们可以根据多项式的基本定义,学习到多项式的运算法则,也就是相加减、相乘和约分。
三、平面图形和立体图形的性质
在七年级数学中,我们也学习到了平面图形和立体图形的性质。
平面图形包括三角形、四边形、圆、正多边形等;立体图形包括
长方体、正方体、金字塔、圆锥体等。
我们需要学习到这些图形
的性质,才能更好地解决图形问题。
四、数据的收集和分析方法
在数学中,我们需要收集和分析数据,来更好地解决问题,七
年级中也有一些基本的数据收集和分析方法。
包括制作频率分布表、制作柱状图和折线图、计算中心值和极差等。
这些方法让我
们更好地了解数据特征,掌握如何使用数据解决实际问题。
除了上述四个角度,七年级数学还包括其他的知识点,比如方程、不等式、平行线、相似、比例等。
这些知识点都是我们在学
习数学过程中不可或缺的一部分,只有从各个方面全面掌握,才
能更好地应用于实际生活中。
七年级三四单元数学知识点
七年级三四单元数学知识点在七年级的数学教学中,学生需要学习第三和第四单元的数学知识点。
这些知识点涉及了许多重要的数学概念和技能,是学生在今后的高中数学和大学数学学习中的基础。
接下来,本文将对七年级三四单元数学知识点进行详细介绍,并为学生提供学习指导和建议。
一、平面图形的关系与性质这一单元的重点是教授平面图形的关系和性质。
通过学习这些知识点,学生可以更好地理解和应用几何学的概念。
1. 圆的面积和周长:学生需要学习如何计算圆形的面积和周长,掌握圆的基本概念和性质。
圆是七年级数学中非常重要的概念,也是许多高级几何学概念的基石。
2. 直角三角形的性质:学生需要掌握直角三角形的性质,包括勾股定理、正弦定理、余弦定理等,以及直角三角形的各种应用。
3. 多边形的性质:学生需要学习各种多边形的名称、角度和边长的关系,以及多边形面积及周长的计算方法。
4. 同位角和内错角:学生需要掌握同位角和内错角的定义和性质,并能运用这些知识解决相关问题。
二、数据分析与统计在数据分析与统计单元中,学生需要了解如何收集、处理和分析数据。
1. 数据的收集和整理:学生需要知道如何收集数据,并以图表和表格的形式将其整理和描述。
2. 中心和变化趋势:学生需要确定数据的中心和变化趋势,包括平均数、中位数,众数等。
3. 概率和统计:学生需要学习如何计算概率和统计量,以及如何应用这些知识解决问题。
三、一次函数一次函数单元中,学生需要学习如何定义和理解一次函数概念、如何画出一次函数图像,以及如何计算一次函数的斜率和截距等。
1. 一次函数的定义和性质:学生需要学习一次函数的定义和一次函数的各种性质。
一次函数是许多其他数学概念的基础,包括指数函数和对数函数等。
2. 一次函数的图像和特点:学生需要学习如何画出一次函数的图像并分析其特点,以及如何根据函数图像解决问题。
3. 一次函数的斜率和截距:学生需要掌握一次函数的斜率和截距的计算方法,以及如何运用这些知识解决相关问题。
七年级第4单元数学知识点
七年级第4单元数学知识点数学是一个引人入胜且需要好好学习的学科。
在七年级中,第4单元是数学学科中华丽转身的重要之一,因此需要格外注意。
本文将详细介绍七年级第4单元的各个数学知识点。
一、整式的加减法整式是由单项式以加减法相连组成的式子,许多数学问题都可以转换为整式的运算。
在这个知识点中,需要学习整式的加减法,即如何将相似项相加减得到简单的答案。
- 例子一:化简$(3x+4y)-(2x+3y)$根据整式加减法的原理,首先将式子化为同类项,即将$x$项和$y$项分别相加减,然后化简即可。
$(3x+4y)-(2x+3y)=3x+4y-2x-3y=x+y$二、二元一次方程解方程是数学学科中的基本操作之一,而二元一次方程是数学中的重要概念,理解它对于后续学习的成功至关重要。
- 例子二:求解$3x+2y=10$和$2x-y=1$的解解二元一次方程有多种方法,比如代入法、消元法和图像法等。
这里以消元法为例,首先可以将第二个方程中的$y$用$x$表示出来,然后将它代入第一个方程,最后求解出$x$和$y$的值。
$2x-y=1 \Rightarrow y=2x-1$$3x+2y=10 \Rightarrow 3x+4x-2=10 \Rightarrow x=2$$y=2x-1=3$因此,方程的解为$x=2$,$y=3$。
三、数列数列是一个数的序列,其中每个数都有一个特定的位置和值。
理解数列是数学学科中的一个重要概念,它有助于我们理解和预测数学模型的变化规律。
- 例子三:求解一个等差数列的公差等差数列是一个数列,其中每个数都比前一个数大(或小)一个相同的常数。
因此,在相邻两个数之间的差值保持不变的情况下,公差可以用第一个数和第二个数的差值来计算得出。
比如,一个等差数列的前三项为2,5,8,则可以得出该数列的公差为3。
四、因式分解因式分解是整式中的一个重要概念,它将一个整式分解为两个或多个小型整式,可以将复杂问题简化为简单问题。
中小学数学知识点集锦
第一单元第二单元万以内的加法和减法:1. 加法 2. 减法 3. 加减法的验算第三单元四边形:1. 四边形 2.平行四边形 3. 周长 4. 长方形和正方形的周长 5. 估计第四单元有余数的除法第五单元第六单元多位数乘一位数:1. 口算乘法 2. 笔算乘法第七单元分数的初步认识:1. 几分之一 2. 几分之几 3. 分数的简单计算第八单元数学广角:1. 搭配问题 2. 可能性第九单元总复习三年级下册第一单元位置及方向第二单元除数是一位数的除法:1. 口算除法 2. 笔算除法〔1〕 3. 笔算除法〔2〕 4. 笔算除法〔3〕第三单元统计:1. 简单的数据统计 2. 平均数第四单元年、月、日:1. 年、月、日 2. 24小时计时法第五单元两位数乘两位数:1. 口算乘法 2. 笔算乘法〔1〕 3. 笔算乘法〔2〕第六单元面积:1. 面积和面积单位 2. 长方形、正方形面积的计算 3. 面积单位间的进率 4. 公顷、平方千米第七单元小数的初步认识:1. 认识小数 2. 简单的小数加减法第八单元解决问题第九单元数学广角第十单元总复习四年级上册第一单元大数的认识:1.亿以内数的认识〔一〕 2.亿以内数的认识〔二〕 3.亿以上数的认识〔一〕第二单元角的度量:1.直线射线和角〔一〕 2.直线射线和角〔二〕第三单元三位数乘两位数:1.口算乘法2.笔算乘法〔一〕3.笔算乘法〔二〕4.笔算乘法〔三〕第五单元除数是两位数的除法:1.除数是两位数的除法〔一〕 2.除数是两位数的除法〔二〕3.除数是两位数的除法〔三〕4.整理和复习〔一〕5.整理和复习〔二〕第六单元统计:1.统计〔一〕 2.统计〔二〕 3.统计〔三〕第七单元数学广角:1.合理安排〔一〕 2.合理安排〔二〕第八单元总复习:1.总复习——多位数的认识〔一〕 2.总复习——多位数的认识〔二〕3.总复习——空间及图形〔一〕4.总复习——空间及图形〔二〕5.总复习——统计图〔一〕6.总复习——统计图〔二〕四年级下册第一单元四则运算:1. 不含括号的四则运算〔1〕 2. 不含括号的四则运算〔2〕 3.含括号的四则运算4. 有关0的运算第二单元位置及方向:1. 位置及方向〔1〕 2. 位置及方向〔2〕 3.位置及方向〔3〕第三单元运算定律及简便计算:1. 加法交换律 2. 加法结合律 3. 乘法交换律和结合律4. 乘法分配律5. 减法的运算性质6.除法的运算性质7. 乘法的简便计算第四单元小数的意义和性质:1. 小数的意义 2. 小数的读法3、小数的写法 4. 小数的性质5. 小数的大小比拟6.小数点移动7. 生活中的小数8. 求一个小数的近似数第五单元三角形:1. 三角形的特性〔1〕 2. 三角形的特性〔2〕 3.三角形的分类4. 三角形的内角和5. 图形的拼组第六单元小数的加法和减法:1. 小数的加法和减法〔1〕 2. 小数的加法和减法〔2〕3.小数的加法和减法〔3〕第七单元统计第八单元数学广角:1. 数学广角〔1〕 2. 数学广角〔2〕 3.数学广角〔3〕第九单元总复习五年级上册第一单元小数乘法:1.小数乘整数 2.小数乘小数 3.积的近似值 4.连乘、乘加、乘减第二单元小数除法:1.小数以整数 2.一个数除以小数 3.商的近似值 4.循环小数第三单元观察物体第五单元多边形的面积:1.平行四边行的面积 2.三角形面积的计算 3.梯形面积的计算第六单元统计及可能性第七单元数学广角第八单元五年级下册第一单元图形的变换第二单元第三单元长方体和正方体:1.长方体和正方体的认识 2.长方体和正方体的外表积(一)3.长方体和正方体的外表积(二)4.长方体和正方体的体积(一)5.长方体和正方体的体积(二)6.长方体和正方体的体积(三)7.长方体和正方体的体积(四)8.长方体和正方体的体积(五)第四单元分数的意义和性质:1.分数的意义(一) 2.分数的意义(二) 3.真分数和假分数4.分数的根本性质5.约分(一)6.约分(二)7.通分(一)8.通分(二) 9.分数和小数的互化10、整理和复习第五单元分数的加法和减法:1.同分母分数加、减法 2.异分母分数加、减法(一) 3.异分母分数加、减法(二)4.分数加减混合运算(一) 5、分数加减混合运算(二)第六单元统计第七单元数学广角第八单元六年级上册第一单元分数乘法:1.分数乘法的意义和计算法则 2. 分数乘法应用题 3. 倒数的认识第二单元分数除法:1. 分数除法的意义和计算法则 2. 分数除法应用题 3. 比第三单元第四单元圆:1. 圆的认识 2. 圆的周长和面积 3. 扇形 4. 轴对称图形第五单元百分数:1. 百分数的意义和写法 2. 百分数和分数、小数的互化 3. 百分数应用题第一单元比例:1. 比例的意义和根本性质 2. 正比例和反比例的意义 3. 比例的应用第二单元圆柱、圆锥和球:1. 圆柱 2. 圆锥 3. 球第三单元简单的统计〔二〕:1. 统计表 2. 统计图第四单元整理和复习:1、数和数的运算 2.代数初步知识 3. 应用题 4. 量的计量5 .几何初步知识 6. 简单的统计初中数学课本目录七年级〔上〕第一章有理数1.1 正数和负数阅读及思考用正负数表示加工允许误差1.2 有理数1.3 有理数的加减法实验及探究填幻方阅读及思考中国人最先使用负数1.4 有理数的乘除法观察及思考翻牌游戏中的数学道理1.5 有理数的乘方数学活动第二章整式的加减2.1 整式阅读及思考数字1及字母X的对话2.2 整式的加减信息技术应用电子表格及数据计算数学活动第三章一元一次方程3.1 从算式到方程阅读及思考“方程〞史话3.2 解一元一次方程〔一〕——合并同类项及移项实验及探究无限循环小数化分数3.3 解一元一次方程〔二〕——去括号及去分母3.4 实际问题及一元一次方程数学活动第四章图形认识初步4.1 多姿多彩的图形阅读及思考几何学的起源4.2 直线、射线、线段阅读及思考长度的测量4.3 角4.4 课题学习设计制作长方体形状的包装纸盒数学活动七年级〔下〕第五章相交线及平行线5.1 相交线5.1.2 垂线5.1.3 同位角、内错角、同旁内角观察及猜测看图时的错觉5.2 平行线及其判定5.2.1 平行线5.3 平行线的性质5.3.1 平行线的性质5.3.2 命题、定理5.4 平移数学活动第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用阅读及思考用经纬度表示地理位置6.2 坐标方法的简单应用数学活动第七章三角形7.1 及三角形有关的线段7.1.2 三角形的高、中线及角平分线7.1.3 三角形的稳定性信息技术应用画图找规律7.2 及三角形有关的角7.2.2 三角形的外角阅读及思考为什么要证明7.3 多变形及其内角和阅读及思考多边形的三角剖分7.4 课题学习镶嵌数学活动第八章二元一次方程组8.1 二元一次方程组8.2 消元——二元一次方程组的解法8.3 实际问题及二元一次方程组阅读及思考一次方程组的古今表示及解法*8.4 三元一次方程组解法举例数学活动第九章不等式及不等式组9.1 不等式阅读及思考用求差法比拟大小9.2 实际问题及一元一次不等式实验及探究水位升高还是降低9.3 一元一次不等式组阅读及思考利用不等关系分析比赛数学活动第十章数据的收集、整理及描述10.1 统计调查实验及探究瓶子中有多少粒豆子10.2 直方图10.3 课题学习从数据谈节水数学活动八年级〔上〕第十一章全等三角形11.1 全等三角形11.2 三角形全等的判定阅读及思考全等及全等三角形11.3 角的平分线的性质数学活动第十二章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形数学活动第十三章实数13.1 平方根13.2 立方根13.3 实数数学活动第十四章一次函数14.1 变量及函数14.2 一次函数14.3 用函数观点看方程〔组〕及不等式14.4 课题学习选择方案数学活动第十五章整式的乘除及因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法数学活动八年级〔下〕第十六章分式16.1 分式16.2 分式的运算阅读及思考容器中的水能倒完吗16.3 分式方程数学活动第十七章反比例函数17.1 反比例函数信息技术应用探索反比例函数的性质17.2 实际问题及反比例函数阅读及思考生活中的反比例关系数学活动第十八章勾股定理18.1 勾股定理阅读及思考勾股定理的证明18.2 勾股定理的逆定理数学活动第十九章四边形19.1 平行四边形阅读及思考平行四边形法则19.2 特殊的平行四边形实验及探究巧拼正方形19.3 梯形观察及猜测平面直角坐标系中的特殊四边形19.4 课题学习重心数学活动第二十章数据的分析20.1 数据的代表20.2 数据的波动信息技术应用用计算机求几种统计量阅读及思考数据波动的几种度量20.3 课题学习体质安康测试中的数据分析数学活动九年级〔上〕第二十一章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减阅读及思考海伦-秦九韶公式数学活动第二十二章一元二次方程22.1 一元二次方程22.2 降次——解一元二次方程阅读及思考黄金分割数22.3 实际问题及一元二次方程实验及探究三角点阵中前n行的点数计算数学活动第二十三章旋转23.1 图形的旋转23.2 中心对称信息技术应用探索旋转的性质23.3 课题学习图案设计阅读及思考旋转对称性数学活动第二十四章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆阅读及思考圆周率Π24.4 弧长和扇形面积实验及探究设计跑道数学活动第二十五章概率初步25.1 随机事件及概率25.2 用列举法求概率阅读及思考概率及中奖25.3 用频率估计概率实验及探究П的估计25.4 课题学习键盘上字母的排列规律数学活动九年级〔下〕第二十六章二次函数26.1 二次函数及其图像26.2 用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3 实际问题及二次函数实验及探索推测植物的生长及温度的关系数学活动第二十七章相似27.1 图形的相似27.2 相似三角形观察及猜测奇妙的分形图形27.3 位似信息技术应用探索位似的性质数学活动第二十八章锐角三角函数28.1 锐角三角函数阅读及思考一张古老的三角函数表28.2 解直角三角形数学活动第二十九章投影及视图29.1 投影29.2 三视图阅读及思考视图的产生及应用29.3 课题学习制作立体模型数学活动。
七年级数学北师大版下册初一数学--第四单元 4.4《用尺规作三角形》参考课件
请按照给出的作法作出相应的图形.
作法 (1)作 DAF .
示范
D
(2)在射线AF上截取线段 AB=c;
(3)以B为顶点,以BA为一 边,作 ABE ,BE交AD 于点C,连接BC.则△ABC 就是所求作的三角形.
A
F
D
F
A
B
D C
A
BF
将你所作的三角形与同伴作出的三角形 进行比较,它们全等吗?为什么?
(3)在射线BD上截取线 段BA=c;
(4)连接AC.△ABC就 是所求作的三角形.
示范
B
C
B
C
B
C
Байду номын сангаас
A
B
C
将你所作的三角形与同伴作出的三 角形进行比较,它们全等吗?为什么?
还有没有其他 的作法?
2.已知三角形的两角及其夹边,求作这个三角形.
已知: , ,线段c.
c
求作:△ABC,使∠A= ,∠B= ,AB=c.
用尺规作三角形
如何利用尺规作出一个三角形与已知三角形全等? A
B
C
直尺
1.已知三角形的两边及其夹角,求作这个三角形.
已知:线段a, c, .
a
c
求作:△ABC,使BC=a AB=c, ∠ABC= .
作法 (1)作一条线段BC=a;
(2)以B为顶点,以BC为 一边,作 DBC .
3.以下列线段为边能作三角形的是 ( ) A.2厘米、3厘米、5厘米 B.4厘米、4厘米、9厘米 C.1厘米、2厘米、 3厘米 D.2厘米、3厘米、4厘米
(1)作线段AB=m,
(2)分别以A、B为圆心,m长为半径画弧,两 弧在射线AX 同侧相交于C;
最新人教版初中数学七年级数学下册第四单元《二元一次方程组》测试题(含答案解析)
一、选择题1.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( ) A .3 B .4 C .2 D .12.如图,周长为78cm 的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .232cmB .235cmC .236cmD .240cm 3.若a 为方程250x x +-=的解,则22015a a ++的值为( )A .2010B .2020C .2025D .20194.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩5.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩ 6.下列各方程中,是二元一次方程的是( ) A .253x y x y -=+ B .x+y=1 C .2115x y =+ D .3x+1=2xy7.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A.2256x yx y+=⎧⎨=⎩B.2265x yx y+=⎧⎨=⎩C.22310x yx y+=⎧⎨=⎩D.22103x yx y+=⎧⎨=⎩8.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付()小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A.10元B.11元C.12元D.13元9.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为()A.19分B.20分C.21分D.22分10.已知xyz≠0,且4520430x y zx y z-+=⎧⎨+-=⎩,则 x:y:z 等于()A.3:2:1 B.1:2:3 C.4:5:3 D.3:4:5 11.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩12.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( ) y a2y 4x -92x - 11 B .7 C .8 D .9二、填空题13.已知关于x 的方程a(x-3)+b(3x+1)=5(x+1)有无穷多个解,则a+b=______________. 14.已知关于x 、y 的方程组2326324x y k x y k +=+⎧⎨+=+⎩的解满足2x y +=,则k 的值为__. 15.若12x y =⎧⎨=-⎩是二元一次方程23ax y -=的解,则a 的值为________. 16.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.17.单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并,则多项式4m-2n+(-m-n )2-2(n-2m )2的值是______. 18.已知方程组 2629x y x y +=⎧⎨+=⎩,则x-y=_________. 19.若方程2(3)31a a x y --+=是关于x ,y 的二元一次方程,则a 的值为_____. 20.若2|327|(521)0a b a b +++-+=,则a b +=______.三、解答题21.已知多项式21231365m x y xy x +-+-+是六次多项式,单项式3x 2n y 5-m 的次数也是六,求:(1)m ,n 的值;(2)[2()]m n m m n ---+的值.22.对于平面直角坐标系xoy 中的点(),P a b ,若点P'的坐标为(),a kb ka b ++(其中k 为常数,0k ≠)则称点P'为点P 的“k 属派生点”,例如:()1,4P 的“2属派生点”为()'124,214P +⨯⨯+,即()'9,6P .(1)点()2,3P -的“3属派生点”的坐标为________;(2)若点P 的“5属派生点”的坐标为()3,9-,求点P 的坐标.23.在解方程组85ax y bx cy +=-⎧⎨-=⎩时,小聪正确的解得31x y =⎧⎨=⎩,小虎因看错a 而解得71x y =⎧⎨=-⎩,若两人的计算过程均没错误,求a ,b ,c 的值. 24.学校准备租用客车外出活动.现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车送330名师生集体外出活动(无空座),最节省的租车费用是多少?25.解下列方程组(1)362x y y x +=⎧⎨=-⎩ (2)3510236x y x y -=⎧⎨+=-⎩ (3)45321x y x y +=⎧⎨-=⎩ (4)()31511212x y x y ⎧-=+⎪⎨+=-⎪⎩ 26.若关于,x y 的方程组37x y ax y b -=⎧⎨+=⎩和关于,x y 的方程组28x by a x y +=⎧⎨+=⎩有相同的解,求,a b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题解析:A【分析】两个方程相加即可求出a+b 的值.【详解】解:a 2b 43a 2b 8+=⎧⎨+=⎩①②①+②得,4a+4b=12∴a+b=3故选:A .【点睛】此题主要考查了解二元一次方程组,熟练、灵活运用解题方法是解答此题的关键. 2.C解析:C【分析】设小长方形的长为x ,宽为y ,列出二元一次方程组并求解,即可得出结论.【详解】解:设小长方形的长为x ,宽为y ,根据图形可得:45678x y x y =⎧⎨+=⎩, 解得123x y =⎧⎨=⎩, ∴一个小长方形的面积为212336cm ⨯=,故选:C .【点睛】本题考查二元一次方程组的实际应用,根据图形找出等量关系是解题的关键.3.B解析:B【分析】先根据a 为方程250x x +-=的解得到25a a +=,然后整体代入即可解答.【详解】解:∵a 为方程250x x +-=的解∴250a a +-=,即25a a +=∴22015a a ++=5+2015=2020.故答案为B .【点睛】本题考查了一元二次方程的解和整体法的应用,正确理解并灵活应用一元二次方程的解解答问题是解答本题的关键.解析:B【解析】分析:首先利用②-①和②+③得出关于a和b的二元一次方程组,从而求出a和b的值,然后将a和b代入任何一个式子得出c的值,从而得出方程组的解.详解:0?25?34?a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a-2b=-5 ④,②+③可得:5a-2b=-9⑤,④-⑤可得:-4a=4,解得:a=-1,将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121abc=-⎧⎪=⎨⎪=-⎩,故选B.点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.5.D解析:D【分析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.6.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B.7.A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.C解析:C【分析】设购买1支签字笔应付x元,1本笔记本应付y元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y的值.【详解】设购买1支签字笔应付x元,1本笔记本应付y元,根据题意得5352 3544 x yx y+⎧⎨+⎩==,解得8x+8y=96,即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付12元,故选C.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.9.A解析:A【分析】设投中外环得x分,投中内环得y分,根据所给图信息列一个二元一次方程组,解出即可得出答案.【详解】解:设投中外环得x 分,投中内环得y 分,根据题意得2321417x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩, 32332519x y ∴+=⨯+⨯=分即小颖得分为19分,故选A .【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键. 10.B解析:B【分析】由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可.【详解】∵4520430x y z x y z -+⎧⎨+-⎩=①=②, ∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z ,∴x :y :z=x :2x :3x=1:2:3,故选B .【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键. 11.A解析:A【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可.【详解】解:图2所示的算筹图所表示的方程组是2114327x y x y +=⎧⎨+=⎩. 故选:A .【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键.12.B解析:B【分析】根据第一列、第三行、对角线建立关于x 、y 的方程组,解方程组求出x 、y 的值,由此即可得.【详解】由题意得:29411299211y y y x y y x ++=-+⎧⎨++=-+⎩, 整理得:4222311x y x y +=⎧⎨+=⎩, 解得25x y =-⎧⎨=⎩, 则2949y y a x ++=-+,即()5259429a +⨯+=-⨯-+,解得7a =,故选:B .【点睛】本题考查了二元一次方程组的应用,依据题意,正确建立方程组是解题关键.二、填空题13.【分析】根据题意移项去括号将原方程整理成关于x 的方程最后根据题干所给条件列出方程组得出结果即可【详解】解:移项得:a (x−3)+b (3x +1)−5(x +1)=0去括号得:ax−3a +3bx +b−5x解析:【分析】根据题意移项、去括号、将原方程整理成关于x 的方程,最后根据题干所给条件列出方程组得出结果即可.【详解】解:移项,得:a (x−3)+b (3x +1)−5(x +1)=0,去括号,得:ax−3a +3bx +b−5x−5=0,整理关于x 的方程,得:(a +3b−5)x−(3a−b +5)=0,∵方程有无穷多解,∴350350a b a b +-⎧⎨-+⎩== , 解得:12a b -⎧⎨⎩== .则a +b =1. 故答案为:1.【点睛】本题主要考查了解一元一次方程及解二元一次方程组,需要把握好题干条件,根据条件列出相应方程组.14.0【分析】根据x+y=2求出5x+5y=10方程组的两方程的两边分别相加得出5x+5y=3k+10得出方程3k+10=10求出方程的解即可【详解】解:①②得:故答案为:0【点睛】本题考查了二元一次方解析:0【分析】根据x+y=2求出5x+5y=10,方程组的两方程的两边分别相加得出5x+5y=3k+10,得出方程3k+10=10,求出方程的解即可.【详解】解:2326324x y k x y k +=+⎧⎨+=+⎩①②, ①+②得:55310x y k +=+,2x y +=,5510x y ∴+=,31010k ∴+=,0k ∴=,故答案为:0.【点睛】本题考查了二元一次方程组的解,解一元一次方程和解二元一次方程组等知识点,能得出关于k 的一元一次方程是解此题的关键.15.【分析】把x 与y 的值代入方程计算即可求出a 的值【详解】把代入方程得:解得:故答案为:【点睛】本题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:1-【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把12x y =⎧⎨=-⎩代入方程得:()223a -⨯-=, 解得:1a =-,故答案为:1-.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 16.45【分析】设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意列出方程组进行解答便可【详解】解:设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意得化 解析:45%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(140%)a b c a b c c a a b x c a b c ++=++⎧⎪=⨯⎨⎪+++++=+++⎩化简整理得:30350241311a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩, 解得:0.4545%x ==;故答案为:45%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.17.-3【分析】根据两个单项式可以合并求出mn 的值再化简多项式代入即可【详解】解:单项式-x2m-ny3与单项式可以合并∴2m-n=33=m+n 组成方程组解得:m=2n=1当m=2n=1时故答案为:【点解析:-3【分析】根据两个单项式可以合并,求出m 、n 的值,再化简多项式代入即可.【详解】解:单项式-x 2m-n y 3与单项式3m+n 2x y 3可以合并 ∴2m-n=3,3=m+n组成方程组解得:m=2,n=1当m=2,n=1时 ()()224222m n m n n m -+---- 82918=-+-3=-故答案为:3-.【点睛】本题考查同类项定义,以及代入多项式求值,值得注意的是本题代入求值时,可以直接代入,化简后代入反而繁缛了.18.【分析】用和作差即可解答【详解】解:∵∴②-①得x-y=3故答案为3【点睛】本题考查了方程组的应用掌握整体思想是解答本题的关键解析:【分析】用29x y +=和26x y +=作差即可解答.【详解】解:∵2629x y x y +=⎧⎨+=⎩①② ∴②-①得x-y=3.故答案为3.【点睛】本题考查了方程组的应用,掌握整体思想是解答本题的关键.19.-3【分析】根据二元一次方程的定义:含有两个未知数并且含有未知数的项的次数都是1像这样的方程叫做二元一次方程可得|a|-2=1且a-3≠0再解即可【详解】解:由题得解得a=-3故答案为:-3【点睛】解析:-3【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程可得|a|-2=1,且a-3≠0,再解即可.【详解】 解:由题得,2130a a ⎧-⎨-≠⎩= , 解得a=-3,故答案为:-3.【点睛】本题考查了二元一次方程的定义.二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程. 20.-3【分析】由|3a+2b+7|+(5a-2b+1)2=0可得:3a+2b+7=0和5a-2b+1=0联立成方程组后解方程组可得a 和b 的值问题得解【详解】解:由题意得解方程组得所以【点睛】本题考查非解析:-3【分析】由|3a+2b+7|+(5a-2b+1)2=0,可得:3a+2b+7=0和5a-2b+1=0,联立成方程组后解方程组可得a 和b 的值,问题得解.【详解】解:由题意,得3270,5210,a b a b ++=⎧⎨-+=⎩解方程组得1,2,a b =-⎧⎨=-⎩所以3a b +=-.【点睛】本题考查非负数的性质,利用其特殊的性质:非负数≥0,将问题转化为解方程或解方程组.这是解答此类题的规律,要求掌握.三、解答题21.(1)m =3,n =2;(2)4m ,12【分析】(1)根据题意列出方程组求解即可;(2)先去括号,再合并同类项,代入求值即可.【详解】(1)由题意得:126526m m n =⎧⎨=⎩++-+ 解得:32m n =⎧⎨=⎩ 答:m ,n 的值分别为3,2.(3)原式=m -(n -2m -m -n )=m -n +2m +m +n=4m当m =3,n =2时,原式=4×3=12【点睛】本题考查了多项式和单项式的次数概念,掌握相关概念列出方程组是解题的关键. 22.(1)(7,-3);(2)点P 的坐标为(-2,1)【分析】(1)根据公式直接代入计算即可;(2)设点P 的坐标为(a ,b ),根据题意列得5359a b a b +=⎧⎨+=-⎩,求解即可. 【详解】(1)由题意得点()2,3P -的“3属派生点”的横坐标为233-+⨯=7,点()2,3P -的“3属派生点”的纵坐标为3(2)3⨯-+=-3,点()2,3P -的“3属派生点”的坐标为(7,-3),故答案为:(7,-3);(2)设点P 的坐标为(a ,b ),由题意得5359a b a b +=⎧⎨+=-⎩,解得21a b =-⎧⎨=⎩,∴点P 的坐标为(-2,1).【点睛】此题考查新定义,列方程组解决实际问题,有理数的混合运算,正确理解题中的计算公式是解题的关键.23.a=-3,b=1,c=-2【分析】将31x y =⎧⎨=⎩代入85ax y bx cy +=-⎧⎨-=⎩求得335a b c =-⎧⎨-=⎩,将71x y =⎧⎨=-⎩代入bx-cy=5中,求得7b+c=5,再解方程组7535b c b c +=⎧⎨-=⎩求得12b c =⎧⎨=-⎩即可. 【详解】将31x y =⎧⎨=⎩代入85ax y bx cy +=-⎧⎨-=⎩,得335a b c =-⎧⎨-=⎩, 将71x y =⎧⎨=-⎩代入bx-cy=5中,得7b+c=5, 解方程组7535b c b c +=⎧⎨-=⎩,解得12b c =⎧⎨=-⎩, ∴a=-3,b=1,c=-2.【点睛】此题考查解二元一次方程组,正确理解题意,将解代入正确的方程进行计算是解题的关键.24.(1)1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)2960元.【分析】(1)可设1辆甲种客车的租金是x 元,1辆乙种客车的租金是y 元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【详解】解:(1)设1辆甲种客车的租金是x 元,1辆乙种客车的租金是y 元,依题意有 31240321760x y x y +=⎧⎨+=⎩, 解得:400280x y =⎧⎨=⎩. ∴1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)根据题意,∵3303011÷=,∴当全部租用乙种客车11辆,则费用为:280113080⨯=(元);∵456302330⨯+⨯=,∴当租用甲种客车6辆,乙种客车2辆时,费用为:400628022960⨯+⨯=(元);∵454305330⨯+⨯=,∴当租用甲种客车4辆,乙种客车5辆时,费用为:400428053000⨯+⨯=(元);∵452308330⨯+⨯=,当租用甲种客车2辆,乙种客车8辆时,费用为400228083040⨯+⨯=(元);综合上述,则当租用甲种客车6辆,乙种客车2辆时,费用最少,费用为2960元.【点睛】本题考查二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.25.(1)2xy=⎧⎨=⎩,(2)2xy=⎧⎨=-⎩,(3)11xy=⎧⎨=⎩,(4)317137xy⎧=⎪⎪⎨⎪=⎪⎩【分析】(1)根据代入法解二元一次方程组即可;(2)根据加减法解二元一次方程组即可;(3)根据加减法解二元一次方程组即可;(4)先化简方程,再用加减法解二元一次方程组即可.【详解】解:(1)362x yy x+=⎧⎨=-⎩①②把方程②代入方程①得,326x x+-=48x=2x=把x=2代入②得,y=0∴原方程组的解为20 xy=⎧⎨=⎩(2)3510 236 x yx y-=⎧⎨+=-⎩①②方程①×3+方程②×5得,19x=0x=0把x=0代入①得,-5y=10y=-2∴原方程组的解为2 xy=⎧⎨=-⎩(3)45 321 x yx y+=⎧⎨-=⎩①②方程①×2+方程②×5,11x=11x=1把x=1代入①得,4+y=5y=1∴原方程组的解为11 xy=⎧⎨=⎩(4)()31511212x yxy⎧-=+⎪⎨+=-⎪⎩化简得,35443 x yx y-=⎧⎨-=-⎩①②方程②×3-方程①得,-7y=-13137y=把137y=代入②得,5237x-=-317x=∴原方程组的解为317137 xy⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二元一次方程组的解法,关键是根据方程组的特征选择代入法或加减法解二元一次方程组.26.75a=-,115b=-.【分析】首先把3x-y=7和2x+y=8联立方程组,求得x、y的数值,再进一步代入原方程组的另一个方程,再进一步联立关于a、b的方程组,进一步解方程组求得答案即可.【详解】解:由题意得37 28 x yx y-=⎧⎨+=⎩,解得32 xy=⎧⎨=⎩,把32xy=⎧⎨=⎩代入原方程组+yax bx by a=⎧⎨+=⎩,得,3+232a bb a=⎧⎨+=⎩,解得75115ab⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.。
七年级数学北师大版下册初一数学--第四单元 4.1《认识三角形》课件
直 角
斜边
与斜边之间的大小关系吗?
(hypotenuse) 它的两个锐角之间有什么关系吗?
边
B 直角边 (leg) C
直角三角形的斜边大于任一直角边。
直角三角形的两个锐角互余。
①
②
③
④
⑤ 锐角三角形
③⑤
⑥ 直角三角形
① ④⑥
⑦ 钝角三角形
②⑦
2、在下面的空白处,分别填入“锐角” “钝角”或“直 角”:
认识三角形
忆一: 三角形三边的关系
a
b
c
三角形任意两边之和大于第三边。 三角形任意两边之差小于第三边。
两边之差
2
3
这是一个直角三角形,∠1、∠2、∠3是它的三个内角。 平时,它们三兄弟非常团结。可是有一天,∠2突然不高兴, 发起脾气来,它指着∠1说:“你凭什么度数最大,我也要 和你一样大!”“不行啊,老弟”∠1说:“这是不可能的, 否则,我们这个家就再也不成家了……”“为什么?”∠2
2.如图线段DG ,EM ,FN两两相交于B ,C ,A三 点 则 ∠D+ ∠E + ∠F+∠G+∠M+∠N的度数 是( )
N
M
A
D
B
C G
E
F
很纳闷。同学们,你们知道其中的道理吗?学了今天的知识 以后你们就会知道三兄弟之间的关系了。
三角形的三个内角有什么关系
三角形三个内角的和等于180º
小学里,用什么方法得到三角形内 角和的结论的?
请同学们动手验证一下!
2 1
你能用什么方法得到 三角形内角和1800
的结论?
练1:
1、在△ABC中,∠C=900 , ∠ A=300 求∠B
七年级数学四单元知识点
七年级数学四单元知识点七年级数学的四单元主要涉及到有理数的加减、数轴、绝对值等知识点,下面将分别进行介绍。
一、有理数的加减有理数包括正数、负数、0和分数,在进行有理数的加减运算时,需要考虑数的符号和绝对值,然后按照符号和绝对值进行运算。
具体的规则如下:1.同号相加减,取相同的符号并将绝对值相加的结果作为最终答案。
2.异号相加减,取绝对值较大的数的符号,并将绝对值较大的数减去绝对值较小的数的绝对值,再将结果取相应的符号作为最终答案。
例如,-3+5=2,-9-(-2)=-7。
二、数轴数轴是一种直观的表示数值大小和变化的工具,它将所有实数按大小关系排列在一条直线上,左边表示负数,右边表示正数,原点表示0。
通过数轴可以清晰地看到数值的大小关系和相对位置关系。
在数轴上,两个数之间的距离就是它们的差值的绝对值。
例如,数轴上表示-3和5的位置,-3在数轴上的位置在-3和0之间的位置上,5在数轴上的位置在0和5之间的位置上,二者之间的距离就是8。
三、绝对值绝对值是一个实数的非负数值,它表示这个数到原点的距离。
对于一个数a,其绝对值记作|a|,当a为正数或0时,其绝对值等于a;当a为负数时,其绝对值等于-a。
绝对值可以用数轴来表示,一个数的绝对值就是它在数轴上到原点的距离。
例如,|3|=3,|-2|=2。
四、其他知识点除了上述三个主要知识点外,七年级数学四单元还包括有理数的乘除、有理数的混合运算、解一元一次方程等知识点。
在有理数的乘除中,需要注意符号的运算规则,同号得正,异号得负。
例如,-7×(-3)=21。
在有理数的混合运算中,需要将加减和乘除结合,按照运算的先后顺序进行,可以根据需要加括号,避免运算顺序引起的错误。
解一元一次方程时,需要将方程化简,使得未知数系数为1,然后根据等式两边相等的原则解方程。
以上是七年级数学四单元知识点的简要介绍,希望对大家的数学学习有所帮助。
七年级的数学前四单元知识点
七年级的数学前四单元知识点随着新版课程的实施,七年级的数学学科前四个单元的知识点也有所变化,接下来让我们来一一了解。
第一单元:整数整数是数学中最重要的概念之一,也是接下来学习的基石。
整数包括正整数、负整数和零,整数的大小可以比较,可以加减乘除,还可以应用到实际生活中。
在这个单元中,学生需要掌握整数的基本概念和表示方法,明确整数在数轴上的位置,掌握整数加减、乘除的运算法则,以及解决与整数有关的实际问题。
第二单元:分数在生活中,分数可以用在各种场合中,比如评分、计算比例、平均数等等。
分数由分子和分母组成,分数的大小可以比较,可以加减乘除。
在学习这个单元的时候,学生需要了解分数的本质,明确分数的大小和位置关系,掌握分数加减、乘除的运算法则,还要能够解决与分数有关的实际问题。
第三单元:代数式代数式是一种把数用字母代替的表达式,它可以用来描述一些实际问题。
在这个单元中,学生需要掌握代数式的基本概念和表示方法,明确代数式的本质,掌握代数式加减、乘除的运算法则,能够解决与代数式有关的实际问题。
此外,学生还需要了解代数式的一些基本性质,比如同类项的合并、约分、规范化等。
第四单元:方程与不等式方程和不等式是代数式的一种应用。
方程的本质是一个等式,它把未知数和已知数连接起来,可以解决有关数的问题。
同样,不等式也是可以描述答案范围的一种表达式。
学生在学习这个单元的时候,需要掌握解一元一次方程和不等式的方法,学会应用它们解决实际问题。
同时,还要了解等式和不等式的基本性质,比如等式的两边同时加减一个相同的数不改变等式的意义,不等式的两边同时乘以一个正数时,不等式的方向不改变。
以上就是七年级数学前四个单元的知识点了,希望同学们能够认真学习,掌握好这些知识点,为接下来的学习打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学第四单元的知识点
七年级下册数学第四单元的知识点
一、目标与要求
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:从三角形的一个顶点向它的`对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形内角和定理:三角形三个内角的和等于180
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360。
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。
多边形还可以分为正多边形
和非正多边形。
正多边形各边相等且各内角相等。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
公式与性质
多边形内角和公式:n边形的内角和等于(n-2)180
多边形外角和定理:
(1)n边形外角和等于n180-(n-2)180=360
(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内
角和加外角和等于n180
多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有n(n-3)/2条对角线。