概率论与数理统计习题二答案完整版
概率论与数理统计习题二答案
概1、将一颗骰子抛掷两次,以X 1表示两次所得点数之和,以X 2表示两次得到的点数的最小者,试分别求X 1和X 2的分布律。
解:X 1可取2、3、4、5、6、7、8、9、10、11、123616161)1,1()2(1=⨯===P X P36261616161)"1,2""2,1(")3(1=⨯+⨯=⋃==P X P363616161616161)"1,3""2,2""3,1(")4(1=⨯+⨯+⨯=⋃⋃==P X P ……2P (X 2=1)=P ("1,6""1,5""1,4""1,3""1,2""6,1""5,1""4,1""3,1""2,1""1,1"⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃)=36112求X 的分布律。
解:X 可取0、1、2{}310380C C X P ==157={}15713102812===C C C X P {}15123101822===C C C X P 3、进行重复独立试验。
设每次试验成功的概率为)10(<<p p(1) 将试验进行到出现一次成功实验为止,以X 表示所需试验的次数,此时称X 服从参数为p 的几何分布。
求X 的分布律。
(2) 将试验进行到出现r 次成功为止,以Y 表示所需试验的次数,此时称Y 服从参数为r 、p 的巴斯卡分布。
求Y 的分布律。
解:(1){},......2,1,)1(1=-==-k p p k X P k (k-1次未成功,最后一次成功)(2){},......1,,)1(11+=-==---r r k p p C k X P rk r r k解:(1)是 (2)不是,因概率之和不为15、(1)设随机变量X 的分布律为{}N k Nak X P .....,2,1,===试确定常数a(2)设随机变量X 的分布律为{}.....2,1,32=⎪⎭⎫⎝⎛⋅==k b k X P k试确定常数b(3)设随机变量X 的分布律为{}0......2,1,0,!>=⋅==λλk k c k X P k为常数,试确定常数c 解:(1){}111====∑∑==a Nak X P Nk Nk , 1=∴a (2){}1231323211==-=⎪⎭⎫⎝⎛⋅==∑∑∞=∞=b b b k X P k kk , 21=∴b(3){}1!==⋅==∑∑∞=∞=λλe c k c k X P k kk , λ-=∴e c6、设随机变量X 的分布律为{}5,4,3,2,1,15===k kk X P 其分布函数为)(x F ,试求:(1)⎭⎬⎫⎩⎨⎧<<2521X P , (2){}21≤≤X P , (3)⎪⎭⎫⎝⎛51F 解:(1){}{}212521=+==⎭⎬⎫⎩⎨⎧<<X P X P X P 51152151=+=(2){}21≤≤X P {}{}21=+==X P X P 51152151=+= (3)⎪⎭⎫⎝⎛51F051=⎭⎬⎫⎩⎨⎧≤=X P7、一大楼装有5个同类型的供水设备。
概率论与数理统计第二版参考答案
习题2参考答案2.1 X 23456789101112P1/36 1/18 1/12 1/95/36 1/6 5/36 1/91/12 1/18 1/362.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124CC C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628CC C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++=(2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+=2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314kk lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯=1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X CC ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X CC C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5) 01.51.5{0}0!P X e-=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)122222{2}1{0}{1}1130!1!P X P X P X e ee---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
概率论与数理统计2.第二章练习题(答案)
第二章练习题(答案)一、单项选择题1.已知连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=ππx x b kx x x F ,10,0,0)( 则常数k 和b 分别为 ( A )(A )0,1==b k π (B )π1,0b k = (C )0,21==b k π (D )π21,0==b k . 2.下列函数哪个是某随机变量的分布函数 ( A )A. f (x )={xa e −x 22a,x ≥01, x <0(a >0); B. f (x )={12cosx, 0< x <π0, 其他C. f (x )={cosx, −π2< x <π20, 其他D. f (x )={sinx, −π2< x <π20, 其他3.若函数()f x 是某随机变量X 的概率密度函数,则一定成立的是 ( C ) A. ()f x 的定义域是[0,1] B. ()f x 的值域为[0,1] C. ()f x 非负 D. ()f x 在(,)-∞+∞内连续4. 设)1,1(~N X ,密度函数为)(x f ,则有( C ) A.{}{}00>=≤X P X P B. )()(x f x f -= C. {}{}11>=≤X P X P D. )(1)(x F x F --=5. 设随机变量()16,~μN X ,()25,~μN Y ,记()41-<=μX P p ,()52+>=μY P p ,则正确的是 ( A ).(A )对任意μ,均有21p p = (B )对任意μ,均有21p p < (C )对任意μ,均有21p p > (D )只对μ的个别值有21p p = 6. 设随机变量2~(10,)X N ,则随着的增加{10}P X ( C )A.递增B.递减C.不变D.不能确定7.设F 1(x )与F 2(x )分别为随机变量X 1、X 2的分布函数,为使F (x )=aF 1(x )-bF 2(x )是某一随机变量的分布函数,在下列给定的多组数值中应取 ( A )A . a =53, b =52-; B . a =32, b =32;C . 21-=a , 23=b ; D . 21=a , 23-=b .8.设X 1与X 2是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为f 1(x )和f 2(x ),分布函数分别为F 1(x )和F 2(x ),则 ( D ) (A) f 1(x )+f 2(x ) 必为某个随机变量的概率密度; (B )f 1(x )•f 2(x ) 必为某个随机变量的概率密度; (C )F 1(x )+F 2(x ) 必为某个随机变量的分布函数; (D) F 1(x ) •F 2(x ) 必为某个随机变量的分布函数。
《概率论与数理统计》习题及答案 第二章
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
《概率论与数理统计》课后习题答案2
1. 试分别给出随机变量的可能取值为可列、有限的实例.解 用X 表示一个电话交换台每小时收到呼唤的次数,X 的全部可能取值为可列的 0,1,2,3,…,;用Y 表示某人掷一枚骰子出现的点数,Y 的全部可能取值为有限个 1,2,3,4,5,6 ;2. 试给出随机变量的可能取值至少充满一个实数区间的实例.解 用X 表示某灯泡厂生产的灯泡寿命(以小时记),X 的全部可能取值为区间 (0,+∞)3. 设随机变量X 的分布函数()F x 为()F x = 2 1, >20, 2A x xx ⎧-⎪⎨⎪≤⎩ 确定常数A 的值,计算(04)P X ≤≤.解 由(20)(2),F F +=可得10, =44AA -= (04)(04)(4)(0)0.75P X P X F F ≤≤=<≤=-=.4.试讨论:A 、B 取何值时函数()arctan3xF x A B =+ 是分布函数. 解 由分布函数的性质,有()()0,1F F -∞=+∞=,可得0,211,,21,2A B A B A B πππ⎧⎛⎫+-= ⎪⎪⎪⎝⎭⇒==⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩于是()11arctan ,.23xF x x π=+-∞<<+∞1.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的概率分布.解 由题意知,X 的取值可以是0,1,2,3.而X 取各个值的概率为{}{}70,103771,10930P X P X ====⨯= {}{}32772,1098120321713.10987120P X P X ==⨯⨯===⨯⨯⨯= 因此X 的概率分布为012 377711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦2.从分别标有号码1 ,2 ,… ,7的七张卡片中任意取两张, 求余下的卡片中最大号码的概率分布.解 设X 为余下的卡片的最大号码 ,则X 的可能取值为5、6、7,且1{5}21P X ==5{6}21P X ==15{7}21P X ==即所求分布为567 1515212121X ⎡⎤⎢⎥⎢⎥⎣⎦ 3.某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数的概率分布.解 设此人将门打开所需的试开次数为X ,则X 的取值为1,2,3,...,k n =,事件{}{}1X k k k ==-前次未打开,第次才打开,且{}11P X n ==, {}11121n P X n n n-==⋅=-,… …,{}()121112111,2,....,n n n k P X k n n n k n k k n n ---+==⋅⋅⋅⋅--+-+== 故所需试开次数的分布为12~111X n nn ⎡⎤⎢⎥⎢⎥⎣⎦ ... n .... 4.随机变量X 只取1 、2 、3共三个值,并且取各个值的概率不相等且组成等差数列,求X 的概率分布.解 设{}{}{}1,2,3P X a P X b P X c ======,则由题意有1a b c c b b a ++=⎧⎨-=-⎩解之得2313a c b ⎧+=⎪⎪⎨⎪=⎪⎩设三个概率的公差为d ,则11,33a d c d =-=+,即X 的概率分布为 12 3111333X d d⎡⎤⎢⎥⎢⎥-+⎢⎥⎣⎦,103d << 5.设随机变量X 的全部可能取值为1 ,2 ,… ,n ,且()P X k = 与k 成正比,求X 的概率分布.解 由题意,得{}() 1,2,,k P X k p ck k n ====其中c 是大于0的待定系数.由11nkk p==∑,有12....1nk k cp c c n c ==+++=∑ 即()112n n c +=,解之得 ()21c n n =+.把()21c n n =+代入k p ,可得到X 的概率分布为{}()2,1,2,...,.1kP X k k n n n ===+6.一汽车沿街道行驶时须通过三个均设有红绿灯的路口.设各信号灯相互独立且红绿两种信号显示的时间相同,求汽车未遇红灯通过的路口数的概率分布.解 设汽车未遇红灯通过的路口数为X ,则X 的可能值为0,1,2,3.以()1,2,3i A i =表示事件“汽车在第i 个路口首次遇到红灯”,则123,,A A A 相互独立,且()()1,1,2,32i i P A P A i ===.对0,1,2,3k =,有{}()1102P X P A ==={}()()()1212211142P X P A A P A P A ===== {}()123311282P X P A A A ==== {}()123311382P X P A A A ==== 所以汽车未遇红灯通过的路口数的概率分布为012 311112488X ⎡⎤⎢⎥⎢⎥⎣⎦7.将一颗骰子连掷若干次,直至掷出的点数之和超过3为止.求掷骰子次数的概率分布.解 设掷骰子次数为X ,则X 可能取值为1,2,3,4,且31{1}62P X === 141515{2}6666612P X ==⨯+⨯+=;115111117{3}6666666216P X ==⨯⨯+⨯+⨯=; 1111{4}666216P X ==⨯⨯=所以掷骰子次数X 的概率分布为123 415171212216216X ⎡⎤⎢⎥⎢⎥⎣⎦ 8.设X 的概率分布为试求(1)X 的分布函数并作出其图形;(2) 计算{11}P X -≤≤ ,{0 1.5}P X ≤≤ ,{2}P X ≤ . 解(1)由公式 (){}()k kx xF X P X x p x ≤=≤=-∞<<+∞∑,得()0,00.2,010.5,120.6,231,3x x F X x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2) {}11(1)(10)0.500.5P X F F -≤≤=---=-= {}0 1.5(1.5)(00)0.500.5P X F F ≤≤=--=-={}2(2)0.6P X F ≤==9.设随机变量X 的分布函数为010.210()0.70212x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩,,,,试求(1) 求X 的概率分布;(2) 计算1322P X ⎧⎫-<≤⎨⎬⎩⎭,{1}P X ≤- ,{03}P X ≤< ,{1|0}P X X ≤≥解 (1)对于离散型随机变量,有{}()()0P X k F k F k ==--,因此,随机变量X 的概率分布为10 2 0.20.50.3X -⎡⎤⎢⎥⎣⎦ (2) 由分布函数计算概率,得13310.52222P X F F ⎧⎫⎛⎫⎛⎫-<≤=--=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭;{}()110.2P X F ≤-=-=;{}()0330(00)10.20.8P X F F ≤<=---=-=; {}{}{}{}{}1,0100010.50.625.00.8P X X P X X P X P X P X ≤≥≤≥=≥≤≤===≥10.已知随机变量X 服从0—1分布,并且{0}P X ≤=0.2,求X 的概率分布 . 解 X 只取0与1两个值,{0}P X =={0}P X ≤-{0}P X <=0.2,{1}1{0}0.8P X P X ==-==11.已知{}P X n == nP ,n =1,2,3,⋯,求P 的值 .解 因为1{}1,n P X n ∞===∑ 有 11=,1n n pp p∞==-∑解此方程,得0.5p =. 12.商店里有5名售货员独立地售货.已知每名售货员每小时中累计有15分钟要用台秤.(1) 求在同一时刻需用台秤的人数的概率分布;(2) 若商店里只有两台台秤,求因台秤太少而令顾客等候的概率.解 (1) 由题意知,每名售货员在某一时刻使用台秤的概率为150.2560p ==, 设在同一时刻需用台秤的人数为X , 则()~5,0.25X B , 所以{}550.250.75(0,1,2,3,4,5)kk k P X k C k -===(2) 因台秤太少而令顾客等候的概率为{}{}55553320.250.75k k k k k P X P X k C -==>===∑∑332445550.250.750.250.750.250.1035C C =++≈13.保险行业在全国举行羽毛球对抗赛,该行业形成一个羽毛球总队,该队是由各地区的部分队员形成.根据以往的比赛知,总队羽毛球队实力较甲地区羽毛球队强,但同一队中队员之间实力相同,当一个总队运功员与一个甲地区运动员比赛时,总队运动员获胜的概率为0.6,现在总队、甲队双方商量对抗赛的方式,提出三种方案:(1)双方各出3人; (2)双方各出5人; (3)双方各出7人.3种方案中得胜人数多的一方为胜利.问:对甲队来说,哪种方案有利?解 设以上三种方案中第i 种方案甲队得胜人数为(1,2,3),i X i =则上述3种方案中,甲队胜利的概率为(1){}331322(0.4)(0.6)0.352k k k k P X C -=≥=≈∑(2){}552533(0.4)(0.6)0.317k k k k P X C -=≥=≈∑(3){}773744(0.4)(0.6)0.290kk k k P X C -=≥=≈∑因此第一种方案对甲队最为有利.这和我们的直觉是一致的。
概率论与数理统计2含答案
一.填空题(共10分)已知P(A)=12,P BA c h=34,P(B) =58,则P( A ∣B ) =______ 。
设随机变量X 服从参数为 λ 的泊松分布,且已知P{ X= 7 } =P{ X= 9 },则 λ =___________。
3、样本(,,,)X X X n 12 来自总体2~(, )X N μσ,则22(1)~n n S σ- ______________;()~n X S μ- ____________。
其中X 为样本均值,S n X X n i n 22111=--=∑()。
4、设X X X n 12,, 是来自正态总体N (,)μσ2的样本,记1nn i ii Y a X ==∑,若n Y 为μ的无偏估计,则12,,...n a a a 满足的等式为 。
5、设总体~(1,)X B p ,其中未知参数01<<p , X X X n 12,, 是X 的 样本,则p的矩估计为________,样本的似然函数为_________。
(f x p p p x x(;)()=-1 为 X的 概 率 密 度 函 数 ) 二、选择题(共10分)6、4, 1, 0.6XY DX DY ρ===,则(32)D X Y -=( )。
( A ) 40 ( B ) 34 ( C ) 25.6( D ) 17.67、样本(,,,)X X X n 12 来自总体X ,已知X 服从参数λ=1的指数分布,则Max X X X n {,,,}12 的分布函数为( )。
( A )F z z e z z()=<-≥R S T - 0010 ( B ) F z z e z z n()()=<-≥R S T - 0010 ( C ) F z z e z z ()=<≥R S T - 000 ( D )0 0()n 0nzz F Z e z -<⎧=⎨≥⎩ 8、随机变量~(1,1)X N ,记X 的概率密度为f(x),分布函数为F( x ),则有( )。
概率论与数理统计 许承德 习题二 课后答案
习 题 二1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =, 所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+ 所以 312()()()0.60.30.9P A P A P A =+=+= 131()()0.6P A A P A == 故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =,则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++.5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -. 解 ()()()() 1.1()(|) 1.10P A B P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论与数理统计第二章习题及答案
概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P XP C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=qk -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计第二章课后习题及参考答案
于是, X 的分布律为
P ( X k ) p k 1 (1 p ) (1 p ) k 1 p , k 2,3, .
7.随机变量 X 服从泊松分布,且 P ( X 1) P ( X 2) ,求 P ( X 4) 及 P ( X 1) .
3
解: P ( X 1) P ( X 2) ,
(3) 方法 1: P (1 X 3) P ( X 1) P ( X 1) P ( X 2) 1 . 方法 2: P (1 X 3) F (3) F (1 0) 1 0 1 . 4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的 概率都是 0.4,而当第一组成功时,每年的销售额可达 40000 元;当第二组成 功时,每年的销售额可达 60000 元,若失败则分文全无.以 X 记这两种新药 的年销售额,求 X 的分布律. 解:设 Ai {第 i 组取得成功}, i 1,2 , 由题可知, A1 , A2 相互独立,且 P ( A1 ) P ( A2 ) 0.4 . 两组技术人员试制不同类型的新药, 共有四种可能的情况:A1 A2 ,A1 A2 ,A1 A2 ,
2
P ( X 0) P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.36 ,
60000 0.24
40000 0.24
0 0.36
5.对某目标进行独立射击,每次射中的概率为 p ,直到射中为止,求: (1) 射击次数 X 的分布律;(2) 脱靶次数 Y 的分布律. 解:(1) 由题设, X 所有可能的取值为 1,2,…, k ,…, 设 Ak {射击时在第 k 次命中目标},则
1 ln 3) ;(3) 分布函数 F ( x) . 2
概率论与数理统计习题及答案第二章.doc
习题 2-21. 设 A 为任一随机事件 , 且 P ( A )= p (0< p <1). 定义随机变量1, 发生 ,XA0, 不发生 .A写出随机变量 X 的分布律 .解 { =1}= ,{ =0}=1- p .P X p P X或者X 0 1P1- pp2. 已知随机变量X 只能取 -1,0,1,2 四个值 , 且取这四个值的相应概率依次为1 , 3 , 5 , 7. 试确定常数 c ,并计算条件概率 P{ X1 | X0} .2c 4c 8c 16c解 由离散型随机变量的分布律的性质知,1 3 571,2c4c8c 16c37所以 c .161P{ X1}8所求概率为{ <1|X0 }=2c.P XP{ X 0}1 5 7252c 8c 16c3. 设随机变量 X 服从参数为 2, p 的二项分布 , 随机变量 Y 服从参数为 3, p 的二项分布 ,若P{X ≥1}5, 求P{Y ≥1}.9解 注意 p{x=k}=C n k p k q n k , 由题设 5P{ X ≥1}1 P{ X0} 1 q 2 ,9故 q1 p2 从而.3P{Y ≥1} 1 P{ Y 0}1 (2 )3 19 .3 274. 在三次独立 的重复试验中 , 每次试验成功的概率相同 , 已知至少成功一次的概率19为, 求每次试验成功的概率 .27解设每次试验成功的概率为p , 由题意知至少成功一次的概率是19,那么一次都27没有成功的概率是8 . 即 (1 p)38 ,故p = 1 .272735. 若 X 服从参数为的泊松分布 ,且P{X1} P{ X 3}, 求参数 .解 由泊松分布的分布律可知 6 .6. 一袋中装有 5 只球 , 编号为 1,2,3,4,5.在袋中同时取 3 只球, 以 X 表示取出的 3 只球中的最大号码 , 写出随机变量 X 的分布律 .解 从 1,2,3,4,5 中随机取 3 个,以 X 表示 3 个数中的最大值, X 的可能取值是 3,4,5,在 5 个数中取 3 个共有C 5310 种取法 .{ =3} 表示取出的 3 个数以 3 为最大值, P{=3}=C 22= 1;C 53 10{ =4} 表示取出的 3 个数以 4 为最大值, P{=4}=C 323 ;C 53 10 { =5} 表示取出的 3 个数以 5 为最大值, P{=5}=C 423 .5 C 53X 的分布律是X 3 45P13310105习题 2-31. 设 X 的分布律为X -11P求分布函数( ), 并计算概率 { <0},{ <2},{-2 ≤ <1}.F xPXPXPX0, x 1, 解 (1)0.15, 1≤ x 0,F ( x )=0≤ x 1,0.35, 1,x ≥1.(2) P { X <0}= P { X =-1}=; (3) P { X <2}= P { X =-1}+ P { X =0}+P { X =1}=1; (4) P {-2 ≤ x <1}= P { X =-1}+ P { X =0}=.2. 设随机变量 X 的分布 函数为( ) = + arctan x - ∞< <+∞.F xA Bx试求 : (1) 常数 A 与 B ; (2)X 落在 (-1, 1] 内的概率 .解 (1) 由于 (- ∞)=0,(+∞)=1, 可知F FA B()1 12A, B.A B( )122于是F ( x) 1 1arctan x, x .2(2) P{ 1X ≤1} F (1) F ( 1)1 1 1 1arctan( 1))( arctan1) (2 21 1 1 1 () 1 .2424 23. 设随机变量 X 的分布函数为F ( x )=0,x 0, x,0≤x 1,1,x ≥1,求 P { X ≤ -1}, P { < X <}, P {0< X ≤ 2}.解 P {X ≤ 1} F( 1) 0,P {< X <}= F - F {}- P { X =}=, P {0< X ≤2}= F (2)- F (0)=1.5.X 的绝对值不大于1;P{ X1}1 1}1 假设随机变量 ,P{X; 在事件{ 1 X 1} 出现的条件下 ,84X 在 (-1,1) 内任一子区间上取值的条件概率与该区间的长度成正比 . (1) 求 X 的分布函数 F ( x) P{ X ≤ x }; (2)求 X 取负值的概率 p .解 (1) 由条件可知 ,当 x1时,F ( x) 0 ;当 x 1 时 , F ( 1) 1;当 x 1时 , 8F (1)= P { X ≤ 1}= P ( S )=1.所以P{ 1 X1} F (1) F ( 1)P{X 1}1 1 514.88易见 , 在 X 的值属于 (1,1) 的条件下 , 事件 { 1 X x} 的条件概率为P{ 1 X ≤ x | 1X 1} k[ x( 1)],取 x =1 得到 1= k (1+1),所以 k = 1.2x 1 . 因此P{ 1 X ≤x | 1 X 1}于是 , 对于1 x 1 ,有2P{ 1X ≤ x} P{ 1X ≤ x, 1 X 1}P{ 1 X 1} P{ 1 X ≤ x | 1 X 1}5 x 1 5x 5 . 对于 x ≥1,8 2 16有 F ( x) 1. 从而0, x 1, F ( x)5x 7 , 1x 1,161, ≥x1.(2) X 取负值的概率p P{ X0} F(0) P{ X0} F (0) [F(0)F (0 )] F (0 )7 . 习题 2-4161. 选择题设 f ( x)2x, x [0, c],则 f ( x) 是某一随机变量的概率(1)0,x如果 c =(),[0, c].密度函数 .(A)1(B)1.(C) 1.(D)3.2.3c2f ( x)dx 11 ,于是 c 1解 由概率密度函数的性质可得2xdx, 故本题应选 (C ).(2) 设 X ~ N (0,1), 又常数 c 满足 P{ X ≥ c} P{ X c} , 则 c 等于 ( ).(A) 1.(B) 0.(C)1 (D) -1..2解因为P{ X ≥ c} P{ X c} ,所以 1 P{ X c} P{ X c} , 即2P{ Xc} 1, 从而 P{X c} 0.5 , 即 ( c) 0.5 , 得 c =0. 因此本题应选 (B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).cos x, x [0, ],1x2,(A)f (x)(B)f (x),0,其它 .20,其它 .1( x) 2x≥22e,≥ 0,e , x0, (C)f (x) (D)f ( x)20, x0.0,x 0.解 由概率密度函数的性质f ( x)dx 1 可知本题应选 (D).(4) 设随机变量X ~ N(,42) , Y~N(,52), P 1P{X ≤4 },P 2 PY ≥ 5 }, 则( ).(A) 对任意的实数 , P 1P 2 . (B) 对任意的实数 , P 1 P 2 .(C) 只对实数的个别值 ,有P 1 P 2 . (D) 对任意的实数 , P P .12解 由正态分布函数的性质可知对任意的实数, 有P 1( 1) 1 (1) P 2 .因此本题应选 (A).Xf xf (x)f ( x)F x(5) 设随机变量 的概率密度为 , 且 , 又( )为分布函数 , 则对任意实数 a , 有 ( ).a(A)F ( a) 1∫0 f (x)dx .(B)F ( a)(C) F ( a)F ( a) . (D) Fa解由分布函数的几何意义及概率密度的性质知答案为1 a2 ∫0f ( x)dx.2F ( a) 1 .(B).(6) 设随机变量X 服从正态分布N (1, 12 ) , Y 服从正态分布 N ( 2, 22) ,且P{ X11} P{ Y21},则下式中成立的是 (). (A) σ1 < σ2 .(B)σ 1 > σ 2 .(C)μ1 <μ2 .(D)μ1 >μ2 .解 答案是 (A). XN(0 1)u 满足(7) 设随机变量 服从正态分布对给定的正数, 数(0,1),P{ X u }, 若P{X x}, 则 x 等于 ().(A)u .(B)u.(C)u 1-.(D)u 1.2122解 答案是 (C).2. 设连续型随机变量 X 服从参数为的指数分布 ,要使P{ kX 2k}1成立 ,4应当怎样选择数 k ?解 因为随机变量 X 服从参数为的指数分布 , 其分布函数为F ( x)1 e x , x 0,0,x ≤ 0.由题意可知1 P{ k X 2k} F(2k) F ( k) (1 e2 k )(1 e k ) e k e 2 k .4于是kln 2.3. 设随机变量 X 有概率密度f ( x) 4 x 3 , 0 x 1, 0,其它 ,要使 P{ X ≥ a}P{ Xa} ( 其中 a >0) 成立 , 应当怎样选择数 a ?解由条件变形 , 得到 1P{ Xa} P{ Xa},可知P{ X a} 0.5 ,于是a3dx 0.5,因此 a14x.424. 设连续型随机变量 X 的分布函数为0,x 0,F ( x)x 2 , 0≤x ≤1,1,x 1,求: (1)X 的概率密度 ; (2) P{0.3 X 0.7} .解 (1)根据分布函数与概率密度的关系F ( x)f ( x) ,可得f (x)2x, 0 x 1,0, 其它 .(2)P{0.3 X0.7}F (0.7) F (0.3) 0.720.320.4 .5. 设随机变量 X 的概率密度为2x,0≤ x ≤1,f ( x ) =其它 ,0,求P {X ≤ 1}与P {1< X ≤2}.241}11 1解P{X ≤ 22xdx x 22 ;24P{ 1 X ≤2}1 2 xdx x 2 1 15 .1444 166. 设连续型随机变量 X 具有概率密度函数x,0 x ≤1,f ( x) Ax,1x ≤2,0,其它 .求 : (1) 常数 A ; (2) X 的分布函数 F ( x ).解 (1) 由概率密度的性质可得11 2( A x)dx1 x2xdx12于是A 2;(2) 由公式 F ( x) xf ( x)dx可得当 x ≤0 时 , F ( x) 0 ; 当 0x ≤1时 ,F( x)x1 x2 ;xdx2当 1x ≤2时 ,F ( x)1x(2xdx1当 x >2 时,F ( x) 1.0,1 x2 , 所以F ( x)2 x 22x1,2112[ Ax x 2]A 1,21x 2 x)dx 2x1;2x ≤ 0,0 x ≤ 1,1 x ≤ 2,1,x2.7. 设随机变量 X 的概率密度为1f ( x) 4( x 1), 0 x 2,0, 其它 ,对 X 独立观察 3 次, 求至少有 2 次的结果大于 1 的概率 . 解根据概率密度与分布函数的关系式P{ a X ≤ b} F (b) F ( a)b f ( x)dx ,a可得P{ X 1} 21 ( x 1)dx 54.1 8 所以 , 3 次观察中至少有2 次的结果大于 1 的概率为C 2(5)2(3) C 3 ( 5)3 175 .8 8 2568 4x 2 8. 设 X ~U(0,5) , 求关于 x 的方程 4 Xx 2 0 有实根的概率 .解 随机变量 X 的概率密度为1, ≤ x 5,f ( x)50, 其它 ,若方程有实根 , 则16 X 232≥0, 于是 X 2 ≥ 2. 故方程有实根的概率为P { X 2 ≥2}= 1P{ X 2 2}1 P{2 X2}1 21dx0 512 .59. 设随机变量 X ~ N(3,22) .(1)计算 P{2 X ≤5} , P{ 4 X ≤10}, P{| X | 2}, P{X 3};(2)确定 c 使得P{ X c} P{ X ≤ c}; (3) 设 d 满足 P{ X d}≥0.9 , 问 d 至多为多少?解 (1) 由 P { a <x ≤ b }= P { a3 X 3 ≤ b 3 } Φ( b 3 ) Φ( a 3)公式,得到2 2 2 22XΦ(1) Φ( 0.5) 0.5328P,{2< ≤5}=P {-4< X ≤10}= Φ(3.5) Φ( 3.5) 0.9996,P{|X|2}=P{X2} +P{X2}=1 2 32 3Φ() +Φ(2 ) =,2P{ X 3} =1 P{ X ≤3} 1Φ( 3 3 ) 1 Φ(0) = .2(2) 若P{Xc}P{ X ≤ c} , 得 1P{ X ≤ c}P{ x ≤ c} ,所以P{ X ≤ c} 0.5由 Φ(0) =0 推得c3 0, 于是 c =3.2 Φ(d3(3)P{ X d}≥ 0.9 即1)≥ 0.9 , 也就是2Φ( d 3 )≥ 0.9 Φ(1.282) ,2因分布函数是一个不减函数, 故(d 3)≥ 1.282,2解得d ≤ 3 2 ( 1.282) 0.436 .10. 设随机变量 X ~ N (2, 2) , 若 P{0 X4} 0.3 , 求 P{X 0} .解 因为X ~ N2,所以 ZX~ N(0,1). 由条件 P{0 X4} 0.3可知0.3 P{0 X4}0 2X 24 22(2P{}( )) ,于是 222 ( )10.3从而 ( )0.65 .,P{X 0}P{X202}(22 所以) 1( ) 0.35.习题 2-5 1. 选择题(1) 设 X 的分布函数为 F ( x ), 则 Y 3 X 1 的分布函数 G y 为( ).(A) F (1 1 (B)F (3 y 1) .y) .3311(C)3F ( y) 1.(D)F ( y).3 3解 由随机变量函数的分布可得 , 本题应选 (A).(2) 设X~N 01 ,令YX 2, 则Y ~().(A)N( 2, 1). (B)N(0,1) . (C) N( 2,1) . (D)N (2,1) .解 由正态分布函数的性质可知本题应选 (C).2. 设 X ~ N(1,2), Z 2X 3 , 求 Z 所服从的分布及概率密度 . 解 若随机变量 X ~ N(,2) , 则 X 的线性函数 YaX b 也服从正态分布 , 即Y aX b ~ N( a b,( a ) 2). 这里 1,2 , 所以 Z ~ N(5,8) .概率密度为1 ( x 5) 2f (z)16,x.e43. 已知随机变量 X 的分布律为X -1137P(1) 求 =2- X 的分布律; (2) 求 =3+ 2分布律 .YYX解 (1)2-X-5-1123P(2)3+X 23 41252P4. 已知随机变量 X 的概率密度为1, 1 x 4,f X ( x)=2 x ln 20,其它,且 Y =2- X , 试求 Y 的概率密度 .解 先求Y的分布函数F Y ( y):F Y ( y) = P{ Y ≤ y}P{2X ≤ y}P{X ≥2 y}2 y1 P{ X 2y} =1-f X ( x)dx.于是可得 Y 的概率密度为1, 1 2 y4,f Y ( y)f X (2y)(2 y)=2(2 y) ln 20,其它 .1, 2 y1,f Y ( y)即2(2 y) ln 20,其它 .5. 设随机变量 X 服从区间 (-2,2) 上的均匀分 布, 求随机变量 YX 2 的概率密度 .解 由题意可知随机变量 X 的概率密度为f X ( x)1 ,2 x2,40, 其它 .因为对于 0<y <4,F Y ( y) P{ Y ≤ y} P{ X 2 ≤ y} P{y ≤ X ≤ y }F X ( y ) F X ( y ) .于是随机变量YX 2 的概率密度函数为f Y ( y)1 f X ( y )11 , 0 y 4.f X ( y )y4 2 y2 yf ( y)1 , 0 y 4,即4 y0,其它 .总习题二1. 一批产品中有 20%的次品 , 现进行有放回抽样 , 共抽取 5 件样品 . 分别计算这 5 件样品中恰好有 3 件次品及至多有 3 件次品的概率 .解 以 X 表示抽取的 5 件样品中含有的次品数 . 依题意知 X ~ B(5,0.2) .(1) 恰好有 3 件次品的概率是 P X C 5 0.2 3 0.8 .{ =3}= 3 23(2) 至多有 3 件次品的概率是C 5k 0.2k 0.85 k .k 02. 一办公楼装有 5 个同类型的供水设备 . 调查表明 , 在任一时刻 t 每个设备被使用 的概率为 . 问在同一时刻(1) 恰有两个设备被使用的概率是多少? (2) 至少有 1 个设备被使用的概率是多少? (3) 至多有 3 个设备被使用的概率是多少?(4) 至少有 3 个设备被使用的概率是多少?解 以 X 表示同一时刻被使用的设备的个数,则X ~B (5,,{ = }=k k5 kP X kC 50.1 0.9, k =0,1, ,5.(1) 所求的概率是 P XC 50.1 0.90.0729 ;{ =2}=223(2)所求的概率是 P X(1 0.1)5 0.40951 ;{ ≥ 1}=1(3)所求的概率是{ ≤ 3}=1-P{ =4}- { =5}=;P XXP X(4) 所求的概率是 P { X ≥ 3}= P { X =3}+ P { X =4}+ P { X =5}=.3. 设随机变量 X 的概率密度为xkf ( x)e , x ≥0,0, x0,1且已知k θ, 求常数.,2k x解由概率密度的性质可知dx1得到 k =1.e1x1由已知条件1, 得.1 e dx2ln 24. 某产品的某一质量指标 X ~ N(160, 2 ) , 若要求 P{120 ≤X ≤ 200} ≥, 问允许最大是多少 ?解 由P{120 ≤ ≤ 200} P{ 120 160 X160 200 160X≤ ≤ }= ( 404040) (1( ))2 ( ) 1≥,( 40 ) ≥ , 40最大值为 .得到 查表得 ≥ , 由此可得允许5.设随机变量 X 的概率密度为( x ) = e -| x | , - ∞< <+∞.φX A x试求 : (1) 常数 ; (2) {0< <1}; (3)的分布函数 .AP X解 (1)由于(x)dxAe |x|dx 1, 即2 Ae x dx 1故 2A = 1, 得1到A = .2所以φ( x ) =1 e -|x |.2(2) P {0< X <1} = 11 xdx1 ( e x 11 e 10.316.e2 ) 220 (3)因为 F ( x)x1 e |x| 得到2 dx,11当 x <0 时 , F ( x)x x x ,2 e dx 2e当 x ≥0 时,F ( x)1 0x1 xe x1 x,2e dx2dx 1 e21e x ,x0,所以 X 的分布函数为F ( x)21 ex,1 x ≥ 0.2。
概率论与数理统计第二版_课后答案_科学出版社_参考答案_最新
答案仅供参考习题2参考答案2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 2.2解根据10kkXP得10kkae即1111eae。
故1ea 2.3解用X 表示甲在两次投篮中所投中的次数XB20.7 用Y表示乙在两次投篮中所投中的次数YB20.4 1 两人投中的次数相同PXY PX0Y0 PX1Y1 PX2Y2 0011220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124CCCCCC2甲比乙投中的次数多PXgtY PX1Y0 PX2Y0 PX2Y1 1020211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628CCCCCC2.4解:1P1≤X≤3 PX1 PX2 PX312321515155 2 P0.5ltXlt2.5PX1 PX212115155 2.5解1PX246…246211112222k1111441314kklim 答案仅供参考2PX≥31―PXlt31―PX1- PX21111244 2.6解设iA表示第i次取出的是次品X的所有可能取值为012 123412131241230PXPAAAAPAPAAPAAAPAAAA18171615122019181719 112341234234123412181716182171618182161817162322019181720191817201918172 019181795PXPAAAAPAAAAPAAAAPAAAA 1232321011199595PXPXPX 2.7解1设X表示4次独立试验中A发生的次数则XB40.4343140443340.40.60.40.60.1792PXPXPXCC 2设Y表示5次独立试验中A发生的次数则YB50.4 34532415055533450.40.60.40.60.40.60.31744PXPXPXPXCCC 2.81XPλP0.5×3 P1.5 01.51.500PXe1.5e 2XPλP0.5×4 P2 0122222210111301PXPXPXeee 2.9解设应配备m名设备维修人员。
概率论与数理统计第二章习题答案(PDF)
第二章 随机变量及其分布习题2.11. 口袋中有5个球,编号为1, 2, 3, 4, 5.从中任取3只,以X 表示取出的3个球中的最大号码.(1)试求X 的分布列;(2)写出X 的分布函数,并作图. 解:样本点总数1012334535=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)X 的全部可能取值为3, 4, 5,且事件“X = 3”所含样本点个数为k 1 = 1,有1.0101}3{===X P , 事件“X = 4”所含样本点个数为31223232=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3.0103}4{===X P , 事件“X = 5”所含样本点个数为61234243=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有6.0106}5{===X P , 故X 的分布列为6.03.01.0543P X;(2)因分布函数F (x ) = P {X ≤ x },分段点为x = 3, 4, 5,当x < 3时,F (x ) = P {X ≤ x } = P (∅) = 0,当3 ≤ x < 4时,F (x ) = P {X ≤ x } = P {X = 3} = 0.1,当4 ≤ x < 5时,F (x ) = P {X ≤ x } = P {X = 3} + P {X = 4} = 0.1 + 0.3 = 0.4,当x ≥ 5时,F (x ) = P {X ≤ x } = P {X = 3} + P {X = 4} + P {X = 5} = 0.1 + 0.3 + 0.6 = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.5,1;54,4.0;43,1.0;3,0)(x x x x x F2. 一颗骰子抛两次,以X 表示两次中所得的最小点数.(1)试求X 的分布列; (2)写出X 的分布函数. 解:样本点总数n = 62 = 36,(1)X 的全部可能取值为1, 2, 3, 4, 5, 6,且事件“X = 1”所含样本点个数为k 1 = 62 − 52 = 11,有3611}1{==X P , 事件“X = 2”所含样本点个数为k 2 = 52 − 42 = 9,有369}2{==X P ,事件“X = 3”所含样本点个数为k 3 = 42 − 32 = 7,有367}3{==X P ,事件“X = 4”所含样本点个数为k 4 = 32 − 22 = 5,有365}4{==X P ,事件“X = 5”所含样本点个数为k 5 = 22 − 1 = 3,有363}5{==X P , 事件“X = 6”所含样本点个数为k 6 = 1,有361}6{==X P , 故X 的分布列为3613633653673693611654321PX ; (2)因分布函数F (x ) = P {X ≤ x },分段点为x = 1, 2, 3, 4, 5, 6,当x < 1时,F (x ) = P {X ≤ x } = P (∅) = 0,当1 ≤ x < 2时,3611}1{}{)(===≤=X P x X P x F , 当2 ≤ x < 3时,36203693611}2{}1{}{)(=+==+==≤=X P X P x X P x F , 当3 ≤ x < 4时,36273673693611}3{}2{}1{}{)(=++==+=+==≤=X P X P X P x X P x F ,当4 ≤ x < 5时,36323653673693611}{}{)(41=+++===≤=∑=k k X P x X P x F , 当5 ≤ x < 6时,36353633653673693611}{}{)(51=++++===≤=∑=k k X P x X P x F , 当x ≥ 6时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=.6,1;65,3635;54,3632;43,3627;32,3620;21,3611;1,0)(x x x x x x x x F 3. 口袋中有7个白球、3个黑球.(1)每次从中任取一个不放回,求首次取出白球的取球次数X 的概率分布列;(2)如果取出的是黑球则不放回,而另外放入一个白球,此时X 的概率分布列如何. 解:(1)X 的全部可能取值为1, 2, 3, 4,且107}1{==X P ,30797103}2{=×==X P ,12078792103}3{=××==X P , 1201778192103}4{=×××==X P , 故X 的概率分布列为120112073071074321PX ;(2)X 的全部可能取值仍为1, 2, 3, 4,且7.0107}1{===X P ,24.0108103}2{=×==X P ,054.0109102103}3{=××==X P , 006.01010101102103}4{=×××==X P ,故X 的概率分布列为006.0054.024.07.04321P X .4. 有3个盒子,第一个盒子装有1个白球、4个黑球;第二个盒子装有2个白球、3个黑球;第三个盒子装有3个白球、2个黑球.现任取一个盒子,从中任取3个球.以X 表示所取到的白球数. (1)试求X 的概率分布列;(2)取到的白球数不少于2个的概率是多少?解:设A 1 , A 2 , A 3分别表示“取到第一个、第二个、第三个盒子”,(1)X 的全部可能取值为0, 1, 2, 3,且P {X = 0} = P (A 1) P {X = 0 | A 1} + P (A 2) P {X = 0 | A 2} + P (A 3) P {X = 0 | A 3}610301304031353331353431=++=×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×=, P {X = 1} = P (A 1) P {X = 1 | A 1} + P (A 2) P {X = 1 | A 2} + P (A 3) P {X = 1 | A 3}2130330630635221331352312313524131=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛××=, P {X = 2} = P (A 1) P {X = 2 | A 1} + P (A 2) P {X = 2 | A 2} + P (A 3) P {X = 2 | A 3}10330630303512233135132231031=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+×=, P {X = 3} = P (A 1) P {X = 3 | A 1} + P (A 2) P {X = 3 | A 2} + P (A 3) P {X = 3 | A 3}30130100353331031031=++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛×+×+×=, 故X 的概率分布列为30110321613210PX ; (2)所求概率为3130********}3{}2{}2{==+==+==≥X P X P X P . 5. 一批产品共有100件,其中10件是不合格品.根据验收规则,从中任取5件产品进行质量检验,假如5件中无不合格品,则这批产品被接受,否则就要重新对这批产品逐个检验. (1)试求5件产品中不合格品数X 的分布列; (2)需要对这批产品进行逐个检验的概率是多少?解:样本点总数7528752012345969798991005100=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n , (1)X 的全部可能取值为0, 1, 2, 3, 4, 5,且事件“X = 0”所含样本点个数为439492681234586878889905900=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k , 事件“X = 1”所含样本点个数为25551900123487888990104901101=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k , 事件“X = 2”所含样本点个数为5286600123888990129103902102=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 3”所含样本点个数为48060012899012389102903103=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 4”所含样本点个数为18900901234789101904104=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,事件“X = 5”所含样本点个数为252123456789105105=××××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,则583752.07528752043949268}0{===X P ,339391.07528752025551900}1{===X P ,070219.0752875205286600}2{===X P ,006384.075287520480600}3{===X P ,000251.07528752018900}4{===X P ,000003.075287520252}5{===X P ,故X 的分布列为000003.0000251.0006384.0070219.0339391.0583752.0543210P X ;(2)所求概率为P {X > 0} = 1 − P {X = 0} = 1 − 0.583752 = 0.416248. 6. 设随机变量X 的分布函数为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=.6,1;63,21;31,31;10,41;0,0)(x x x x x x F试求X 的概率分布列及P {X < 3},P {X ≤ 3},P {X > 1},P {X ≥ 1}. 解:X 的全部可能取值为其分布函数F (x ) 的分段点0, 1, 3, 6,且41041)00()0(}0{=−=−−==F F X P ,1214131)01()1(}1{=−=−−==F F X P , 613121)03()3(}3{=−=−−==F F X P ,21211)06()6(}6{=−=−−==F F X P ,故X 的概率分布列为2161121413210PX ; 且31)03(}3{=−=<F X P ;21)3(}3{==≤F X P ;32311)1(1}1{1}1{=−=−=≤−=>F X P X P ; 43411)01(1}1{1}1{=−=−−=<−=≥F X P X P .7. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.e ,1e;1,ln ;1,0)(x x x x x F试求P {X < 2},P {0 < X ≤ 3},P {2 < X < 2.5}.解:P {X < 2} = F (2 − 0) = ln 2;P {0 < X ≤ 3} = F (3) − F (0) = 1 − 0 = 1;P {2 < X < 2.5} = F (2.5 − 0) − F (2) = ln 2.5 − ln 2 = ln 1.25.8. 若P {X ≥ x 1} = 1 − α ,P {X ≤ x 2} = 1 − β ,其中x 1 < x 2 ,试求P {x 1 ≤ X ≤ x 2}.解:P {x 1 ≤ X ≤ x 2} = P {X ≤ x 2} − P {X < x 1} = P {X ≤ x 2} + P {X ≥ x 1} − 1 = 1 − β + 1 − α − 1 = 1 − α − β . 9. 从1, 2, 3, 4, 5五个数字中任取三个,按大小排列记为x 1 < x 2 < x 3 ,令X = x 2 ,试求(1)X 的分布函数;(2)P {X < 2}及P {X > 4}.解:样本点总数1012334535=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)X 的全部可能取值为2, 3, 4,且事件“X = 2”所含样本点个数为k 1 = 3,有3.0103}2{===X P , 事件“X = 3”所含样本点个数为k 2 = 2 × 2 = 4,有4.0104}3{===X P ,事件“X = 4”所含样本点个数为k 3 = 3,有3.0103}4{===X P ,因分布函数F (x ) = P {X ≤ x },分段点为x = 2, 3, 4, 当x < 2时,F (x ) = P {X ≤ x } = P (∅) = 0,当2 ≤ x < 3时,F (x ) = P {X ≤ x } = P {X = 2} = 0.3,当3 ≤ x < 4时,F (x ) = P {X ≤ x } = P {X = 2} + P {X = 3} = 0.3 +0.4 = 0.7, 当x ≥ 4时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=;4,1;43,7.0;32,3.0;2,0)(x x x x x F(2)P {X < 2} = P (∅) = 0,P {X > 4} = P (∅) = 0.10.设随机变量X 的密度函数为⎩⎨⎧≤≤−−=.,0;11|,|1)(其他x x x p试求X 的分布函数.解:分布函数F (x ) = P {X ≤ x },分段点为x = −1, 0, 1,当x < −1时,F (x ) = P {X ≤ x } = P (∅) = 0,当−1 ≤ x < 0时,21221122)](1[)()(22121++=⎟⎠⎞⎜⎝⎛+−−+=⎟⎟⎠⎞⎜⎜⎝⎛+=−−==−−∞−∫∫x x x x u u du u du u p x F xxx, 当0 ≤ x < 1时,xxxu u u u du u du u du u p x F 021200122)1()](1[)()(⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−+−−==−−∞−∫∫∫21202211022++−=−⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎠⎞⎜⎝⎛+−−=x x x x , 当x ≥ 1时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤++−<≤−++−<=.1,1;10,212;01,212;1,0)(22x x x x x x x x x F11.如果X 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=.,0;21,2;10,)(其他x x x x x p试求P {X ≤ 1.5}. 解:16132325.13021222)2()(}5.1{25.112125.11105.1=−⎟⎟⎠⎞⎜⎜⎝⎛−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+=−+==≤∫∫∫∞−x x x dx x xdx dx x p X P . 12.设随机变量X 的密度函数为⎪⎩⎪⎨⎧>≤=.2π||,0;2π||,cos )(x x x A x p 试求(1)系数A ;(2)X 落在区间 (0, π /4) 内的概率. 解:(1)由密度函数正则性知122πsin 2πsinsin cos )(2π2π2π2π==⎟⎠⎞⎜⎝⎛−−===−−∞+∞−∫∫A A A xA xdx A dx x p , 故21=A ;(2)所求概率为4204πsin 21sin 21cos 21}4π0{4π04π=−===<<∫x xdx X P .13.设连续随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(2x x Ax x x F试求(1)系数A ;(2)X 落在区间 (0.3, 0.7) 内的概率; (3)X 的密度函数.解:(1)由连续随机变量分布函数的连续性知A A x F F F x =⋅==−==−→211)(lim )01()1(1,故A = 1; (2)所求概率为P {0.3 < X < 0.7} = F (0.7) − F (0.3) = 0.7 2 − 0.3 2 = 0.4;(3)密度函数p (x ) = F ′(x ),当x < 0时,F (x ) = 0,有p (x ) = F ′(x ) = 0,当0 ≤ x < 1时,F (x ) = x 2,有p (x ) = F ′(x ) = 2x , 当x ≥ 1时,F (x ) = 1,有p (x ) = F ′(x ) = 0,故X 的密度函数为⎩⎨⎧<≤=.,0;10,2)(其他x x x p 14.学生完成一道作业的时间X 是一个随机变量,单位为小时.它的密度函数为⎩⎨⎧≤≤+=.,0;5.00,)(2其他x x cx x p (1)确定常数c ;(2)写出X 的分布函数;(3)试求在20min 内完成一道作业的概率; (4)试求10min 以上完成一道作业的概率. 解:(1)由密度函数正则性知1812423)()(5.00235.002=+=⎟⎟⎠⎞⎜⎜⎝⎛+=+=∫∫∞+∞−c x x c dx x cx dx x p ,故c = 21; (2)分布函数F (x ) = P {X ≤ x },分段点为x = 0, 0.5,当x < 0时,F (x ) = P {X ≤ x } = P (∅) = 0,当0 ≤ x < 0.5时,2727)21()()(2302302x x u u du u u du u p x F xxx+=⎟⎟⎠⎞⎜⎜⎝⎛+=+==∫∫∞−,当x ≥ 0.5时,F (x ) = P {X ≤ x } = P (Ω) = 1,故X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤+<=;5.0,1;5.00,27;0,0)(23x x x x x x F(3)所求概率为5417181277312131731}316020{23=+=⎟⎠⎞⎜⎝⎛×+⎟⎠⎞⎜⎝⎛×=⎟⎠⎞⎜⎝⎛==≤F X P ;(4)所求概率为1081037212167161216171611}616010{23=−−=⎟⎠⎞⎜⎝⎛×−⎟⎠⎞⎜⎝⎛×−=⎟⎠⎞⎜⎝⎛−==≥F X P . 15.设随机变量X 和Y 同分布,X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 已知事件A = {X > a }和B = {Y > a }独立,且P (A ∪B ) = 3/4,求常数a . 解:由于事件A 和B 独立,且显然有P (A ) = P (B ),则43)]([)(2)()()()()()()()(2=−=−+=−+=A P A P B P A P B P A P AB P B P A P B A P ∪, 可得21)(=A P 或23)(=A P (舍去), 显然0 < a < 2,有218181d 83}{)(32322=−===>=∫a x x x a X P A P a a , 故34=a .16.设连续随机变量X 的密度函数p (x ) 是一个偶函数,F (x ) 为X 的分布函数,求证对任意实数a > 0,有(1)∫−=−=−adx x p a F a F 0)(5.0)(1)(;(2)P {| X | < a } = 2F (a ) − 1;(3)P {| X | > a } = 2[1 − F (a )]. 证:(1)因p (x ) 为偶函数,有∫∫+∞−∞−=a a dx x p dx x p )()(且5.0)(0=∫∞−dx x p ,则∫∫∫∫+=+==∞−∞−a aa dx x p dx x p dx x p dx x p a F 0)(5.0)()()()(,故∫∫∫∫−=−=−===−∞−+∞−∞−a aadx x p a F dx x p dx x p dx x p a F 0)(5.0)(1)(1)()()(;(2)P {| X | < a } = P {−a < X < a } = F (a ) − F (−a ) = F (a ) − [1 − F (a )] = 2 F (a ) − 1; (3)P {| X | > a } = 1 − P {| X | ≤ a } = 1 − P {| X | < a } = 1 − [2 F (a ) − 1] = 2 − 2 F (a ).习题2.21. 设离散型随机变量X 的分布列为3.03.04.0202P X −试求E (X ) 和E (3X + 5).解:E (X ) = (−2) × 0.4 + 0 × 0.3 + 2 × 0.3 = −0.2;E (3X + 5) = (−1) × 0.4 + 5 × 0.3 + 11 × 0.3 = 4.4. 2. 某服装店根据历年销售资料得知:一位顾客在商店中购买服装的件数X 的分布列为04.009.013.031.033.010.0543210P X试求顾客在商店平均购买服装件数.解:平均购买服装件数为E (X ) = 0 × 0.10 + 1 × 0.33 + 2 × 0.31 + 3 × 0.13 + 4 × 0.09 + 5 × 0.04 = 1.9. 3. 某地区一个月内发生重大交通事故数X 服从如下分布002.0006.0026.0087.0216.0362.0301.06543210P X试求该地区发生重大交通事故的月平均数. 解:月平均数E (X ) = 0 × 0.301 + 1 × 0.362 + 2 × 0.216 + 3 × 0.087 + 4 × 0.026 + 5 × 0.006 + 6 × 0.002 = 1.201. 4. 一海运货船的甲板上放着20个装有化学原料的圆桶,现已知其中有5桶被海水污染了.若从中随机抽取8桶,记X 为8桶中被污染的桶数,试求X 的分布列,并求E (X ).解:样本点总数125970820=⎟⎟⎠⎞⎜⎜⎝⎛=n ,X 的全部可能取值为0, 1, 2, 3, 4, 5,且事件“X = 0”所含样本点个数64358150=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0511.01259706435}0{===X P , 事件“X = 1”所含样本点个数32175715151=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有2554.012597032175}1{===X P , 事件“X = 2”所含样本点个数50050615252=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3973.012597050050}2{===X P , 事件“X = 3”所含样本点个数30030515353=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有2384.012597030030}3{===X P , 事件“X = 4”所含样本点个数6825415454=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0542.01259706825}4{===X P , 事件“X = 5”所含样本点个数455315555=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有0036.0125970455}5{===X P , 故X 的分布列为0036.00542.02384.03973.02554.00511.0543210PX且E (X ) = 0 × 0.0511 + 1 × 0.2554 + 2 × 0.3973 + 3 × 0.2384 + 4 × 0.0542 + 5 × 0.0036 = 2. 5. 用天平称某种物品的质量(砝码仅允许放在一个盘中),现有三组砝码:(甲)1, 2, 2, 5, 10(g );(乙)1, 2, 3, 4, 10(g );(丙)1, 1, 2, 5, 10(g ),称重时只能使用一组砝码.问:当物品的质量为1g 、2g 、…、 10g 的概率是相同的,用哪一组砝码称重所用的平均砝码数最少? 解:设X 1 , X 2 , X 3分别表示使用甲、乙、丙组砝码称重时需要的砝码个数,当物品的质量为1g 、2g 、…、10g 时,有X 1 = 1、1、2、2、1、2、2、3、3、1,即P {X 1 = 1} = 0.4,P {X 1 = 2} = 0.4,P {X 1 = 3} = 0.2, X 2 = 1、1、1、1、2、2、2、3、3、1,即P {X 2 = 1} = 0.5,P {X 2 = 2} = 0.3,P {X 2 = 3} = 0.2, X 3 = 1、1、2、3、1、2、2、3、4、1,即P {X 3 = 1} = 0.4,P {X 3 = 2} = 0.3,P {X 3 = 3} = 0.2,P {X 3 = 4} = 0.1,则平均砝码数E (X 1 ) = 1 × 0.4 + 2 × 0.4 + 3 × 0.2 = 1.8,E (X 2 ) = 1 × 0.5 + 2 × 0.3 + 3 × 0.2 = 1.7, E (X 3 ) = 1 × 0.4 + 2 × 0.3 + 3 × 0.2 + 4 × 0.1 = 2, 故用乙组砝码称重所用的平均砝码数最少.6. 假设有十只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品只数的数学期望.解:设X 表示在取到合格品之前已取出的不合格品只数,X 的全部可能取值为0, 1, 2,则54108}0{===X P ,45898102}1{=×==X P ,4518891102}2{=××==X P , 故9245124581540)(=×+×+×=X E .7. 对一批产品进行检查,如查到第a 件全为合格品,就认为这批产品合格;若在前a 件中发现不合格品即停止检查,且认为这批产品不合格.设产品的数量很大,可以认为每次查到不合格品的概率都是p .问每批产品平均要查多少件?解:设X 表示检查一批产品要查的件数,X 的全部可能取值为1, 2, …, a – 1, a ,则P {X = 1} = p ,P {X = 2} = (1 – p )p ,…,P {X = a – 1} = (1 – p ) a − 2 p ,P {X = a } = (1 – p ) a − 1, 即E (X ) = 1 ⋅ p + 2 (1 – p ) p + … + (a – 1) (1 – p ) a − 2 p + a (1 – p ) a − 1,有(1 – p )E (X ) = 1 ⋅ (1 – p ) p + 2 (1 – p )2 p + … + (a – 2) (1 – p ) a − 2 p + (a – 1) (1 – p ) a − 1 p + a (1 – p ) a , 得E (X ) – (1 – p )E (X ) = p + (1 – p ) p + … + (1 – p ) a − 2 p + a (1 – p ) a − 1 – (a – 1) (1 – p ) a − 1 p – a (1 – p ) a ,即)]1()1([)1()1(1])1(1[)(11p a p a a p p p p X pE a a −−−−−+−−−−=−−= 1 – (1 – p ) a − 1 + (1 – p ) a − 1 ⋅ p = 1 – (1 – p ) a − 1 ⋅ (1 – p ) = 1 – (1 – p ) a ,故pp X E a)1(1)(−−=.8. 某厂推土机发生故障后的维修时间T 是一个随机变量(单位:h ),其密度函数为⎩⎨⎧≤>=−.0,0;0,e 02.0)(02.0t t t p t 试求平均维修时间. 解:平均维修时间5002.0e e e )e (e 02.0)(002.0002.0002.0002.0002.0=−=+−=−=⋅=+∞−∞+−∞+−∞+−∞+−∫∫∫tttt t dt t d t dt t T E .9. 某新产品在未来市场上的占有率X 是仅在区间 (0, 1) 上取值的随机变量,它的密度函数为⎩⎨⎧<<−=.,0;10,)1(4)(3其他x x x p 试求平均市场占有率.解:平均市场占有率∫∫−+−=−⋅=143213)412124()1(4)(dx x x x x dx x x X E5154342105432=⎟⎠⎞⎜⎝⎛−+−=x x x x .10.设随机变量X 的密度函数如下,试求E (2 X + 5).⎩⎨⎧≤>=−.0,0;0,e )(x x x p x 解:7e 25e 2e )52()e )(52(e )52()52(0=−=++−=−+=+=++∞−+∞−+∞−+∞−+∞−∫∫∫xx xx x dx x d x dx x X E .11.设随机变量X 的分布函数如下,试求E ( X ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≥−<≤<=−−.1,e 211;10,21;0,2e )()1(21x x x x F x x解:因分布函数F (x ) 是连续函数,有X 为连续型,密度函数p (x ) = F ′(x ),当x < 0时,2e )()(xx F x p =′=,当0 < x < 1时,p (x ) = F ′(x ) = 0,当x > 1时,)1(21e 41)()(−−=′=x x F x p ,∫∫∞+−−∞−⎟⎠⎞⎜⎝⎛−⋅+⋅=1)1210][e 21)(e 21x x d x d x 则∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)12101)1(210e 41e 21e 412e )()(dx x dx x dx x dx x dx x xp X E x x x x ,因1e 0e e )(e e 00000−=−=−⋅=⋅=∞−∞−∞−∞−∞−∫∫∫xx xx x dx x d x dx x , 6e42e2e2][e2e1)1211)1(211)1(211)1(211)1(21=−=+−=⋅−=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x ,故1641)1(21)(=×+−×=X E .12.某工程队完成某项工程的时间X (单位:月)是一个随机变量,它的分布列为1.02.03.04.013121110P X(1)试求该工程队完成此项工程的平均月数;(2)设该工程队所获利润为Y = 50(13 – X ),单位为万元.试求该工程队的平均利润; (3)若该工程队调整安排,完成该项工程的时间X (单位:月)的分布为1.04.05.0121110P X则其平均利润可增加多少?解:(1)平均月数E (X ) = 10 × 0.4 + 11 × 0.3 + 12 × 0.2 + 13 × 0.1 = 11.(2)平均利润为E (Y ) = E [50 (13 – X )] = 150 × 0.4 + 100 × 0.3 + 50 × 0.2 + 0 × 0.1 = 100(万元); (3)因E (Y 1) = E [50 (13 – X 1)] = 150 × 0.5 + 100 × 0.4 + 50 × 0.1 = 120,有E (Y 1) – E (Y ) = 20,故平均利润增加20万元.13.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=.,0π;0,2cos 21)(其他x x x p 对X 独立重复观察4次,Y 表示观察值大于π /3的次数,求Y 2的数学期望.解:Y 的全部可能取值为0, 1, 2, 3, 4,因216πsin 2πsin2sin2cos 21}3π{π3ππ3π=−===>=∫x dx x X P p , 则161)1(}0{4=−==p Y P ,164)1(14}1{3=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P ,166)1(24}2{22=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P , 164)1(34}1{3=−⋅⎟⎟⎠⎞⎜⎜⎝⎛==p p Y P ,161}4{4===p Y P , 故5168016141643166216411610)(222222==×+×+×+×+×=Y E .14.设随机变量X 的密度函数为⎪⎩⎪⎨⎧<<=.,0;20,83)(2其他x x x p 试求21X 的数学期望. 解:438383112020222==⋅=⎟⎠⎞⎜⎝⎛∫∫dx dx x x X E .15.设X 为仅取非负整数的离散随机变量,若其数学期望存在,证明∑+∞=≥=1}{)(k k X P X E .证:)(}{}{}{}{11111X E n X nP n X P n X P k X P n n nk k kn k =======≥∑∑∑∑∑∑+∞=+∞==+∞=+∞=+∞=.16.设连续随机变量X 的分布函数为F (x ),且数学期望存在,证明∫∫∞−+∞−−=0)()](1[)(dx x F dx x F X E .证:设X 的密度函数为p (x ),有p (x ) = F ′(x ),故∫∫∫∫∞−∞−+∞+∞∞−+∞+−−−−=−−000)]([)()](1[)](1[)()](1[x F xd x xF x F xd x F x dx x F dx x F)()()()()(0)]([00000X E dx x xp dx x xp dx x xp dx x xp dx x p x ==+=+−−−=∫∫∫∫∫+∞∞−∞−+∞∞−+∞.习题2.31. 设随机变量X 满足E (X ) = Var (X ) = λ ,已知E [(X − 1) (X − 2)] = 1,试求λ . 解:因E (X ) = Var (X ) = λ ,有E (X 2) = Var (X ) + [E (X )]2 = λ + λ 2 ,则E [(X − 1) (X − 2)] = E (X 2 – 3X + 2) = E (X 2) – 3E (X ) + 2 = λ + λ 2 – 3λ + 2 = λ 2 – 2λ + 2 = 1, 得λ 2 – 2λ + 1 = 0,即 (λ – 1)2 = 0, 故λ = 1.2. 假设有10只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品数的方差.解:设X 表示在取到合格品之前已取出的不合格品只数,X 的全部可能取值为0, 1, 2,则54108}0{===X P ,45898102}1{=×==X P ,4518891102}2{=××==X P , 得9245124581540)(=×+×+×=X E ,且154451245124581540)(2222==×+×+×=X E , 故4058892154)]([)()Var(222=⎟⎠⎞⎜⎝⎛−=−=X E X E X . 3. 已知E (X ) = –2,E (X 2) = 5,求Var (1 – 3X ).解:因Var (X ) = E (X 2) – [E (X )]2 = 5 – (–2) 2 = 1,故Var (1 – 3X ) = (–3)2 Var (X ) = 9 × 1 = 9. 4. 设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥−<≤<=−−.1,e 211;10,21;0,2e )()1(21x x x x F x x试求Var (X ).解:因分布函数F (x ) 是连续函数,有X 为连续型,密度函数p (x ) = F ′(x ),当x < 0时,2e )()(xx F x p =′=,当0 < x < 1时,p (x ) = F ′(x ) = 0, 当x > 1时,)1(21e 41)()(−−=′=x x F x p ,则∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)12101)1(21e 41e 21e 412e )()(dx x dx x dx x dx x dx x xp X E x x x x ,因1e 0e e )(e e 00000−=−=−⋅=⋅=∞−∞−∞−∞−∞−∫∫∫xx xx x dx x d x dx x , 6e42e2e2][e2e1)1211)1(211)1(211)1(211)1(21=−=+−=⋅−=+∞−−∞+−−+∞−−∞+−−∞+−−∫∫∫x x x x x dx x d x dx x ,可得1641)1(21)(=×+−×=X E ,且∫∫∫∫∫∞+−−∞−∞+−−∞−∞+∞−+=⋅+⋅==1)1(212021)1(2120222e 41e 21e 412e )()(dx x dx x dx x dx x dx x p x X E x x x x因2e 202e e )(e e 00020202=−=⋅−⋅=⋅=∫∫∫∫∞−∞−∞−∞−∞−dx x xdx x d x dx x x x xx x ,∫∫∫∞+−−+∞−−∞+−−∞+−−⋅+−=⋅−=1)1(211)1(2121)1(2121)1(2122e2e2][e2exdx x d x dx x x x x x26642e421)1(21=×+=+=∫∞+−−dx x x ,可得2152641221)(2=×+×=X E ,故2131215)]([)()Var(222=−=−=X E X E X .5. 设随机变量X 的密度函数为⎪⎩⎪⎨⎧≤<−≤<−+=.,0;10,1;01,1)(其他x x x x x p试求Var (3X + 2).解:因061613232)1()1()()(13201321001=+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−++==−−∞+∞−∫∫∫x x x x dx x x dx x x dx x xp X E , 且611211214343)1()1()()(1043014310201222=+=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛+=−++==−−∞+∞−∫∫∫x x x x dx x x dx x x dx x p x X E , 则61)]([)()Var(22=−=X E X E X , 故23619)Var(9)23Var(=×==+X X .6. 试证:对任意的常数c ≠ E (X ),有Var (X ) = E (X – E (X ))2 < E (X – c )2.证:因E (X – c )2 = E (X 2 – 2cX + c 2) = E (X 2) – 2c E (X ) + c 2 = E (X 2) – [E (X )]2 + [E (X )]2 – 2c E (X ) + c 2= E (X – E (X ))2 + [E (X ) – c ]2 > E (X – E (X ))2 = Var (X ).7. 设随机变量X 仅在区间[a , b ]上取值,试证a ≤ E(X) ≤ b ,22)Var(⎟⎠⎞⎜⎝⎛−≤a b X .证:因X ≥ a ,有X – a ≥ 0,得E (X – a ) = E (X ) – a ≥ 0,即E (X ) ≥ a ,又因X ≤ b ,同理可得E (X ) ≤ b ,故a ≤ E (X ) ≤ b ;因a ≤ X ≤ b ,有222a b b a X a b −≤+−≤−−,得2222⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−a b b a X , 则022222222≤⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛+−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛+−a b b a X E a b b a X E ,即2222⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−a b b a X E , 故22222))(()Var(⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−≤−=a b b a X E X E X E X .8. 设随机变量X 取值x 1 ≤ … ≤ x n 的概率分别是p 1 , …, p n ,11=∑=nk k p .证明212)Var(⎟⎠⎞⎜⎝⎛−≤x x X n .证:因x 1 ≤ X ≤ x n ,有222111x x x x X x x n n n −≤+−≤−−,得212122⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−x x x x X n n ,故2121212222))(()Var(⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−≤⎟⎠⎞⎜⎝⎛+−≤−=x x x x E x x X E X E X E X n n n .9. 设g (x ) 为随机变量X 取值的集合上的非负不减函数,且E (g (X )) 存在,证明:对任意的ε > 0,有)())((}{εεg X g E X P ≤>.注:此题应要求g (ε ) ≠ 0.证:以连续型随机变量为例加以证明,设连续型随机变量X 的密度函数为p (x ),因g (x ) 为非负不减函数,当x > ε 时,有g (x ) ≥ g (ε ) > 0,即1)()(≥εg x g , 故)())(()()()()()()()()()(}{εεεεεεεg X g E g X g E dx x p g x g dx x p g x g dx x p X P =⎟⎟⎠⎞⎜⎜⎝⎛=≤≤=>∫∫∫∞+∞−∞+∞+. 10.设X 为非负随机变量,a > 0.若E (e aX)存在,证明:对任意的x > 0,有axaX E x X P e )(e }{≤≥.证:以连续型随机变量为例加以证明,设连续型随机变量X 的密度函数为p (x ),故ax aX ax aX ax au xax auxE E du u p du u p du u p x X P e )(e e e )(e e )(e e )(}{=⎟⎟⎠⎞⎜⎜⎝⎛=≤≤=≥∫∫∫∞+∞−∞+∞+. 11.已知正常成人男性每升血液中的白细胞数平均是7.3 × 10 9,标准差是0.7 × 10 9.试利用切比雪夫不等式估计每升血液中的白细胞数在5.2 × 10 9至9.4 × 10 9之间的概率的下界. 解:设X 表示“每升血液中的白细胞数”,有E (X ) = 7.3 × 10 9,Var (X ) = (0.7 × 10 9) 2 = 0.49 × 10 18,则P {5.2 × 10 9 ≤ X ≤ 9.4 × 10 9} = P {–2.1 × 10 9 ≤ X – 7.3 × 10 9 ≤ 2.1 × 10 9} = P { | X – E (X ) | ≤ 2.1 × 10 9}989111041.41049.01)101.2()Var(1181829=−=××−=×−≥X ,故所求概率的下界为98.习题2.41. 一批产品中有10%的不合格品,现从中任取3件,求其中至多有一件不合格品的概率. 解:设X 表示“取到的不合格品个数”,有X 服从二项分布b (3, 0.1),故所求概率为972.09.01.0139.0}1{}0{}1{23=××⎟⎟⎠⎞⎜⎜⎝⎛+==+==≤X P X P X P . 2. 一条自动化生产线上产品的一级品率为0.8,现检查5件,求至少有2件一级品的概率. 解:设X 表示“检查到的一级品个数”,有X 服从二项分布b (5, 0.8),故所求概率为99328.02.08.0152.01}1{}0{1}2{45=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P . 3. 某优秀射手命中10环的概率为0.7,命中9环的概率为0.3.试求该射手三次射击所得的环数不少于29环的概率.解:设X 表示“三次射击所中的10环次数”,有X 服从二项分布b (3, 0.7),故所求概率为784.07.03.07.023}3{}2{}2{32=+××⎟⎟⎠⎞⎜⎜⎝⎛==+==≥X P X P X P .4. 经验表明:预定餐厅座位而不来就餐的顾客比例为20%.如今餐厅有50个座位,但预定给了52位 顾客,问到时顾客来到餐厅而没有座位的概率是多少? 解:设X 表示“到时来到餐厅的顾客人数”,有X 服从二项分布b (52, 0.8),故所求概率为0001279.08.02.08.05152}52{}51{}51{5251=+××⎟⎟⎠⎞⎜⎜⎝⎛==+==≥X P X P X P .5. 设随机变量X ~ b (n , p ),已知E (X ) = 2.4,Var (X ) = 1.44,求两个参数n 与p 各为多少? 解:因X ~ b (n , p ),有E (X ) = np = 2.4,Var (X ) = np (1 – p ) = 1.44,有6.04.244.11==−p , 故p = 0.4,64.04.2==n . 6. 设随机变量X 服从二项分布b (2, p ),随机变量Y 服从二项分布b (4, p ).若P {X ≥ 1} = 8/9,试求P {Y ≥ 1}.解:因X 服从二项分布b (2, p ),有98)1(1}0{1}1{2=−−==−=≥p X P X P ,即32=p ,故8180311)1(1}0{1}1{44=⎟⎠⎞⎜⎝⎛−=−−==−=≥p Y P Y P .7. 一批产品的不合格率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品.分别用以下方法求拒收的概率:(1)用二项分布作精确计算;(2)用泊松分布作近似计算. 解:设X 表示“发现的不合格品个数”,有X 服从二项分布b (40, 0.02),(1)所求概率为1905.098.002.014098.01}1{}0{1}2{3940=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P ;(2)因n = 40较大,p = 0.02很小,取λ = np = 0.8,有)8.0(~P X ,故查表可得所求概率为191.0809.01}1{1}2{=−=≤−=≥X P X P . 8. 设X 服从泊松分布,且已知P {X = 1} = P {X = 2},求P {X = 4}. 解:设X 服从泊松分布P (λ ),有λ > 0,则λλλλλ−−=====e 2}2{e 1}1{21P X P ,得22λλ=,即λ = 2,故查表可得P {X = 4} = P {X ≤ 4} – P {X ≤ 3} = 0.947 – 0.857 = 0.090.9. 已知某商场一天来的顾客数X 服从参数为λ 的泊松分布,而每个来到商场的顾客购物的概率为p ,证明:此商场一天内购物的顾客数服从参数为λ p 的泊松分布. 证:设Y 表示“该商场一天内购买商品的顾客人数”,Y 的全部可能取值为0, 1, 2, …,有∑∑∞=−−∞=−⎟⎟⎠⎞⎜⎜⎝⎛⋅======rk rk r k rk p p r k k k X r Y P k X P r Y P )1(!e }|{}{}{λλ ∑∑∑∞=+−∞=−−∞=−−−=−−=−−⋅⋅=0!)1(!e )!()1(!e )1()!(!!!e n nr n r rk rk k r rk rk r k n p r p r k p r p p p r k r k k λλλλλλpr p r n n r r r p r p n p r p λλλλλλλλ−−−−∞=−=⋅=−=∑e !)(e !e )(!)]1([!e )1(0, r = 0, 1, 2, …, 故Y 服从参数为λ p 的泊松分布.10.从一个装有m 个白球、n 个黑球的袋子中返回地摸球,直到摸到白球时停止.试求取到黑球数的期望. 解:设X 表示“取到的黑球数”,有X + 1服从参数为n m mp +=的几何分布,有mn m p X E +==+1)1(, 故mnm n m X E =−+=1)(. 11.某种产品上的缺陷数X 服从下列分布列:121}{+==k k X P ,k = 0, 1, …,求此种产品上的平均缺陷数.解:因X + 1服从参数为21=p 的几何分布⎟⎠⎞⎜⎝⎛21Ge ,有21)1(==+p X E ,故E (X ) = 2 – 1 = 1. 12.设随机变量X 的密度函数为⎩⎨⎧<<=.,0;10,2)(其他x x x p 以Y 表示对X 的三次独立重复观察中事件{X ≤ 1/2}出现的次数,试求P {Y = 2}.解:因412}21{212210===≤∫x xdx X P ,有Y 服从二项分布⎟⎠⎞⎜⎝⎛41,3b , 故649434123}2{2=⋅⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛==Y P .13.某产品的不合格品率为0.1,每次随机抽取10件进行检查,若发现其中不合格品数多于1,就去调整设备.若检验员每天检查4次,试问每天平均要调整几次设备. 解:设X 表示“所取10件中的不合格品数”,有X 服从二项分布b (10, 0.1),则需要调整设备的概率为2639.09.01.01109.01}1{}0{1}2{910=××⎟⎟⎠⎞⎜⎜⎝⎛−−==−=−=≥X P X P X P , 设Y 表示“每天调整设备的次数”,有X 服从二项分布b (4, 0.2639), 故E (X ) = 4 × 0.2639 = 1.0556,即每天平均要调整1.0556次设备.习题2.51. 设随机变量X 服从区间 (2, 5)上的均匀分布,求对X 进行3次独立观察中,至少有2次的观察值大于3的概率. 解:设Y 表示“X 大于3的次数”,有Y 服从二项分布b (3, p ),且322535}3{=−−=>=X P p , 故所求概率为272032313223}2{32=⎟⎠⎞⎜⎝⎛+⋅⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛=≥Y P . 2. 在 (0, 1)上任取一点记为X ,试求⎭⎬⎫⎩⎨⎧≥+−081432X X P .解:因X 服从区间 (0, 1)上的均匀分布,且021*******≥⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−=+−X X X X ,即41≤X 或21≥X ,故432110412141081432=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧≥≤=⎭⎬⎫⎩⎨⎧≥+−X X P X X P 或.3. 设K 服从 (1, 6)上的均匀分布,求方程x 2 + Kx + 1 = 0有实根的概率.解:因方程x 2 + Kx + 1 = 0有实根,有判别式 ∆ = K 2 – 4 ≥ 0,即K ≤ – 2或K ≥ 2,故所求概率为5416260}22{=−−+=≥−≤K K P 或. 4. 设流经一个2 Ω 电阻上的电流I 是一个随机变量,它均匀分布在9A 至11A 之间.试求此电阻上消耗的平均功率,其中功率W = 2I 2.解:因电流I 的密度函数为⎪⎩⎪⎨⎧<<=.,0,119,21)(其他x x p故平均功率36023212)(2)2()(1193119222==⋅===∫∫∞+∞−x dx x dx x p x I E W E . 5. 某种圆盘的直径在区间 (a , b )上服从均匀分布,试求此种圆盘的平均面积. 解:设d 表示“圆盘的直径”,S 表示“圆盘的面积”,有2π41d S =, 因直径d 密度函数为⎪⎩⎪⎨⎧<<−=.,0,,1)(其他b x a ab x p 故平均面积)(4π)(4π1π41)(π41π41)(223222b ab a a b x dx a b x dx x p x d E S E ba b a ++=−=−⋅==⎟⎠⎞⎜⎝⎛=∫∫∞+∞−. 6. 设某种商品每周的需求量X 服从区间 (10, 30)上的均匀分布,而商店进货数为区间 (10, 30)中的某一整数,商店每销售1单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每一单位商品仅获利300元.为使商店所获利润期望值不少于9280元,试确定最少进货量.解:因X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,3010,201)(其它x x p 并设每周进货量为a 单位商品,商店所获利润为Y 元,当X ≤ a 时,Y = 500X − 100 (a − X ) = 600X − 100a ;当X > a 时,Y = 500a + 300 (X − a ) = 300X + 200a ,即⎩⎨⎧>+≤−==,,200300,,100600)(a X a X a X a X X g Y则∫∫∫++−==+∞∞−3010201)200300(201)100600()()()(a adx a x dx a x dx x p x g Y E5250350215)10215()515(2302102++−=++−=a a ax x ax x a a ,要使得92805250350215)(2≥++−=a a Y E ,有040303502152≤+−a a ,可得26362≤≤a ,故a 可取21, 22, 23, 24, 25, 26,即最少进货量为21单位商品. 7. 已知X ~ Exp (λ ),试在λ = 0.1下求P {5 ≤ X ≤ 20}.解:因X 的密度函数为⎩⎨⎧<≥=−,0,0,0,e )(x x x p x λλ 故4712.0e e )e (e 1.0e }205{25.02051.02051.0205=−=−===≤≤−−−−−∫∫x x x dx dx X P λλ.8. 统计调查表明,英格兰在1875年至1951年期间,在矿山发生10人或10人以上死亡的两次事故之间的时间T (以日计)服从均值为241的指数分布.试求P {50 ≤ T ≤ 100}.解:因T 服从指数分布,且2411)(==λT E ,有T 的密度函数为⎪⎩⎪⎨⎧<≥=−,0,0,0,e 2411)(241t t t p t故1523.0ee)e(e 2411}10050{241100241501005024110050241=−=−==≤≤−−−−∫x t dt T P .9. 若一次电话通话时间X (单位:min )服从参数为0.25的指数分布,试求一次通话的平均时间. 解:因X 服从参数为λ = 0.25的指数分布,故一次通话的平均时间41)(==λX E .10.某种设备的使用寿命X (以年计)服从指数分布,其平均寿命为4年.制造此种设备的厂家规定,若设备在使用一年之内损坏,则可以予以调换.如果设备制造厂每售出一台设备可盈利100元,而调换一台设备需花费300元.试求每台设备的平均利润.解:因X 服从指数分布,且41)(==λX E ,有X 的密度函数为⎪⎩⎪⎨⎧<≥=−,0,0,0,e 41)(4x x x p x设Y 表示“每台设备的利润”,当X ≤ 1时,Y = 100 − 300 = −200;当X > 1时,Y = 100.故平均利润∫∫∞+−−+−=>+≤−=14104e 41100e 41200}1{100}1{200)(dx dx X P X P Y E xx 6402.33200e 300e100)e 1(200)e (100)e (2004141411414=−=+−−=−+−−=−−−+∞−−x x.11.设顾客在某银行的窗口等待服务的时间X (以min 计)服从指数分布,其密度函数为⎪⎩⎪⎨⎧>=−.,0,0,e 51)(5其他x x p x某顾客在窗口等待服务,若超过10min ,他就离开.他一个月要到银行5次,以Y 表示一个月内他未。
概率论与数理统计第二版_课后答案_科学出版社_王松桂_张忠占_参考答案_最新
12 32 3 P{ X = 2} = 1 − P{ X = 0} − P{ X = 1} = 1− − = 19 95 95
2.7 解:(1)设 X 表示 4 次独立试验中 A 发生的次数,则 X~B(4,0.4) P ( X ≥ 3) = P ( X = 3) + P ( X = 4) = C 40.430.61 + C 40.44 0.60 = 0.1792 (2)设 Y 表示 5 次独立试验中 A 发生的次数,则 Y~B(5,0.4)
P{ X = P{ A1 A2 A3 A4 } + P{ A1 A2 A3 A4 } + P{ A1 A2 A3 A4 } + P{ A1 A2 A3 A4 } 1} = = 2 18 17 16 18 2 17 16 18 18 2 16 18 17 16 2 32 × × × + × × × + × × × + × × × = 20 19 18 17 20 19 18 17 20 19 18 17 20 19 18 17 95
0
1
1
2
2
(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=
C
1 2
0.710.31 × C 20.40 0.62 + C 20.7 2 0.30 × C 20.40 0.62 + C 20.7 2 0.30 × C 20.410.61 = 0.5628
a ≈ 184 厘米
2.19 解:X 的可能取值为 1,2,3。
2 C4 6 因为 P ( X = 1) = 3 = = 0.6 ; C 5 10
概率论与数理统计第二章习题与答案
概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计习题二答案
概率论与数理统计习题二答案概率论与数理统计习题二答案概率论与数理统计是一门重要的数学学科,广泛应用于各个领域。
习题是学习这门学科的重要方式之一,通过解答习题可以巩固理论知识,提高问题解决能力。
本文将针对概率论与数理统计习题二给出详细的答案解析。
1. 设事件A和事件B为两个相互独立的事件,且P(A) = 0.3,P(B) = 0.4。
求P(A并B)和P(A或B)。
解析:由于事件A和事件B是相互独立的,所以P(A并B) = P(A) * P(B) = 0.3 * 0.4 = 0.12。
而P(A或B) = P(A) + P(B) - P(A并B) = 0.3 + 0.4 - 0.12 = 0.58。
2. 一批产品中有10%的次品,从中随机抽取5个产品进行检验,求恰好有3个次品的概率。
解析:设事件A为恰好有3个次品,事件B为抽取的5个产品中有3个次品。
根据二项分布的概率公式,P(B) = C(5, 3) * (0.1)^3 * (0.9)^2 = 10 * 0.001 * 0.81 = 0.0081。
因此,恰好有3个次品的概率为0.0081。
3. 一批产品的质量服从正态分布,已知平均值为μ,标准差为σ。
从中随机抽取一个样本,样本容量为n。
求样本均值的期望值和方差。
解析:样本均值的期望值为总体均值μ,样本均值的方差为总体方差除以样本容量n。
因此,样本均值的期望值为μ,方差为σ^2/n。
4. 设X和Y是两个随机变量,它们的协方差为Cov(X, Y) = 5,方差分别为Var(X) = 9,Var(Y) = 16。
求随机变量Z = 2X + 3Y的方差。
解析:根据随机变量的性质,Var(Z) = Var(2X + 3Y) = 4Var(X) + 9Var(Y) +12Cov(X, Y) = 4 * 9 + 9 * 16 + 12 * 5 = 36 + 144 + 60 = 240。
5. 设X服从参数为λ的指数分布,即X ~ Exp(λ)。
概率论与数理统计 第二章 习题2
1 y
,1
y
e
0,0 y 1或y
e
(2)当 y 0 时, fY ( y) 0
当 y 0 时 ,FY (y) P{Y y} P{2ln X y} P{X ey/2} 1 P{X e y / 2} 1 F X (e y / 2 )
fY
(
y)
f
X
(ey / 2
)(1/
2e y
36
2 一大楼装有5个同类型的供水设备。调查表明在 任一时刻每个设备被使用的概率为,问在同一 时刻(1)恰有2个设备被使用的概率是多少? (2)至少有3个设备被使用的概率是多少? (3)至多有3个设备被使用的概率是多少? (4)至少有1个设备被是使用的概率是多少?
解:以 X 表示同一时刻被使用的设备的个数,则
2 fK (x)dx
1
fK (x)dx
5 1dx 25
1 0dx 3
5
6 设随机变量 X 在 (0,1)服从均匀分布.(1)求 Y e X 的概率密度;(2)求 Y 2ln X 的概率密度。
解:X 的概率密度为
1,0 x 1 f (x) 0,其它
分别记 X ,Y 的分布函数为 FX (x), FY ( y).
y)2
2
arcsin
y.
所以当 0 y 1
时,fY
( y)
d dy
FY
( y)
2 1 y2
因此,所求的概率为
fY ( y)
2 ,0 y 1, 1 y2
0, 其它
8 一工厂生产的某种元件的寿命(以小时计)服从参数 为 160, ( 0) 的正态分布。若要 P{120 X 200} 0.80
4x2 4Kx K 2 0 有实根的概率.
《概率论与数理统计》习题二答案
即分布函数 故Y的密度函数为 (2) 由P(0<X<1)=1知 当z≤0时, 当z>0时, 即分布函数 故Z的密度函数为 32.设随机变量X的密度函数为 f(x)= 试求Y=sinX的密度函数. 【解】 当y≤0时, 当0<y<1时,
当y≥1时, 故Y的密度函数为 33.设随机变量X的分布函数如下: 试填上(1),(2),(3)项. 【解】由知②填1。 由右连续性知,故①为0。 从而③亦为0。即 34.同时掷两枚骰子,直到一枚骰子出现6点为止,求抛掷次数X的分布 律. 【解】设Ai={第i枚骰子出现6点}。(i=1,2),P(Ai)=.且A1与A2相互独立。 再设C={每次抛掷出现6点}。则 故抛掷次数X服从参数为的几何分布。 35.随机数字序列要多长才能使数字0至少出现一次的概率不小于0.9? 【解】令X为0出现的次数,设数字序列中要包含n个数字,则 X~b(n,0.1) 即 得 n≥22 即随机数字序列至少要有22个数字。
解1由d1fxx?????知021ed2edxxaaxax??????????????故2a??即密度函数为e02e02xxxfxx???????????????当x0时1dede22xxxxfxf《概率论与数理统计》习题及答案
习题二
.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X的分布律. 【解】 故所求分布律为 X 3 4 5 P 0.1 0.3 0.6
(2) f(x)= 试确定常数a,b,并求其分布函数F(x). 【解】(1) 由知 故 即密度函数为 当x≤0时 当x>0时 故其分布函数 (2) 由 得 b=1 即X的密度函数为 当x≤0时F(x)=0 当0<x<1时 当1≤x<2时 当x≥2时F(x)=1 故其分布函数为 27.求标准正态分布的上分位点, (1)=0.01,求; (2)=0.003,求,. 【解】(1) 即 即 故 (2) 由得 即 查表得 由得 即 查表得 28.设随机变量X的分布律为 X −2 −1 0 1 Pk 1/5 1/6 1/5 1/15 求Y=X2的分布律.
概率论与数理统计第二章习题解答
《概率论与数理统计》第二章习题解答(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为 投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:的分布律为:2、一袋中有53、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5P :106,103,1013、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,352224、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1)(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
河海大学概率论与数理统计2习题二参考答案
概率统计——习题二参考解答2.1 (1)2001500110110090400CC C P =;(2).120015001991100140020015002001100CC C CC P --=2.2 测试5次,即就是从10个晶体管中不放回地抽取5个晶体管,基本事件的总数为510A 。
设事件A 表示“经过5次测试,3个次品都已找到”,这就是说在前4次测试中有2次找到次品,而在第5次测试时找到了最后一个次品,由于3个次品均可以在最后一次被测试到, 所以事件A 所包含的基本事件为!32724A C ,因此,所求概率为201!3)(5102724==AA C A P2.3 设1B ={所取的三个字母中不含a},2B ={所取的三个字母中不含b}。
另见,212121,,B B C B B B B B A =⋃==,从而145)()(383621===CC B B P A P ,2825)()()()()(383638373837212121=-+=-+=⋃=C C C C C C B B P B P B P B B P B P ,5615)()(38261121===CC C B B P C P 。
2.4 (见指南1.11) P =1-P (无成双)=!4/9101112215121)(1441242681241246⋅⋅⋅⋅-=-=-C C C C C=1-16/33=17/33≈0.515.2.5 由于},,,,,,,{ THTT HTHH THH HTT TT HH S =故(1) P =P ({HH ,TT ,HTT ,THH ,HTHH ,THTT ,HTHTT ,THTHH })1615)1248(161)3211618141(2=+++=+++=;(2).324/114/12)41(2)212121(21242=-⋅==++++=∑∞=k k kP2.6 设i A ——第i 人取得红球,则由乘法公式即得 .10,,2,1,101)( ==i A P i2.7 证明:因为)()()()(AB P B P A P B A P -+=⋃,而0)(≥AB P ,所以)()()(B P A P B A P +≤⋃,又B A AB ⋃⊂,故)()(B A P AB P ⋃≤,又由于 1)()()()(1-+=--B P A P B P A P =)())(1()(1)()(AB P B A P AB P B A P AB P ≤⋃--=-⋃+, 从而, 有)()()()()()(1B P A P B A P AB P B P A P +≤⋃≤≤--2.8 (1))()()()()()()()|(B A P B P A P B A P A P B A P BA P B A B P -+-=⋃=⋃/314.0)4.01()3.01(4.0)3.01(=--+---=;(2))()|()()()()()()(AB P B A P AB P A P AB P B P A P B A P -+=-+=⋃.31)31)(41](12/11[41)|()(]1)|(1[)(=-+=-+=A B P A P B A P A P2.9 设A 1、A 2——分别表示取出的零件来自第一、二箱,B 1、B 2——分别表示第 一、二次取出的零件是一等品,则(1)522121)|()()|()()(1301181501102121111=+=+=C C C C A B P A P A B P A P B P ;(2).4856.0294932305/2)//(21)()()|(23021825021012112≈⨯⨯=+==C C C C B P B B P B B P2.10 设i H ——飞机被击中i 次,i =0,1,2,3, B ——飞机被击落,则.)|()()(3∑==i i iH B P HP B P其中 ;1)|(),|(,2.0)|(,0)|(3210===H B P H B P H B P H B P36.0)7.0)(5.01)(4.01()7.01)(5.0)(4.01()7.01)(5.01(4.0)(1=--+--+--=H P , 41.0)7.0)(5.0)(4.01()7.0)(5.01)(4.0()7.01)(5.0(4.0)(2=-+-+-=H P ,14.0)7.0)(5.0(4.0)(3==H P ;故.458.014.0)6.0(41.0)2.0(36.0)|()()(3=++==∑=i i iH B P HP B P2.11 设A 1、A 2、A 3、A 4——分别表示朋友乘火车、轮船、汽车、飞机来,B ——朋友迟到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计习题二答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《概率论与数理统计》习题及答案习题二1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 【解】抽样,以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3)3.射手向目标独立地进行了3次射击,每次击中率为,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.4.(1) 设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a .(2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a .【解】(1) 由分布律的性质知故 e a λ-=(2) 由分布律的性质知即 1a =.5.甲、乙两人投篮,投中的概率分别为,,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,),Y~b (3,(1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++(2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+=6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于(每条跑道只能允许一架飞机降落)【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,,设机场需配备N 条跑道,则有即2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松近似查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)【解】设X 表示出事故的次数,则X ~b (1000,)8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则故 13p =所以 4451210(4)C ()33243P X ===.9.设事件A 在每一次试验中发生的概率为,当A 发生不少于3次时,指示灯发出信号,(1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率.【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,)(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,)10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t的泊松分布,而与时间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率;(2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32(0)e P X -== (2) 52(1)1(0)1e P X P X -≥=-==-11.设P {X =k }=kk k p p --22)1(C , k =0,1,2 P {Y =m }=mm m p p --44)1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}.【解】因为5(1)9P X ≥=,故4(1)9P X <=.而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -=即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈12.某教科书出版了2000册,因装订等原因造成错误的概率为,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,.利用泊松近似计算,得 25e 2(5)0.00185!P X -=≈= 13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率.【解】1,2,,,X k =14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,,则所求概率为 由于n 很大,p 很小,λ=np =5,故用泊松近似,有 (2) P (保险公司获利不少于10000)即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤ 即保险公司获利不少于20000元的概率约为62% 15.已知随机变量X 的密度函数为f (x )=A e |x |, ∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰得故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰ (3) 当x <0时,11()e d e 22x x x F x x -∞==⎰当x ≥0时,0||0111()e d e d e d 222x x x xx F x x x x ---∞-∞==+⎰⎰⎰故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率;(2) 在这段时间内有一只电子管损坏的概率; (3) F (x ). 【解】(1) 150********(150)d .3P X x x ≤==⎰(2) 1223124C ()339p == (3) 当x <100时F (x )=0当x ≥100时()()d x F x f t t -∞=⎰故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为故当x <0时F (x )=0当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1即分布函数18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即故所求概率为19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}.【解】依题意知1~()5X E ,即其密度函数为该顾客未等到服务而离开的概率为2~(5,e )Y b -,即其分布律为20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42).(1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N (40,102),则若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则 若X~N (50,42),则故走第一条路乘上火车的把握大些. 21.设X ~N (3,22),(1) 求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2) 确定c 使P {X >c }=P {X ≤c }.【解】(1) 23353(25)222X P X P ---⎛⎫<≤=<≤ ⎪⎝⎭(2) c=322.由某机器生产的螺栓长度(cm )X ~N (,),规定长度在±内为合格品,求一螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06X P X P ⎛-⎫->=> ⎪⎝⎭23.一工厂生产的电子管寿命X (小时)服从正态分布N (160,σ2),若要求P {120<X ≤200=≥,允许σ最大不超过多少?【解】120160160200160(120200)X P X P σσσ---⎛⎫<≤=<≤ ⎪⎝⎭故 4031.251.29σ≤= 24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2) 2(2)(2)1e P X F λ-≤==-(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰当1≤x<2时()()d xF x f t t -∞=⎰当x ≥2时()()d 1x F x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩26.设随机变量X 的密度函数为(1) f (x )=a e |x |,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x xx bx试确定常数a ,b ,并求其分布函数F (x ).【解】(1) 由()d 1f x x ∞-∞=⎰知||021e d 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22x xx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22x xxx F x f x x x x λλλλ--∞-∞==+⎰⎰⎰故其分布函数 (2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1 即X 的密度函数为 当x ≤0时F (x )=0当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰当1≤x <2时012011()()d 0d d d xxF x f x x x x x x x-∞-∞==++⎰⎰⎰⎰当x ≥2时F (x )=1 故其分布函数为27.求标准正态分布的上α分位点, (1)α=,求z α; (2)α=,求z α,/2z α. 【解】(1) ()0.01P X z α>=即 1()0.01z αΦ-= 即 ()0.09z αΦ= 故 2.33z α= (2) 由()0.003P X z α>=得即 ()0.997z αΦ= 查表得 2.75z α= 由/2()0.0015P X z α>=得即 /2()0.9985z αΦ= 查表得 /2 2.96z α=【解】Y 可取的值为0,1,4,929.设P {X =k }=(2)k , k =1,2,…,令求随机变量X 的函数Y 的分布律. 【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+30.设X ~N (0,1).(1) 求Y =e X 的概率密度; (2) 求Y =2X 2+1的概率密度; (3) 求Y =|X |的概率密度.【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )x Y F y P Y y P y P X y =≤=≤=≤ 故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤故 d ()()d Y Y XX f y F y f f y ⎤⎛==+⎥ ⎥⎝⎦(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤ 故d()()()()d Y Y X X f y F y f y f y y==+- 31.设随机变量X ~U (0,1),试求: (1) Y =e X 的分布函数及密度函数; (2) Z =2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=故 (1e e)1X P Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )X Y F y P y P X y =≤=≤ 当y ≥e 时()(e )1X Y F y P y =≤= 即分布函数故Y 的密度函数为(2) 由P (0<X <1)=1知当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤即分布函数故Z 的密度函数为32.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤ 当y ≥1时,()1Y F y = 故Y 的密度函数为33.设随机变量X 的分布函数如下:试填上(1),(2),(3)项. 【解】由lim ()1x F x →∞=知②填1。