钢结构设计原理之钢结构的连接
钢结构的连接方法
钢结构的连接方法一、钢结构的连接方法1、焊接连接2、螺栓连接3、铆钉连接二、以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
判定没有一个统一的标准,很多有经验的设计师或项目经理也常常不能完全说明白,可以以一些数据综合考虑并加以判断。
三、钢结构以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
《钢结构设计原理》苏州科技学院教材配套第4章钢结构的连接
-
第4章 钢结构的连接
Suzhou University of Science & Technology
(4)对低温冷脆的影响
对于厚板或交叉焊缝,将产生三向焊接
残余拉应力,增加了钢材低温脆断倾向。 (5)对疲劳强度的影响 三向焊接残余拉应力降低材料的塑性,从 而疲劳强度降低!
第4章 钢结构的连接
Suzhou University of Science & Technology
3.铆钉连接 连接受力性能较好,但构造复杂,目前已很少采用。
第4章 钢结构的连接
Suzhou University of Science & Technology
4.2
焊接连接的方法及特性
一、钢结构常用焊接方法 常 用 焊 接 方 法
电弧焊 电渣焊 气体保护焊 电阻焊
第4章 钢结构的连接
Suzhou University of Science & Technology
所产生的热量来熔化金属 的一种方法。焊丝作为电 极伸入并穿过渣池,使渣 池产生电阻热将焊件金属 及焊丝熔化,沉积于熔池
中,形成焊缝。
第4章 钢结构的连接
Suzhou University of Science & Technology
气体保护焊
原 理
利用二氧化碳气 体或其它惰性气体作 为保护介质的一种电 弧熔焊方法。
(一)轴心力作用下的对接焊缝计算
N
lw t
N
σ N lw t f t 或f c
w w
N—轴心拉力或压力设计值; t —板件较小厚度;T形连接中为腹板厚度; ftw、fcw —对接焊缝的抗拉和抗压强度设计值。
第三章 钢结构的连接课后习题答案
第三章 钢结构的连接3.1 试设计双角钢与节点板的角焊缝连接(图3.80)。
钢材为Q235B ,焊条为E43型,手工焊,轴心力N=1000KN (设计值),分别采用三面围焊和两面侧焊进行设计。
解:(1)三面围焊 2160/w f f N mm = 123α=213α= 确定焊脚尺寸: ,max min 1.2 1.21012f h t mm ≤=⨯=, ,min min 1.5 1.512 5.2f h t mm ≥==, 8f h mm = 内力分配:30.7 1.2220.78125160273280273.28w f f f N h b f N KN β=⋅⋅⋅=⨯⨯⨯⨯⨯==∑3221273.281000196.69232N N N KN α=-=⨯-= 3112273.281000530.03232N N N KN α=-=⨯-= 焊缝长度计算:11530.032960.720.78160w w f fN l mm h f ≥==⋅⨯⨯⨯∑, 则实际焊缝长度为 1296830460608480wf l mm h mm '=+=≤=⨯=,取310mm 。
22196.691100.720.78160w w f f N l mm h f ≥==⋅⨯⨯⨯∑, 则实际焊缝长度为 2110811860608480wf l mm h mm '=+=≤=⨯=,取120mm 。
(2)两面侧焊确定焊脚尺寸:同上,取18f h mm =, 26f h mm = 内力分配:22110003333N N KN α==⨯=, 11210006673N N KN α==⨯= 焊缝长度计算: 116673720.720.78160w w f f N l mm h f ≥==⋅⨯⨯⨯∑,则实际焊缝长度为:mm h mm l f w48086060388283721=⨯=<=⨯+=',取390mm 。
(钢结构设计原理)第三章钢结构的连接
按工作性质分:强度焊缝(只作为传递内力)、密强焊缝 (除传递内力外,还须保证不使气体或液体渗漏)。
按施焊位置分:俯焊(平焊)、立焊、横焊和仰焊。应尽量避 免采用仰焊焊缝。
焊缝(hàn fénɡ)连接形式
第二十四页,共一百五十七页。
焊缝 形式 (hàn fénɡ)
对接焊缝连接(liánjiē)形式
钢结构的实际连接图片 第二页,共一百五十七页。
钢结构的连接(liánjiē)方法
焊缝(hàn fénɡ)连接
第三页,共一百五十七页。
焊缝(hàn 连接 fénɡ)
20世纪初开始在工程结构上较广泛应用。焊接是现代钢结构 最主要的连接(liánjiē)方法之一。
优点
*构造简单,任何形式的构件都可直接相连(xiānɡ lián);
第三十三页,共一百五十七页。
焊缝 代 (hàn fénɡ) 号
对接焊缝连接的构造(gòuzào)要求
第三十四页,共一百五十七页。
对接焊缝连接的构造要求
对接(duì jiē)焊缝的坡口形式 对接焊缝的焊件常需做成坡口,又叫坡口焊缝。坡口形式与焊件厚度(hòudù)有关。
对接焊缝的坡口形式
a)直边缝:适合(shìhé)板厚t 10mm b)单边V形、c)双边V形:适合板厚t =10~20mm
缺点:施工条件受限制,不
适用于在风较大(jiào dà)的 地方施焊。
电阻焊
第二十二页,共一百五十七页。
电阻 焊 (diànzǔ)
焊缝(hàn fénɡ)类型
第二十三页,共一百五十七页。
焊缝(hàn 类型 fénɡ)
按被连接构件间的相对(xiāngduì)位置分为对接、搭接 、T形连 接和角接四种。
钢结构设计原理刘智敏第三章课后题答案
钢结构设计原理刘智敏第三章课后题答案第3章钢结构的连接12. 如图3-57所⽰的对接焊缝,钢材为Q235,焊条为E43型,采⽤焊条电弧焊,焊缝质量为三级,施焊时加引弧板和引出板。
已知,试求此连接能承受的最⼤荷载。
解:因有引弧板和引出板,故焊缝计算长度l w=500mm,则焊缝正应⼒应满⾜:其中,故有,故此连接能承受的最⼤荷载为。
13. 图3-58所⽰为⾓钢2∟140×10构件的节点⾓焊鏠连接,构件重⼼⾄⾓钢肢背距离,钢材为Q235BF,采⽤⼿⼯焊,焊条为E43型,,构件承受静⼒荷载产⽣的轴⼼拉⼒设计值为N=1100kN,若采⽤三⾯围焊,试设计此焊缝连接。
解:正⾯⾓焊缝且故可取,此时焊缝的计算长度正⾯焊缝的作⽤:则由平衡条件得:所以它们的焊缝长度为,取370mm,,取95mm。
17. 如图3-61所⽰的焊接⼯字形梁在腹板上设⼀道拼接的对接焊缝,拼接处作⽤有弯矩,剪⼒,钢材为Q235B钢,焊条⽤E43型,半⾃动焊,三级检验标准,试验算该焊缝的强度。
解:(1)确定焊缝计算截⾯的⼏何特征x轴惯性矩:中性轴以上截⾯静矩:单个翼缘截⾯静矩:(2)验算焊缝强度焊缝最⼤拉应⼒(翼缘腹板交接处):查表知,,所以焊缝强度不满⾜要求。
19. 按⾼强度螺栓摩擦型连接和承压型连接设计习题18中的钢板的拼接,采⽤8.8级M20(=21.5mm)的⾼强度螺栓,接触⾯采⽤喷吵处理。
(1)确定连接盖板的截⾯尺⼨。
(2)计算需要的螺栓数⽬并确定如何布置。
(3)验算被连接钢板的强度。
解:(1)摩擦型设计查表得每个8.8级的M20⾼强度螺栓的预拉⼒,对于Q235钢材接触⾯做喷砂处理时。
单个螺栓的承载⼒设计值:所需螺栓数:(2)承压型设计查表知,。
单个螺栓的承载⼒设计值:所需螺栓数:螺栓排列图如下所⽰验算被连接钢板的强度a.承压型设计查表可知,当满⾜要求。
b.摩擦型设计净截⾯强度验算:满⾜要求;⽑截⾯强度验算:满⾜要求。
20. 如图3-62所⽰的连接节点,斜杆承受轴⼼拉⼒设计值,端板与柱翼缘采⽤10个8.8级摩擦型⾼强度螺栓连接,抗滑移系数,求最⼩螺栓直径。
钢结构的连接方法
钢结构的连接方法一、钢结构的连接方法1、焊接连接2、螺栓连接3、铆钉连接二、以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
判定没有一个统一的标准,很多有经验的设计师或项目经理也常常不能完全说明白,可以以一些数据综合考虑并加以判断。
三、钢结构以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
钢结构基本原理总结
钢结构基本原理总结钢结构是指由钢材构成的建筑结构。
其基本原理是通过将不同形状、尺寸和材质的钢构件通过连接件连接在一起,形成一个稳定的结构体系,用以承载和传递荷载。
钢结构具有强度高、刚度好、抗震性能好等优点,因此在建筑领域得到广泛应用。
1.荷载传递原理:钢结构的荷载可以分为静载和动载。
静载是指施加在结构上的固定的荷载,如自重、活载和附加荷载等。
动载是指施加在结构上的可变荷载,如风荷载和地震荷载等。
钢结构通过其成员和节点之间的连接来传递这些荷载。
荷载传递的路径应当尽量直接,以确保荷载能够有效地传递到基础上。
2.梁的受力原理:钢梁是钢结构的主要受力构件之一,其受力原理是通过梁上的截面形状、尺寸和材质来承担荷载。
梁在受到荷载作用时,产生弯曲变形,其中上部受压,下部受拉。
为了提高梁的承载能力,可以在梁的形状上进行优化设计,如增加剪力板、加强型钢等。
3.柱的受力原理:钢柱是钢结构的主要受力构件之一,其受力原理是通过柱的截面形状、尺寸和材质来承担荷载。
柱在受到荷载作用时,产生压力和弯矩,其中上部受压,下部受拉。
为了提高柱的承载能力,可以在柱的形状上进行优化设计,如增加加强筋、加强型钢组合等。
4.连接的设计原理:钢结构的连接件起着连接和传递力的作用。
连接是钢结构设计中的一个重要环节,直接关系到结构的安全性和稳定性。
连接的设计原则是保证连接的强度、刚度和稳定性。
常见的连接方式有焊接、螺栓连接和铆接等。
连接的设计应根据受力特点和要求,选择合适的连接方式和连接尺寸。
5.抗震设计原理:钢结构由于其材料的高强度和刚度,具有良好的抗震性能。
抗震设计原理是通过在结构中设置剪力墙、抗侧撑、斜撑等抗震构件,提高结构的抗震能力。
此外,抗震设计还包括结构的形式选择、受力构件的尺寸和材质选取、节点的设计等。
总之,钢结构的基本原理包括荷载传递、梁的受力原理、柱的受力原理、连接的设计原理和抗震设计原理等。
这些原理相互关联,共同保证了钢结构的安全性和稳定性。
钢结构连接计算讲解
钢结构设计原理 Design Principles of Steel Structure
7.3.2 对接焊缝的计算
第七章
Chapter 7
连接
Connections
1. 轴心受力的对接焊缝
N lwt
ftw
或
f cw(7.3.1)
lw——焊缝计算长度,
图7.3.5 直对接焊缝连接
t——连接件的较小厚度,对T形接头为腹板的厚度 ;
连接
Connections
(1)焊缝形式:分为对接焊缝和角焊缝。
对接焊缝按受力与焊缝方向分:
1)正对接焊缝(a):作用力方向与焊缝方向正交。 2)斜对接焊缝(b):作用力方向与焊缝方向斜交。
角焊缝按受力与焊缝方向分:
1)正面角焊缝(c) :作用力方向与焊缝长度方向垂直。 2)侧面角焊缝(c) :作用力方向与焊缝长度方向平行。
钢结构设计原理 Design Principles of Steel Structure
(3) 焊缝代号
第七章
Chapter 7
连接
Connections
表7.2.1 焊缝代号
钢结构设计原理 Design Principles of Steel Structure
7.3 对接焊缝的构造和计算
第七章
ftw 185N/mm2
b)最大剪应力
钢结构设计原理 Design Principles of Steel Structure
第七章
Chapter 7
连接
Connections
max
VSx Ixt
550 103 38105104 12
钢结构设计原理3-2 钢结构的连接-螺栓连接
鼓曲现象。
构造要求
中距及边距不宜过大,否则连接板件间不能紧密贴合, 潮气侵入缝隙使钢材锈蚀。
施工要求
保证一定空间,便于打锚和采用扳手拧紧螺帽。根据 扳手尺寸和工人的施工经验、规定最小中距为3d0。 根据以上要求规范规定了螺栓和铆钉的容许距离。
3.8 普通螺栓连接的工作性能和计算
yi2 Ntb / yi2 0
Nmin≥0时的偏心距
e yi2 /(ny1)
(2)大偏心受拉
e
y2 i
/(ny1
)时,端板底部将出现受压区。偏安全取中和
轴位于最下排螺栓O′处,e′和各y′自O′点算起,最上排螺
栓1的拉力最大:
N1
Ne'
y' 1
y'2 i
N
b t
3.8.3普通螺栓连接受剪力和拉力的共同作用
轴心力N由每个螺栓平均分担,螺栓数n
n
N Nmb in
N
b m
in
—一个螺栓抗剪承载力设计值与承压承载力设计值的
较小值
当l1>l5d0时,连接工作进入弹塑性阶段后,各螺杆所
受内力不易均匀,端部螺栓首先达到极限强度而破坏,
随后由外向里依次破坏。为防止端部螺栓提前破坏,因
此,当l1>l5d0 时,螺栓的抗剪和承压承载力设计值应 乘以折减系数η予以降低:
3.8.1 普通螺栓的抗剪连接 1. 抗剪连接的工作性能 抗剪连接是最常见的螺栓连接。抗剪试验可得试件上a、 b两点间的相对位移δ与作用力N的关系曲线。试件由零载 一直加载至连接破坏的全过程,经历三个阶段。
(1)弹性阶段 O1斜直线段:加荷 之初,连接中剪力较小,荷载靠 板件间接触面的摩擦力传递,螺 栓杆与孔壁间的间隙保持不变, 处于弹性阶段,板件间摩擦力大 小取决于拧紧螺帽时螺杆中的初 始拉力,普通螺栓的初应力很小。 此阶段很短,可略去不计。
19年新钢结构连接第3章
34
步骤3:计算角钢肢背和肢尖上侧缝分担的轴力(N1 ,N2)
k1N
lw1
N
k2N
lw2
查得焊缝内力分配系数K1=0.65, K2=0.35
肢背角焊缝所承受的内力
N1=373.75kN
肢尖角焊缝所承受的内力
N2=201.25kN
2019/10/20
35
步骤4:计算角钢肢背和肢尖上侧缝长度(lw1 ,lw2)
强度折减:高空安装焊缝,强度设计值乘以0.9
2019/10/20
8
3.2.4 焊缝连接型式及焊缝型式
焊缝连接型式:对接、搭接、T形连接和角接
焊缝连接型式
2019/10/20
9
焊缝型式:对接焊缝和角焊缝
对接焊缝按受力与焊缝方向分: 1)正对接焊缝(a):作用力方向与焊缝方向正交。 2)斜对接焊缝(b):作用力方向与焊缝方向斜交。
(
f
f
)2
2 f
f
w f
f 1.22
正面角焊缝强度增大系数,直接承受 动力荷载时为1.0
20
3.3.3 常用连接方式的角焊缝计算
1. 受轴心力焊件的拼接板连接
仅侧面角焊缝:
f
N he lw
f
w f
仅正面角焊缝:
f
he
N lw
f
f
w f
2019/10/20
2019/10/20
27
[分析] 方法一: 假定焊脚尺寸----焊缝长度----拼接盖板尺寸
步骤1:假定焊脚尺寸(hf) 角焊缝的尺寸是根据板件的厚度确定的。
最大焊脚尺寸:规范规定,当t>6mm时,hf≦t-(1~2)mm,t为 较薄焊件的厚度
第三章 钢结构的连接-普通螺栓连接
公式的两点说明:
(1)螺栓的有效截面面积 因栓杆上的螺纹为斜方向的,所以抗拉时公式取的是有效
直径de而不是净直径dn,现行国家标准取:
ded1 23 43t (t螺)距
dn de dm d
(2)螺栓垂直连接件的刚度对螺栓抗拉承载力的影响
A、螺栓受拉时,一般是通过
与螺杆垂直的板件传递,即螺 杆并非轴心受拉,当连接板件 发生变形时,螺栓有被撬开的 趋势(杠杆作用),使螺杆中 的拉力增加(撬力Q)并产生 弯曲现象。连接件刚度越小撬 力越大。试验证明影响撬力的 因素较多,其大小难以确定, 规范采取简化计算的方法,取 ftb=0.8f(f—螺栓钢材的抗 拉强度设计值)来考虑其影响。
由假定‘(2)’得
y1 r1
N1Tx N1T
x N1Ty
T
N 1 TN 2 TN 3 T N nT
r1 r2 r3
rn
由上式得:
N 2 TN r1 1 Tr2 ; N 3 TN r1 1 Tr3 ; N nT N r1 1 Trn
得:
T N r 1 1 Tr 1 2 r 2 2 r n 2N r 1 1 Ti n 1r i2
简化计算: 令:xi=0,则NiTy=0
N 1Tx T ny r1 i2y r1 1T ny y1 i2
y 1 N1Tx
y1
r1
N1T
x N1Ty
i 1
i 1
x1
N 1 2 T x N 1 F 2 N m b in
三、普通螺栓的抗拉连接
(一)普通螺栓抗拉连接的工作性能
N 1 TT nr1n
Tr1
n
ri2
xi2 yi2
[PPT]钢结构设计原理之钢结构的连接和节点构造
3.焊缝质量等级及选用
《钢结构设计规范》(GB50017--2003)中, 对焊缝质量等级的选用有如下规定: (1) 需要进行疲劳计算的构件中,垂直于作用力 方向的横向对接焊缝受拉时应为一级,受压时应 为二级。 (2) 在不需要进行疲劳计算的构件中,凡要求与 母材等强的受拉对接焊缝应不低于二级;受压时 宜为二级。
弯时与母材相等,不必计算焊缝的强度。
三级焊缝一般只能达到母材强度的85%,应进
行验算。
若为高空施焊,焊缝强度设计值应乘折减系数
0.9。
四、焊缝连接型式及焊缝型式
1.焊接连接形式
对接
搭接
角 部 连 接
T型连接
2.焊缝形式
(1)对接焊缝
正对接焊缝
(2)角焊缝
斜对接焊缝
T型对接焊缝
对接焊缝
角焊缝
(3)重级工作制和起重量 Q>50t的中级
工作制吊车梁的腹板与上翼缘板之间以及吊车桁
架上弦杆与节点板之间的T形接头焊透的对接与
角接组合焊缝,不应低于二级。
(4)角焊缝质量等级一般为三级,直接承受动力 荷载且需要验算疲劳和起重量Q>50t的中级工 作制吊车梁的角焊缝的外观质量应符合二级。
注:
一、二级焊缝用于等强连接,其焊缝的拉、压、
3.轴力、弯矩和剪力共同作用下的对接焊缝计算
(1)焊缝为矩形截面:
V
lw
lw
N
M
N
t t
σM
τ
σN
强度计算公式为:
M
M 6M 2 Ww lw t
N
N lw t
max N M f t w
max
VS w 3 V fVw I w t 2 lw t
钢结构的常用连接方法
钢结构的常用连接方法钢结构的基本构件由钢板、型钢等连接而成,如梁、柱、桁架等,运到工地后通过安装连接成整体结构。
因此在钢结构中,连接占有很重要的地位。
在传力过程中,连接部位应有足够的强度、刚度和延性。
被连接件间应保持正确的位置,以满足传力和使用要求。
连接的加工和安装比较复杂而且费工,因此选定连接方案是钢结构设计的重要环节。
钢结构的连接通常有焊接、铆接和螺栓连接三种方式(见图10-1)。
在在房屋结中铆接已经很少采用,常用焊接和螺栓连接。
(a)焊接连接(b)铆钉连接(c)螺栓连接图10-1 钢结构的连接方式(书中图名改为图示所示)10.1.1 焊接连接焊接是通过电弧产生热量,使焊条和焊件局部熔化,然后冷却凝结形成焊缝,使焊件连成一体。
焊接连接是当前钢结构最主要的连接方式,它的优点是构造简单,用钢省,加工方便,连接的密闭性好,易于采用自动化作业。
焊接连接的缺点是焊件会产生残余应力和残余变形,焊缝附近材质变脆,焊缝质量易受材料、操作的影响,对钢材材性要求较高,高强度钢更要有严格的焊接程序。
钢结构常用的焊接方法有气焊、电阻焊和电弧焊等方法。
10.1.2 铆钉连接铆钉连接是将一端带有预制钉头的铆钉插入被连接构件的钉孔中,利用铆钉枪或压铆机将另一端压成封闭钉头而成。
这种连接传力可靠,韧性和塑性较好,质量易于检查,适用于承受动力荷载、荷载较大和跨度较大的结构。
但铆钉连接费工费料、劳动条件差、成本高,现在很少采用,多被焊接及高强度螺栓连接所代替。
10.1.3 螺栓连接螺栓连接需要先在构件上开孔,然后通过拧紧螺栓产生紧固力将被连接板件连成一体,其分为普通螺栓连接和高强度螺栓连接两种。
1.普通螺栓连接普通螺栓的优点是装卸便利,不需特殊设备。
普通螺栓又分为C级螺栓(又称粗制螺栓)和A、B级螺栓(又称精制螺栓)两种。
C级螺栓制作精度较差,栓径和孔径之间的缝隙相差1-1.5mm,便于制作和安装,但螺杆与钢板孔壁接触不够紧密,当传递剪力时,连接变形较大,故C级螺栓宜用于承受拉力的连接,或用于次要结构和可拆卸结构的受剪连接以及安装时的临时固定。
钢结构设计原理张建平
第61页/共99页
3.6.2 螺栓连接的构造要求
例3.2 试设计用拼接盖板的对接连接。已知钢板宽B=270mm,厚度 t1=28mm,拼接盖板厚度 t2=16mm。该连接承受静态轴心
力N=1400kN(设计值),钢材为Q235B,手工焊,焊条为E43型
。
第26页/共99页
解:角焊缝的焊脚尺寸hf应根据板件厚度确定:焊缝在板件边缘时施焊,拼接盖板厚度 t2=16mm>6mm,t2<t1,则
3.2.2 焊缝形式和接头形式
一、焊缝连接形式按被连接钢材的相互位置可分为对接、搭接、T形连接和角部连接四种。
图3.4 焊缝连接的形式(a)对接连接;(b)用拼接盖板的对接连接;(c)搭接连接;(d)、(e)T形连接(f)、(g)角部连接
二、焊缝形式
正对接
对接焊接
斜对接K形对接焊缝
正面角焊缝:力的方向与焊缝长度方向垂直角焊缝 侧面角焊缝:力的方向与焊缝长度方向平行斜角焊缝:力的方向与焊缝长度方向倾斜
第41页/共99页
(2)不考虑腹板焊缝传递弯矩的计算方法
翼缘焊缝所承受的水平力:
翼缘焊缝的强度:
腹板焊缝的强度:
第42页/共99页
三、承受扭矩与剪力联合作用的角焊缝连接计算
第43页/共99页
基于下列假定:计算角焊缝在扭矩T作用下产生的应力时,是
被连接件是绝对刚性的,它有绕焊缝形心O旋转的趋势,而焊缝本身是弹性的;角焊缝群上任一点的应力方向垂直于该点与形心的连线,且应力大小与连线长度r成正比。在扭矩T作用下,A点(或A′点)的应力为:
第28页/共99页
钢结构构件连接
钢结构构件连接钢结构在现代建筑中扮演着重要的角色,其稳定性和耐久性使其成为许多高层建筑和桥梁的首选材料。
而钢结构的连接是构建稳定和可靠结构的关键之一。
在本文中,我们将探讨钢结构构件连接的几种常见方法及其特点。
一、螺栓连接螺栓连接是最常用的钢结构连接方法之一。
它通过使用螺栓将两个构件连接在一起。
螺栓连接具有简单快捷、拆卸容易等优点,适用于各种规格和形状的构件连接。
在螺栓连接中,需要注意螺栓的材质、规格和紧固力的控制,以确保连接的强度和可靠性。
二、焊接连接焊接连接是另一种常见的钢结构连接方法。
它通过熔化构件边缘并使其相互结合来形成连接。
焊接连接具有连接强度高、刚性好、连接性能稳定等优点,适用于需承受大荷载和振动的构件连接。
在焊接连接中,需要注意焊接电流、焊接速度和焊接材料的选择,以确保焊接质量和连接效果。
三、挤压连接挤压连接是一种较新的钢结构连接方法。
它利用在构件端部施加压力将构件连接在一起,形成一个紧固和密封的连接。
挤压连接具有无需预处理构件表面、连接效果可靠、无需其他辅助材料等优点,适用于需要精确控制连接长度和连接密封性的构件连接。
在挤压连接中,需要注意挤压力的控制和连接长度的测量,以确保连接质量和准确性。
四、铆接连接铆接连接是一种常见的钢结构连接方法,特别适用于高强度钢构件的连接。
它通过将铆钉穿透构件并在另一侧部分形成头部,将构件紧密连接在一起。
铆接连接具有连接强度高、抗拉强度好等优点,适用于大跨度结构和承受强烈振动的构件连接。
在铆接连接中,需要注意铆钉的规格和数量,以确保连接的强度和可靠性。
总结钢结构构件连接是建设安全、稳定和耐久的钢结构的关键步骤。
螺栓连接、焊接连接、挤压连接和铆接连接是常见的钢结构连接方法。
在选择连接方法时,需要根据构件的形状、材质、荷载要求等因素进行综合考虑。
无论采用何种连接方法,都需要严格控制连接质量,以确保钢结构的整体性和安全性。
通过对钢结构构件连接方法的了解,我们可以更好地理解钢结构的设计原理和实际应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摩擦型连于承受动 力荷载的结构。
承压型连接的承载力高于摩擦型,连接紧凑, 但剪切变形大,故不得用于承受动力荷载的结 构中。
Q390钢Q420钢 E55型焊条(E5500~E5518)。
E表示焊条、前两位数字为熔敷金属的最小抗拉 强度(以kgf/mm2表示),第三、四位数字表示 适用焊接位置、电流以及药皮类型等。
不同钢种的钢材相焊接时,宜采用与低强度钢 材相适应的焊条。
2 埋弧焊(自动或半自动) 电弧在焊剂层下燃烧的一种电弧焊方法。
传力线通过时产生弯折, 应力沿焊缝长度方向的分 布不均匀,呈两端大而中 间小的状态。
焊缝越长,应力分布不均 匀性越显著,但在届临塑 性工作阶段时,产生应力 重分布,可使应力分布的 不均匀现象渐趋缓和。
正面角焊缝 受力复杂,截面中的各面均存在正应力 和剪应力,焊根处存在着很严重的应力集中。
正面角焊缝的破坏强度高于侧面角焊缝,但塑性变形 能力差。
《钢结构设计原理》
第三章 钢结构的连接
3.1 钢结构的连接方法和特点
连接的作用将板材或型钢组合成构件,再将构件组合 成整体结构。 连接方式及其质量直接影响钢结构的工作性能。必须安 全可靠、传力明确、构造简单、制造方便和节约钢材。 连接方法:焊缝连接、铆钉连接和螺栓连接三种。
3.1.1焊接连接
最主要的连接方法。
埋弧焊所用焊丝和焊剂应与主体金属强度相适应, 即要求焊缝与主体金属等强度。
3. 气体保护焊
气体保护焊是利用二氧化碳气体或其他惰性气体 作为保护介质的一种电弧熔焊方法。
直接依靠保护气体在电弧周围造成局部的保护层, 以防止有害气体的侵入并保证了焊接过程中的稳 定性。
气体保护焊的焊缝熔化区没有熔渣,焊工能够清 楚地看到焊缝成型的过程;由于保护气体是喷射 的,有助于熔滴的过渡;又由于热量集中,焊接 速度快,焊件熔深大,故所形成的焊缝强度比手 工电弧焊高,塑性和抗腐蚀性好,适用于全位置 的焊接。但不适用于在风较大的地方施焊。
3.4.1 角焊缝的构造要求
2 最大焊脚尺寸 避免焊缝收缩时产生较大的残余应力和残余变形,热影 响区扩大,产生热脆,较薄焊件烧穿,除钢管结构外 焊脚尺寸 hf 1.2t1 t1为较薄焊件厚度(mm)。 板件边缘的焊缝:板件厚度t>6mm时,hf≤t-(1~2) mm t≤6mm时,取hf≤t。 不等角焊角尺寸。
lw≤60hf 当实际长度大于上述限值时,其超过部分在计算中不 予考虑。
若内力沿侧面角焊缝全长分布,比如焊接梁翼缘板与 腹板的连接焊缝,计算长度可不受上述限制。
3.4.1 角焊缝的构造要求
5 搭接连接的构造要求
当板件端部仅有2条侧面角焊缝时,连接的承载力与b/lw 有关,B为两侧焊缝的距离,lw为侧焊缝长度。当b/lw> 1时,连接的承载力随着b/lw比值的增大而明显下降。
3.3.3 焊缝代号图例
《焊缝符号表示法》规定:焊缝代号由引出线、图形 符号和辅助符号三部分组成。引出线由横线和带箭头 的斜线组成。箭头指到图形上的相应焊缝处,横线的 上面和下面用来标注图形符号和焊缝尺寸。当引出线 的箭头指向焊缝所在的一面时,应将图形符号和焊缝 尺寸等标注在水平横线的上面;当箭头指向对应焊缝 所在的另一面时,则应将图形符号和焊缝尺寸标注在 水平横线的下面。必要时,可在水平横线的末端加一 尾部作为其他说明之用。图形符号表示焊缝的基本型 式,如用 表示角焊缝,用V表示V型坡口的对接焊缝。 辅助符号表示焊缝的辅助要求,如用 表示现场安装焊 缝等。
3.2 焊缝和焊接连接的形式
3.2.1 焊缝的形式
角焊缝和坡口焊缝。
1.角焊缝
连接板件不必坡口,焊缝金属填充在连接板件形成的 直角或斜角区域内。
按截面形式可分为:
直角角焊缝 两焊脚边的夹角为90°,微凸的等腰直角 三角形,直角边边长hf称为角焊缝的焊脚尺寸。he= 0.7hf为直角角焊缝的有效厚度。 斜角角焊缝 两焊脚边的夹角不等于90°
钢结构常用焊接方法
通常采用电弧焊(包括手工电弧焊)、埋弧 焊(自动或半自动焊)以及气体保护焊等。
1.手工电弧焊 最常用的一种焊 接方法。通电后 在涂有药皮的焊 条与焊件之间产 生电弧。
手工电弧焊所用焊条应与焊件钢材(或称主体金 属)相适应:
Q235钢 E43型焊条(E4300~E4328);
Q345钢 E50型焊条(E5000~E5048);
角部连接 主要用于制作箱形截面。
2.焊缝的施焊位置 平焊、横焊、立焊及仰焊。 平焊(又称俯焊)施焊方便。 立焊和横焊要求焊工的操作水平比平焊高一些。 仰焊的操作条件最差,焊缝质量不易保证,因此 应尽量避免采用仰焊。
3.3 焊缝缺陷和质量检验
3.3.1焊缝缺陷 焊缝缺陷:焊接过程中产生于焊缝金属或附近热影响 区钢材表面或内部的缺陷。
3.1.2 铆钉连接 制孔和打铆。 塑性和韧性较好,传力可靠,质量易于检查, 对主体金属的材质质量要求低。 削弱截面,费钢费工,要求技工技术水平高, 劳动条件差。 很少采用,被焊接和螺栓连接所取代。
3.1.3 螺栓连接
普通螺栓连接和高强度螺栓连接两种。
1 普通螺栓连接
普通螺栓分为A、B、C三级。 A与B级为精制螺栓,C级为粗制螺栓。 A级和B级螺栓材料性能等级则为5.6级或8.8级。 C级螺栓材料性能等级为4.6级或4.8级。 小数点前面的数字表示螺栓成品的抗拉强度不 小于400N/mm2,小数点及小数点以后数字表示 其屈强比为0.6或0.8。
优点任何形式的构件都可直接相连,构造简单, 制作加工方便;不削弱截面,用料经济;连接 的密闭性好,结构刚度大;可实现自动化操作, 提高焊接结构质量。
缺点 在热影响区内,金相组织发生改变,局部 材质变脆;焊接残余应力和残余变形使受压构 件承载力降低;焊接结构对裂纹很敏感,局部 裂纹一旦发生,就容易扩展到整体,低温冷脆 问题较为突出。
2.高强度螺栓连接
两种类型
摩擦型连接:依靠摩擦阻力传力,并以剪力不超 过接触面摩擦力作为设计准则;
承压型连接:允许接触面滑移,以连接达到破坏 的极限承载力作为设计准则。
采用45号钢、40B钢和20MnTiB钢加工而成,经 热处理后,螺栓抗拉强度应分别不低于800N/ mm2和1000N/mm2,即前者的性能等级为8.8级, 后者的性能等级为10.9级。
内部无损检验 检查内部缺陷。采用超声波检验,用磁 粉、荧光检验等较简单的方法作为辅助。此外还可采 用X射线或γ射线透照或拍片,X射线应用较广。
《钢结构工程施工质量验收规范》规定焊缝按其检验 方法和质量要求分为一、二、三级。三级焊缝只要求 对全部焊缝作外观检查且符合三级质量标准;一级、 二级焊缝除外观检查外,还要求一定数量的超声波检 验并符合相应级别的质量标准。
常见的缺陷:裂纹、焊瘤、烧穿、弧坑、气孔、夹渣、 咬边、未熔合、未焊透等;焊缝尺寸不符合要求、焊 缝成形不良等。 裂纹是焊缝连接中最危险的缺陷。
3.3.2 焊缝质量检验
缺陷削弱焊缝受力面积,焊缝处应力集中,对连接的 强度、冲击韧性及冷弯性能等均有不利影响。焊缝质 量检验极为重要。
外观检查 检查外观缺陷和几何尺寸;
3.4.1 角焊缝的构造要求
4 侧面角焊缝的最大计算长度 侧面角焊缝在弹性阶段沿长度方向受力不均匀,两端 大中间小。焊缝越长,应力集中越明显。
若焊缝长度适宜,两端点处的应力达到屈服强度后, 继续加载,应力会渐趋均匀。
若焊缝长度超过某一限值时,有可能首先在焊缝的两 端破坏,故一般规定侧面角焊缝的计算长度
为使连接强度不致过分降低,要求b/lw≤1。 避免焊缝横向收缩,引起板件向外发生较大拱曲,
b不宜大于16t(t>12mm)或190mm(t≤12mm),t为较薄焊 件的厚度。
搭接连接中,仅采用正面角焊缝时,搭接长度不得小于 焊件较小厚度的5倍,也不得小于25mm。
7 减小角焊缝应力集中的措施 端部搭接采用三面围焊时,在转角处截面突变,会产 生应力集中,如在此处起灭弧,可能出现弧坑或咬肉 等缺陷,从而加大应力集中的影响。故所有围焊的转 角处必须连续施焊。
3.4.1 角焊缝的构造要求
3 角焊缝的最小计算长度 焊脚尺寸大而长度较小时,焊件的局部加热严重,焊缝 起灭弧所引起的缺陷相距太近,以及焊缝中可能产生的 其他缺陷(气孔、非金属夹杂等),使焊缝不够可靠。 搭接连接的侧面角焊缝,如果焊缝长度过小,由于力线 弯折大,会造成严重应力集中。
为了使焊缝能够具有一定的承载能力,侧面角焊缝或正 面角焊缝的计算长度不得小于8hf和40mm。
斜角角焊缝常用于钢漏斗和钢管结构中。
夹角大于l35°或小于60°的斜角角焊缝,除钢管结构 外,不宜用作受力焊缝。
2. 坡口焊缝
焊件常需做成坡口,焊缝金属填充在坡口内。
坡口形式与焊件厚度有关:
焊件厚度很小(小于等于10mm):直边缝。
一般厚度(t=10~20mm) :具有斜坡口的单边V形或V形焊 缝。
对接与角接组合焊缝:T形、十字形或角接 接头的坡口焊缝。
3.2焊缝和焊接连接形式
3.2.2 焊接连接的形式
1.焊接连接形式 被连接板件的相互位置:对接、搭接、T形连接和角部 连接四种。 连接所采用的焊缝主要有坡口焊缝和角焊缝。
对接连接:主要用于厚度相同或接近相同的两构件的 相互连接。
采用对接焊缝,两构件在同一平面内,传力均匀平缓, 没有明显的应力集中,用料经济,但是焊件边缘需要 加工,被连接两板的间隙和坡口尺寸有严格的要求。 采用双盖板和角焊缝,传力不均匀、费料,但施工简 便,所连接两板的间隙大小无需严格控制。
搭接连接:适用于不同厚度构件的连接。传力不均匀, 材料较费,构造简单,施工方便,广泛应用。
T形连接 省工省料,常用于制作组合截面。 采用角焊缝连接 焊件间存在缝隙,截面突变,应 力集中现象严重,疲劳强度较低,可用于不直接 承受动力荷载结构的连接中。 采用坡口焊缝 对于直接承受动力荷载的结构,如 重级工作制吊车梁,其上翼缘与腹板的连接。