2019年北京市数学中考试题含答案
2019年北京中考数学真题试卷及答案
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为(A)60.43910(B)64.3910(C)54.3910(D)3439102.下列倡导节约的图案中,是轴对称图形的是(A)(B)(C)(D)3.正十边形的外角和为(A)180(B)360(C)720(D)14404.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为(A)3(B)2(C)1(D)15.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC 长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD 长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是(A)∠COM=∠COD (B)若OM=MN,则∠AOB=20°(C)MN∥CD (D)MN=3CD6.如果1m n+=,那么代数式()22221m nm nm mn m+⎛⎫+⋅-⎪-⎝⎭的值为(A)3-(B)1-(C)1 (D)3NMDO BCPQA7.用三个不等式a b>,0ab>,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A)0 (B)1 (C)2 (D)38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类别5下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是(A)①③(B)②④(C)①②③(D)①②③④二、填空题(本题共16分,每小题2分)9.若分式1xx-的值为0,则x的值为______.10.如图,已知ABC,通过测量、计算得ABC的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.图3图2图115.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sinπ----++().18.解不等式组:4(1)2,7.3x xxx-<+⎧⎪+⎨>⎪⎩19.关于x的方程22210x x m-+-=有实数根,且m为正整数,求m的值及此时方程的根.20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=1 2,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:40/万元d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题: (1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.CBA23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4; 第1天第2天第3天 第4天第5天 第6天 第7天 第1组 1x1x1x第2组 2x2x2x第3组第4组4x 4x4x③每天最多背诵14首,最少背诵4首. 解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB于点D .ABCDP小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83 AD/cm0.000.781.542.303.014.005.116.00在PC ,PD ,AD 的长度这三个量中,确定______的长度是自变量,______的长度和 ______的长度都是这个自变量的函数; (2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;x /cmy /cm123456654321O(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W . ①当2k=时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y axbxa 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a ,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H 为射线OA 上一定点,31OH=+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.备用图图1BAOHHOA B28.在△ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC的一条中内弧.(1)如图,在Rt△ABC中,22AB AC D E==,,分别是AB AC,的中点.画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t>,,,在△ABC中,D E,分别是AB AC,的中点.①若12t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学答案一. 选择题.二. 填空题.9. 1 10. 测量可知11. ①②12. 45°13. 0 14. 12 15. =16. ①②③三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∵四边形ABCD为菱形∴AB=AD,AC平分∠BAD∵BE=DF∴AB BE AD DF-=-∴AE=AF∴△AEF是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)AO =1.21.【答案】(1)17(2)(3)2.7(4)①②22.【答案】(1)∵BD平分∠ABC∴∠=∠ABD CBD∴AD=CD(2)直线DE与图形G的公共点个数为1.23.【答案】(1)如下图第1天第2天第3天第4天第5天第6天第7天第1组第2组第3组3x3x3x第4组(2)4,5,6(3)2324.【答案】(1)AD, PC,PD;(2)(3)2.29或者3.98 25.【答案】(1)() 0,1(2)①6个②10k-≤<或2k=-26. 【答案】(1)1 (2,) Ba;(2)直线1 x;(3)1 a≤2.27.【答案】(1)见图(2)在△OPM中,=180150OMP POM OPM OPM∠︒-∠-∠=︒-∠150OPN MPN OPM OPM∠=∠-∠=︒-∠OMP OPN∴∠=∠(3)OP=2. 28. 【答案】 (1)如图:1801180180n r l πππ===(2)①1P y ≥或12P y ≤;②0t <≤BC。
2019北京中考数学试卷及答案
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第18题均有四个选项,符合题意得选项只有一个.1.4月24日就是中国航天日,1970年得这一天,我国自行设计、制造得第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它得运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为(A) (B)(C) (D)2.下列倡导节约得图案中,就是轴对称图形得就是(A) (B) (C) (D)3.正十边形得外角与为(A) (B) (C) (D)4.在数轴上,点A,B在原点O得两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a得值为(A) (B) (C) (D)5.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误得就是(A)∠=∠COD(B)若OM=MN,则∠AOB=20°(C)MN∥CD(D)MN=3CDNMDO BCPA6.如果,那么代数式得值为(A) (B) (C)1 (D)37.用三个不等式,,中得两个不等式作为题设,余下得一个不等式作为结论组成一个命题,组成真命题得个数为(A)0 (B)1 (C)2 (D)38.某校共有200名学生,为了解本学期学生参加公益劳动得情况,收集了她们参加公益劳动时间(单位:小时)等数据,以下就是根据数据绘制得统计图表得一部分.5学生类别下面有四个推断:①这200名学生参加公益劳动时间得平均数一定在24、525、5之间②这200名学生参加公益劳动时间得中位数在2030之间③这200名学生中得初中生参加公益劳动时间得中位数一定在2030之间④这200名学生中得高中生参加公益劳动时间得中位数可能在2030之间所有合理推断得序号就是 (A)①③ (B)②④(C)①②③(D)①②③④二、填空题(本题共16分,每小题2分) 9.若分式得值为0,则得值为、10.如图,已知,通过测量、计算得得面积约为cm 2、(结果保留一位小数)11.在如图所示得几何体中,其三视图中有矩形得就是、(写出所有正确答案得序号)第10题图CBA第11题图③圆锥②圆柱①长方体12.如图所示得网格就是形网格,则=°(点A ,B ,P 就是网格线交点)、13.在平面直角坐标系中,点在双曲线上.点关于轴得对称点在双曲线上,则得值为、 14.把图1中得菱形沿对角线分成四个全等得直角三角形,将这四个直角三角形分别拼成如图2,图3所示得形,则图1中菱形得面积为.图3图2图115.小天想要计算一组数据92,90,94,86,99,85得方差.在计算平均数得过程中,将这组数据中得每一个数都减去90,得到一组新数据2,0,4,4,9,5.记这组新数据得方差为,则、 (填“”,“”或“”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上得点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ就是平行四边形;②存在无数个四边形MNPQ就是矩形;③存在无数个四边形MNPQ就是菱形;④至少存在一个四边形MNPQ就是形.所有正确结论得序号就是.三、解答题(本题共68分,第1721题,每小题5分,第2224题,每小题6分,第25题5分,第26题6分,第2728题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:、18.解不等式组:19.关于x得方程有实数根,且m为正整数,求m得值及此时方程得根.20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD得延长线于点G,连接BD交AC于点O,21.创新指数就是反映一个科学技术与创新竞争力得综合指数.对创新指数得分排名前40得得有关数据进行收集、整理、描述与分析.下面给出了部分信息:a.创新指数得分得频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.创新指数得分在60≤x<70这一组得就是:61、7 62、4 63、6 65、9 66、4 68、5 69、1 69、3 69、5c.40个得人均国生产总值与创新指数得分情况统计图:40/万元d.中国得创新指数得分为69、5、(以上数据来源于《创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国得创新指数得分排名世界第;(2)在40个得人均国生产总值与创新指数得分情况统计图中,包括中国在得少数几个所对应得点位于虚线得上方.请在图中用“”圈出代表中国得点;(3)在创新指数得分比中国高得中,人均国生产总值得最小值约为万美元;(结果保留一位小数)(4)下列推断合理得就是.①相比于点A,B所代表得,中国得创新指数得分还有一定差距,中国提出“加快建设创新型”得战略任务,进一步提高综合创新能力;②相比于点B ,C 所代表得,中国得人均国生产总值还有一定差距,中国提出“决胜全面建成小康社会”得奋斗目标,进一步提高人均国生产总值.22.在平面,给定不在同一直线上得点A ,B ,C ,如图所示.点O 到点A ,B ,C 得距离均等于a (a 为常数),到点O 得距离等于a 得所有点组成图形G ,得平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD =CD ;(2)过点D 作DEBA ,垂足为E ,作DFBC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD =CM ,求直线DE 与图形G 得公共点个数.CBA23.小云想用7天得时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第天背诵第二遍,第天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4;③每天最多背诵14首,最少背诵4首. 解答下列问题:(1)填入补全上表;(2)若,,,则得所有可能取值为;(3)7天后,小云背诵得诗词最多为首.24.如图,P就是与弦AB所围成得图形得外部得一定点,C就是上一动点,连接PC交弦AB于点D.在PC,PD,AD得长度这三个量中,确定得长度就是自变量,得长度与得长度都就是这个自变量得函数;(2)在同一平面直角坐标系中,画出(1)中所确定得函数得图象;(3)结合函数图象,解决问题:当PC=2PD时,AD得长度约为cm.25、在平面直角坐标系中,直线l:与直线,直线分别交于点A,B,直线与直线交于点.(1)求直线与轴得交点坐标;(2)横、纵坐标都就是整数得点叫做整点.记线段围成得区域(不含边界)为.①当时,结合函数图象,求区域得整点个数;②若区域没有整点,直接写出得取值围.26.在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B得坐标(用含得式子表示);(2)求抛物线得对称轴;(3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求得取值围.27.已知,H为射线OA上一定点,,P为射线OB上一点,M为线段OH上一动点,连接PM,满足为钝角,以点P为中心,将线段PM顺时针旋转,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:;(3)点M关于点H得对称点为Q,连接QP.写出一个OP得值,使得对于任意得点M总有ON=QP,并证明.备用图图1BAOB28.在△ABC 中,,分别就是两边得中点,如果上得所有点都在△ABC 得部或边上,则称为△ABC 得中弧.例如,下图中就是△ABC 得一条中弧.(1)如图,在Rt △ABC 中,分别就是得中点.画出△ABC 得最长得中弧,并直接写出此时得长;(2)在平面直角坐标系中,已知点,在△ABC 中,分别就是得中点. ①若,求△ABC 得中弧所在圆得圆心得纵坐标得取值围;②若在△ABC 中存在一条中弧,使得所在圆得圆心在△ABC 得部或边上,直接写出t 得取值围.2019年北京市中考数学答案一、 选择题、二、 填空题、 9、 1 10、 测量可知11、 ①② 12、45°13、 0 14、 1215、 =16、 ①②③ 三、 解答题、 17.【答案】18.【答案】19、【答案】m=1,此方程得根为20、【答案】(1)证明:∵四边形ABCD为菱形∴AB=AD,AC平分∠BAD∵BE=DF∴∴AE=AF∴△AEF就是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)AO =1、21、【答案】(1)17(2)(3)2、7(4)①②22、【答案】(1)∵BD平分∴∴AD=CD(2)直线DE与图形G得公共点个数为1、23.【答案】(1)如下图第1天第2天第3天第4天第5天第6天第7天第1组第2组第3组第4组(2)4,5,6(3)2324.【答案】(1)AD, PC,PD;(2)(3)2、29或者3、9825、【答案】(1)(2)①6个②或26、【答案】(1);(2)直线;(3).27、【答案】(1)见图(2)在△OPM中,=180150∠︒-∠-∠=︒-∠OMP POM OPM OPM(3)OP=2、28、【答案】(1)如图:(2)①或;②。
2019年北京市中考数学试卷+答案
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910 (B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A )(B )(C )(D )3.正十边形的外角和为(A )180o(B )360o(C )720o(D )1440o4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO =BO ,则a 的值为(A )3(B )2(C )1(D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ; (3)连接OM ,MN .B根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM =∠COD (B )若OM =MN ,则∠AOB =20°(C )MN ∥CD(D )MN =3CD6.如果1m n +=,那么代数式()22221m nm n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为 (A )3- (B )1- (C )1 (D )37.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0(B )1(C )2(D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.5下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )①③ (B )②④(C )①②③(D )①②③④二、填空题(本题共16分,每小题2分) 9.若分式1x x-的值为0,则x 的值为______. 10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm 2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++o().图3图2图118.解不等式组:4(1)2,7.3x xxx-<+⎧⎪+⎨>⎪⎩19.关于x的方程22210x x m-+-=有实数根,且m为正整数,求m的值及此时方程的根.20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tan G=12,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l 的上方.请在图中用“d ”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.40/万元22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD =CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD =CM ,求直线DE 与图形G 的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首.CBA解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________; (3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .(1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC =2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C . (1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W .①当2k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y ax bx a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H为射线OA 上一定点,1OH =+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1; (2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON =QP ,并证明.备用图图1BAB28.在△ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在△ABC 中,D E ,分别是AB AC ,的中点. ①若12t =,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.ABCDE AED CB2019年北京市中考数学答案一. 选择题.二. 填空题.9. 1 10. 测量可知11. ①②12. 45°13. 0 14. 12 15. =16. ①②③三. 解答题.17.【答案】18.【答案】2x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∵四边形ABCD为菱形∴AB=AD,AC平分∠BAD∵BE=DF∴AB BE AD DF-=-∴AE=AF∴△AEF是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)AO =1.21.【答案】(1)17(2)(3)2.7(4)①②22.【答案】(1)∵BD平分∠ABC∴∠=∠ABD CBD∴AD=CD(2)直线DE与图形G的公共点个数为1. 23.【答案】(1)如下图(2)4,5,6(3)2324.【答案】(1)AD,PC,PD;(2)(3)2.29或者3.98 25.【答案】0,1(1)()(2)①6个②10k-≤<或2k=-26.【答案】(1)1 (2,)Ba;(2)直线1x;(3)1a≤2.27.【答案】(1)见图(2)在△OPM中,=180150OMP POM OPM OPM∠︒-∠-∠=︒-∠150OPN MPN OPM OPM∠=∠-∠=︒-∠OMP OPN∴∠=∠(3)OP=2.28.【答案】(1)如图:1801180180n r l πππ===g (2)①1P y ≥或12P y ≤;②0t <≤BC。
2019年北京市中考数学试卷附分析答案
万
美元;(结果保留一位小数)
(4)下列推断合理的是
.
①相比于点 A,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加
快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点 B,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决
胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.
位长度,得到点 C,若 CO=BO,则 a 的值为( )
A.﹣3
B.﹣2
C.﹣1
D.1
5.(2 分)已知锐角∠AOB,如图,
(1)在射线 OA 上取一点 C,以点 O 为圆心,OC 长为半径作 ,交射线 OB 于点 D,
连接 CD;
(2)分别以点 C,D 为圆心,CD 长为半径作弧,交 于点 M,N;
26.(6 分)在平面直角坐标系 xOy 中,抛物线 y=ax2+bx 与 y 轴交于点 A,将点 A 向右 平移 2 个单位长度,得到点 B,点 B 在抛物线上. (1)求点 B 的坐标(用含 a 的式子表示); (2)求抛物线的对称轴;
(3)已知点 P( , ),Q(2,2).若抛物线与线段 PQ 恰有一个公共点,结合函数 图象,求 a 的取值范围. 27.(7 分)已知∠AOB=30°,H 为射线 OA 上一定点,OH h1,P 为射线 OB 上一点, M 为线段 OH 上一动点,连接 PM,满足∠OMP 为钝角,以点 P 为中心,将线段 PM 顺 时针旋转 150°,得到线段 PN,连接 ON. (1)依题意补全图 1;
组值,如下表:
位置 1 位置 2 位置 3 位置 4 位置 5 位置 6 位置 7 位置 8
PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83
2019年北京市中考数学试题及答案
2019年北京市中考数学试卷及答案一、选择题(本题共16分,每小题2分)说明:第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为(A )60.43910 (B )64.3910(C )54.3910 (D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D ) 3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为 (A )3 (B )2 (C )1 (D )1 5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;B(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是(A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20° (C )MN ∥CD (D )MN=3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3- (B )1- (C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为 (A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是(A )①③ (B )②④ (C )①②③ (D )①②③④ 二、填空题(本题共16分,每小题2分)9.若分式1x x 的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)学生类别512.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中,第10题图CBA第11题图③圆锥②圆柱①长方体第12题图图3图2图1①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O,若BD=4,tanG=12,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:/万元d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l 的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首.CBA解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________; (3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:AB在PC ,PD ,AD 的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C . (1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W .①当2k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y ax bxa 与y 轴交于点A ,将点A向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a ,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H为射线OA 上一定点,1OH =+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1; (2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在△ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;备用图图1BAOABCDE AED CB(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t>,,,在△ABC中,D E,分别是AB AC,的中点.①若12t =,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.参考答案一. 选择题.1 C ;2 C ;3 B ;4 A ;5 D ;6 D ;7 D ;8 C 。
2019年北京中考数学试题(解析版)
{解析}本题考查了反比例函数表达式的求法,确定关于x轴的对称点的坐标是解题的关键.∵点A(a,b)在双曲线 上,∴k1=ab.∵点A与点B关于x轴对称,∴B(a,-b).∵点B在双曲线 上,∴k2=-ab.∴k1+k2=0.
{分值}2
{章节:[1-26-1]反比例函数的图像和性质}
{考点:反比例函数的解析式}
{分值}2
{章节:[1-11-1]与三角形有关的线段}
{考点:三角形的面积}
{考点:准确数与近似数}
{类别:常考题}
{难度:2-简单}
{题目}11.(2019年北京)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)
{答案}①②
{解析}本题考查了几何体的三视图.①中长方体的主视图、俯视图和左视图都是矩形,②中圆柱的主视图和左视图都是矩形,③中圆锥的三视图都不是矩形.
{分值}2
{章节:[1-18-2-3] 正方形}
{考点:平行四边形边的性质}
{考点:平行四边形对角线的性质}
{考点:矩形的判定}
{考点:菱形的判定}
{考点:正方形的判定}
{类别:高度原创}{类别:易错题}
{难度:4-较高难度}
{
{题目}17.(2019年北京)计算: .
{解析}本题考查了实数的运算,掌握绝对值的性质、零指数幂、特殊角的三角函数值及负指数幂是解题才能正确解答.
{分值}2
{章节:[1-18-2-2]菱形}
{考点:菱形的性质}
{考点:二元一次方程组的应用}
{类别:常考题}
{难度:3-中等难度}
{题目}15.(2019年北京)小天想要计算一组数据92,90,94,86,99,85的方差 ,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为 ,则 .(填“>”,“=”或“<”)
北京市2019年中考数学试题(解析版)
北京市2019年中考数学试题(解析版)2019年北京市⾼级中等学校招⽣考试数学试卷⼀、选择题(本题共30分,每⼩题3分)第1-10题均有四个选项,符合题意的选项只.有.⼀个。
1. 如图所⽰,⽤量⾓器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:⽤量⾓器度量⾓。
解析:由⽣活知识可知这个⾓⼩于90度,排除C、D,⼜OB边在50与60之间,所以,度数应为55°。
2. 神⾈⼗号飞船是我国“神⾈”系列飞船之⼀,每⼩时飞⾏约28 000公⾥。
将28 000⽤科学计数法表⽰应为(A)(B) 28(C)(D)答案:C考点:本题考查科学记数法。
解析:科学记数的表⽰形式为10na?形式,其中1||10≤<,n为整数,28000=。
故选C。
a3. 实数a,b在数轴上的对应点的位置如图所⽰,则正确的结论是(A)a(B)(C)(D)答案:D考点:数轴,由数轴⽐较数的⼤⼩。
解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。
4. 内⾓和为540的多边形是答案:c考点:多边形的内⾓和。
n-??,当n=5时,内⾓和为540°,所以,选C。
解析:多边形的内⾓和为(2)1805. 右图是某个⼏何体的三视图,该⼏何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原⼏何体。
解析:该三视图的俯视为三⾓形,正视图和侧视图都是矩形,所以,这个⼏何体是三棱柱。
6. 如果,那么代数2()b aaa a b--g的值是(A) 2 (B)-2 (C)(D)答案:A考点:分式的运算,平⽅差公式。
解析:2()b aaa a b--g=22a b aa a b--g=()()a b a b aa a b-+-+=2。
7. 甲⾻⽂是我国的⼀种古代⽂字,是汉字的早期形式,下列甲⾻⽂中,不是轴对称的是答案:D考点:轴对称图形的辨别。
2019年北京市中考数学试卷及答案解析
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1032.下列倡导节约的图案中,是轴对称图形的是()A .B .C .D .3.正十边形的外角和为()A.180°B.360°C.720°D.1440°4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.15.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC 长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD 长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t0≤t<1010≤t<2020≤t<3030≤t<40t≥40人数学生类型性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)解不等式组:19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103【答案】C2.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【答案】C3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.【点评】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.【点评】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳时间t人数学生类型0≤t<1010≤t<2020≤t<3030≤t<40t≥40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②这200名学生参加公益劳动时间的中位数在20﹣30之间,正确;③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间,正确;④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间,错误.故选:C.【点评】本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.二、填空题(本题共16分,每小题2分)9.分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.10.如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9cm2.(结果保留一位小数)【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.【点评】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.11.在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【点评】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.12.如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.【点评】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.【点评】考查反比例函数图象上的点坐标的特征,关于x轴对称的点的坐标的特征以及互为相反数的和为0的性质.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.【点评】本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.15.小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.【点评】本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.16.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是菱形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.【点评】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)解不等式组:【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为2<x<.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.【点评】本题考查了菱形的性质、平行线的判定与性质、解直角三角形等知识;熟练掌握菱形的性质是解题的关键.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【点评】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【分析】(1)利用圆的定义得到图象G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图象G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理、切线的判定.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.【点评】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几位置1位置2位置3位置4位置5位置6位置7位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.360.96 1.13 2.00 2.83 AD/cm0.000.78 1.54 2.30 3.01 4.00 5.11 6.00确定PC的长度是自变量,PD的长度和AD 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)按照变量的定义,PC是自变量,而PD、AD随PC的变化而变化,故PD、AD都是因变量,故答案为:PC、PD、AD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;。
2019年北京市中考数学试卷附答案
3.D
解析:D 【解析】 【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.
【详解】∵ x2 2x x2 x 1 1 x
x2 2x 1 x
=
x 1
· x
2
x2 2x x 1
=
· x 1
x2
x x 2 x 1
= x 1 · x2
x 2
=
x
=2x, x
∴出现错误是在乙和丁,
D.6
A.
B.
C.
D.
8.如果关于 x 的分式方程 1 ax 2 1 有整数解,且关于 x 的不等式组
x2
2x
x
3
a
0
的解集为 x>4,那么符合条件的所有整数 a 的值之和是( )
x 2 2(x 1)
A.7
B.8
C.4
D.5
9.如图,正比例函数 y=k1x
与反比例函数
y=
k2 x
的图象相交于点
间的关系如图 2 所示(图 1 的图象是线段,图 2 的图象是抛物线) (1)已知 6 月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣ 成本) (2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由. (3)已知市场部销售该种蔬菜 4、5 两个月的总收益为 22 万元,且 5 月份的销售量比 4 月 份的销售量多 2 万千克,求 4、5 两个月的销售量分别是多少万千克?
2019年北京市中考数学试题及答案解析
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910(B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D )3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3(B )2 (C )1 (D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20°(C )MN∠CD(D )MN=3CDB6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间学生类别5∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )∠∠(B )∠∠(C )∠∠∠ (D )∠∠∠∠二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∠存在无数个四边形MNPQ 是平行四边形; ∠存在无数个四边形MNPQ 是矩形; ∠存在无数个四边形MNPQ 是菱形; ∠至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.图3图2图120.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC∠EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息: a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.∠相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;∠相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数./万元23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ∠将诗词分成4组,第i 组有i x 首,i =1,2,3,4;∠对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∠每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PCCBA交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;AB(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.25. 在平面直角坐标系xOy中,直线l:()10y kx k=+≠与直线x k=,直线y k=-分别交于点A,B,直线x k=与直线y k=-交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA,,围成的区域(不含边界)为W.∠当2k=时,结合函数图象,求区域W内的整点个数;∠若区域W内没有整点,直接写出k的取值范围.26.在平面直角坐标系xOy中,抛物线21y ax bxa与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2Pa,(2,2)Q.若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.已知30AOB ∠=︒,H 为射线OA上一定点,1OH=+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∠ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在∠ABC 的内部或边上,则称为∠ABC 的中内弧.例如,下图中是∠ABC 的一条中内弧.(1)如图,在Rt∠ABC中,AB AC D E ==,分别是AB AC ,的中点.画出备用图图1BAOB ABCDE∠ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在∠ABC 中,D E ,分别是AB AC ,的中点.∠若12t =,求∠ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ∠若在∠ABC 中存在一条中内弧,使得所在圆的圆心P 在∠ABC 的内部或边上,直接写出t 的取值范围.AED CB2019年北京市中考数学答案参考答案与试题解析一. 选择题.二. 填空题.9. 1 10. 测量可知11. ∠∠ 12. 45°13. 0 14. 12 15. =16. ∠∠∠三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∠四边形ABCD为菱形∠AB=AD,AC平分∠BAD∠BE=DF∠AB BE AD DF-=-∠AE=AF∠∠AEF是等腰三角形∠AC平分∠BAD∠AC∠EF(2)AO =1.21. 【答案】 (1)17 (2)(3)2.7 (4)∠∠ 22. 【答案】 (1)∠BD 平分∠ABC ∠∠=∠ABD CBD∠AD=CD(2)直线DE 与图形G 的公共点个数为1. 23. 【答案】 (1)如下图 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 第2组第3组3x 3x3x(2)4,5,6 (3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)∠6个 ∠10k -≤<或2k =-26. 【答案】(1)1(2,)B a ; (2)直线1x;(3)1a ≤2.27. 【答案】 (1)见图(2) 在∠OPM中,=180150OMP POM OPM OPM ∠︒-∠-∠=︒-∠150OPN MPN OPM OPM ∠=∠-∠=︒-∠ OMP OPN ∴∠=∠(3)OP=2. 28. 【答案】 (1)如图:1801180180n r l πππ===(2)∠1P y ≥或12P y ≤; ∠02t<≤BCD E。
2019年北京市中考数学试卷(带解析)
(2)求证:∠OMP=∠OPN; (3)点 M 关于点 H 的对称点为 Q,连接 QP.写出一个 OP 的值,使得对于任意的点 M 总有 ON=QP,并证明.
28.(7 分)在△ABC 中,D,E 分别是△ABC 两边的中点,如果 上的所有点都在△ABC 的内部或边上,则称 为△ABC 的中内弧.例如,图 1 中 是△ABC 的一条中内弧.
b.国家创新指数得分在 60≤x<70 这一组的是: 61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c.40 个国家的人均国内生产总值和国家创新指数得分情况统计图:
第 5页(共 34页)
d.中国的国家创新指数得分为 69.5.
(以上数据来源于《国家创新指数报告(2018)》)
2019 年北京市中考数学试卷
一、选择题(本题共 16 分,每小题 2 分) 1.(2 分)4 月 24 日是中国航天日.1970 年的这一天,我国自行设计、制造的第一颗人造地
球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距
地球最近点 439000 米,将 439000 用科学记数法表示应为(
D.3
7.(2 分)用三个不等式 a>b,ab>0, < 中的两个不等式作为题设,余下的一个不等式
作为结论组成一个命题,组成真命题的个数为( )
A.0
B.1
C.2
D.3
8.(2 分)某校共有 200 名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加
公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分
③这 200 名学生中的初中生参加公益劳动时间的中位数一定在 20~30 之间
北京市2019年中考数学试题(含解析)和答案
2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D. 【解析】本题考察轴对称图形的概念,故选C 3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为()A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∵CO=BO,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是() A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN∥CDD.MN=3CD【解析】连接ON ,由作图可知△COM≌△DON. A. 由△COM≌△DON.,可得∠COM=∠COD,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证△MOR≌△NOS,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN∥CD,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN<MC+CD+DN=3CD ,故选D6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为() A .-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m∴原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为() A.0 B.1 C.2 D.3【解析】本题共有3种命题: 命题①,如果0,>>ab b a ,那么ba 11<. ∵b a >,∴0>-b a ,∵0>ab ,∴0>-ab b a ,整理得ab 11>,∴该命题是真命题. 命题②,如果,11,ba b a <>那么0>ab . ∵,11b a <∴.0,011<-<-aba b b a ∵b a >,∴0<-a b ,∴0>ab . ∴该命题为真命题. 命题③,如果ba ab 11,0<>,那么b a >. ∵,11b a <∴.0,011<-<-aba b b a ∵0>ab ,∴0<-a b ,∴a b < ∴该命题为真命题. 故,选D8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男7 31 25 30 4 女8 29 26 32 8 学段初中25 36 44 11 高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为25.5h ,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误 故,选C二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为______.【解析】本题考查分式值为0,则分子01=-x ,且分母0≠x ,故答案为110.如图,已知△ABC,通过测量、计算得△ABC 的面积约为cm 2.(结果保留一位小数) 【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号) 【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①②第11题图③圆锥②圆柱①长方体第12题图PBA12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∴222PB BQ PQ =+,即△PBQ 为等腰直角三角形,∴∠BPQ=45°,∵∠PAB+∠PBA=∠BPQ=45°,故答案为4513.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∴021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______2s . (填“>”,“=”或“<”) 【解析】本题考查方差的性质。
2019年北京市中考数学试题(含答案)
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)二、第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为(A)60.43910´(B)64.3910´(C)54.3910´(D)343910´2.下列倡导节约的图案中,是轴对称图形的是(A)(B)(C)(D)3.正十边形的外角和为(A)180o(B)360o(C)720o(D)1440o4.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为(A)3-(B)2-(C)1-(D)15.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC 长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD 长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是(A)∠COM=∠COD (B)若OM=MN,则∠AOB=20°(C)MN∥CD (D)MN=3CD6.如果1m n+=,那么代数式()22221m nm nm mn m+⎛⎫+⋅-⎪-⎝⎭的值为(A)3-(B)1-(C)1 (D)3NMDO BCPA7.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类别5下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )①③ (B )②④(C )①②③(D )①②③④二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC !,通过测量、计算得ABC !的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.图3图2图115.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sinπ----++o().18.解不等式组:4(1)2,7.3x xxx-<+⎧⎪+⎨>⎪⎩19.关于x的方程22210x x m-+-=有实数根,且m为正整数,求m的值及此时方程的根.20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tanG=1 2,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:40/万元d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“d ”圈出代表中国的点; (3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.CBA23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i +)天背诵第二遍,第(3i +)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .ABCDP小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83 PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83 AD/cm0.000.781.542.303.014.005.116.00在PC ,PD ,AD 的长度这三个量中,确定______的长度是自变量,______的长度和 ______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W . ①当2k=时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y ax bx a =+-与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2Pa-,(2,2)Q.若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a的取值范围.27.已知30AOB∠=︒,H为射线OA上一定点,31OH=+,P为射线OB上一点,M 为线段OH上一动点,连接PM,满足OMP∠为钝角,以点P为中心,将线段PM顺时针旋转150︒,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:OMP OPN∠=∠;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.备用图图1BAOO AB28.在△ABC中,D,E分别是ABC!两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,下图中是△ABC的一条中内弧.(1)如图,在Rt△ABC中,22AB AC D E==,,分别是AB AC,的中点.画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t>,,,在△ABC中,D E,分别是AB AC,的中点.①若12t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学答案一. 选择题.二. 填空题.9. 1 10. 测量可知11. ①②12. 45°13. 0 14. 12 15. =16. ①②③三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∵四边形ABCD为菱形∴AB=AD,AC平分∠BAD∵BE=DF∴AB BE AD DF-=-∴AE=AF∴△AEF是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)AO =1.21.【答案】(1)17(2)(3)2.7(4)①②22.【答案】(1)∵BD平分∠ABC∴∠=∠ABD CBD∴AD=CD(2)直线DE与图形G的公共点个数为1.23.【答案】(1)如下图第1天第2天第3天第4天第5天第6天第7天第1组第2组第3组3x3x3x第4组(2)4,5,6(3)2324.【答案】(1)AD, PC,PD;(2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)①6个 ②10k -≤<或2k =-26. 【答案】(1)1(2,)B a -; (2)直线1x =;(3)1a -≤2.27. 【答案】 (1)见图 (2)在△OPM 中,=180150OMP POM OPM OPM ∠︒-∠-∠=︒-∠150OPN MPN OPM OPM ∠=∠-∠=︒-∠ OMP OPN ∴∠=∠(3)OP=2. 28. 【答案】(1)如图:1801180180n r l πππ===g(2)①1Py ≥或12P y ≤;②0t<≤BC。
2019年北京市中考数学试题含答案
2019年北京市初中毕业、升学考试数学(满分100分,考试时间120分钟)一、选择题:本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019北京市,1题,2分)4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米.将439000用科学记数法表示应为A.64.39100.43910 B.6C.54.3910 D.343910【答案】C∴50901;故选C.439004.3【知识点】科学记数法——表示较大的数2.(2019北京市,2题,2分)下列倡导节约的图案中,是轴对称图形的是A. B. C.D.【答案】C【解析】将一个图形沿一条直线折叠,直线两旁的部分能够完全重合;这样的图形叫轴对称图形.故选C.【知识点】图形变换——轴对称图形.3.(2019北京市,3题,2分)正十边形的外角和为A.180 B.360 C.720 D.1440【答案】B【解析】根据多边形的外角和等于360°易得B正确;故选B.【知识点】多边形的外角和等于360°.4.(2019北京市,4题,2分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为A.-3 B. -2 C. -1 D. 1【答案】A【解析】由题意知,点B表示的数是2,由CO=BO,可得点C表示的数为2或-2,将点C 向左平移1个单位长度可得到点A ,故点A 表示的数为1或-3; 又∵点A ,B 在原点O 的两侧;∴点A 表示的数-3. 【知识点】有理数——数轴、分类讨论. 5.(2019北京市,5题,2分)已知锐角∠AOB ,如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 A .∠COM=∠COD B .若OM=MN ,则∠AOB=20°C .MN ∥CDD .MN=3CD【答案】D【解析】由作图知,CM CD DN == ,OM=OC=OD=ON ;A .在⊙中,由CM CD =得∠COM=∠COD ;故选项A 正确.B .由OM=MN ,结合OM=ON 知△OMN 为等边三角形;得∠MON=60°.又由CM CD DN ==得∠COM=∠COD=∠DON ;∴∠AOB=20°.故选项B 正确.C .由题意知OC=OD ,∴1802CODOCD ︒-∠∠=.设OC 与OD 与MN 分别交于R ,S.易得△MOR ≌△NOS (ASA ) ∴OR=OS ∴1802CODORS ︒-∠∠=∴OCD ORS ∠=∠ ∴MN ∥CD. 故选项C 正确.D .由CM CD DN ==得CM=CD=DN=3CD ;而由两点之间线段最短得CM+CD+DN>MN ,即MN<3CD ;∴MN=3CD 是错误的;故选D.【知识点】全等三角形的性质和判定、圆的有关性质、等边三角形的性质和判定.6.(2019北京市,6题,2分)如果1m n +=,那么代数式()22221m nm n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为A .3-B .1-C .1D .3B【答案】D【解析】()22221m nm n m mn m +⎛⎫+⋅- ⎪-⎝⎭= ()()()()2m n m n m n m n m m n m m n ⎡⎤+-++-⎢⎥--⎢⎥⎣⎦=()()()2m mm n m n m m n ++--=()3m n +又∵1m n +=∴原式=313⨯=.故选D.【知识点】分式的运算、整体思想. 7.(2019北京市,7题,2分) 用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为A .0B .1C .2D .3【答案】D【解析】本题共有3个命题: 命题①,如果a b >,0ab >,那么11a b<. ∵a b >,∴0a b ->.又∵0ab >;∴0a b ab ->,化简得11a b<,该命题为真命题. 命题②,如果a b >,11a b<;那么0ab >. ∵11a b <,∴110a b-<,0b aab -<. ∵a b >,∴0b a -<,∴0ab >.该命题为真命题. 命题③,如果0ab >,11a b<,那么a b >. ∵11a b <,∴110a b-<,0b aab -<. ∵0ab >,∴0b a -<, ∴b a <.该命题为真命题. 选D.【知识点】真假命题、不等式的性质. 8.(2019北京市,8题,2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是A .①③B .②④C .①②③D .①②③④【答案】C【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为52.5h ,则平均数一定在24.5——25.5之间,故①正确.②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20——30之间,故②正确. ③由统计表类别栏计算可得,初中学生各时间段人数分别为25,36,44,11;共有116人,∴初中生参加公益劳动时间的中位数在对应人数为36的那一栏;即 中位数在20——30之间;故③正确.④由统计表类别栏计算可得,高中学段栏各时间段人数分别为15,35,15,18,1;共有84人,∴中位数在对应人数为35人对应的时间栏,即中位数在10——20之间;故④错误. 【知识点】条形统计图、统计表、统计量——平均数、中位数.二、填空题:本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在题中横线上. 9.(2019北京市,9题,2分)若分式1x x-的值为0,则x 的值为_______. 【答案】1【解析】方法一、分式值为0的条件是分子等于0,且分母不为0.即100x x -=⎧⎨≠⎩,∴1x =.方法二、解分式方程10x x-=,解得1x =;经检验1x =是原分式方程的解. 【知识点】分式的值为0、解分式方程. 10.(2019北京市,10题,2分)学生类别51020如图,已知ABC ,通过测量、计算得ABC 的面积约为_______cm 2.(结果保留一位小数)【答案】由测量结果计算. 【解析】如图10-1,测量三角形的底和高时,长度精确定mm ,测量图中AC 和BD 的长度. 【知识点】三角形的面积、动手测量、求近似数. 11.(2019北京市,11题,2分)在如图所示的几何体中,其三视图中有矩形的是_______.(写出所有正确答案的序号)【答案】①②.【解析】长方体的三种视图都是矩形,圆柱的主视图、左视图都是矩形,而俯视图是圆;圆锥的主视图、左视图都是三角形;圆锥的俯视图为带圆心的圆.故选①②. 【知识点】三视图、矩形的判定. 12.(2019北京市,12题,2分) 如图所示的网格是正方形网格,则PAB PBA ∠∠+=____________°(点A ,B ,P 是网格线交点).【答案】45°第10题图CBA第11题图③圆锥②圆柱①长方体第12题图【解析】如图12-1,延长AP 至C ,连结BC.设图中小正方形的边长为1,由勾股定理得222125PC =+=,222125BC =+=,2221310PB =+=; ∴222,PC BC PB PC BC +==且.即△PBC 为等腰直角三角形,∴∠BPC=45°. 由三角形外角的性质得45PAB PBA MPC ∠∠=∠=︒+. 【知识点】勾股定理及逆定理、三角形外角的性质. 13.(2019北京市,13题,2分) .在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为_______.【答案】0【解析】∵A 、B 两点关于x 轴对称,∴B 点的坐标为(),a b -.又∵A ()a b ,、B (),a b -两点分别在又曲线1k y x =和2ky x=上; ∴12,ab k ab k =-=. ∴120k k +=;故填0.【知识点】关于x 轴对称的点的坐标特点、双曲线ky x=上点的坐标与k 的关系. 14.(2019北京市,14题,2分)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_______.【答案】12图3图2图1【解析】设图1中小直角三角形的两直角边长分别为a ,b (a>b );则由图2和图3列得方程组51a b a b +=⎧⎨-=⎩,由加减消元法得32a b =⎧⎨=⎩,∴菱形的面积1144321222S ab =⨯=⨯⨯⨯=.故填12.【知识点】菱形的性质、二元一次方程组的解法.15.(2019北京市,15题,2分)小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s _______20s . (填“>”,“=”或“<”)【答案】=【解析】数据92,90,94,86,99,85的平均数929094869985916x +++++==;新数据2,0,4,-4,9,-5的平均数为()()204495`16x +++-++-==;∴()()()()()()2222222016892919091949186919991859163S ⎡⎤=-+-+-+-+-+-=⎣⎦; ()()()()()()2222222116821014141915163S ⎡⎤=-+-+-+--+-+--=⎣⎦; ∴2201S S =.事实上由“将一组数据中的每个数加上或减去同一个数后,所得的新数据的方差与原数据的方差相同”易得2201S S =.【知识点】方差的计算和性质、平均数.16.(2019北京市,16题,2分)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是_______.【答案】①②③【思路分析】如图16-1,经矩形ABCD 对角线交点O ,① 任画两条和矩形对边分别相交的直线,顺次连接交点得到的四边形为平行四边形,显然有无数个四边形; ②任画两条和矩形对边分别相交且相等的直线,顺次连接交点得到的四边形为矩形,显然有无数个四边形; ③任画两条和矩形对边分别相交且垂直的直线,顺次连接交点得到的四边形为菱形,显然有无数个四边形;④画两条和矩形对边分别相交,并且垂直且相等的直线,顺次连接交点得到的四边形为正方形,显然只有一个四边形.【解题过程】如图16-1,O 为矩形ABCD 对角线的交点,① 图中任过点O 的两条线段PM ,QN ,则四边形MNPQ 是平行四边形;显然有无数个.本结论正确. ② 图中任过点O 的两条相等的线段PM ,QN ,则四边形MNPQ 是矩形;显然有无数个.本结论正确. ③ 图中任过点O 的两条垂直的线段PM ,QN ,则四边形MNPQ 是菱形;显然有无数个.本结论正确. ④ 图中过点O 的两条相等且垂直的线段PM ,QN ,则四边形MNPQ 是正方形;显然有一个.本结论错误. 故填:①② ③.【知识点】三角形全等的性质和判定、矩形的性质和判定、平行四边形和菱形、正方形的判定.三、解答题(本大题共12小题,满分68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分;解答应写出文字说明、证明过程或演算步骤) 17.(2019北京市,17题,5分) 计算:()011342604sin π----+︒+() 【思路分析】根据()010a a =≠,()110a a a -=≠,3sin 60︒=代入计算即可解答. 【解题过程】解:()011342604sin π----+︒+()3131214=-+3134==23+3【知识点】实数的混和运算、绝对值、零指数、负指数、特殊角的函数值. 18.(2019北京市,18题,5分)解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩ 【思路分析】先求出每个不等式的解集,再取两个不等式解集的公共部分,就是不等式组的解集.取公共部分按照“大大取大,小小取小,大小小大取中间,大大小小无处找”原则即可. 【解题过程】解:4(1)273x x x x -<+⎧⎪⎨+>⎪⎩①②由①得442x x -<+ 36x <2x < 由②得73x x +> 72x >72x <①和②的公共部分由“小小取小”得原不等式组解集为2x <.【知识点】一元一次不等式组的解法. 19.(2019北京市,19题,5分)关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.【思路分析】先由原一元二次方程有实数根得判别式240b ac -≥进而求出m 的范围;结合m 的值为正整数,求出m 的值,进而得到一元二次方程求解即可.【解题过程】解:∵关于x 的方程22210x x m -+-=有实数根,∴()()22424121484880b ac m m m ∆=-=--⨯⨯-=-+=-≥ ∴1m ≤又∵m 为正整数,∴m=1,此时方程为2210x x -+=解得根为121x x ==, ∴m=1,此方程的根为121x x ==【知识点】一元二次方程根的判别式、 20.(2019北京市,20题,5分)如图20-1,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF . (1)求证:AC ⊥EF ;(2)如图20-2,延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.【思路分析】)(1)由四边形ABCD 为菱形易得AB=AD ,AC 平分∠BAD ,结合BE=DF ,根据等腰△AEF 中的三线合一,证得AC ⊥EF.(2)菱形ABCD 中有AC ⊥BD ,结合AC ⊥EF 得BD ∥EF.进而有1tan tan 22OC OCODC G OD ∠=∠===;得出OA 的值. 【解题过程】(1)证明:∵四边形ABCD 为菱形 ∴AB=AD ,AC 平分∠BAD ∵BE=DF∴AB BE AD DF -=-∴AE=AF∴△AEF是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)解:∵菱形ABCD中有AC⊥BD,结合AC⊥EF.∴BD∥EF.又∵BD=4,tanG=1 2∴1tan tan22OC OC ODC GOD∠=∠===∴AO=12AC=OC=1.【知识点】菱形的性质、等腰三角形的性质、正切的定义.21.(2019北京市,21题,5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:/万元d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第_______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“○”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为_______万美元;(结果保留一位小数)(4)下列推断合理的是_______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【思路分析】(1)由条形统计图知,创新指数在70≤x<80,80≤x<90,90≤x≤100国家个数分别为12,2,2;共16个,而中国的创新指数为69.5;进而求出中国的国家创新指数的世界排名.(2)由中国的国家创新指数得分为69.5,结合中国的对应的点位于虚线1l的上方即可求得.(3)如图21-1,先画一条过69.5的水平线,该线上方的点都是国家创新指数得分比中国高的国家;然后找除中国以外的,最左边的点进而求出该国的人均国内生产总值.(4)【解题过程】(1)解:∵由条形统计图知,创新指数在70≤x<80,80≤x<90,90≤x≤100国家个数分别为12,2,2;共16个,且中国的创新指数为69.5;∴中国的国家创新指数的世界排名为17.故填17.(2)解:由中国的国家创新指数得分为69.5,结合中国的对应的点位于虚线1l的上方求得. 如下图,(3)如图21-1,易求得在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元.故填:2.7. (4)①②【知识点】 22.(2019北京市,22题,6分)在平面内,给定不在同一条直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.【思路分析】 【解题过程】(1) ∵BD 平分ABC ∠ ∴ABD CBD ∠=∠∴AD=CD(2)直线DE 与图形G 的公共点个数为1. 【知识点】 23.(2019北京市,23题,6分)小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;CBA②对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_______; (3)7天后,小云背诵的诗词最多为_______首.【思路分析】【解题过程】(1)如下图(2)4,5,6 (3)23【知识点】 24.(2019北京市,24题,6分) 如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定_______的长度是自变量,_______的长度和_______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为_______cm .【思路分析】(1)三个变量中,分析哪两个变量均随某个变量的变化而变化,哪两个量就是函数.观察表格中的数据,当AD 的长度发生变化时,PC ,PD 也随之变化.(2)以AD 为自变量,分别以PC ,PD 为函数,画函数图像即可. (3)找到图象中满足PC=2PD 时,对应点的横坐标即可解答.【解题过程】(1)观察表格中的数据可知:PC ,PD 都随AD 的变化而变化.故AD 为自变量,PC ,PD 均为AD 的函数. 故填:AD , PC ,PD ;(2)以AD 为自变量,分别以PC ,PD 为函数,画出的函数图像如下图,AB(3)观察图象可得,当AD=2.29或者3.98时,有PC=2PD.故填:2.29或者3.98. 【知识点】函数与自变量、画函数图形及应用函数图象. 25.(2019北京市,25题,5分)在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W . ①当2k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.【思路分析】(1)当0x =时,由()10y kx k =+≠求得y 的值,即得直线 与 轴的交点坐标. (2)①当2k =时画出图象分析有关区域中整点个数. ②由图象分析解答即可.【解题过程】(1)当0x =时,由()101y kx k =+≠=;∴直线l 与y 轴的交点坐标为()0,1. (2)①如下图,当k=2时,直线l :21y x =+,把2x =代入直线l ,则5y =.∴()2,5A ; 把2y =-代入直线l , 221x -=+ ∴32x =-, ∴3,22B ⎛⎫-- ⎪⎝⎭. ()2,2C -.画出函数21y x =+的图象及直线 2x =,直线2y =-组成的区域,显然区域中整数点有(0,-1)、(0,0)、(1,-1)、(1,0)、(1,1)、(1,2);显然区域W 内的整点个数有6个.② 由类似①分析图象知区域W 内没有整点时有10k -≤<或2k =-.【知识点】一次函数的图象与性质 26.(2019北京市,26题,6分)在平面直角坐标系xOy 中,抛物线21y ax bxa与y轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.【思路分析】(1)先求出A 点的坐标为10,a ⎛⎫- ⎪⎝⎭,由平移规律求得点B 的坐标.(2)由A 、B 两点的纵坐标相同,得A 、B 为对称点进而求出抛物线对称轴方程.(3)根据a 的符号分类讨论分析解答即可.【解题过程】(1)∵当x=0时,抛物线211y ax bxa a; ∴抛物线与y 轴交点A 点的坐标为10,a ⎛⎫- ⎪⎝⎭,∴由点A 向右平移2个单位长度得点B 的坐标为12,a ⎛⎫- ⎪⎝⎭;即1(2,)B a .(2)∵由A 10,a ⎛⎫- ⎪⎝⎭、B 12,a ⎛⎫- ⎪⎝⎭两点的纵坐标相同,得A 、B 为对称点.∴抛物线对称轴方程为0212x +==;即直线1x .(3)①当0a >时,10a-<. 分析图象可得,根据抛物线的对称性,抛物线不可能同时经过点A 和点P ;也不可能同时经过点B 和点Q ,所以线段PQ 和抛物线没有交点.②当0a <时,10a ->. 分析图象可得,根据抛物线的对称性,抛物线不可能同时经过点A 和点P ;但当点Q 在点B 上方或与点B 重合时,抛物线与线段PQ 恰好有一个公共点,此时12a -≤,即12a ≤-.综上所述:当12a ≤-时,抛物线与线段PQ 恰好有一个公共点.【知识点】二次函数图象及性质、点的坐标平移规律、 27.(2019北京市,27题,7分)已知30AOB ∠=︒,H 为射线OA 上一定点,1OH ,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1; (2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.【思路分析】(1)作∠MPN=180°-∠AOB,用圆规截得PM=PN ;可补全图形. (2)借助△OPM 的内角和为180°及∠AOB=30°和∠MPN=150°即可得证, (3)【解题过程】(1)见下图(2)证明:∵30AOB ∠=︒∴在△OPM 中,=180150OMP POM OPM OPM ︒-∠-∠=︒-∠∠ 又∵150MPN ∠=︒,∴150OPN MPN OPM OPM ∠=∠-∠=︒-∠ ∴OMP OPN ∠=∠.(3)如下图,过点P 作PK ⊥OA 于K ,过点N 作NF ⊥OB 于F∵∠OMP=∠OPN ∴∠PMK=∠NPF在△NPF 和△PMK 中,90NPF PMKNFO PKM PN PM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△NPF ≌△PMK (AAS ) ∴PF=MK ,∠PNF=∠MPK ,NF=PK备用图图1BAOB又∵ON=PQ在Rt △NOF 和Rt △PKQ 中,ON PQNF PK=⎧⎨=⎩∴Rt △NOF ≌Rt △PKQ (HL ) ∴KQ=OF设,MK y PK x == ∵∠POA=30°,PK ⊥OQ ∴2OP x =∴,OK OM y ==- ∴2OF OP PF x y =+=+,)1MH OH OM y =---,1KH OH OK =-.∵M 与Q 关于H 对称 ∴MH=HQ ∴KQ=KH+HQ11y -++=2y -+ 又∵KQ=OF∴22y x y -+=+∴(22x =+ ∴1x =,即PK=1 又∵30POA ∠=︒ ∴OP=2.【知识点】尺规作图、旋转、三角形的内角和、方程思想、30°锐角的性质、中心对称的性质. 28.(2019北京市,28题,7分) 在△ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,下图中是△ABC 的一条中内弧.ABCDE(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在△ABC 中,D E ,分别是AB AC ,的中点. ①若12t =,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.【思路分析】(1)当与BC 相切时,△ABC 的中内弧最长,结合勾股定理进而求得结果. (2)①分以下两种情况讨论,Ⅰ、当P 为DE 的中点时; Ⅱ、当⊙P 与AC 相切时.②分以下两种情况讨论,Ⅰ、PE ⊥AC 时,△EFC ∽△PEF ;Ⅱ、PFC ABC ∆∆∽时.【解题过程】(1)如下图:当与BC 相切时,中内弧最长.1801180180n r l πππ⨯=== (2)解:①当12t =时,C (2,0),D (0,1),E (1,1) Ⅰ、如下图, 当P 为DE 的中点时,DE 是中内弧,∴1,12P ⎛⎫⎪⎝⎭AED CBⅡ、 如下图,当⊙P 与AC 相切时,2,AC BE y x y x =-+=. 当12x =时,12y =,∴11,22P ⎛⎫ ⎪⎝⎭.综上所述,P 的纵坐标112P P y y ≤≥或②中,Ⅰ、PE ⊥AC 时,△EFC ∽△PEF, 得EF FC PF FE =,即121tt =. ∴()2102t t =>,∴t =∴0t <≤.0t <≤Ⅱ、∵PFC ABC ∆∆∽, ∴PF FC AB BC =,324PF =, ∴32PF =. 如下图,DP PF r ==,12PE =,32DP =∴t∴0t <≤综上所述,0t <≤【知识点】弧长公式、三角形相似性质与判定、圆的有关性质、点的坐标.。
2019年北京市中考数学真题卷(含答案)解析版
12019年北京市中考数学试卷【精品】一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×1032.下列倡导节约的图案中,是轴对称图形的是( )A. B. C. D.3.正十边形的外角和为( )A.180°B.360°C.720°D.1440°4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A.-3B.-2C.-1D.15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作»PQ,交射线OB 于点D ,连接CD ; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交»PQ于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A.∠COM=∠CODB.若OM=MN ,则∠AOB=20°BC.MN∠CDD.MN=3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为()A.-3B.-1C.1D.37.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0B.1C.2D.38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.3下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A.∠∠B.∠∠C.∠∠∠D.∠∠∠∠二、填空题(本题共16分,每小题2分)9.若分式1x x的值为0,则x 的值为______.10.如图,已知∠ABC ,通过测量、计算得∠ABC 的面积约为 cm 2.(结果保留一位小数) 11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)学生类别512.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图515.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∠存在无数个四边形MNPQ 是平行四边形; ∠存在无数个四边形MNPQ 是矩形; ∠存在无数个四边形MNPQ 是菱形; ∠至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()1142604sin π----++o().图3图2图118.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC∠EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息: a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x≤100);7b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“d ”圈出代表中国的点; (3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.∠相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;/万元∠相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离∠的平分线交图形均等于a(a为常数),到点O的距离等于a的所有点组成图形G,ABCG于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.ABC923.小云想用7天的时间背诵若干首诗词,背诵计划如下:∠将诗词分成4组,第i 组有i x 首,i =1,2,3,4;∠对于第i 组诗词,第i 天背诵第一遍,第(1i +)天背诵第二遍,第(3i +)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∠每天最多背诵14首,最少背诵4首. 解答下列问题: (1)填入3x 补全上表; (2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是»AB 与弦AB 所围成的图形的外部的一定点,C 是»AB 上一动点,连接PC 交弦AB 于点D .小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在»AB上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;AB11(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线yk =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W . ∠当2k=时,结合函数图象,求区域W 内的整点个数;∠若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y axbx a=+-与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a-,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H 为射线OA上一定点,1OH=+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∠ABC 中,D ,E 分别是ABC !两边的中点,如果上的所有点都在∠ABC 的内部或边上,则称为∠ABC 的中内弧.例如,下图中是∠ABC 的一条中内弧.备用图图1BAOABCDE13(1)如图,在Rt∠ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出∠ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00AB C t t >,,,在∠ABC 中,D E ,分别是AB AC ,的中点.∠若12t=,求∠ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围;∠若在∠ABC 中存在一条中内弧,使得所在圆的圆心P 在∠ABC 的内部或边上,直接写出t 的取值范围.AED CB2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是( )B. B.C.D. 【解析】本题考察轴对称图形的概念,故选C3.正十边形的外角和为( )A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∠CO=BO ,∠2|1|=+a ,解得1=a15(舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作»PQ,交射线OB 于点D ,连接CD ; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交»PQ于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN∠CDD.MN=3CD【解析】连接ON ,由作图可知∠COM∠∠DON. A. 由∠COM∠∠DON.,可得∠COM=∠COD ,故A 正确.B. 若OM=MN ,则∠OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∠∠OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证∠MOR∠∠NOS ,则OR=OS ,∠∠ORS=2COD180∠-︒,∠∠OCD=∠ORS.∠MN∠CD ,故C正确.D.由题意,易证MC=CD=DN ,∠MC+CD+DN=3CD.∠两点之间线段最短.∠MN <MC+CD+DN=3CD ,故选D6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( )A.-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭B))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m Θ∠原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0B.1C.2D.3【解析】本题共有3种命题: 命题∠,如果0,>>ab b a ,那么ba 11<. ∠b a >,∠0>-b a ,∠0>ab ,∠0>-ab b a ,整理得ab 11>,∠该命题是真命题. 命题∠,如果,11,ba b a <>那么0>ab . ∠,11b a <∠.0,011<-<-aba b b a ∠b a >,∠0<-a b ,∠0>ab . ∠该命题为真命题. 命题∠,如果ba ab 11,0<>,那么b a >. ∠,11b a <∠.0,011<-<-aba b b a ∠0>ab ,∠0<-a b ,∠a b < ∠该命题为真命题. 故,选D179.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间学生类别5∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.∠∠B.∠∠C.∠∠∠D.∠∠∠∠【解析】∠由条形统计图可得男生人均参加公益劳动时间为24.5h,女生为25.5h,则平均数一定在24.5~25.5之间,故∠正确∠由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故∠正确.∠由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故∠正确.∠由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故∠错误故,选C二、填空题(本题共16分,每小题2分)9.若分式1xx-的值为0,则x的值为______.【解析】本题考查分式值为0,则分子01=-x,且分母0≠x,故答案为110.如图,已知∠ABC,通过测量、计算得∠ABC的面积约为cm2.(结果保留一位小数)【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【解析】本题考查对三视图的认识.∠长方体的主视图,俯视图,左视图均为矩形;∠圆柱的主视图,左视图均为矩形,俯视图为圆;∠圆锥的主视图和左视图为三角形,19俯视图为圆.故答案为∠∠12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∠222PB BQ PQ =+,即∠PBQ 为等腰直角三角形,∠∠BPQ=45°,∠∠PAB+∠PBA=∠BPQ=45°,故答案为4513.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∠021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)【解析】本题考查方差的性质。
2019年北京市中考数学试卷(含答案与解析)
数学试卷 第1页(共22数学试卷 第2页(共22页)绝密★启用前2019年北京市高级中等学校招生考试数 学一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( ) A .60.43910⨯B .64.3910⨯C .54.3910⨯D .343910⨯ 2.下列倡导节约的图案中,是轴对称图形的是( )AB CD3.正十边形的外角和为( )A .180︒B .360︒C .720︒D .1440︒4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A .3-B .2-C .1-D .15.已知锐角AOB ∠如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A .COM COD ∠=∠B .若OM MN =,则20AOB ︒∠=C .MN CD ∥D .3MN CD =6.如果1m n +=,那么代数式()22221m nm n m m mn +⎛⎫+⋅- ⎪-⎝⎭的值为( )A .3-B .1-C .1D .37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公下面有四个推断:学生类别5毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A .①③B .②④C .①②③D .①②③④二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为 .10.如图,已知ABC △,通过测量、计算得ABC △的面积约为 2cm .(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是 .(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠=+ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年北京市高级中等学校招生考试数学试卷考生须知1. 本试卷共8页,共三道大题,28道小题.满分100分.考试时间120分钟.2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号.3. 试题答案一律填涂或书写在答题卡上、在试卷上作答无效.4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5. 考试结束,将本试卷、答题卡和草稿纸一并交回. 一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A. 0.439×106B. 4.39×106C. 4.39×105D. 439×1032. 下列倡导节约的图案中,是轴对称图形的是( )3. 正十边形的外角和为( )A. 180°B. 360°C. 720°D. 1440°4. 在数轴上,点A 、B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C ,若CO =BO ,则a 的值为( )A. -3B. -2C. -1D. 1 5. 已知锐角∠AOB 如图,第5题图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ︵,交射线OB 于点D ,连接CD; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ ︵于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A. ∠COM =∠CODB. 若OM =MN ,则∠AOB =20°C. MN ∥CDD. MN =3CD6. 如果m +n =1,那么代数(2m +n m 2-mn +1m )·(m 2-n 2)的值为( )A. -3B. -1C. 1D. 37. 用三个不等式a >b ,ab >0,1a <1b 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A. 0B. 1C. 2D. 3 8. 某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)第8题图下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A. ①③B. ②④C. ①②③D. ①②③④ 二、填空题(本题共16分,每小题2分) 9. 若分式x -1x的值为0,则x 的值为________.10. 如图,已知△ABC ,通过测量、计算得△ABC 的面积约为________cm 2.(结果保留一位小数)第10题图11. 在如图所示的几何体中,其三视图中有矩形的是________.(写出所有正确答案的序号)第11题图12. 如图所示的网格是正方形网格,则∠P AB +∠PBA =________°(点A ,B ,P 是网格交点).第12题图13. 在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =k 1x 上,点A 关于x 轴的对称点B 在双曲线y =k 2x上,则k 1+k 2的值为________.14. 把图①中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图②,图③所示的正方形,则图①中菱形的面积为________.第14题图15. 小天想要计算一组数据92,90,94,86,99,85的方差s 20,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5,记这组新数据的方差为s 21,则s 21=________s 20.(填“>”,“=”或“<”)16. 在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合),对于任意矩形ABCD ,正确四个结论中,①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是________.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:|-3|-(4-π)0+2sin60°+(14)-1.18. 解不等式组:⎩⎪⎨⎪⎧4(x -1)<x +2.x +73>x .19. 关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.20. 如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE =DF ,连接EF . (1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O .若BD =4,tan G =12,求AO 的长.第20题图21. 国家创新指数是反映一个国家科学技术和创新竞争力的综合指数,对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析,下面给出了部分信息:a. 国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100);b. 国家创新指数得分在60≤x<70这一组的是:61.762.463.665.966.468.569.169.369.5c. 40个国家的人均国内生产总值和国家创新指数得分情况统计图:d. 中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“○”画出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为________万美元;(结果保留一位小数)(4)下列推断合理的是________.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22. 在平面内,给定不在同一条直线一上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD =CM,求直线DE与图形G的公共点个数.第22题图23. 小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i 组有x i 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(i +1)天背诵第二遍,第(i +3)天背诵第三遍,三遍后完成背解答下列问题:(1)填入x 3补全上表:(2)若x 1=4,x 2=3,x 3=4,则x 4的所有可能取值为________; (3)7天后,小云背诵的诗词最多为________首.24. 如图,P 是AB ︵与弦AB 所围成的图形的外部的一定点,C 是AB ︵上的一动点,连接PC 交弦AB 于点D .第24题图小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整:(1)对于点C 在AB ︵上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题;当PC =2PD 时,AD 的长度约为________cm.25. 在平面直角坐标系xOy 中,直线l :y =kx +1(k ≠0)与直线x =k ,直线y =-k 分别交于点A ,B ,直线x =k 与直线y =-k 交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB ,BC ,CA 围成的区域(不含边界)为W . ①当k =2时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.26. 在平面直角坐标系xOy 中,抛物线y =ax 2+bx -1a 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点P (12,-1a ),Q (2,2),若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27. 已知∠AOB =30°,H 为射线OA 上一定点,OH =3+1,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足∠OMP 为钝角,以点P 为中心,将线段PM 顺时针旋转150°,得到线段PN ,连接ON .(1)依题意补全图①;(2)求证:∠OMP =∠OPN ;(3)点M 关于点H 的对称点为Q ,连接QP ,写出一个OP 的值,使得对于任意的点M 总有ON =QP ,并证明.第27题图28. 在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧.例如,下图中DE ︵是△ABC 的一条中内弧.第28题图(1)如图,在Rt △ABC 中,AB =AC =22,D ,E 分别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ︵,并直接写出此时DE ︵的长;(2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0).在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE ︵所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE ︵,使得DE ︵所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.2019北京中考真题解析1. C 【解析】439000=4.39×105.2. C 【解析】3. B 【解析】4. A 【解析】∵将点A 向右平移1个单位长度得到点C ,∴点C 表示的数为a +1.∵A 、B 在原点O 的两侧,且B 表示数字2,CO =BO ,∴点C 表示的数为-2,即a +1=-2.解得a =-3.5. D 【解析】如解图,连接ON ,CM ,DN .由作图过程(2)知,CM =CD =DN ,∴CM ︵=CD ︵=DN ︵.∠COM =∠COD =∠DON .A 正确;由作图过程(1)知OM =ON .又∵OM =MN ,∴OM =ON =MN .∴△OMN 是等边三角形,∠MON =60°.∴∠COD =13∠MON =13×60°=20°,即∠AOB =20°.B 正确;设OA 交MN 于点E .∵OC =OD ,∴∠OCD =∠ODC =180°-∠COD 2.∵OM =ON ,∴∠OMN =∠ONM =180°-∠MON2.∵∠MON =3∠COD ,∴∠OMN =180°-3∠COD2.∵∠OEN 是△OME 的外角,∴∠OEN =∠OMN +∠MOE=∠OMN +∠COD =180°-3∠COD 2+∠COD =180°-∠COD2.∴∠OEN =∠OCD .∴MN ∥CD .C 正确;根据“两点之间,线段最短”可知,MC +CD +DN >MN .∵MC +CD +DN =3CD .即3CD >MN .D 错误.第5题解图6. D 【解析】∵m +n =1,∴原式=[2m +n m (m -n )+1m ]·(m 2-n 2)=2m +n +m -n m (m -n )·(m +n )(m -n )=3(m+n )=3.7. D 【解析】构成的命题有3个,分别为:①若a >b ,ab >0,则1a <1b ;②若a >b ,1a <1b ,则ab >0;③若ab >0,1a <1b,则a >b .①②③都是真命题.8. C 【解析】由统计图中男生、女生的条形图可知,男生人均参加公益劳动的时间是24.5小时,女生人均参加公益劳动的时间是25.5小时,∴这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间,所以①正确;由统计表可知,从左到右时间按由小到大的排序排列,其中0≤t <10之间共有7+8=15人,10≤t <20之间共有31+29=60人,20≤t <30之间共有25+26=51人.∵15+60=75<100,15+60+51=126>100,∴第100、101个数据在20≤t <30之间,∴中位数在20≤t <30之间,所以②正确;由统计表可知,在0≤t <10之间初中生人数最多是15人,最少是0人.当0≤t <10之间初中生人数是15时,此时数据为15,25,36,44,11.∵15+25+36+44+11=131,最中间的数是第66个数,而15+25=40<66,15+25+36=76,∴中位数在20≤t <30之间.当0≤t <10之间初中生人数是0时,此时数据为0,25,36,44,11.∵0+25+36+44+11=116,最中间的数是第58、59个数,而0+25=25<58,0+25+36=61>59,∴中位数在20≤t <30之间.∴这200名学生中的初中生参加公益劳动时间的中位数一定在20≤t <30之间,∴③正确;由统计表可知,从左到右第2、3、4、5小组高中生人数分别为31+29-25=35人,25+26-36=15人,30+32-44=18人,4+8-11=1人.当0≤t <10之间高中生人数是0时,此时数据为0,35,15,18,1.∵0+35+15+18+1=69,最中间的数是第35个数,而0+35=35,∴中位数在10≤t <20之间.当0≤t <10之间高中生人数是15人时,∵15+35+15+18+1=84,最中间的数是第42、43个数,而15<42,15+35=50>43,∴中位数在10≤t <20之间.∴这200名学生中的高中生参加公益劳动时间的中位数一定在10≤t <20之间,所以④错误.9. 1 【解析】要使x -1x 有意义,则分母x ≠0.∵x -1x 的值为0,∴x -1=0,解得x =1,∴x 的值为1.10. 度量求解【解析】本题考查三角形面积,直接动手测量即可.11. ①② 【解析】长方体的三视图都是矩形,圆柱的主视图和左视图是矩形.圆锥的三视图中没有矩形.12. 45 【解析】如解图所示,延长AP ,则AP 经过格点C ,连接BC .设网格中小正方形的边长为1,则由勾股定理得PC =BC =12+22=5,PB =12+32=10.∵PC 2+BC 2=(5)2+(5)2=10,PB 2=(10)2=10,∴PC 2+BC 2=PB 2.∴△PBC 是等腰直角三角形.∴∠CPB =45°.∵∠CPB 是△ABP 的外角,∴∠P AB +∠PBA =∠CPB =45°.第12题解图13. 0 【解析】∵点A (a ,b )(a >0,b >0)在双曲线y =k 1x 上,∴b =k 1a .∴k 1=ab .∵点A (a ,b )与点B 关于x轴对称,∴B (a ,-b ).∵点B (a ,-b )(a >0,b >0)在双曲线y =k 2x 上,∴-b =k 2a .∴k 2=-ab .∴k 1+k 2=ab +(-ab )=0.14. 12 【解析】设图①中菱形对角线分别为a ,b ,且a >b .由图②得12a +12b =5,即a +b =10.由图③得12a -12b =1,即a -b =2.解方程组⎩⎪⎨⎪⎧a +b =10a -b =2,得⎩⎪⎨⎪⎧a =6,b =4.∴菱形的面积为12ab =12×6×4=12.15. = 【解析】数据92,90,94,86,99,85的平均数x 0=16×(92+90+94+86+99+85)=91.∴s 20=16×[(92-91)2+(90-91)2+(94-91)2+(86-91)2+(99-91)2+(85-91)2]=683.数据2,0,4,-4,9,-5的平均数x 1=16×(2+0+4-4+9-5)=1.∴s 21=16×[(2-1)2+(0-1)2+(4-1)2+(-4-1)2+(9-1)2+(-5-1)2]=683.∴s 20=s 21. 16. ①②③ 【解析】在矩形ABCD 中,连接AC 、BD 交于点O .作四边形MNPQ ,连接MP 、NQ ,当MP 、NQ 都经过点O 时,如解图.∵矩形ABCD 是中心对称图形,点O 是对称中心,∴OM =OP ,ON =OQ .∵直线MN ,PQ 具有任意性,∴存在无数个四边形MNPQ 是平行四边形,∴①正确;当MP =NQ 时,平行四边形MNPQ 是矩形.∵当MP 确定后,总存在NQ 使得NQ =MP ,∴存在无数个四边形MNPQ 是矩形.∴②正确.当MP ⊥NQ 时,平行四边形MNPQ 是菱形.当MP 确定后,过点O 一定可以画出NQ ⊥MP .∵MP 具有任意性,∴存在无数个四边形MNPQ 是菱形,∴③正确;当MP ⊥NQ 且MP =NQ 时,平行四边形MNPQ 是正方形,当矩形ABCD 的邻边不相等时,不存在四边形MNPQ 是正方形,∴④错误.第16题解图17. 解:原式=3-1+2×32+4 =23+3.18. 解:由4(x -1)<x +2解得x <2.由x +73>x 解得x <72.∴不等式组的解集为x <2.19. 解:∵关于x 的方程x 2-2x +2m -1=0有实数根, ∴b 2-4ac =(-2)2-4×1×(2m -1)≥0.解得m ≤1. ∵m 为正整数,∴m =1.当m =1时,可得方程x 2-2x +1=0. 解得x 1=x 2=1.20. (1)证明:∵四边形ABCD 是菱形,∴AB =AD ,∴∠BAC =∠DAC . ∵AB =AD ,BE =DF ,∴AB -BE =AD -DF ,即AE =AF . ∴△AEF 是等腰三角形.又∵∠BAC =∠DAC ,∴AC ⊥EF ;(2)解:由题意作解图如下,∵四边形ABCD 是菱形,∴AC ⊥BD ,AB ∥CD ,OB =12BD =12×4=2.∴∠G=∠AEG .由(1)知EF ⊥AC .又∵BD ⊥AC .∴EF ∥BD .∴∠AEG =∠ABO .∴∠G =∠ABO .∵tan G =12,∴tan ∠ABO =AO OB =12.∴AO =OB ·tan ∠ABO =2×12=1.第20题解图21. 解:(1)17 【解法提示】由频数分布直方图可知,根据国家创新指数得分将数据从大到小排列为:2,2,12,9,6,8,1.∵中国的国家创新指数得分为69.5,将国家创新指数得分在60≤x <70这一组从大到小排列为:69.5,69.3,69.1,68.5,66.4,65.9,63.6,62.4,61.7,∴中国在60≤x <70这一分数段排名第一位,∴中国的国家创新指数得分排名世界的名次为:2+2+12+1=17.(2)如解图①所示第21题解图①(3)2.7【解法提示】如解图②所示,过表示中国的点画横轴的平行线,在该平行线的上方且最左边的点的横坐标就是所求的最小值,最小值约为2.7.第21题解图②(4)①②【解法提示】由散点统计图知,点A,B在表示中国的点的上方,∴中国的国家创新指数得分低于点A、B所代表的国家,因此中国提出”加快建设创新型国家”的战略任务,进一步提高国家综合创新能力,①正确;点B、C在表示中国的点的右侧,∴中国的人均国内生产总值低于点B、C所代表的国家,因此中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值,②正确.22. (1)证明:∵点O到点A,B,C的距离均等于a,∴图形G为以点O为圆心,a为半径的圆(如解图所示).∵BD平分∠ABC,∴∠ABD=∠CBD.∴AD=CD;(2)解:如解图所示,连接BM,OD.由(1)得AD=CD.又∵AD=CM,∴CD=CM.∠DBC=∠MBC=∠MDC.∵DM⊥BC,∴∠DBC+∠BDM=90°.∴∠MDC+∠BDM=90°,即∠BDC=90°.∴BC是⊙O的直径.∵OD=OB,∴∠ODB=∠OBD.∵∠OBD=∠ABD,∴∠ODB=∠ABD.∴OD∥AB.∵BE⊥DE,∴OD ⊥DE.∵OD是⊙O的半径,∴DE与⊙O相切.∴直线DE与图形G的公共点个数为1.第22题解图23. 解:(1)如表格所示;【解法提示】第3组,第3天背诵第一遍,第3+1=4天背诵第二遍,第3+3=6天背诵第三遍. (2)4,5,6【解法提示】观察表格,可得⎩⎪⎨⎪⎧4≤x 1+x 3+x 4≤144≤x 2+x 4≤144≤x 4≤14,即⎩⎪⎨⎪⎧4≤4+4+x 4≤144≤3+x 4≤144≤x 4≤14,解得4≤x 4≤6.∵x 4为正整数,∴x 4=4或5或6;(3)23【解法提示】依题意可知:⎩⎪⎨⎪⎧x 1+x 2≤14x 2+x 3≤14x 1+x 3+x 4≤14x 2+x 4≤14,则3(x 1+x 2+x 3+x 4)≤70,∴x 1+x 2+x 3+x 4≤703,要小云背诵的诗词最多,则取x 1+x 2+x 3+x 4=23,当x 1=5、x 2=9、x 3=5、x 4=4时符合题意,则最多背诵23首.24. 解:(1)AD ,PC ,PD ; 【解法提示】一个自变量值只可能对应一个函数值,∵由表格可知当AD =3.01或4时,PC 均为2.25,∴PC 长是AD 长的函数;∵当AD =1.54或5.11时,PD 均为2.00,∴PD 长是AD长的函数.(2)函数图象如解图:第24题解图(3)2.30或4.00【解法提示】由函数图象可知,当AD =2.30或4.00时,PC =2PD .25. 解:(1)在y =kx +1中,当x =0时,y =1.∴直线与y 轴的交点坐标为(0,1);(2)①如解图所示.当k =2时,直线l 表达式为:y =2x +1,直线x =k 为x =2,直线y =-k 为y =-2.在y =2x +1中,当y =-2时,-2=2x +1,解得x =-32;∴B (-32,-2),当x =2时,y =2×2+1=5.∴A (2,5),C (2,-2),此时区域W 内的整点个数为6;第25题解图②-1≤k <0或k =-2【解法提示】当k >0时,区域内必含坐标原点,故不符合题意;当k <0时,W 内点的横坐标在k 到0之间,故-1≤k <0时,W 内无整点,当-2≤k <-1时,W 内可能存在的整数点横坐标只能为-1,此时边界上两点坐标为C (-1,-k )和A (-1,-k +1),AC =1,当k 不为整数时,其上必有整点,但k =-2时,只有两个边界点为整点,故W 内无整点,当k <-2时,横坐标为-2的边界点为(-2,-k )和(-2,-2k +1),线段长度为-k +1>3,故必有整点.综上,-1≤k <0或k =-2.26. 解:(1)在y =ax 2+bx -1a 中,当x =0时,y =-1a.∴A (0,-1a ).∵点A 向右平移2个单位长度得到点B ,∴B (2,-1a);(2)∵点B (2,-1a )在抛物线上,∴-1a =a ×22+b ×2-1a .∴b =-2a .∴对称轴为直线x =-b2a =--2a 2a =1;(3)由(2)知b =-2a .∴y =ax 2+bx -1a =ax 2-2ax -1a.当a >0时,在y =ax 2-2ax -1a 中,当x =12时,y =-34a -1a .∵-34a -1a <-1a ,∴点P (12,-1a )在抛物线的上方.当x =2时,y =-1a .∵-1a <2,∴点Q (2,2)在抛物线的上方.∴抛物线与线段PQ 没有公共点,舍去.当a <0时,∵-34a -1a >-1a ,∴点P (12,-1a )在抛物线的下方.∴当-1a ≤2,即a ≤-12时,Q (2,2)在抛物线上方,此时抛物线与线段PQ 恰好有一个公共点.综上,a 的取值范围是a ≤-12.27. (1)解:如解图①所示.第27题解图①(2)证明:在△OPM 中,∠AOB +∠OMP +∠OPM =180°.又∵∠AOB =30°,∴∠OMP +∠OPM =150°.∵PM 绕点P 顺时针旋转150°得到线段PN ,∴∠MPN =150°,即∠NPO +∠OPM =150°.∴∠OMP =∠OPN ;(3)解:OP =2.证明:如解图②所示,过点P 作PE ⊥OA 于点E ,过点N 作NF ⊥OB 于点F ,则∠PFN =∠MEP =90°.由(1)知∠OMP =∠OPN .∴∠PME =∠NPF .在△PFN 和△MEP 中,⎩⎪⎨⎪⎧∠PFN =∠MEP ,∠NPF =∠PME ,PN =MP ,∴△PFN ≌△MEP (AAS).∴NF =PE ,PF =ME .在Rt △OPE 中,OP =2,∠AOB =30°,∴PE =1,OE = 3.∵OH =3+1,即OE +EH =3+1,∴EH =1.∵点M 关于点H 的对称点为点Q ,∴QH =MH =1+ME =1+PF .∴EQ =EH +HQ =1+1+PF =2+PF =OP +PF =OF .在△ONF 和△QPE 中,⎩⎪⎨⎪⎧NF =PE ,∠OFN =∠QEP ,OF =QE ,∴△ONF ≌△QPE (SAS).∴ON =QP .第27题解图②28. 解:(1)画出DE ︵如解图①所示,DE ︵与BC 相切时,△ABC 的中内弧最长.此时DE ︵的长为以DE 长为直径的半圆.∵Rt △ABC ,AB =AC =22,∴BC =2AB =2·22=4.∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×4=2.∴lDE ︵=12×π×2=π;第28题解图①(2)①当t =12时,C (2,0).连接DE ,当DE ︵在DE 的下方时,点P 的纵坐标最小时点P 为DE 的中点,如解图②所示.∵A (0,2),∴BA =2.∵点D 是BA 的中点,∴BD =1.∵点D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×2=1.∴⊙P 的半径PD =12.∵12<1,∴DE ︵是△ABC 的中内弧.∴y P ≥1.第28题解图②第28题解图③当DE ︵在DE 的上方时,点P 的纵坐标最大时⊙P 与AC 相切于点E .如解图③所示,作DE 的垂直平分线FG 交DE 于点F ,交x 轴于点G ,则四边形DBGF 是矩形,圆心P 在FG 上.∵C (2,0),A (0,2),∴BC =BA =2.∴Rt △ABC 是等腰直角三角形.∴∠ACB =45°.∵点D 、E 分别为AB 、AC 的中点,∴DE ∥BC .∴∠AED =∠ACB .∴∠AED =45°.连接PE ,∵⊙P 与AC 相切于点E ,∴PE ⊥AC .∴∠PEA =90°.∴∠PEF =∠PEA -∠AED =45°.∵PF ⊥DE ,∴∠FPE =45°.∴∠PEF =∠FPE .∴PF =EF .∵FG 平分DE ,∴DF =EF =12DE =12×1=12.∴PF =12.∵FG =BD =1,∴PG =FG -PF =1-12=12.∴P (12,12).∴y P ≤12. 综上,圆心P 的纵坐标y P 的取值范围为y P ≥1或y P ≤12.②0<t ≤2【解法提示】ⅰ. 当P 在DE 上方时,如解图④所示,圆心P 在边AC 上且DE ︵与边BC 相切于点F 时,符合题意.∵C (4t ,0),∴BC =4t .∵D 、E 分别为AB 、AC 的中点,∴DE ∥BC ,DE =12BC =12×4t =2t .连接PF .∵⊙P 与BC 相切于点F ,∴PF ⊥BC .∵DE ∥BC ,∴DE ⊥PF .∴DG =12DE =12×2t =t .∵PF ⊥BC ,∴PF∥y 轴.∴△EPG ∽△EAD .∴PG AD =EG ED =12.∴PG =12AD =12×1=12.又∵GF =BD =1,∴PF =PG +GF =12+1=32.∴DP =32.在Rt △PDG 中,由勾股定理得DP 2=DG 2+GP 2,即(32)2=t 2+(12)2.解得t =± 2.∵t >0,∴t = 2.∴t 的取值范围是0<t ≤ 2.第28题解图④ⅱ. 当P 在DE 下方时,如解图⑤.⊙P 与AC 相切于点E 为临界状态,过P 作PM ⊥DE 于点M ,DE ︵为△ABC 的中内弧,只需PM ≤1即可.此时易得△EMP ∽△ABC ,∴PM BC =EM AB ,即PM 4t =t 2.得PM =2t 2,故0<t ≤22第28题解图⑤综上,t 的取值范围为0<t ≤ 2.。