2017人教版七年级数学下册各单元测试题及答案
【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)
人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
(完整版)人教版七年级数学下册各单元测试题及答案汇总(1),推荐文档
一、选择题(每小题 5 分,共 20 分) 1. 下列不是二元一次方程组的是( )
1 y 4 A. x
x y 1
4x 3y 6
B.
2x
y
4
x y 4
C.
x
y
4
3x 5y 25
D.
x
10
y
25
2.由 x y 1,可以得到用 x 表示 y 的式子是( ) 32
A. y 2x 2 3
12.已知梯形的面积是 42cm2,高是 6cm,它的下底比上底的 2 倍少 1cm,求梯形的上下底。
13.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,
1
树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的 ,
3
若从树上飞下去一只,则树上、树下的鸽子就一样多了。”你知道树上、树下各有多少只鸽子吗?
,y=
三、解下列方程组(每小题 8 分,共 16 分)
9.
mn 23 mn 34
13 3
,n =
。
。
3x y 4x y 4
10.
x y x y 1 26
四、综合运用(每小题 10 分,共 40 分) 11.用 16 元买了 60 分、80 分两种邮票共 22 枚。60 分与 80 分的邮票各买了多少枚?
4
1.D 2.A 3.D 4.A 5.B 6.C
7. 1 x 5 ≥3. 2
8.x≤18
9.x< 4
10. 60<x<80 11.x≥4,数轴表示略。 12.2<x≤4 13.m>4 14.53,64 15.8 立方米 16.5 间房,30 名女生。
(完整word版)人教版七年级数学下册各单元测试题及答案汇总,推荐文档
123(第三题)A B C D E(第10题)(第14题)A B CDE F G H第13题ABC D1234(第2题)12345678(第4题)ab c A BCD(第7题)七年级数学第五章《相交线与平行线》测试卷一、选择题1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )A 、90°B 、120°C 、180°D 、140°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180°④∠3=∠8,其中能判断是a∥b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( )A 、第一次左拐30°,第二次右拐30°B 、第一次右拐50°,第二次左拐130°C 、第一次右拐50°,第二次右拐130°D 、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)
人教版七年级数学下册第七章平面直角坐标系单元测试题 (Word含答案)一、选择题(每小题3分,共30分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是() A、P(2,5)表示这个点在平面C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16) D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。
人教版七年级数学下册全册单元测试试卷及答案
第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等•其中错误的有()A . 1个B . 2个C . 3个D . 4个2 .点P 是直线I 外一点,,且PA=4 Cm 则点P 到直线I 的距离( )A .小于4 CmB .等于4 Cm C.大于4 CmD .不确定3 .如图,点在延长线上,下列条件中不能判定的是( )A .∠ 1 = ∠ 2B .∠ 3= ∠ 4 C.∠ 5=∠D .∠ +∠ BDC=180°7 .在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是( )AV B.①② C.①②③ D.①②③④8.如图,DH // EG// BG DC// EF,那么与∠ DCB 相等的角(不包括∠ EFB 的个数为( ) A . 2个 B . 3个 C . 4个 D . 5个9•点P 是直线I 外一点,A 、B 、C 为直线I 上的三点,PA=4 Cm , PB=5 cm , PC=2 cm ,则点P 到直线I 的距离( )第3题图 第4题图4. 如图,,/ 3=108°,则∠ 1的度数是( )A . 72°B . 80°C. 82°D . 108°5.如图,BE 平分∠ ABC, DE// BC,图中相等的角共有( )A . 3对B . 4对 C. 5对 D . 6对C. 3个 D . 4个 第5题图第6题图 第8题图A .小于2 Cm B.等于2 CmC.不大于2 Cm D .等于4 Cm 10.两平行直线被第三条直线所截,同位角的平分线( A .互相重合 B .互相平行C.互相垂直D .相交二、填空题(共8小题,每小题3分,满分24分)∠ 1 =,则∠ 2= _____ .16. 如图,AB // CD,直线 EF 分别交 AB 、CD 于 E 、F,EG 平分∠ BEF,若∠ 1=72° ,则∠ 2= 17. 如图,直线 a // b ,第17题图18. 如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠三、解答题(共6小题,满分46分)第11题图12.如图,当剪子口∠ AoB 增大15°时,∠ CoD 增大C3DIlIri IB第13题图第14题图A 中,先作AB ⊥ CD,垂足为B,然后沿AB 开渠,能使所开第12题图13. 如图,计划把河水引到水池的渠道最短,这样设计的依据是14. 如图,直线 AB ,CD, EF相交于点O,且AB ⊥ CD,∠ 1与∠ 2的关系是 — 15. 如图,D 是 AB 上一点,CE// BD, CB// ED, EA ⊥ BA 于点 A ,若∠ ABC=38°,19.( 7分)读句画图:如图,直线CD与直线AB相交于C, 根据下列语句画图:(1)过点P作PQ// CD,交AB于点Q;(2)过点P作PF⊥ CD,垂足为R;3 )若∠ DCB=120 °,猜想∠ PQC是多少度?并说明理由. 第19题图20.( 7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1 ,则小鱼的面积为;21 . ( 8 分)已知:如图,∠ BAf+ Z APD= , Z 1 = Z 2.求证:∠ E = Z F.C P D第21题图1 = ∠2 , ∠3 = ∠ 4,∠ 5 = ∠ 6.求证:ED / FB.23 . ( 8 分)如图,CD 平分∠ ACB, DE// BC ,∠ AED=80°,求∠ EDC 的度数.E第23题图24. (8 分)如图,已知 AB / CD, / B=65°, CM 平分∠ BCE ∠ MCN=90°,求∠ DCN 的度若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
人教版版七年级数学下册全套单元试卷含答案(共3套)
【本文档由书林工作坊整理发布,谢谢你的下载和关注!】单元测试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐1306.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=度.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=度.(易拉罐的上下底面互相平行)11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.12.(3分)如图所示,请写出能判定CE∥AB的一个条件.13.(3分)如图,已知AB∥CD,∠α=.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如图所示,同位角共有()A.1对B.2对C.3对D.4对【考点】J6:同位角、内错角、同旁内角.【分析】根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.【解答】解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选B.【点评】本题主要考查了同位角的定义,是需要识记的内容.2.(3分)下图中,∠1和∠2是同位角的是()A.B.C.D.【考点】J6:同位角、内错角、同旁内角.【分析】本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.【解答】解:A、∠1、∠2的两边都不在同一条直线上,不是同位角;B、∠1、∠2的两边都不在同一条直线上,不是同位角;C、∠1、∠2的两边都不在同一条直线上,不是同位角;D、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D.【点评】判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.(3分)如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°【考点】J2:对顶角、邻补角.【专题】11 :计算题.【分析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.【解答】解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.【点评】本题考查了利用邻补角的概念计算一个角的度数的能力.4.(3分)如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°【考点】K8:三角形的外角性质;JA:平行线的性质.【专题】11 :计算题.【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.【解答】解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选D.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的一个外角等于与它不相邻的两个内角的和.5.(3分)一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】JA:平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.【点评】此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.6.(3分)如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8【考点】JA:平行线的性质.【专题】11 :计算题.【分析】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD 所截形成得内错角,则∠4=∠8错误.【解答】解:∵AB∥CD,∴∠3=∠7,∠2=∠6,∠3+∠4+∠5+∠6=180°.故选D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题(本大题共8小题,每小题3分,共24分).7.(3分)如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=360°.【考点】JA:平行线的性质.【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【解答】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故答案为:360.【点评】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.8.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=70度.【考点】JA:平行线的性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:由题意得:直线a∥b,则∠2=∠1=70°【点评】本题应用的知识点为:两直线平行,内错角相等.9.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】JA:平行线的性质;K8:三角形的外角性质.【专题】11 :计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.10.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=70度.(易拉罐的上下底面互相平行)【考点】JA:平行线的性质;J2:对顶角、邻补角.【专题】12 :应用题.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行解题.【解答】解:因为易拉罐的上下底面互相平行,所以∠2与∠1的对顶角之和为180°.又因为∠1与其对顶角相等,所以∠2+∠1=180°,故∠2=180°﹣∠1=180°﹣110°=70°.【点评】考查了平行线的性质及对顶角相等.11.(3分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【考点】K7:三角形内角和定理;JA:平行线的性质.【专题】11 :计算题.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.12.(3分)如图所示,请写出能判定CE∥AB的一个条件∠DCE=∠A(答案不唯一).【考点】J9:平行线的判定.【专题】26 :开放型.【分析】能判定CE∥AB的,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以判定的条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.【解答】解:能判定CE∥AB的一个条件是:∠DCE=∠A或∠ECB=∠B或∠A+∠ACE=180°.故答案为:∠DCE=∠A(答案不唯一).【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.(3分)如图,已知AB∥CD,∠α=85°.【考点】JA:平行线的性质.【分析】过∠α的顶点作AB的平行线,然后根据两直线平行,同旁内角互补求出∠1,再根据两直线平行,内错角相等求出∠2,然后求解即可.【解答】解:如图,过∠α的顶点作AB的平行线EF,∵AB∥CD,∴AB∥EF∥CD,∴∠1=180°﹣120°=60°,∠2=25°,∴∠α=∠1+∠2=60°+25°=85°.故答案为:85°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作平行线.14.(3分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】PB:翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.三、(本大题共2小题,每小题5分,共10分)15.(5分)如图,已知AB∥CD,∠A=70°,求∠1的度数.【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠2=∠A,再根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.16.(5分)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系是互余.【考点】J3:垂线.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故答案是:互余.【点评】本题考查了垂直的定义.注意已知条件“EF为过点O的一条直线”告诉我们∠FOE为平角.四、(本大题共2小题,每小题6分,共12分)17.(6分)如图,已知∠1=70°,∠2=70°,∠3=60°,求∠4的度数.【考点】JB:平行线的判定与性质.【分析】先利用平行线的判定证明a∥b,再利用平行线的性质求∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴∠1=∠2,∴a∥b,∴∠3=∠4.又∠3=60°,∴∠4=60°.【点评】本题主要考查了平行线的判定和性质.重点考查了平行线的判定中同位角相等,两直线平行,及平行线的性质中两直线平行,内错角相等.18.(6分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;K7:三角形内角和定理.【专题】11 :计算题.【分析】先根据∠CDE=150°求出∠1的度数,再由平行线的性质及角平分线的性质求出∠2的度数,再根据三角形内角和定理即可求出答案.【解答】解:∵∠CDE=150°,∴∠1=180°﹣∠CDE=180°﹣150°=30°,∵AB∥CD,∴∠1=∠3=30°,∵BE平分∠ABC,∴∠1=∠3=∠2=30°,∴∠C=180°﹣∠1﹣∠2=180°﹣30°﹣30°=120°.【点评】本题考查的是平行线及角平分线的性质,三角形内角和定理,属较简单题目.五、(本大题共2小题,每小题8分,共16分)19.(8分)推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).【考点】JB:平行线的判定与性质.【专题】17 :推理填空题.【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.20.(8分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】JB:平行线的判定与性质.【专题】11 :计算题.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.【点评】综合运用了平行线的性质和判定,难度不大.六、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.【考点】JA:平行线的性质.【专题】14 :证明题.【分析】根据两直线平行,内错角相等的性质以及角的和差关系可证明.【解答】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【点评】重点考查了两直线平行,内错角相等的这一性质.22.(9分)如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,求∠1+∠2的度数.【考点】JA:平行线的性质.【分析】如图,过点O作OP∥AB,则AB∥OP∥CD.所以根据平行线的性质将(∠1+∠2)转化为(∠AOP+∠POC)来解答即可.【解答】解:如图,过点O作OP∥AB,则∠1=∠AOP.∵AB∥CD,∴OP∥CD,∴∠2=∠POC,∵∠AOP+∠POC=90°,∴∠1+∠2=90°.【点评】本题考查了平行线的性质.平行线性质定理:定理1:两直线平行,同位角相等.定理2:两直线平行,同旁内角互补.定理3:两直线平行,内错角相等.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【考点】JA:平行线的性质.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD 的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC 的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.【点评】此题考查了平行线的性质与角平分线的定义.注意掌握两直线平行,内错角相等,同位角相等是解此题的关键.24.(12分)如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.【考点】JA:平行线的性质;IJ:角平分线的定义;J3:垂线.【专题】11 :计算题.【分析】根据两直线平行,同旁内角互补求出∠BCE的度数,再根据角平分线的定义求出∠BCN的度数,然后再根据CM⊥CN即可求出∠BCM的度数.【解答】解:∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°.【点评】本题利用平行线的性质和角平分线的定义求解,比较简单.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】单元测试卷一、选择题:1.(3分)同一平面内如果两条直线不重合,那么他们()A.平行B.相交C.相交或垂直 D.平行或相交2.(3分)如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线()A.垂直B.相交C.平行D.不能确定3.(3分)一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°4.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°5.(3分)已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°6.(3分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.48.(3分)下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直9.(3分)∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,如果l1∥l2,那么必有()A.∠1=∠2 B.∠1+∠2=90°C.∠1+∠2=90°D.∠1是钝角,∠2是锐角10.(3分)如图,AB∥DE,那么∠BCD=()A.∠2﹣∠1 B.∠1+∠2 C.180°+∠1﹣∠2 D.180°+∠2﹣2∠111.(3分)如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有()A.3个B.2个C.1个D.0个12.(3分)下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.相等的角是对顶角D.等角的补角相等13.(3分)下列图中∠1和∠2是同位角的是()A.(1)(2)(3)B.(2)(3)(4)C.(3)(4)(5)D.(1)(2)(5)14.(3分)如图,已知∠1=∠2,则有()A.AB∥CD B.AE∥DF C.AB∥CD且AE∥DF D.以上都不对15.(3分)如图,直线AB与CD交于点O,OE⊥AB于O,则图中∠1与∠2的关系是()A.对顶角B.互余C.互补D.相等16.(3分)如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A.2 B.4 C.5 D.6二、填空题17.(3分)小玮家在小强家的北偏西75度,则小强家在小玮家的坐标方向是度.18.(3分)若一个角的余角是30°,则这个角的补角为°.19.(3分)一个角与它的补角之差是20°,则这个角的大小是.20.(3分)如果一个角的补角是150°,那么这个角的余角是度.21.(3分)小明从点A沿北偏东60°的方向到B处,又从B沿南偏西25°的方向到C处,则小明两次行进路线的夹角为.22.(3分)把“同角的余角相等”写成“如果…,那么…”的形式为.23.(3分)如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=度.24.(3分)把一张长方形纸条按图中那样折叠后,若得到∠AOB′=70°,则∠OGC=.25.(3分)如图,已知直线AB、CD相交于O,OE⊥AB,∠1=25°,则∠2=°,∠3=°,∠4=°.26.(3分)如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为.27.(3分)如图,直线l1∥l2,AB⊥CD,∠1=34°,求∠2的度数.28.(3分)如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD 的平分线FP相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=度.29.(3分)如图∠1=82°,∠2=98°,∠3=80°,则∠4=度.30.(3分)如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°.请你认真完成下面的填空.证明:∵∠B=∠BGD(已知)∴AB∥CD()∵∠DGF=∠F;(已知)∴CD∥EF()∵AB∥EF()∴∠B+∠F=180°().三、计算题:31.(10分)如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,则∠BOE=度,∠AOG=度.参考答案与试题解析一、选择题:1.(3分)同一平面内如果两条直线不重合,那么他们()A.平行B.相交C.相交或垂直 D.平行或相交【考点】J7:平行线;J1:相交线.【分析】根据在同一平面内两直线的位置关系进行解答即可.【解答】解:同一平面内如果两条直线不重合,那么他们平行或相交;故选D.【点评】此题考查了平行线,掌握在同一平面内两直线的位置关系是本题的关键,是一道基础题.2.(3分)如果两条平行线被第三条直线所截,那么其中一组同位角的角平分线()A.垂直B.相交C.平行D.不能确定【考点】JA:平行线的性质.【分析】由两条平行线被第三条直线所截,根据两直线平行,同位角相等,即可得一组同位角相等即∠FEB=∠GFD,又由角平分线的性质求得∠1=∠2,然后根据同位角相等,两直线平行,即可求得答案.【解答】解:∵AB∥CD,∴∠FEB=∠GFD,∵EM与FN分别是∠FEM与∠GFD的平分线,∴∠1=∠FEB,∠2=∠GFD,∴∠1=∠2,∴EM∥FN.故选C.【点评】本题考查了平行线性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.3.(3分)一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100°B.先左转80°,再右转80°C.先左转80°,再左转100°D.先右转80°,再右转80°【考点】JA:平行线的性质.【专题】2B :探究型.【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等画出图形,根据图形直接解答即可.【解答】解:如图所示:A、,故本选项错误;B、,故本选项正确;C、,故本选项错误;D、,故本选项错误.故选B.【点评】本题考查的是平行线的性质,根据题意画出图形是解答此题的关键.4.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°【考点】JA:平行线的性质.【分析】延长BE交CD于点F,根据平行线的性质求得∠BFD的度数,然后根据三角形外角的性质即可求解.【解答】解:延长BE交CD于点F.∵AB∥CD,∴∠B+∠BFD=180°,∴∠BFD=180°﹣∠B=180°﹣120°=60°,∴∠1=∠ECD+∠BFD=25°+60°=85°.故选C.【点评】本题考查了平行线的性质以及三角形外角的性质,正确作出辅助线是关键.5.(3分)已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°【考点】J3:垂线.【专题】11 :计算题;32 :分类讨论.【分析】根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.【解答】解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选C.【点评】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.6.(3分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°【考点】JB:平行线的判定与性质;J2:对顶角、邻补角.【专题】11 :计算题.【分析】本题首先应根据同位角相等判定两直线平行,再根据平行线的性质及邻补角的性质求出∠4的度数.【解答】解:∵∠1=∠2,∠5=∠1(对顶角相等),∴∠2=∠5,∴a∥b(同位角相等,得两直线平行);∴∠3=∠6=55°(两直线平行,内错角相等),故∠4=180°﹣55°=125°(邻补角互补).故选D.【点评】解答此题的关键是注意平行线的性质和判定定理的综合运用.7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【考点】JA:平行线的性质;IL:余角和补角.【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.8.(3分)下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直【考点】J7:平行线;J3:垂线;J5:点到直线的距离;J8:平行公理及推论.【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【解答】解:A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;B、过一点有且只有一条直线与已知直线平行,过直线外一点,故B选项错误;C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C选项错误;D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.故选:D.【点评】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.9.(3分)∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,如果l1∥l2,那么必有()A.∠1=∠2 B.∠1+∠2=90°C.∠1+∠2=90°D.∠1是钝角,∠2是锐角【考点】JA:平行线的性质.【分析】直接根据平行线的性质即可得出结论.【解答】解:∵l1∥l2,∠1和∠2是两条直线l1,l2被第三条直线l3所截的同旁内角,∴∠1+∠2=180°,即∠1+∠2=90°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.10.(3分)如图,AB∥DE,那么∠BCD=()A.∠2﹣∠1 B.∠1+∠2 C.180°+∠1﹣∠2 D.180°+∠2﹣2∠1【考点】JA:平行线的性质.【专题】2B :探究型.【分析】过点C作CF∥AB,由AB∥DE可知,AB∥DE∥CF,再由平行线的性质可知,∠1=∠BCF,∠2+∠DCF=180°,故可得出结论.【解答】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠BCF=∠1①,∠2+∠DCF=180°②,∴①+②得,∠BCF+∠DCF+∠2=∠1+180°,即∠BCD=180°+∠1﹣∠2.故选C.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.11.(3分)如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有()A.3个B.2个C.1个D.0个【考点】J9:平行线的判定.【专题】11 :计算题.【分析】①由∠1=∠2,利用内错角相等两直线平行得到AD∥BC,本选项不合题意;②由∠BAD=∠BCD,不能判定出平行,本选项不合题意;③由∠ABC=∠ADC且∠3=∠4,利用等式的性质一对内错角相等,进而得到AB∥CD,本选项符合题意;④由∠BAD+∠ABC=180°,利用同旁内角互补得到AD∥BC,本选项不合题意.【解答】解:①由∠1=∠2,得到AD∥BC,本选项不合题意;②由∠BAD=∠BCD,不能判定出平行,本选项不合题意;③由∠ABC=∠ADC且∠3=∠4,得到∠ABC﹣∠4=∠ADC﹣∠3,即∠ABD=∠CDB,得到AB∥CD,本选项符合题意;④由∠BAD+∠ABC=180°,得到AD∥BC,本选项不合题意,则符合题意的只有1个.故选C【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.12.(3分)下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.相等的角是对顶角D.等角的补角相等【考点】JB:平行线的判定与性质;IL:余角和补角;J2:对顶角、邻补角.【分析】根据平行线的判定即可判断A;根据平行线的性质即可判断B;举出反例图形即可判断C;根据互余互补的性质即可判断D.【解答】解:A、内错角相等,两直线平行,正确,故本选项错误;B、两直线平行,同旁内角互补,正确,故本选项错误;C、如图CD⊥AB,则∠ADC=∠BDC,但两个角不是对顶角,错误,故半选项正确;D、等角的补角相等,正确,故本选项错误;故选C.【点评】本题考查了平行线的性质和判定,对顶角,互余互补当知识点,主要考查学生的辨析能力.13.(3分)下列图中∠1和∠2是同位角的是()A.(1)(2)(3)B.(2)(3)(4)C.(3)(4)(5)D.(1)(2)(5)【考点】J6:同位角、内错角、同旁内角.【分析】根据同位角的定义,对每个图进行判断即可.【解答】解:(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点评】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.14.(3分)如图,已知∠1=∠2,则有()A.AB∥CD B.AE∥DF C.AB∥CD且AE∥DF D.以上都不对【考点】J9:平行线的判定.【分析】∠1、∠2是直线AE、DF被AD所截形成的内错角,根据内错角相等,两直线平行可知AE∥DF.【解答】解:∵∠1=∠2,∴AE∥DF(内错角相等,两直线平行).。
最新人教版七年级数学下册全册单元测试(附答案)
人教版数学七年级下册第五章平行线与相交线单元测试(含答案)一、单选题(共有12道小题)1.如图,将直线乙沿四的方向得到直线b若N『50° ,则N2的度数是()A.40°B.50°C.90°D.130°2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合, 含30。
角的直角三角板的斜边与纸条一边重合,含45。
角的三角板的一个顶点在纸条的另一边上,则N1的度数是(A. 30°B. 20°C.3.如图,Zl+Z2=180°90 a15° D. 14°\一 1,Z3=100° 则N4 等于()A. 70°B. 80°C.90°D. 100°4.如图々〃处等边△板的顶点£在直线r上,Zl= 20° ,则N2的度数为()上BA. 60°B. 45°5.如图,已知直线a〃8, N如131° oo o oC. 40°D.30°,则N2等于()则N2的度数是()7.如图,AB〃CD,EF交AB、CD于点E、F,EG平分NBEF,交CD于点G.若如1=40° , 则NEGF=()8.如图,4?是/见。
的平分线,AD//BC. ZB=30° ,则为()C. 70°D. 110°9.下列命题的逆命题不正确的是(A.平行四边形的对角线互相平分C.等腰三角形的两个底角相等C. 80°D. 120°)B.两直线平行,内错角相等D.对顶角相等10.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等,则N2的度数是()NE=3(T ,则NA的度数为(A. 30°B. °C. 35°D. ° 二、填空题(共有8道小题)13.已知三条不同的直线左6、。
2017七年级下册数学第七章平面直角坐标系练习题及答案
第七章 平面直角坐标系基础过关作业1.点P (3,2)在第_______象限.2.如图,矩形ABCD 中,A (-4,1),B (0,1),C (0,3),则点D 的坐标为_____.3.以点M (-3,0)为圆心,以5为半径画圆,分别交x 轴的正半轴,负半轴于P 、Q 两点,则点P 的坐标为_______,点Q 的坐标为_______.4.点M (-3,5)关于x 轴的对称点M 1的坐标是_______;关于y 轴的对称点M 2•的坐标是______. 5.已知x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ) A .(3,0) B .(0,3)C .(0,3)或(0,-3)D .(3,0)或(-3,0) 6.在平面直角坐标系中,点(-1,m 2+1)一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.在直角坐标系中,点P (2x-6,x-5)在第四象限中,则x 的取值范围是( )A .3<x<5B .-3<x<5C .-5<x<3D .-5<x<-3 8.如图,在所给的坐标系中描出下列各点的位置:A (-4,4)B (-2,2)C (3,-3)D (5,-5)E (-3,3)F (0,0)你发现这些点有什么关系?你能再找出一些类似的点吗?综合创新作业9.(综合题)在如图所示的平面直角坐标系中描出A (2,3),B (-3,-2),•C (4,1)三点,并用线段将A 、B 、C 三点依次连接起来,你能求出它的面积吗?10.如图,是儿童乐园平面图.请建立适当的平面直角坐标系,•写出儿童乐园中各娱乐设施的坐标.11.(创新题)在平面直角坐标系中,画出点A (0,2),B (-1,0),过点A 作直线L 1∥x 轴,过点B 作L 2∥y 轴,分析L 1,L 2上点的坐标特点,由此,你能总结出什么规律?12.(1)(2005年,福建三明)已知点P1(a,3)与P2(-2,-3)关于原点对称,则a=____.(2)(2005年,河南)在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是()A.(-3,300) B.(7,-500)C.(9,600) D.(-2,-800)培优作业13.(探究题)在直角坐标系中,已知点A(-5,0),点B(3,0),△ABC的面积为12,试确定点C的坐标特点.14.(开放题)已知平面直角坐标系中有6个点:A(3,3),B(1,1),C(9,1),D(5,3),E(-1,-9),F(-2,-12).请将上述的6个点分成两类,并写出同类点具有而另一类点不具有的一个特征(•特征不能用否定形式表达).答案:1.一 2.(-4,3) 3.(2,0);(-8,0)4.(-3,-5);(3,5)点拨:点(a,b)关于x轴的对称点的坐标是(a,-b),关于y轴的对称点的坐标是(-a,b).5.D 点拨:注意坐标与距离的关系.6.B 点拨:因为m 2+1>0,所以点(-1,m 2+1)一定在第二象限,故选B . 7.A 点拨:∵点P (2x-6,x-5)在第四象限,∴26050x x ->⎧⎨-<⎩解得3,5.x x >⎧⎨<⎩∴3<x<5,故选A .8.图略.这些点都在第二、第四象限的角平分线上, 再如:(-1,1),(1,-1),(,)等. 9.解:如答图,AB 交y 轴于点D (0,1), 则得S △ABC =S △ACD +S △BDC =12×4×(3-1)+12×4×│-2-1│ =4+6=10.10.解:以碰碰车为原点,分别以水平向右方向、竖直向上方向为x 轴、y•轴的正方向, 建立平面直角坐标系,则各娱乐设施的坐标为:碰碰车(0,0),海盗船(5,1),太空飞人(3,4),跳伞塔(1,5),魔鬼城(4,8),过山车(-2,7),碰碰船(-2,2).11.解:如答图,过点A (0,2)且平行于x 轴的直线L 上所有点的纵坐标都是2;过点B(-1,0)且平行于y 轴的直线L 上所有点的横坐标都是-1.由此得到的规律是:•平行于x 轴的直线上所有点的纵坐标都相同,平行于y•轴的直线上所有点的横坐标都相同.12.(1)2 点拨:点(a ,b )关于原点的对称点的坐标是(-a ,-b ). (2)B 13.解:如答图,设点C 的纵坐标为b ,则根据题意, 得12×AB ×│b │=12. ∵AB=3+5=8, ∴12×8×│b │=12. ∴b=±3.∴点C 的纵坐标为3或-3,即点C 在平行于x 轴且到x 轴的距离为3的直线上. 点拨:数形结合是解答此类题的较好方法. 14.解:点A 、B 、C 、D 为一类,它们都在第一象限. 点E 、F 为另一类,它们都在第三象限.点拨:本题还有其他分类方法,同学们可作进一步探索.。
人教版七年级数学下册 各单元测试题含答案
人教版七年级数学下册第5章相交线与平行线单元检测1.已知∠α和∠β的对顶角,若∠α=60°,则∠β的度数为( ) A.30° B.50° C.60° D.150°2. 下列说法正确的是( )A.在同一平面内,过直线外一点向该直线画垂线,垂足一定在该直线上B.在同一平面内,过线段或射线外一点向该线段或射线画垂线,垂足一定在该线段或射线上C.过线段或射线外一点不一定能画出该线段或射线的垂线D.过直线外一点与直线上一点画的一条直线与该直线垂直3. 如图,从位置P到直线公路MN共有四条小道,若用相同的速度行走,能最快到达公路MN的小道是( )A.PA B.PB C.PC D.PD4. 如图,已知直线a,b被直线c所截,则∠1和∠2是一对( )A.对顶角 B.同位角 C.内错角 D.同旁内角5. 下列说法正确的是( )A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线6. 下列选项中,不能判定两直线平行的是( )A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角相等,两直线平行D.同一平面内,垂直于同一条直线的两条直线平行7. 如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么下列结论错误的是( )A.∠BAO与∠CAO相等 B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余 D.∠ABO与∠DBO不等8. 下列语言是命题的是( )A.画两条相等的线段 B.等于同一个角的两个角相等吗C.延长线段AO到C,使OC=OA D.两直线平行,内错角相等9. 下列现象中属于平移的是( )A.升降电梯从一楼升到五楼 B.闹钟的钟摆运动C.树叶从树上随风飘落 D.方向盘的转动10. 如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是( )A.同角的余角相等 B.对顶角相等C.同角的补角相等 D.等角的补角相等11. 如图,已知AB,CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=________度.12. 如图所示,当剪刀口∠AOB增大20°时,∠COD增大_____度,其根据是_________________.13. 如图,BC⊥AC,CB=8 cm,AC=6 cm,点C到AB的距离是4.8 cm,那么点B到AC的距离是____ cm,点A到BC的距离是____ cm,A,B两点间的距离是____ cm.14. 如图所示,∠B与____________是直线_________和直线_______被直线________所截得的同位角.15. 如图是一个平行四边形,请用符号表示图中的平行线:_____________________________________.16. 如图,已知A,B,C三点及直线EF,过B点作AB∥EF,过B点作BC∥EF,那么A,B,C三点一定在同一条直线上,依据是:过直线外一点,______________________________与已知直线.17. 如图,已知∠B=40°,要使AB∥CD,需要添加一个条件,这个条件可以是__________________.18. 如图,已知l1∥l2,直线l与l1,l2相交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=130°,则∠2=___________度.19. 如图,三角形ABC经过平移得到三角形DEF,若∠BAC=65°,则∠EDF=____________.20. 完成下面推理过程:如图,∠1+∠2=230°,b∥c,则∠1,∠2,∠3,∠4各是多少度?解:∵∠1=∠2(__________________),∠1+∠2=230°,∴∠1=∠2=___________(填度数).∵b∥c,∴∠4=∠2=_______(填度数)(_______________________________),∠2+∠3=180°(________________________________),∴∠3=180°-∠2=____________(填度数).21. 如图,直线AB,CD,EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60°,∠BO F=90°,求∠AOF和∠FOC的度数.22. 如图,点A表示小雨家,点B表示小樱家,点C表示小丽家,她们三家恰好组成一个直角三角形,其中AC⊥BC,AC=900米,BC=1 200米,AB=1 500米.(1)试说出小雨家到街道BC的距离以及小樱家到街道AC的距离.(2)画出表示小丽家到街道AB距离的线段.23. 在书写艺术字时,常常运用画“平行线段”这种基本作图方法,如图是书写的字母“M”.(1)请从正面,上面,右侧三个不同方向上各找出一组平行线段,并用字母表示出来;(2)EF与A′B′有何位置关系?CC′与DH有何位置关系?24. 如图,已知BE∥DF,∠B=∠D,那么AD与BC有何位置关系?请说明理由.25. 如图,AB∥CD,AE平分∠MAB交CD于点F,NF⊥CD,垂足为点F.(1)求证:∠CAF=∠EFD;(2)若∠MCD=80°,求∠N FE的度数.参考答案:1---10 CABDD CDDAC11. 6212. 20 对顶角相等13. 8 6 1014. ∠FAC AC BC FB15. AB∥CD,AD∥BC16. 有且只有一条直线平行17. ∠BED=40°18. 2019. 65°20. 对顶角相等115°115° 两直线平行,内错角相等两直线平行,同旁内角互补65°21. 解:(1)∠CO E的邻补角为∠COF和∠EOD.(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF.(3)因为∠BOF=90°,所以∠AOF=180°-90°=90°.又因为∠AOC=∠BOD=60°,所以∠FOC=∠AOF+∠AOC=90°+60°=150°.22. 解:(1)小雨家到街道BC的距离为900米,小樱家到街道AC的距离为1 200米.(2)过点C作CD⊥AB于点D.线段CD的长表示小丽家到街道AB的距离,图略.23. 解:(1)正面:AB∥EF;上面:A′B′∥AB;右侧:DD′∥HH′. (2)EF∥A′B′,CC′⊥DH.24. 解:AD∥BC.理由:∵BE∥DF,∴∠E=∠F.又∵∠B=∠D,∴180°-∠B -∠E=180°-∠D-∠F,即∠EHB=∠FGD,∴AD∥BC.25. 解:(1)证明:∵AB∥CD,∴∠FAB =∠EFD .∵AE 平分∠MAB,∴∠CAF =∠FAB,∴∠CAF =∠EFD.(2)∵AB∥CD,∠MCD =80° ,∴∠CAB =∠MCD=80°.∵AE 平分∠MAB,∴∠CAF =12∠CAB=40°,∴∠EFD =∠CAF=40°.∵NF ⊥CD ,∴∠NFE =90°-∠EFD=90°-40°=50°.人教版七年级数学下册 第六章 实数 单元练习1.下列实数是无理数的是( )A.23 B. 3 C .0 D .-1.010 101 2. 下列计算正确的是( )A.9=±3 B .|-3|=-3 C.9=3 D .-32=9 3. 下列说法中错误的是( ) A.12是0.25的一个平方根 B .正数a 的两个平方根的和为0 C.916的平方根是34D .当x ≠0时,-x 2没有平方根4. 若m<0,则m的立方根是( )A.3m B.-3m C.±3m D.3-m5. 关于“10”,下面说法不正确的是( )A.它是数轴上离原点10个单位长度的点表示的数B.它是一个无理数C.若a<10<a+1,则整数a为3D.它表示面积为10的正方形的边长6. 实数a,b在数轴上的对应点的位置如图,且a=-2,b=3,则化简a2-b2-|a-b|的结果为( )A.-2 2 B.-2 3 C.0 D.2 37. 若x-3有意义,则x的取值范围是___________8. 如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__________.9. 观察分析下列数据:0,-3,6,-3,12,-15,18,…,根据以上数据排列的规律,第n个数据应是_______________________.(n为正整数)10. 下列四个数:-3,-3,-π,-1,其中最小的数是11. 将实数5,π,0,-6由小到大用“<”连起来,可表示为________________.12. 己知a,b为两个连续整数,且a<28<b,则ab=____.13. 在实数22,38,0,-π,16,13,0.101 001 000 1…(相邻两个1之间依次多一个0)中,有理数的个数为B ,无理数的个数为A ,则A -B =____. 14. 已知5=2.236,50=7.071,则0.5=_____________,500=___________ 15. 已知310=2.154,3100=4.642,则310 000=_______,-30.1=________. 16. 计算: (1)|2-4|+2;(2)(0.01+30.001)×144; (3)(78)2-4964-4717. 一个非负数的两个平方根分别是2a -1和a -5,则这个非负数是多少?18. 已知x -2的平方根是±1,2x +y +17的立方根是3,求x 2+y 2的平方根和立方根.19. 已知(x -12)2=169,(y -1)3=-0.125,求x -2xy -34y +x 的值.20. 如果5+13的小数部分为a,5-13的小数部分为b,求a+b的值.21. 如图,数轴上表示1,3的对应点分别为A,B,点C为点B关于点A的对称点,设点C所表示的数为x.(1)求实数x的值;(2)求(x+3)2的值.22. 在做浮力实验时,小华用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,溢出水的体积为40 cm3;小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.6 cm.请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器计算,结果精确到0.01 cm)参考答案:1---6 BCCAA B7. x≥38. 69. (-1)n+13(n-1)10. -π11. -6<0<5<π12. 3013. -114. 0.7071 22.3615. 21.54 -0.464216. (1) 解:原式=4-2+2=2.(2) 解:原式=(0.1+0.1)×12=0.2×12=2.4. (3) 解:原式=78-78-47=-47.17. 解:根据题意,有(2a -1)+(a -5)=0,解得a =2.∴这个非负数为(2a -1)2=(2×2-1)2=9.18. 解:∵x -2的平方根是±1,∴x -2=1,则x =3.∵2x +y +17的立方根是3,∴2x +y +17=27.把x =3代入2x +y +17=27中,得y =4.∴x 2+y 2=32+42=25,∴x 2+y 2的平方根是±5,立方根是325. 19. 解:依题意,得x -12=±13,∴x =25或x =-1. ∵x ≥0,∴x =25.∵y -1=-0.5,∴y =0.5,∴x -2xy -34y +x =25-2×25×0.5-34×0.5+25=-3. 20. 解:根据题意,得a =5+13-8,b =5-13-1, 则a +b =5+13-8+5-13-1=1.21. 解:(1)由数轴上表示1,3的对应点分别为A ,B , 点C 为点B 关于点A 的对称点,得x +32=1,解得x =2- 3. (2)当x =2-3时,(x +3)2=4.22. 解:设铁块的棱长为a cm ,根据题意,得a 3=40,解得a≈3.42.设烧杯内部的底面半径为r cm ,根据题意,得πr 2×0.6=40,解得r≈4.61(舍去负值),则烧杯内部的底面半径约是4.61 cm ,铁块的棱长约是3.42 cm.第七章 平面直角坐标系章末检测一、选择题1.在直角坐标系中,点P(2,-3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限答案 D ∵在直角坐标系中,点P(2,-3)的横坐标为正,纵坐标为负,∴点P在第四象限,故选D.2.如果将电影院的8排3号简记为(8,3),那么3排8号可以简记为( )A.(8,3)B.(3,8)C.(83,38)D.(38,83)答案 B 因为8排3号简记为(8,3),所以括号内的前一个数表示这个座位所在的排数,后一个数表示这个座位所在的列数,由此可知3排8号可以简记为(3,8).3.点P(m+3,m+1)在x轴上,则P点坐标为( )A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)答案 B ∵点P(m+3,m+1)在x轴上,∴m+1=0,解得m=-1.∴m+3=2,则P点坐标为(2,0).4.点P(m,1)在第二象限内,则点Q(-m,0)在( )A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上答案 A 由点P(m,1)在第二象限内可判断m是负数,所以-m是正数,所以点Q(-m,0)在x轴的正半轴上. 5.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A'的坐标是( )A.(0,1)B.(6,1)C.(0,-3)D.(6,-3)答案 A 根据平移的性质,点A(3,-1)先向左平移3个单位,再向上平移2个单位,得到A'(0,1),故选A. 6.图案设计的手工课上,李明在平面直角坐标系中,把一朵花的图案向左平移了3个单位长度,而花的形状、大小都不变,则图案上各点的坐标的变化情况为( )A.横坐标加3,纵坐标不变B.纵坐标加3,横坐标不变C.横坐标减小3,纵坐标不变D.纵坐标减小3,横坐标不变答案 C 将直角坐标系中的一个图案向左或向右平移a(a>0)个单位长度,而图案的形状、大小都不变,相当于将图案中各点的横坐标都减去或加上a,纵坐标不变.7.已知(a-2)2+=0,则P(-a,-b)在( )A.第一象限B.第二象限C.第三象限D.第四象限答案 B ∵(a-2)2+=0,∴a-2=0,b+3=0,∴a=2,b=-3.则-a=-2,-b=3,∴点P在第二象限.8.在直角坐标系内,下列各结论成立的是( )A.点(4,3)与点(3,4)表示同一个点B.平面内的任一点到两坐标轴的距离相等C.若点P(x,y)的坐标满足xy=0,则点P在坐标轴上D.点P(m,n)到x轴的距离为m,到y轴的距离为n答案 C 对于C,由xy=0得x=0或y=0.当x=0时,点P在y轴上;当y=0时,点P在x轴上.所以当xy=0时,点P在坐标轴上.二、填空题9.七年级(2)班座位有5排8列,陈晨的座位在2排4列,简记为(2,4),班级座次表上写着刘畅(1,2),那么刘畅的座位是.答案1排2列10.点A(3,-4)到y轴的距离为,到x轴的距离为.答案3;4解析点到x轴的距离是该点纵坐标的绝对值,到y轴的距离是该点横坐标的绝对值.11.在平面直角坐标系中,已知点A(3,2),AC⊥x轴,垂足为C,则C点的坐标为.答案(3,0)解析AC⊥x轴,则AC∥y轴,故点A与点C的横坐标相同.又C点在x轴上,所以点C的坐标为(3,0).12.若x轴上的点Q到y轴的距离为6,则点Q的坐标为.答案(6,0)或(-6,0)解析x轴上的点的纵坐标为0,x轴上到y轴距离为6的点有两个,分别是(6,0)、(-6,0),所以点Q的坐标为(6,0)或(-6,0).13.若点A(-3,m+1)在第二象限的角平分线上,则m= .答案2解析第二象限的角平分线上的点的横、纵坐标互为相反数,∴-3+m+1=0,解得m=2(经检验满足题意). 14.将点A(1,-3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab= .答案-15解析向右平移2个单位就是横坐标加2,即a=1+2=3;向下平移2个单位就是纵坐标减2,即b=-3-2=-5,∴ab=3×(-5)=-15.15.四边形ABCD在平面直角坐标系中的位置如图所示,若AB⊥AD,AB∥CD,且AB=5,A点坐标为(-2,7),则B 点坐标为.答案(3,7)解析由AB∥CD可知点B的纵坐标与点A的纵坐标相同,设AB与y轴交于点E,则BE=AB-AE=AB-OD=5-2=3,即点B的横坐标为3.16.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),……,则点A2015的坐标为.答案(-504,504)解析由图形以及叙述可知除A1点和第四象限内点外的各个点都位于象限的角平分线上,第一象限内的点对应的字母的下标是2,6,10,14,…,即4n-2(n是正整数,n是对应点的横坐标的绝对值);同理,第二象限内的点对应的字母的下标是4n-1(n是正整数,n是对应点的横坐标的绝对值);第三象限内的点对应的字母的下标是4n(n是正整数,n是对应点的横坐标的绝对值);第四象限内的点对应的字母的下标是1+4n(n是正整数,n是对应点的纵坐标的绝对值).令2015=4n-1,则n=504,当2015等于4n+1或4n或4n-2时,不存在这样的正整数n.故点A2015在第二象限的角平分线上,且其坐标为(-504,504).三、解答题17.如图,将一小船先向左平移6个单位长度,再向下平移5个单位长度.试确定A、B、C、D、E、F、G平移后对应点的坐标,并画出平移后的图形.答案要想把小船先向左平移6个单位长度,再向下平移5个单位长度,首先要确定关键点A、B、C、D、E、F、G,并把关键点分别向左平移6个单位长度,再向下平移5个单位长度.根据点的坐标变化规律,由A(1,2)、B(3,1)、C(4,1)、D(5,2)、E(3,2)、F(3,4)、G(2,3),可确定平移后对应点的坐标分别为A'(-5,-3)、B'(-3,-4)、C'(-2,-4)、D'(-1,-3)、E'(-3,-3)、F'(-3,-1)、G'(-4,-2),根据原图的连接方式连接即可得到平移后的图形(如图).18.如图,标明了李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标;(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1)→(-1,-2)→(1,-2)→(2,-1)→(1,-1)→(1,3)→(-1,0)→(0,-1)→(-2,-1)的路线转了一圈,写出他路上经过的地方;(3)连接(2)中各点所形成的路线构成了什么图形?解析(1)学校(1,3),邮局(0,-1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局.(3)一只小船.19.“若点P、Q的坐标分别是(x1,y1)、(x2,y2),则线段PQ中点的坐标为”.如图7-3-6,已知点A、B、C的坐标分别为(-5,0)、(3,0)、(1,4),利用上述结论求线段AC、BC的中点D、E的坐标,并判断DE与AB的位置关系.答案由点A、B、C的坐标分别为(-5,0)、(3,0)、(1,4),得D(-2,2),E(2,2),∵点D、E的纵坐标相等,且不为0,∴DE∥x轴,又∵AB在x轴上,∴DE∥AB.20.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察对应点的坐标之间的关系,解答下列问题:(1)写出点A,点D,点B,点E,点C,点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是上述变换下的一对对应点,求a,b的值.答案(1)A(2,3),D(-2,-3);B(1,2),E(-1,-2);C(3,1),F(-3,-1).对应点的坐标特征:横坐标互为相反数,纵坐标互为相反数.(2)由(1)可得a+3=-2a,4-b=-(2b-3),解得a=-1,b=-1.21.如图,有一块不规则四边形地皮ABCD,各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0)(图上1个单位长度表示100m).现在想对这块地皮进行规划,需要确定它的面积.(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来的四边形ABCD的各个顶点的纵坐标保持不变,横坐标增加2,所得四边形的面积又是多少?答案 (1)将四边形分割成如图所示的长方形、直角三角形,可求出各自的面积,各面积之和即为该四边形的面积.因图上1个单位长度代表100 m, 则S 长方形①=900×600=540 000(m 2), S 直角三角形②=×200×800=80 000(m 2), S 直角三角形③=×200×900=90 000(m 2), S 直角三角形④=×300×600=90 000(m 2). 所以四边形ABCD 的实际面积为800 000 m 2.(2)把原来的四边形ABCD 的各个顶点的纵坐标保持不变,横坐标增加2,就是将原来的四边形向右平移2个单位长度,所以其面积不变,还是800 000 m 2.七年级数学第八章《二元一次方程组》单元检测题考试时间:100分钟; 满分:120分班级: 姓名: 学号: 分数:一、选择题(本题共10个小题,每小题3分,共30分)1.下列各式是二元一次方程的是( )A .21=+b aB .532=-n mC .2x+3=5D .3=xy2.若⎩⎨⎧==72y x 是方程ax -3y=2的一个解,则a 为 ( )A .8B .223 C .-223 D .-2193.解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是 ( )A .代入法B .加减法C .试值法D .无法确定⎩⎨⎧=+=+32y x y x第16题图4.方程组 的解为⎩⎨⎧=y x 2,则被遮盖的两个数分别为( )A .1,2B .1,3C .5,1 (D)2,45.下列方程组,解为⎩⎨⎧-=-=21y x 是( )A .⎩⎨⎧=+=-531y x y xB .⎩⎨⎧-=+=-531y x y xC .⎩⎨⎧=-=-133y x y xD .⎩⎨⎧=+-=-533y x y x6.买钢笔和铅笔共30支,其中钢笔的数量比铅笔数量的2倍少3支.若设买钢 笔x 支,铅笔y 支,根据题意,可得方程组( )A .⎩⎨⎧+==+3230x y y xB .⎩⎨⎧-==+3230x y y xC .⎩⎨⎧+==+3230y x y xD . ⎩⎨⎧-==+3230y x y x7.已知x 、y 满足方程组⎩⎨⎧=+=+7282y x y x ,则x +y 的值是( )A .3B .5C .7D .98.已知n m n m y x -+53与-9x 7-m y 1+n 的和是单项式,则m ,n 的值分别是( )A .m=-1,n=-7B .m=3,n=1C .m=1029,n=56D .m=45,n=-29.根据图中提供的信息,可知一个杯子的价格是( )A .51元B .35元C .8元D .7.5元10.已知二元一次方程3x +y =0的一个解是⎩⎨⎧==b y ax ,其中a ≠0,那么( )A. a b >0B. a b =0C. a b<0 D. 以上都不对二、填空题(本题共6个小题,每小题4分,共24分) 11.请你写出一个有一解为的二元一次方程: .12.已知方程3x +5y -3=0,用含x 的代数式表示y ,则y=________. 13.若x a-b-2-2y a +b =3是二元一次方程,则a=________ , b=________. 14.方程4x +3y =20的所有非负整数解为: . 15.某商品成本价为t 元,商品上架前定价为s 元,按定价的8折销售后获利45元。
2017年春季学期人教版七年级数学下册10.3从数据谈节水同步练习题含答案
人教版七年级下册第10章数据的收集、整理与描述10.3从数据谈节水同步练习题1.某市近几年连年干旱,市政府采取各种措施扩大水源,措施之一是投资建设水厂,如图是该市水资源扇形图,请根据图中圆心角大小计算出长江水在总供水中所占的百分比为( )A.64% B.60% C.54% D.74%2.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,5月份这100户节约用水的情况A.1.00吨B.1.15吨C.1.23吨D.无法确定3.为了解居民月用水量,某市对某区居民用水量进行了抽样调查,并制成如下直方图.(1)这次一共抽查了_______户;(2)用水量不足10吨的有______户,用水量超过16吨的有______户;(3)假设该区有8万户居民,估计用水量少于10吨的有多少户?4.在某市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:(1)样本中喜欢B项目的人数百分比是________;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?5.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的一次会议所用矿泉水的浪费情况进行调查.为期半天的会议中,每人发一瓶500毫升的矿泉水,会后对所发矿泉水喝剩的情况进行统计.大致可分为四种:A.全部喝完;B.喝剩约13;C.喝剩约一半;D.开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图:根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费矿泉水约多少毫升?(计算结果保留整数)(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40到60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500毫升/瓶)约有多少瓶?(可使用科学计算器)6.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:(1)填空:a=______,b=________;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165 cm的学生大约有多少人?7.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图的统计图(图中信息不完整).已知A,B两组捐款人数的比为1∶5.捐款人数分组统计表请结合以上信息解答下列问题:(1)a=______,本次调查的样本容量是______;(2)先求出C组的人数,再补全“捐款人数分组统计图①”;(3)若该学校自愿捐款的学生有1500人,请估计捐款不少于30元的学生有多少人?答案:1. 12. B3. (1) 100(2) 55 10(3) 解:55100×80000=44000(户)4. (1) 20%(2) 总人数是44÷44%=100(人),∴B项目的人数是100×20%=20(人),补图略(3)1000×44%=440(人),则全校喜欢乒乓球的人数是440人5. 解:(1)25÷50%=50(人),C人数为50-10-25-5=10(人),补图略(2)(25×13×500+10×12×500+5×500)÷50≈183(毫升)(3)该单位每年参加此类会议的总人数约为2400人~3600人,则浪费矿泉水约为3000×183÷500=1098(瓶)6. (1) 10 28%(2)补图略(3)600×(28%+12%)=240(人),估计身高不低于165 cm的学生大约有240人7. 解:(1)20500点拨:∵A,B两组捐款人数的比为1∶5,即a∶100=1∶5,解得a=20.∵A,B两组捐款人数为20+100=120(人),A,B两组捐款人数所占的百分比为1-8%-28%-40%=24%,∴样本容量为120÷24%=500(2)C组的人数为500×40%=200(人),补图略(3)1500×(28%+8%)=540(人),即捐款不少于30元的学生估计有540人。
2017-2018学年人教版七年级数学下册1-6单元测试(含答案)
单元测试(一)相交线与平行线(时间:40分钟满分:100分)一、选择题(题号12345678910答案1.下列各组角中,∠1与∠2互为对顶角的是()2.如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于()A.148°B.132°C.128°D.90°3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=()A.110°B.70°C.60°D.50°4.下面的每组图形中,左图平移后可以得到右图的是()5.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.56°D.66°6.如图,描述同位角、内错角、同旁内角关系不正确的是()A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角7.如图,下列条件,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠1=∠4C.∠2+∠3=180°D.∠3=∠58.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.3 B.2 C.1 D.09.如图所示,下列说法中错误的是()A.∵∠A+∠ADC=180°,∴AB∥CD B.∵AB∥CD,∴∠ABC+∠C=180°C.∵AD∥BC,∴∠3=∠4 D.∵∠1=∠2,∴AD∥BC10.如图,把一张长方形纸片ABCD沿EG折叠后,点A,B分别落在A′,B′的位置上,EA′与BC交于点F.已知∠1=130°,则∠2的度数是()A.50°B.80°C.65°D.40°二、填空题(本大题共6小题,每小题4分,共24分)11.命题“同旁内角互补,两直线平行”写成“如果……那么……”的形式是________________________.它是________命题(填“真”或“假”).12.自来水公司为某小区A改造供水系统,如图,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是____________.13.如图,直线AB,CD,EF相交于点O,∠AOF=3∠BOF,∠AOC=90°,那么∠COE =____________.14.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=____________.15.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B 两岛的视角∠ACB=____________.16.如图,a∥b,PA⊥PB,∠1=35°,则∠2的度数是____________.三、解答题(共46分)17.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF =∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(________________________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(________________________________).∴∠A=∠EDF(________________________).18.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.19.(8分)(1)如图,点M是三角形ABC中AB的中点,经平移后,点M落在M′处.请在正方形网格中画出三角形ABC平移后的图形三角形A′B′C′;(2)若图中每个小网格的边长为1,则三角形ABC的面积为________.20.(10分)如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)求证:AB∥CD;(2)求∠KOH的度数.21.(12分)(1)如图1,已知任意三角形ABC,过点C作DE∥AB,求证:∠DCA=∠A;(2)如图1,求证:三角形ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(3)如图2,求证:∠AGF=∠AEF+∠F;(4)如图3,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F的度数.单元测试(二) 实数(时间:40分钟 满分:100分)一、选择题(题号 1 2 3 4 5 6 7 8 9 10 答案1.9的平方根是()A .±3B .-3C .3D .± 32.下列说法不正确的是()A .8的立方根是2B .-8的立方根是-2C .0的立方根是0D .125的立方根是±5 3.下列运算中,正确的是()A .252-1=24B .914=312C .81=±9D .-(-13)2=-134.在实数3.141 59,364,2,1.010 010 001,4.21··,π,227中,无理数有()A .1个B .2个C .3个D .4个5.如图,点P 在数轴上表示的数可能是()A .-2.3B .- 3C . 3D .- 56.有下列说法:①-3是81的平方根;②-7是(-7)2的算术平方根;③25的平方根是±5;④-9的平方根是±3;⑤0没有算术平方根.其中,正确的有()A .0个B .1个C .2个D .3个 7.下列结论正确的是()A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间还有无数个点8.在0到20的自然数中,立方根是有理数的共有()A .1个B .2个C .3个D .4个 9.如果m =7-1,那么m 的取值范围是() A .0<m<1 B .1<m<2 C .2<m<3 D .3<m<410.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定[-10+1]的值为()A .-4B .-3C .-2D .1 二、填空题(本大题共6小题,每小题4分,共24分)11.19的算术平方根是________. 12.下列四个实数:-5,0,π,3中,最大的是________.13.3-2的相反数是________,绝对值是________.14.小红做了一个棱长为5 cm 的正方体盒子,小明说:“我做的盒子的体积比你的大218 cm 3.”则小明做的盒子的棱长为________cm . 15.比较大小:5-12________58. 16.如图,已知直径为1个单位长度的圆形纸片上的点A 与数轴上表示-1的点重合.若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后点A 与数轴上的点A′重合,则点A′表示的数为____________.三、解答题(共46分)17.(6分)求下列各式的值:(1)-1625; (2)±0.016 9; (3)0.09-3-8.18.(6分)将下列各数填入相应的集合内. -7,0.32,12,0,8,12,-364,π,0.303 003…. (1)有理数集合:{ …}; (2)无理数集合:{ …}; (3)负实数集合:{ …}. 19.(12分)计算:(1)|-2|+(-3)2-4;(2)2+32-52;(3)6(16-6);(4)||3-2+||3-2-||2-1.20.(10分)已知一个正方体的体积是1 000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm 3,问截得的每个小正方体的棱长是多少?21.(12分)借助于计算器计算下列各题:(1)11-2; (2) 1 111-22;(3)111 111-222; (4)11 111 111-2 222. 仔细观察上面几道题及其计算结果,你能发现什么规律?并用发现的这一规律直接写出下面的结果:=__________________.单元测试(三)平面直角坐标系(时间:40分钟满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案1.在平面直角坐标系中,点(-5,0.1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在平面直角坐标系中,点M的坐标为()A.(3,-2) B.(-2,3) C.(-3,2) D.(2,-3)3.在平面直角坐标系中,第四象限的点M到横轴的距离为28,到纵轴的距离为6,则点M 的坐标为()A.(6,-28) B.(-6,28) C.(28,-6) D.(-28,-6)4.在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,则图形与原图形相比()A.向右平移了5个单位长度B.向左平移了5个单位长度C.向上平移了5个单位长度D.向下平移了5个单位长度5.若y轴上的点A到x轴的距离为3,则点A的坐标为()A.(3,0) B.(3,0)或(-3,0) C.(0,3)或(0,-3) D.(0,3)6.如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A 的对应点A1的坐标为()A.(4,3) B.(2,4) C.(3,1) D.(2,5)7.如图,小明家相对于学校的位置,下列描述最正确的是()A.在距离学校300米处B.在学校的西北方向C.在西北方向300米处D.在学校西北方向300米处8.如图是天安门周围的景点分布示意图.若以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),则表示博物馆的点的坐标是()A.(1,0) B.(2,0) C.(1,-2) D.(1,-1)9.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是()A.4 B.3 C.2 D.1二、填空题(本大题共6小题,每小题4分,共24分)11.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是____________________.12.在平面直角坐标系中,将点A向右平移了3个单位长度得到点B(-2,1),则点A的坐标为____________.13.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是____________.14.如图,把图1中的圆A经过平移得到圆O(如图2),如果图1中圆A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为____________.15.已知AB∥x轴,A点的坐标为(-3,2),并且AB=4,则B点的坐标为____________.16.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为________.三、解答题(共46分)17.(6分)图中标明了小英家附近的一些地方.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到了家里,写出路上她经过的地方.18.(10分)(1)写出如图1所示的平面直角坐标系中A,B,C,D四个点的坐标,并分别指出它们所在的象限;(2)如图2是小明家(图中点O)和学校所在地的简单地图,已知OA=2 cm,OB=2.5 cm,OP=4 cm,C为OP的中点.①请用距离和方位角表示图中商场、学校、公园、停车场分别相对于小明家的位置;②如果学校距离小明家400 m,那么商场和停车场分别距离小明家多少米?图1 图219.(8分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把三角形ABO向下平移3个单位长度,再向右平移2个单位长度后得三角形DEF.(1)直接写出A,B,O三个对应点D,E,F的坐标;(2)求三角形DEF的面积.20.(10分)小明给如图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?21.(12分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.单元测试(四) 二元一次方程组 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列不属于二元一次方程组的是()A .⎩⎪⎨⎪⎧x +y =3x -y =1B .⎩⎪⎨⎪⎧x =3x -y =1C .⎩⎪⎨⎪⎧x +y =3y =1D .⎩⎪⎨⎪⎧xy =3x -y =12.利用代入消元法解方程组⎩⎪⎨⎪⎧2x +3y =6,①5x -3y =2,②下列做法正确的是()A .由①得x =6+3y2B .由①得y =6-2x3C .由②得y =-2+3x5D .由②得y =5x +233.方程组⎩⎪⎨⎪⎧x -y =2,2x +y =4的解是()A .⎩⎪⎨⎪⎧x =1y =2 B .⎩⎪⎨⎪⎧x =3y =1C .⎩⎪⎨⎪⎧x =0y =-2D .⎩⎪⎨⎪⎧x =2y =04.若-2a m b 4与5a n +2b 2m +n 可以合并成一项,则mn 的值是()A .2B .0C .-1D .15.以二元一次方程组⎩⎪⎨⎪⎧x +3y =7,y -x =1的解为坐标的点(x ,y)在平面直角坐标系的()A .第一象限B .第二象限C .第三象限D .第四象限6.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可写出x 与y 的关系是()A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-47.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A .6种B .7种C .8种D .9种8.小亮解方程组⎩⎪⎨⎪⎧2x +y =●,2x -y =12的解为⎩⎪⎨⎪⎧x =5,y =★,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A .⎩⎪⎨⎪⎧●=8★=2B .⎩⎪⎨⎪⎧●=8★=-2 C .⎩⎪⎨⎪⎧●=-8★=2 D .⎩⎪⎨⎪⎧●=-8★=-29.若方程组⎩⎪⎨⎪⎧3x +5y =m +2,2x +3y =m 的解x 与y 的和为0,则m 的值为()A .-2B .0C .2D .410.内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是()A .⎩⎨⎧76x +76y =17076x -76y =20B .⎩⎪⎨⎪⎧x -y =2076x +76y =170C .⎩⎪⎨⎪⎧x +y =2076x -76y =170D .⎩⎪⎨⎪⎧x +y =2076x +76y =170二、填空题(本大题共6小题,每小题4分,共24分)11.若一个二元一次方程组的解为⎩⎪⎨⎪⎧x =18,y =-10,则这个方程组可以是______________________.12.用加减消元法解方程组⎩⎪⎨⎪⎧3x +y =-1,①4x +2y =1,②由①×2-②得______________.13.若x 3m -2-2y n -1=5是二元一次方程,则m +n =________.14.在代数式ax 2+bx +c 中,x 分别取0,1,-1时,其值分别为-5,-6,0,则a =________,b =________,c =________.15.若|x -2y +1|+(2x -y -5)2=0,则x +y 的值为________.16.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载乘客的人数为________.三、解答题(共46分)17.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧x -2y =1,3x -5y =8; (2)⎩⎪⎨⎪⎧x 2-y +23=-2,3x +5y =-1.18.(8分)已知⎩⎪⎨⎪⎧x =2,y =-3是关于x ,y 的二元一次方程3x =y +a 的解,求a(a -1)的值.19.(8分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =5,4ax +5by =-22与⎩⎪⎨⎪⎧2x -y =1,ax -by -8=0有相同的解,求a ,b的值.20.(10分)某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)(2)全部售完500箱矿泉水,该商场共获得利润多少元?21.(12分)为庆祝“六一”儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面如果两所学校分别单独购买服装,一共应付5 000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱? (2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.单元测试(五) 不等式与不等式组 (时间:40分钟 满分:100分)一、选择题(1. 1.其中是不等式的有() A .2个 B .3个 C .4个 D .5个 2.不等式3x ≤2(x -1)的解集为()A .x ≤-2B .x ≥-2C .x ≤-1D .x ≥-13.若m>n ,则下列不等式不一定成立的是()A .m +2>n +2B .2m>2nC .m 2>n 2D .m 2>n 24.下列说法中正确的是()A .y =3是不等式y +4<5的解B .y =2是不等式3y ≥6的解C .不等式3y <11的解是y =3D .y =3是不等式3y <11的解集5.不等式组⎩⎪⎨⎪⎧2x -1<3,-x 2≤1的整数解有()A .1个B .2个C .3个D .4个6.若代数式14a 的值不大于12a +1的值,则a 应满足()A .a ≥-4B .a ≤-4C .a >4D .a ≤47.小丽同学准备用自己节省的零花钱购买一部手机,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1 080元,设x 个月后小丽至少有1 080元,则可列计算月数的不等式为()A .30x +750>1 080B .30x -750≥1 080C .30x -750≤1 080D .30x +750≥1 0808.已知点P(2a -1,1-a)在第一象限,则a 的取值范围在数轴上表示正确的是()9.若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0有解,则a 的取值范围是()A .a ≤3B .a<3C .a<2D .a ≤210.某种毛巾原零售价每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,使第一种办法比第二种办法得到的优惠多,最少要购买毛巾()A .7条B .6条C .5条D .4条 二、填空题(本大题共6小题,每小题4分,共24分)11.用不等式表示,比x 的5倍大1的数不小于x 的一半与4的差:________________. 12.数轴上实数b 的对应点的位置如图所示,比较大小:12b +1________0(用“<”或“>”填空).13.不等式组⎩⎪⎨⎪⎧1-x >0,3x >2x -4的非负整数解是____________.14.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,设这批手表有x 块,则根据题意可列不等式________________.15.如果不等式组⎩⎪⎨⎪⎧x -1>0,x -a <0无解,那么a 的取值范围是____________.16.定义新运算,对于任意实数a ,b 都有:a ⊕b =a(a -b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x <13的解集为____________. 三、解答题(共46分)17.(10分)(1)解不等式:5(x -2)+8<6(x -1)+7;(2)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),②并在数轴上表示其解集.18.(6分)若代数式3(2k +5)2的值不大于代数式5k +1的值,求k 的取值范围.19.(8分)已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,①12(x -2a )+12x<0,②并依据a 的取值情况写出其解集.20.(10分)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.21.(12分)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则购买平板电脑最多多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?单元测试(六)数据的收集、整理与描述(时间:40分钟满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案1.下列调查适合作抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班同学进行调查B.了解某小区居民的防火意识,对你们班同学进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解观众对所看电影的评价情况,对座位号是奇数号的观众进行调查3.某市2018年中考考生约为4万人,从中抽取2 000名考生的数学成绩进行分析.在这个问题中,样本是指()A.2 000 B.2 000名考生的数学成绩C.4万名考生的数学成绩D.2 000名考生4.天籁音乐行出售三种音乐CD,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售量的百分比,应该用()A.扇形统计图B.折线统计图C.条形统计图D.以上都可以5.下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24 ℃C.14:00气温最高D.气温是30 ℃的时刻为16:006.某学校教研组对七年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图.据此统计图估计该校七年级支持“分组合作学习”方式的学生数约为(含非常喜欢和喜欢两种情况)()A.216 B.252 C.288 D.324第6题图7.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.80 B.90 C.144 D.2008.对某班最近一次数学测试成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为A等(80分以上,不含80分)的百分率为()A.24% B.40% C.42% D.50%第8题图9.某校公布了反映该校各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲、乙、丙10.小敏为了了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,以下结论错误的是()A.被抽取的天数为50天B.空气轻微污染的天数所占比例为10%C.扇形统计图中表示“优”的扇形的圆心角度数57.6°D.估计该市这一年(365天)达到优和良的总天数不多于290天二、填空题(本大题共6小题,每小题4分,共24分)11.如果你是班长,想组织一次春游活动,用问卷的形式向全班同学进行调查,你设计的调查内容是(请列举一条)____________________________.12.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是________.13.在一次数学测试中,将某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组占全班总数的20%,则第六组的频数是________.14.学校为七年级学生订制校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下:型号身高(x/cm) 频数小号145≤x<155 22中号155≤x<165 45大号165≤x<175 28特大号175≤x<185 5已知该校七年级学生有800名,那么中号校服应订制________套.15.某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有________名.16.某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频数占被调查学生总人数的百分比之和为90%,最后一组的频数是15,则此次抽样调查的人数为________人.(注:横轴上每组数据包含最小值不包含最大值)三、解答题(共46分)17.(6分)下面这几个抽样调查选取样本的方法是否合适?并说明理由.(1)为调查全校学生对购买正版书籍、唱片和软件的支持率,在全校所有的班级中任意抽取8个班级,调查这8个班所有学生对购买正版书籍、唱片和软件的支持率;(2)电视台为调查正在播出的某电视节目的收视率情况,调查全国各省所有用户.18.(8分)如图,该折线图是反映小明家在某一周内每天的购菜所需费用情况.(1)在星期________购菜金额最小;(2)小明家在这一个星期中平均每天购菜多少元?(精确到1元)19.(10分)2017年8月8日,九寨沟发生了里氏7.0级地震,某中学组织了献爱心捐款活动,该校数学兴趣小组对本校学生献爱心捐款额做了一次随机抽样调查,并绘制了不完整的频数分布表和频数分布直方图(每组含前一个边界值,不含后一个边界值).捐款额(元) 频数百分比5≤x<10 5 10%10≤x<15 a 20%15≤x<20 15 30%20≤x<25 14 b25≤x<30 6 12%总计100%(1)填空:a=________,b=________;(2)补全频数分布直方图;(3)该校共有1 600名学生,估计这次活动中爱心捐款额不低于20元的学生有多少人?20.(10分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有________人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是________度;(4)已知该校共有学生3 600人,请根据调查结果估计该校喜欢健美操的学生人数.21.(12分)某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2 300名,请估计该校“不重视阅读数学教科书”的初中生人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?单元测试(一) 相交线与平行线1.A 2.A 3.B 4.D 5.C 6.D 7.A 8.D 9.C 10.B11.如果同旁内角互补,那么这两条直线平行 真 12.垂线段最短 13.45° 14.46° 15.70° 16.55°17.两直线平行,同旁内角互补 两直线平行,同旁内角互补 同角的补角相等 18.(1)图略.(2)图略.(3)∠PQC =60°.理由如下:∵PQ ∥CD ,∴∠DCB +∠PQC =180°.∵∠DCB =120°,∴∠PQC =60°. 19.(1)略.(2)520.(1)证明:∵∠1+∠2=180°,∴AB ∥CD.(2)∵AB ∥CD ,∠3=100°,∴∠GOD =∠3=100°.∵∠GOD +∠DOH =180°,∴∠DOH =80°.又∵OK 平分∠DOH ,∴∠KOH =12∠DOH =40°.21.(1)证明:∵DE ∥AB ,∴∠DCA =∠A.(2)证明:在三角形ABC 中,∵DE ∥AB ,∴∠A =∠ACD ,∠B =∠BCE(内错角相等).∵∠ACD +∠BCA +∠BCE =180°,∴∠A +∠B +∠ACB =180°,即三角形的内角和为180°.(3)证明:∵∠AGF +∠FGE =180°,由(2)知,∠GEF +∠EFG +∠FGE =180°,∴∠AGF =180°-∠EGF =∠AEF +∠F.(4)∵AB ∥CD ,∠CDE =119°,∴∠DEB =119°,∠AED =61°.∵GF 交∠DEB 的平分线EF 于点F ,∴∠DEF =59.5°.∴∠AEF =120.5°.∵∠AGF =150°,由(3)知,∠AGF =∠AEF +∠F ,∴∠F =150°-120.5°=29.5°.单元测试(二) 实数1.A 2.D 3.D 4.B 5.B 6.C 7.D 8.C 9.B 10.C 11.13 12.π 13.2-3 2-3 14.7 15.< 16.π-1 17.(1)-45.(2)±0.13.(3)2.3.18.(1)-7,0.32,12,0,-364 (2)8,12,π,0.303 003… (3)-7,-364 19.(1)原式=2+9-2=9. (2)原式=(1+3-5)2=- 2.(3)原式=6×16-(6)2=1-6=-5.(4)原式=3-2+2-3-2+1=3-2 2.20.设截得的每个小正方体的棱长为x cm .依题意,得1 000-8x 3=488.∴8x 3=512.∴x =4.答:截得的每个小正方体的棱长是4 cm .21.(1)11-2=3.(2) 1 111-22=33.(3)111 111-222=333;(4)11 111 111-2 222=3 333.用字母表示这些等式的规律:(n 为正整数),即发现规律:根号内被开方数是2n 个数字1和n 个数字2的差,结果为n 个数字3.单元测试(三) 平面直角坐标系1.B 2.C 3.A 4.B 5.C 6.D 7.D 8.D 9.C 10.A 11.3排4号 12.(-5,1) 13.(4,7) 14.(m +2,n -1) 15.(1,2)或(-7,2) 16.49 16.49 17.(1)汽车站(1,1),消防站(2,-2).(2)经过的地方:游乐场,公园,姥姥家,宠物店,邮局.18.(1)A(2,2),在第一象限;B(0,-4),在y 轴上;C(-4,3),在第二象限;D(-3,-4),在第三象限.(2)①商场:北偏西30°,2.5 cm ;学校:北偏东45°,2 cm ;公园:南偏东60°,2 cm ;停车场:南偏东60°,4 cm .②商场距离小明家500米,停车场距离小明家800米.19.(1)D(3,0),E(5,-2),F(2,-3).(2)三角形DEF 的面积=3×3-12×1×3-12×1×3-12×2×2=4. 20.(1)体育场的坐标为(-2,5),文化宫的坐标为(-1,3),超市的坐标为(4,-1),宾馆的坐标为(4,4),市场的坐标为(6,5).(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限.(3)不是,因为对于同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.21.(1)A(2,3)与D(-2,-3);B(1,2)与E(-1,-2);C(3,1)与F(-3,-1).对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数.(2)由(1)可得a +3=-2a ,4-b =-(2b -3).解得a =-1,b =-1.单元测试(四) 二元一次方程组1.D 2.B 3.D 4.B 5.A 6.A 7.A 8.B 9.C 10.A11.答案不唯一,如⎩⎪⎨⎪⎧x =18x +y =8 12.2x =-3 13.314.2 -3 -5 15.6 16.9617.(1)⎩⎪⎨⎪⎧x =11,y =5.(2)⎩⎪⎨⎪⎧x =-2,y =1.18.∵⎩⎪⎨⎪⎧x =2,y =-3是关于x ,y 的二元一次方程3x =y +a 的解,∴3×2=-3+a.解得a =9.∴a(a-1)=9×(9-1)=72.19.由题意可将x +y =5与2x -y =1组成方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.解得⎩⎪⎨⎪⎧x =2,y =3.把⎩⎪⎨⎪⎧x =2,y =3代入4ax+5by =-22,得8a +15b =-22.① 把⎩⎪⎨⎪⎧x =2,y =3代入ax -by -8=0,得2a -3b -8=0.② ①与②组成方程组,得⎩⎪⎨⎪⎧8a +15b =-22,2a -3b -8=0.解得⎩⎪⎨⎪⎧a =1,b =-2.20.(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得⎩⎪⎨⎪⎧x +y =500,24x +36y =13 800.解得⎩⎪⎨⎪⎧x =350,y =150.答:商场购进甲种矿泉水350箱,购进乙种矿泉水150箱.(2)350×(33-24)+150×(48-36)=3 150+1 800=4 950(元).答:该商场共获得利润4 950元. 21.(1)5 000-92×40=1 320(元).答:两所学校联合起来购买服装比各自购买服装共可以节省1 320元. (2)设甲、乙两所学校各有x 名、y 名学生准备参加演出,由题意,得⎩⎪⎨⎪⎧x +y =92,50x +60y =5 000.解得⎩⎪⎨⎪⎧x =52,y =40.答:甲、乙两校各有52名、40名学生准备参加演出. (3)∵甲校有10人不能参加演出,∴甲校参加演出的人数为52-10=42(人).若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买服装可以节约(42+40)×60-4 100=820(元). 但如果两校联合购买91套服装,只需40×91=3 640(元), 此时又比联合购买服装可节约4 100-3 640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装.(即比实际人数多购9套)单元测试(五) 不等式与不等式组1.C 2.A 3.D 4.B 5.D 6.A 7.D 8.C 9.B 10.A11.5x +1≥12x -4 12.> 13.0 14.550×60+500(x -60)>55 000 15.a ≤1 16.x >-117.(1)去括号,得5x -10+8<6x -6+7.移项,得5x -6x <10-8-6+7.合并同类项,得-x <3.系数化为1,得x>-3.(2)解不等式①,得x>-1.解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4.解集在数轴上表示为:18.由题意,得3(2k +5)2≤5k +1.解得k ≥134.19.解不等式①,得x ≤3.解不等式②,得x<a.∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x ≤3;当a<3时,不等式组的解集为x<a.20.(1)设每辆小客车的乘客座位数是x 个,每辆大客车的乘客座位数是y 个,根据题意,得⎩⎪⎨⎪⎧y -x =17,6y +5x =300.解得⎩⎪⎨⎪⎧x =18,y =35.答:每辆小客车的乘客座位数是18个,每辆大客车的乘客座位数是35个.(2)设租用a 辆小客车,则由题意得18a +35(11-a)≥300+30,解得a ≤3417.∴符合条件的a 的最大整数值为3.。
人教版七年级下册数学单元同步检测卷:第七章 平面直角坐标系(含答案)
人教版七年级下册数学单元同步检测卷:第七章平面直角坐标系(含答案)一、填空题1.观察下列的有序数对:(3,-1),(-5,),(7,-),(-9,),…,根据你发现的规律,第2019个有序数对是.2.A,B两点的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,点A1,B1的坐标分别为(2,a),(b,3),则a+b= .3.已知点A(1+2a,4a-5),且点A到两坐标轴的距离相等,则点A的坐标为.4.观察如图,回答下面的问题:(1)学校在小明家北偏(°)的方向上,距离是400米;(2)邮局在小明家的西偏(°)的方向上,距离是500米.二、选择题5.有一个学生方队,学生B的位置是第8列第7行,记为(8,7),则学生A在第2列第3行的位置可以表示为()A.(2,1)B.(3,3)C.(2,3)D.(3,2)6.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P飞到P'(4,3)位置,则飞机Q,R的位置Q',R'分别为()A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)7.下列选项中,平面直角坐标系的画法正确的是()8.七(1)班的座位表如图所示,如果建立如图所示的平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)9.如图所示,一方队正沿箭头所指的方向前进,P的位置为五列二行,表示为(5,2),则(4,3)表示的位置是()A.AB.BC.CD.D10.在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向下平移4个单位长度得到点P'的坐标是()A.(2,4)B.(1,-3)C.(1,5)D.(-5,5)11.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限12.如图,学校在李老师家的南偏东30°方向,距离是500 m,则李老师家在学校的()A.北偏东30°方向,相距500 m处B.北偏西30°方向,相距500 m处C.北偏东60°方向,相距500 m处D.北偏西60°方向,相距500 m处13.下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2),(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置14.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A'B'上的对应点P'的坐标为()A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)15.下列说法中,正确的是()A.点P(3,2)到x轴的距离是3B.在平面直角坐标系中,点(2,-3)和点(-2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号16.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(-3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)三、解答题17.如图,用点A(3,1)表示3个胡萝卜,1棵青菜;点B(2,3)表示2个胡萝卜,3棵青菜.同理点C(2,1),D(2,2),E(3,2),F(3,3)各表示相应的胡萝卜个数与青菜的棵数.若1只兔子从A到B(顺着方格走),有以下几条路可供选择①A→C→D→B;②A→E→D→B;③A→E→F→B.问:兔子顺着哪条路走吃到的胡萝卜最多?顺着哪条路走吃到的青菜最多?各是多少?18.如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,-2),C(5,1),D(4,4).(1)求四边形ABCD的面积;(2)把四边形ABCD向左平移3个单位得四边形A1B1C1D1,画出平移后的图形并写出平移后四边形各个顶点的坐标.19.如图是某台阶的一部分,每级台阶的高与长都相等.如果点A的坐标为(0,0),点B的坐标为(1,1).(1)请建立适当的平面直角坐标系,并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?20.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4).请根据图中所给信息解决下列问题:(1)A→C(+3,+4);B→C(+2,0);C→ A (-3,-4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E点.21.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};(2)如图,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.22.已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.23.某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O 来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1-y2|;(1)已知点A(-1,0),B为y轴上的动点.①若点A与点B的“识别距离”为2,写出满足条件的B点的坐标(0,2)或(0,-2);②直接写出点A与点B的“识别距离”的最小值1.(2)已知点C与点D的坐标分别为C(m,m+3),D(0,1),求点C与点D的“识别距离”的最小值及相应的C点坐标.参考答案1.2.23.4. 东 25 南 305-9:CABCC10-14:BDBCA15-16:DB17.解:按①走吃到的胡萝卜为3+2+2+2=9(个),青菜为1+1+2+3=7(棵);按②走吃到的胡萝卜为3+3+2+2=10(个),青菜为1+2+2+3=8(棵);按③走吃到的胡萝卜为3+3+3+2=11(个),青菜为1+2+3+3=9(棵).故按③走吃到的胡萝卜和青菜都是最多的,分别为胡萝卜11个,青菜9棵.18.解:(1)S四边形ABCD=4×6-×2×3-×1×3-×2×4-×2×3=12.5.(2)图略,A1(-2,2),B1(0,-2),C1(2,1),D1(1,4).19.解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C(2,2),D(3,3),E(4,4),F(5,5).(2)因为每级台阶高为1,所以10级台阶的高度是10.20.解:(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m.(3)略.21.解:(1){3,1}+{1,2}={4,3}.(2)由题可得O到P的“平移量”为{2,3},P到Q的“平移量”为{3,2},从Q到O的“平移量”为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.22.解:(1)由题意,得2m+4=0,解得m=-2,∴点P的坐标为(0,-3).(2)由题意,得(m-1)-(2m+4)=3,解得m=-8,∴点P的坐标为(-12,-9).(3)由题意,得|m-1|=2,解得m=-1或m=3.当m=-1时,点P的坐标为(2,-2);当m=3时,点P的坐标为(10,2).∵点P在第四象限,∴点P的坐标为(2,-2).23.解:(1)北偏东40°的方向上有两个目标:敌方战舰B和小岛.要想确定敌方战舰B的位置,还需要知道敌方战舰B距我方潜艇的距离.(2)敌方战舰A和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角.24.解:(2)令|m-0|=|m+3-1|,解得m=8或-.当m=8时,“识别距离”为8;当m=-时,“识别距离”为.所以当m=-时,“识别距离”取最小值,相应的C点坐标为(-).人教版七年级数学下册第七章平面直角坐标系培优训练卷一.选择题(共10小题,每小题3分,共30分)1.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°2.在平面直角坐标系中,点A(20,-20)在()A.第一象限B.第二象限C.第三象限D.第四象限3.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位长度C.图案向左平移了a个单位长度,并且向下平移了a个单位长度D.图案向右平移了a个单位长度,并且向上平移了a个单位长度4.若点P(a,b)在第二象限,则点Q(b+2,2-a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限5.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案6.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)7.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0) B.(1,2) C.(2,1) D.(1,1)8.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.-1 B.-4 C.2 D.39.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2)黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标是()A.(2,2) B.(0,1) C.(2,-1) D.(2,1)10.在平面直角坐标系中,电子跳蚤从原点出发,按向右、向上、向左再向上的方向依次跳A的坐标是()动,每次跳动1个单位长度,其行走路线如图,则点2018A.(0,1008) B.(1,1008) C.(1,1009) D.(0,1010)二.填空题(共7小题,每小题4分,共28分)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,点(2,3)到x轴的距离是.13.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为.14.若点A(2,n)在x轴上,则点B(n+2,n-5)位于第象限.15.在平面直角坐标系中,将点A(-1,3)向左平移a个单位后,得到点A′(-3,3),则a的值是.16.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当点B的横坐标为4时,m的值是.当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示)三.解答题(共6小题,共42分)17.(6分)(1)点P的坐标为(x,y)且不在原点上,若x=y,则点P在坐标平面内的位置可能在第象限,若x+y=0,则点P在坐标平面内的位置可能在第象限;(2)已知点Q的坐标为(2-2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.18.(8分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.19.(8分)如图,已知△ABC经过平移后得到111,A B C点A与1,A点B与1,B点C与1C分别是对应点,观察各对应点坐标之间的关系,解答下列问题:(1)分别写出点A与1,A点B与1,B点C与1C的坐标;(2)若点P(x,y)通过上述的平移规律平移得到的对应点为Q(3,5),求p点坐标.20.(10分)在平面直角坐标系中,已知点P(2m+4,m-1),试分别根据下列条件,求出点P 的坐标. 求:(1)点P 在y 轴上; (2)点P 的纵坐标比横坐标大3;(3)点P 在过A(2,-5)点,且与x 轴平行的直线上.21.(10分)已知:如图,在直角坐标系中1234,(1,0),(1,1),(1,1),(1,1)A A A A --- (1)继续填写()()()567;;A A A :(2)依据上述规律,写出点20172018,A A 的坐标.答案:1-5 DDCAA6-10 DDADC11.-112.313. (2,5)14.四15.216.3, 6n-317.(1)一或三,二或四(2))∵点Q到两坐标轴的距离相等,∴|2-2a|=|8+a|,∴2-2a=8+a或2-2a=-8-a,解得a=-2或a=10,当a=-2时,2-2a=2-2×(-2)=6,8+a=8-2=6,当a=10时,2-2a=2-20=-18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(-18,18).18.解:(1)如图所示:食堂(-5,5)、图书馆的位置(2,5);(2)如图所示:办公楼和教学楼的位置即为所求;(3)宿舍楼到教学楼的实际距离为:8×30=240(m).19.解:(1)由图知A(1,2)、A1(-2,-1);B(2,1)、B1(-1,-2);C(3,3)、C1(0,0);(2)由(1)知,平移的方向和距离为:向左平移3个单位、向下平移3个单位,由x−3=3 解得x=6;由y−3=5解得y=8 ;则点P的坐标为(6,8).20.解:(1)由题意得:2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)由题意得:m-1-(2m+4)=3,解得m=-8,所以P点的坐标为(-12,-9);(3)由题意得:m-1=-5,解得m=-4.所以P点的坐标为(-4,-5).21. 解:(1)A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2 ),A10(3,3),A11(-3,3);(2)通过观察可得数字是4的倍数的点在第三象限,4的倍数余1的点在第四象限,4的倍数余2的点在第一象限,4的倍数余3的点在第二象限,∵2017÷4=504…1,2018÷4=506…2,∴点A2017在第四象限,且转动了504圈以后,在第505圈上,∴A2017的坐标为(505,-504),A2018的坐标(505,505).人教版七年级数学下册第七章平面直角坐标系章末检测蘃人教版七年级数学下册第七章平面直角坐标系单元测试题一、选择题1.有一个学生方队,学生B的位置是第8列第7行,记为(8,7),则学生A在第2列第3行的位置可以表示为(C)A.(2,1)B.(3,3)C.(2,3)D.(3,2)2.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P飞到P'(4,3)位置,则飞机Q,R的位置Q',R'分别为(A)A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)3.下列选项中,平面直角坐标系的画法正确的是(B)4.七(1)班的座位表如图所示,如果建立如图所示的平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是(C)A.(6,3)B.(6,4)C.(7,4)D.(8,4)5.如图所示,一方队正沿箭头所指的方向前进,P的位置为五列二行,表示为(5,2),则(4,3)表示的位置是(C)A.AB.BC.CD.D6.在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向下平移4个单位长度得到点P'的坐标是(B)A.(2,4)B.(1,-3)C.(1,5)D.(-5,5)7.在平面直角坐标系内,点P(a,a+3)的位置一定不在(D)A.第一象限B.第二象限C.第三象限D.第四象限8.如图,学校在李老师家的南偏东30°方向,距离是500 m,则李老师家在学校的(B)A.北偏东30°方向,相距500 m处B.北偏西30°方向,相距500 m处C.北偏东60°方向,相距500 m处D.北偏西60°方向,相距500 m处9.下列关于有序数对的说法正确的是(C)A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2),(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置10.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A'B'上的对应点P'的坐标为(A)A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)11.下列说法中,正确的是(D)A.点P(3,2)到x轴的距离是3B.在平面直角坐标系中,点(2,-3)和点(-2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号12.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(-3,0),则表示棋子“炮”的点的坐标为(B)A.(1,2)B.(0,2)C.(2,1)D.(2,0)二、填空题13.观察下列的有序数对:(3,-1),(-5,),(7,-),(-9,),…,根据你发现的规律,第2019个有序数对是.14.A,B两点的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,点A1,B1的坐标分别为(2,a),(b,3),则a+b= 2.15.已知点A(1+2a,4a-5),且点A到两坐标轴的距离相等,则点A的坐标为(7,7)或.16.观察如图,回答下面的问题:(1)学校在小明家北偏东(25°)的方向上,距离是400米;(2)邮局在小明家的西偏南(30°)的方向上,距离是500米.三、解答题17.如图,用点A(3,1)表示3个胡萝卜,1棵青菜;点B(2,3)表示2个胡萝卜,3棵青菜.同理点C(2,1),D(2,2),E(3,2),F(3,3)各表示相应的胡萝卜个数与青菜的棵数.若1只兔子从A到B(顺着方格走),有以下几条路可供选择①A→C→D→B;②A→E→D→B;③A→E→F→B.问:兔子顺着哪条路走吃到的胡萝卜最多?顺着哪条路走吃到的青菜最多?各是多少?解:按①走吃到的胡萝卜为3+2+2+2=9(个),青菜为1+1+2+3=7(棵);按②走吃到的胡萝卜为3+3+2+2=10(个),青菜为1+2+2+3=8(棵);按③走吃到的胡萝卜为3+3+3+2=11(个),青菜为1+2+3+3=9(棵).故按③走吃到的胡萝卜和青菜都是最多的,分别为胡萝卜11个,青菜9棵.18.如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,-2),C(5,1),D(4,4).(1)求四边形ABCD的面积;(2)把四边形ABCD向左平移3个单位得四边形A1B1C1D1,画出平移后的图形并写出平移后四边形各个顶点的坐标.解:(1)S四边形ABCD=4×6-×2×3-×1×3-×2×4-×2×3=12.5.(2)图略,A1(-2,2),B1(0,-2),C1(2,1),D1(1,4).19.如图是某台阶的一部分,每级台阶的高与长都相等.如果点A的坐标为(0,0),点B的坐标为(1,1).(1)请建立适当的平面直角坐标系,并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C(2,2),D(3,3),E(4,4),F(5,5).(2)因为每级台阶高为1,所以10级台阶的高度是10.20.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4).请根据图中所给信息解决下列问题:(1)A→C(+3,+4);B→C(+2,0);C→ A (-3,-4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E点.解:(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m.(3)略.21.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};(2)如图,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.解:(1){3,1}+{1,2}={4,3}.(2)由题可得O到P的“平移量”为{2,3},P到Q的“平移量”为{3,2},从Q到O的“平移量”为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.22.已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.解:(1)由题意,得2m+4=0,解得m=-2,∴点P的坐标为(0,-3).(2)由题意,得(m-1)-(2m+4)=3,解得m=-8,∴点P的坐标为(-12,-9).(3)由题意,得|m-1|=2,解得m=-1或m=3.当m=-1时,点P的坐标为(2,-2);当m=3时,点P的坐标为(10,2).∵点P在第四象限,∴点P的坐标为(2,-2).23.某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O 来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?解:(1)北偏东40°的方向上有两个目标:敌方战舰B和小岛.要想确定敌方战舰B的位置,还需要知道敌方战舰B距我方潜艇的距离.(2)敌方战舰A和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角.24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1-y2|;(1)已知点A(-1,0),B为y轴上的动点.①若点A与点B的“识别距离”为2,写出满足条件的B点的坐标(0,2)或(0,-2);②直接写出点A与点B的“识别距离”的最小值1.(2)已知点C与点D的坐标分别为C(m,m+3),D(0,1),求点C与点D的“识别距离”的最小值及相应的C点坐标.解:(2)令|m-0|=|m+3-1|,解得m=8或-.当m=8时,“识别距离”为8;当m=-时,“识别距离”为.所以当m=-时,“识别距离”取最小值,相应的C点坐标为(-).。
(完整)2017人教版七年级数学下册各单元测试题及答案,推荐文档
EEFDCA123(第2题)4C七年级数学第五章《相交线与平行线》测试卷班级姓名坐号成绩一、选择题(每小题3 分,共30 分)1、如图所示,∠1 和∠2 是对顶角的是()1 B 12C 1 D2D2、如图AB∥CD 可以得到()A、∠1=∠2B、∠2=∠3C、∠1=∠4D、∠3=∠43、直线AB、CD、EF 相交于O,则∠1+∠2+∠3=()BA、90°B、120°C、180°D、140°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180°④∠3=∠8,其中能判断是a∥b 的条件的序号是()A、①②B、①③C、①④D、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A、第一次左拐30°,第二次右拐30°B、第一次右拐50°,第二次左拐130°C、第一次右拐50°,第二次右拐130°D、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的()(第4题)A B C D7、如图,在一个有4×4 个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是()A、3:4B、5:8C、9:16D、1:28、下列现象属于平移的是()D CA B(第7题)① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A、③B、②③C、①②④D、①②⑤9、下列说法正确的是()A、有且只有一条直线与已知直线平行B、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
CD、在平面内过一点有且只有一条直线与已知直线垂直。
10、直线AB∥CD,∠B=23°,∠D=42°,则∠E=()A、23°B、42°C、65°D、19°A二、填空题(本大题共6 小题,每小题3 分,共18 分)11、直线AB、CD 相交于点O,若∠AOC=100°,则(第10题)DHG∠AOD=。
人教版七年级数学下册各单元测试题及答案汇总
123(第三题)A B C D E (第10题)AB CD1234(第2题)12345678(第4题)ab cA B CD(第7题)七年级数学第五章《相交线与平行线》测试卷班级 _______ 姓名 ________ 成绩 _______一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2 B、∠2=∠3 C 、∠1=∠4 D、∠3=∠43、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )A 、90°B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①② B、①③ C 、①④ D、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
人教版七年级下册数学各单元练习题含答案
123(第三题)ABCD 1234(第2题)12345678(第4题)ab c人教版七年级下册数学各单元练习题第一章《相交线与平行线》一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )A 、90°B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )A B CDE (第10题)ABCD E F G H第13题ABCD(第7题)BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017人教版七年级数学下册各单元测试题及答案123(第三题)ABC D 1234(第2题)12345678(第4题)abc 七年级数学第五章《相交线与平行线》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠43、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( )A 、第一次左拐30°,第二次右拐30°B 、第一次右拐50°,第二次左拐130°C 、第一次右拐50°,第二次右拐130°1A BOFDEC (第18题)水面运动员(第14题)第17题A B CDMN1213、如图,在正方体中,与线段AB 平行的线段有______ ____________________。
14、奥运会上,跳水运动员入水时,形成的水花是评委评分的一个标准,如图所示为一跳水运动员的入水前的路线示意图。
按这样的路线入水时,形成的水花很大, 请你画图示意运动员如何入水才能减小水花? 15、把命题“等角的补角相等”写成“如果……那么……” 的形式是:_________________________。
16、如果两条平行线被第三条直线所截,一对同旁内角的 度数之比是2:7,那么这两个角分别是_______。
三 、(每题5分,共15分)17、如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数。
18、如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数。
A BDGEH C(第18题)ABC 19、如图,在长方形ABCD 中,AB =10cm ,BC =6cm ,若此长方形以2cm/S 的速度沿着A →B 方向移动,则经过多长时间,平移后的长方形与原来长方形重叠部分的面积为24?四、(每题6分,共18分)20、△ABC 在网格中如图所示,请根据下列提示作图 (1)向上平移2个单位长度。
(2)再向右移3个单位长度。
21、如图,选择适当的方向击打白球,可使白球反弹后将红球撞入袋中。
此时,∠1=∠2,∠3=∠4,如果红球与洞口的连线与台球桌面边缘的夹角∠5=30°,那么∠1等于多少度时,才能保证红球能直接入袋?22、把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =55°,求∠1和∠2的度数。
BA CD EF G MN1212 34 5ADABCD E F1423第19题)五、(第23题9分,第24题10分,共19分)23、如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2,∠C =∠D ,那么DF ∥AC ,请完成它成立的理由∵∠1=∠2,∠2=∠3,∠1=∠4( )∴∠3=∠4( ) ∴________∥_______ ( ) ∴∠C =∠ABD ( ) ∵∠C =∠D ( ) ∴∠D =∠ABD( )∴DF ∥AC( )24、如图,DO 平分∠AOC ,OE 平分∠BOC ,若OA ⊥OB ,当∠BOC=60°,∠DOE=_______________ (2)通过上面的计算,猜想∠DOE的度数与∠AOB 有什么关系,并说明理由。
x o y 1313(1)xo y 13(2)-2(第5题)图3相帅炮七年级数学第六章《平面直角坐标系》测试卷 姓名________ 成绩 _______1、根据下列表述,能确定位置的是( )A 、红星电影院2排B 、北京市四环路C 、北偏东30°D 、东经118°,北纬40°2、若点A (m ,n )在第三象限,则点B (|m |,n )所在的象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、(3,3)B 、(-3,3)C 、(-3,-3)D 、(3,-3)4、点P (x ,y ),且xy <0,则点P 在( ) A 、第一象限或第二象限 B 、第一象限或第三象限 C 、第一象限或第四象限 D 、第二象限或第四象限5、如图1,与图1中的三角形相比,图2中的三角形发生 的变化是( )A 、向左平移3个单位长度B 、向左平移1个单位长度C 、向上平移3个单位长度D 、向下平移1个单位长度 6、如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点( ) A 、(1,-2) B 、(-2,1) C 、(-2,2) D 、(2,B D (5,3)C O Ax y 第16题7、若点M (x ,y )的坐标满足x +y =0,则点M 位于( ) A 、第二象限 B 、第一、三象限的夹角平分线上 C 、第四象限 D 、第二、四象限的夹角平分线上8、将△ABC 的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是( )A 、将原图形向x 轴的正方向平移了1个单位B 、将原图形向x 轴的负方向平移了1个单位C 、将原图形向y 轴的正方向平移了1个单位D 、将原图形向y 轴的负方向平移了1个单位9、在坐标系中,已知A (2,0),B (-3,-4),C (0,0),则△ABC 的面积为( ) A 、4 B 、6 C 、8 D 、310、点P (x -1,x +1)不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限11、已知点A 在x 轴上方,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________。
12、已知点A (-1,b +2)在坐标轴上,则b =________。
13、如果点M (a +b ,ab )在第二象限,那么点N (a ,)在第________象限。
14、已知点P (x ,y )在第四象限,且|x |=,|y |=5,则点P 的坐标是______。
15、已知点A (-4,a ),B (-2,b )都在第三象限的角平分ABCD (第17题)COxy(第19题)AB 16、已知矩形ABCD 在平面直角坐标系中的位置如图所示, 将矩形ABCD 沿x 轴向左平移到使点C 与坐标原点重合后, 再沿y 轴向下平移到使点D 与坐标原点重合,此时点B 的 坐标是________。
17、如图,正方形ABCD 的边长为3,以顶点A 为原点,且有一组邻边与坐标轴重合,求出正方形ABCD 各个顶点的坐标。
18、若点P (x ,y )的坐标x ,y 满足xy =0,试判定点P 在坐标平面上的位置。
19、已知,如图在平面直角坐标系中,S △ABC =24,OA =OB ,BC =12,求△ABC 三个顶点的坐标。
65432123456B A 12345-1123-1-2-3xy20、在平面直角坐标系中描出下列各点A (5,1),B (5,0),C (2,1),D (2,3),并顺次连接,且将所得图形向下平移4个单位,写出对应点A '、B '、C '、D '的坐标。
21、已知三角形的三个顶点都在以下表格的交点上,其中A (3,3),B (3,5),请在表格中确立C 点的位置,使S △ABC=2,这样的点C 有多少个,请分别表示出来。
y o123456-1-2123456-1A BC24、如图,△ABC 在直角坐标系中, (1)请写出△ABC 各点的坐标。
(2)求出S △ABC(3)若把△ABC 向上平移2个单位,再向右平移2个单位得△A ′B ′C ′,在图中画出△ABC 变化位置,并写出A ′、B ′、C ′的坐标。
七年级数学第七章《三角形》测试卷ABD C E(第3题)A B班级_______ 姓名________ 坐号_______ 成绩_______一、选择题(每小题3分,共30 分)1、下列三条线段,能组成三角形的是()A、3,3,3B、3,3,6C、3,2,5D、3,2,62、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A、锐角三角形B、钝角三角形C、直角三角形D、都有可能3、如图所示,AD是△ABC的高,延长BC至E,使CE=BC,△ABC的面积为S1,△ACE的面积为S2,那么()A、S1>S2 B、S1=S2C、S1<S2D、不能确定4、下列图形中有稳定性的是()A、正方形B、长方形C、直角三角形D、平行四边形5、如图,正方形网格中,每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,位置如图形所示,C也在小方格的顶点上,且以A、B、C为顶点的三角形面积为1个平方单位,则点C的个数为()A、3个B、4个C、5个D、6个A BCDP12第7题A B CD第10题中能说明△ABC 是直角三角形的是( )A 、2:3:4B 、1:2:3C 、4:3:5 D 、1:2:2 7、点P 是△ABC 内一点,连结BP 并延长交AC 于D ,连结PC ,则图中∠1、∠2、∠A 的大小关系是( ) A 、∠A >∠2>∠1 B 、∠A >∠2>∠1 C 、∠2>∠1>∠A D 、∠1>∠2>∠A8、在△ABC 中,∠A =80°,BD 、CE 分别平分∠ABC 、∠ACB ,BD 、CE 相交于点O ,则∠BOC 等于( ) A 、140° B 、100° C 、50° D 、130°9、下列正多边形的地砖中,不能铺满地面的正多边形是( )A 、正三角形B 、正四边形C 、正五边形D 、正六边形 10、在△ABC 中, ∠ABC =90°,∠A =50°,BD ∥AC ,则∠CBD 等于( )A 、40°B 、50°C 、45°D 、60°二、填空题(本大题共6小题,每小题3分,共18分)11、P 为△ABC 中BC 边的延长线上一点,∠A =50°,∠B =70°,则∠ACP =_____。