上海同济初级中学
上海同济初级中学2020年期中单元测试
上海同济初级中学2020年期中单元测试一、选择题1.如图是物体在水平面上运动的v-t图象,以下判断正确的是()A.1s末物体运动方向发生改变B.在0~3s时间内,物体的平均速度大小为1m/sC.1~3s内物体加速度是5~6s内加速度的2倍D.0~6s内物体发生的位移为1m2.如图甲、乙所示的x–t图像和v–t图像中给出四条图线,甲、乙、丙、丁代表四辆车由同一地点向同一方向运动的情况,则下列说法正确的是()A.甲车做直线运动,乙车做曲线运动B.0~t1时间内,甲车通过的路程小于乙车通过的路程C.0~t2时间内,丙、丁两车在t2时刻相距最远D.0~t2时间内,丙、丁两车的平均速度相等3.第19届亚洲运动会将于2022年9月10日~9月25日在中国杭州举行.杭州是中国第三个取得夏季亚运会主办权的城市,图中的“莲花碗”是田径的主赛场,下列关于亚运会田径项目的叙述正确的是( )A.研究短跑运动员终点撞线时可将运动员看成质点B.在田径比赛中跑步运动员的比赛成绩是一个时间间隔C.短跑运动员跑100m和200m都是指位移D.高水平运动员400m比赛的平均速度有可能大于其他运动员200m比赛的平均速度4.A、B、C三点在同一直线上,一个物体自A点从静止开始作匀加速直线运动,经过B点时的速度为2v,到C点时的速度为6v,则AB与BC两段距离大小之比是A.1:3 B.1:8 C.1:9 D.3:325.他是第一个把实验引进力学的科学家,并且利用实验和数学逻辑推理相结合的方法研究物理学基本问题,从而有力地推进了人类科学认识的发展,这位科学家是A.爱因斯坦B.亚里士多德C.伽利略D.牛顿6.如图所示,表示五个共点力的有向线段恰分别构成正六边形的两条邻边和三条对角线.已知F1=10 N,这五个共点力的合力大小为( )A.0B.30 NC.60 ND.90 N7.如图甲所示,小孩用80 N的水平力推木箱不动,木箱此时受到水平地面的摩擦力大小为F1;如图乙所示,小孩用100 N的水平力恰能推动木箱,此时木箱与水平地面间的摩擦力大小为F2;如图丙所示,小孩把木箱推动了,此时木箱与水平地面间摩擦力大小为F3,若木箱对水平地面的压力大小为200 N,木箱与水平地面间动摩擦因数为0.45,则F1、F2、F3的大小分别为()A.80 N、80 N、90 N B.80 N、80 N、45 NC.80 N、100 N、90 N D.80 N、100 N、45 N8.下列说法中正确的是()A.“辽宁号”航母“高大威武”,所以不能看成质点B.战斗机飞行员可以把正在甲板上用手势指挥的调度员看成是一个质点C.在战斗机飞行训练中,研究战斗机的空中翻滚动作时,可以把战斗机看成质点D.研究“辽宁舰”航母在大海中的运动轨迹时,航母可以看成质点9.如图所示,物体B叠放在物体A上,A、B的质量均为m,且上、下表面均与斜面平行,它们以共同速度沿倾角为θ的固定斜面C匀速下滑,则()A.A、B间没有静摩擦力B.A受到B的静摩擦力方向沿斜面向上C.A受到斜面的滑动摩擦力大小为2mgsin θD.A与B间的动摩擦因数μ=tan θ10.从离地面3m高处竖直向上抛出一个小球,它上升5m后回落,最后到达地面,在此过程中()A.小球通过的路程是8m B.小球的位移大小是3mC.小球的位移大小是13m D.小球的位移方向是竖直向上11.下列作直线运动的v-t图象中,表示质点作匀变速直线运动的是()A.B.C.D.12.如图,体育课上一学生将足球踢向固定的木板,下列关于足球与木板作用时木板给足球的弹力方向的说法正确的是A.沿v1的方向B.沿v2的方向C.沿垂直于木板斜向左上方的方向D.先沿v1的方向后沿v2的方向13.下列说法中正确的是A.平时我们问“现在什么时间?”里的“时间”是指时刻而不是指时间间隔B.“坐地日行八万里”是以地球为参考系C.研究短跑运动员的起跑姿势时,由于运动员是静止的,所以可以将运动员看做质点D.对直线运动的某个过程,路程一定等于位移的大小14.下列判断正确的是()A.人正常行走时,鞋底受到滑动摩擦力的作用B.特警队员双手握住竖直的竹竿匀速上爬时,双手受到的摩擦力方向向下C.手将酒瓶竖直握住停留在空中,当增大手的握力时,酒瓶受到的摩擦力将增大D.在冰面上洒些细土,人再走上去就不易滑到,是因为鞋底受到的最大静摩擦力增大了15.关于重力加速度的说法中,不正确的是()A.在同一地点物体自由下落时的重力加速度与静止时的重力加速度大小一样B.在地面上不同的地方,重力加速度g的大小不同,但它们相差不是很大C.在地球上同一地点,一切物体在自由落体运动中的加速度都相同D.重力加速度g是标量,只有大小没有方向,通常计算中g取9.8m/s216.如图,在探究摩擦力的实验中,用轻质弹簧测力计水平拉一质量为m=0.2kg的放在水平桌面上的小木块,小木块的运动状态与弹簧测力计的读数如下表所示(每次实验时,木块与桌面的接触面相同)则由下表分析可知,g取10m/s2,下列选项正确的是()A.木块受到的最大摩擦力为0.7NB.木块受到最大静摩擦力可能为0.6NC.在这五次实验中,木块受到的摩擦力大小只有两次是相同的D.小木块与水平桌面间的动摩擦因数为0.3017.拿一个长约1.5m的玻璃筒,一端封闭,另一端有开关,把金属片和小羽毛放到玻璃筒里。
上海同济初级中学物理光现象实验单元综合测试(Word版 含答案)
一、初二物理光现象实验易错压轴题(难)1.小军在做“探究平面镜成像的特点”的实验,如图(1)应选择_____(选填“明亮”“黑暗”)的环境;(2)实验时应选择较薄的玻璃板代替平面镜来研究平面镜成像的特点,优点在于既能看到A的像,又能看到后面的蜡烛B,其原理为_____A.两者都是光的反射形成的B.前者是光的反射形成的,后者是光的直线传播形成的C.两者都是光的折射形成的D.前者是光的反射形成的,后者是光的折射形成的(3)小军选用了两只大小完全一样的蜡烛,在玻璃板前点燃蜡烛A,拿未点燃的蜡烛B竖直在玻璃板后面移动,人眼一直在玻璃板的前侧观察,直至蜡烛B与蜡烛A的像完全重合.这种确定像与物大小的方法是_____.(选填“控制变量法”或“等效替代法”).(4)移去蜡烛B,在其原来位置上放置一块光屏,光屏上_____(选填“不能”“能”)呈现蜡烛的像,这说明平面镜所成的像是_____(选填“虚”或“实”)像.(5)小军把玻璃板沿直线MN向右平移一段距离,在此过程中,蜡烛A的像_____(选填“会”或“不会”)向右平移.(6)实验中多次改变蜡烛A的位置,是为了多次实验_____(选填“寻找普遍规律”“求平均值减小误差”).(7)实验中,看到点燃的蜡烛通过玻璃板成两个像,其中距离观察者较远的像较_____(选填“亮”或“暗”);如果实验采用厚玻璃板,观测到蜡烛A通过玻璃板在不同的位置成两个清晰像,且测得两个像之间的距离为0.8cm,则玻璃板的厚度为_____cm.【答案】黑暗 D 等效替代法不能虚不会寻找普遍规律暗 0.4【解析】(1)应选择在黑暗的环境进行实验,像看起来更清晰。
(2)玻璃板代替平面镜,既能看到A的像,又能看到后面的蜡烛B,A的像形成原理是光的反射;光在穿过玻璃时发生折射,透过玻璃看到B是光的折射,故D正确。
(3)蜡烛B与蜡烛A的像完全重合,确定像与物大小,用B替代A的像,此方法是等效替代法。
上海同济初级中学必修四第一章《三角函数》测试题(有答案解析)
一、选择题1.已知函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的个数是( ) ①()f x 的最小值为2-; ②点,012π⎛⎫⎪⎝⎭是()f x 的图象的一个对称中心; ③()f x 的最小正周期为π; ④()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. A .1B .2C .3D .42.已知0>ω,2πϕ≤,在函数()()sin f x x ωϕ=+,()()cos g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当,64x ππ⎛⎫∈- ⎪⎝⎭时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是( ) A .,63ππ⎛⎫⎪⎝⎭B .,63ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎛⎫ ⎪⎝⎭D .,32ππ⎡⎤⎢⎥⎣⎦3.将函数()sin 25f x x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度后得到函数()y g x =的图象,对于函数()y g x =有以下四个判断:①该函数的解析式为2sin 210y x π⎛⎫=+ ⎪⎝⎭;②该函数图象关于点,02π⎛⎫⎪⎝⎭对称; ③该函数在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增; ④该函数在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增. 其中,正确判断的序号是( ) A .②③B .①②C .②④D .③④4.已知实数a ,b 满足0<2a <b <3-2a ,则下列不等关系一定成立的是( ) A .sin sin2b a < B .()2cos >cos 3a b -C .()2sin sin 3a b +<D .23cos >sin 2b a ⎛⎫-⎪⎝⎭5.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( ) A .4149,66⎡⎫⎪⎢⎣⎭ B .4953,66⎡⎫⎪⎢⎣⎭ C .3741,66⎡⎫⎪⎢⎣⎭ D .[8,9)6.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图,将()y f x =的图象向右平移π6个单位长得到函数y g x 的图象,则()g x 的单调增区间为( )A .()ππ2π,2π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()π5π2π,2π36k k k ⎡⎤++∈⎢⎥⎣⎦Z C .()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z D .()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z 7.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591699.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④10.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3πD .3π-11.已知函数()()()()2sin 0,0,f x x ωϕωϕπ=+>∈的部分图像如图所示,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变),所得图像对应的函数()g x 解析式为( )A .()2sin 46g x x π⎛⎫=+ ⎪⎝⎭B .()2sin 43g x x π⎛⎫=+ ⎪⎝⎭C .()2sin 23g x x π⎛⎫=+⎪⎝⎭D .()2sin 3g x x π⎛⎫=+⎪⎝⎭12.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个二、填空题13.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<)的部分图象如图所示.则函数()y f x =的解析式为________.14.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 15.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______. 16.将函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的所有交点从左到右依次记为125,,...,A A A ,若P 点坐标为(3,则125...PA PA PA +++=____.17.已知函数()sin 2sin 23f x x x π⎛⎫=++⎪⎝⎭,将其图象向左平移(0)ϕϕ>个单位长度后,得到的图象为偶函数,则ϕ的最小值是_______ 18.若函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的图象经过点,26π⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为2π,则4f π⎛⎫⎪⎝⎭的值为________. 19.若函数()f x 是定义域为R 的奇函数,且()1f x -为偶函数,当[]0,1x ∈时,()2f x x =,则292f ⎛⎫= ⎪⎝⎭______.20.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__. 三、解答题21.已知函数()()2sin 0,22x f x ωϕωπϕ=≥<⎛⎫+ ⎪⎝⎭的图像向右平移6π个单位长度得到()g x 的图像, ()g x 图像关于原点对称,()f x 的相邻两条对称轴的距离是2π. (1)求()f x 在[]0,π上的增区间; (2)若()230f x m -=+在0,2x π⎡⎤∈⎢⎥⎣⎦上有两解,求实数m 的取值范围. 22.已知函数()223sin cos 2cos 1(0)212212212x x x f x ωπωπωπω⎛⎫⎛⎫⎛⎫=++-++>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭图象上相邻的两个最高点之间的距离为π. (1)求()f x 的单调增区间;(2)是否存在两个不同的实数1x ,20,2x π⎡⎤∈⎢⎥⎣⎦,使得点()()11,x f x ,()()22,x f x 关于8x π=的对称点都在函数25sin cos y x x a =+的图象上,若存在,请求出实数a 的取值范围;若不存在,请说明理由.23.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示:(1)求图中a ,b 的值及函数()f x 的递增区间;(2)若[0,]απ∈,且()2f α=,求α的值.24.已知函数()()sin (0,)2f x A x πωϕωϕ=+><部分图象如图所示.(1)求ω和ϕ的值;(2)求函数()f x 在[,]-ππ上的单调递增区间;(3)设()1212x f x f x ππϕ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,已知函数2()2()3()21g x x x a ϕϕ=-+-在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,求实数a 的最小值和最大值. 25.已知函数()2sin(2)f x x ϕ=+. (1)当,0,62x ππϕ⎡⎤=∈⎢⎥⎣⎦时,求()f x 的值域和单调减区间; (2)若()f x 关于3x π=对称,且(0,)ϕπ∈,求ϕ的值.26.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢的往上转,可以从高处俯瞰四周的景色(如图1).某摩天轮的最高点距离地面的高度为90米,最低点距离地面10米,摩天轮上均匀设置了36个座舱(如图2).开启后摩天轮按逆时针方向匀速转动,游客在座舱离地面最近时的位置进入座舱,摩天轮转完一周后在相同的位置离开座舱.摩天轮转一周需要30分钟,当游客甲坐上摩天轮的座舱开始计时.(1)经过t 分钟后游客甲距离地面的高度为h 米,试将h 表示为时间t 的函数; (2)问:游客甲坐上摩天轮后多长时间,距离地面的高度恰好为30米?(3)若游客乙在游客甲之后进入座舱,且中间相隔5个座舱,在摩天轮转动一周的过程中,记两人距离地面的高度差为h 米,求h 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出()min f x 可判断①的正误;利用正弦型函数的对称性可判断②的正误;求出()f x 的最小正周期可判断③的正误;利用正弦型函数的单调性可判断④的正误. 【详解】 对于①,()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,()()min 212f x ∴=⨯-=-,①正确;对于②,2sin 22sin 20121232f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以,点,012π⎛⎫⎪⎝⎭不是()f x 的图象的一个对称中心,②错误; 对于③,函数()f x 的最小正周期为22T ππ==,③正确; 对于④,当,06x π⎛⎫∈- ⎪⎝⎭时,2666x πππ-<+<,所以,函数()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. ④正确.因此,正确命题的序号为①③④. 故选:C. 【点睛】关键点点睛:对于正弦型函数基本性质的判断问题,一般将函数解析式化为()sin y A x b ωϕ=++或()cos y A x b ωϕ=++,将x ωϕ+视为一个整体,利用正弦函数或余弦函数的基本性质来求解.2.D解析:D 【分析】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=,可求得()4k x k Z ππϕω+-=∈,再利用,相邻两个交点的横坐标之差的绝对值为2π,可得2x ππω∆==,即可得2ω=,再利用正弦函数图象的特点,可得032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,即可求出ϕ的取值范围. 【详解】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=, 可得:()4x k k Z πωϕπ+=+∈,所以因为相邻两个交点的横坐标之差的绝对值为2x ππω∆==, 所以2ω=,所以()()sin 2f x x ϕ=+, 当,64x ππ⎛⎫∈-⎪⎝⎭时,232x ππϕϕϕ-+<+<+,要满足函数()f x 的图象恒在x 轴的上方,需满足方程032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩ ,解得32ππϕ≤≤, 故选:D 【点睛】本题主要考查正弦函数的图象和性质,属于中档题.3.A解析:A 【分析】根据函数平移变换得sin 2y x =,再根据正弦函数的性质依次讨论即可得答案. 【详解】解:由函数sin 25y x π⎛⎫=+⎪⎝⎭的图象平移变换的性质可知: 将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后解析式为sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,选项①错误; 令2x k =π,k Z ∈,求得2k x =π,k Z ∈, 故函数的图象关于点,02k ⎛⎫⎪⎝⎭π对称,令1k =,故函数的图象关于点,02π⎛⎫⎪⎝⎭对称,选项②正确; 则函数的单调递增区间满足:222()22k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项③正确,④错误. 故选:A. 【点睛】本题考查三角函数平移变换,正弦型函数的单调区间,对称中心等,考查运算求解能力,解题的易错点在于平移变换时,当1ω≠时,须将ω提出,平移只针对x 进行平移,具体的在本题中,sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后得sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,而不是sin 2sin 251010y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是中档题. 4.D解析:D 【分析】对各个选项一一验证:对于A.由0<2a <b <3-2a ,可以判断出2ba <,借助于正弦函数的单调性判断; 对于B.由0<2a <b <3-2a ,可以判断出23a b <-,借助于余弦函数的单调性判断; 对于C.由0<2a <b <3-2a ,可以判断出23a b +<,借助于正弦函数的单调性判断; 对于D.先用诱导公式转化为同名三角函数,借助于余弦函数的单调性判断; 【详解】 因为0<2a <b <3-2a 对于A. 有0<2b a <, 若22b a π<<,有sin sin 2b a <;若22b a π<<,有sin sin 2ba >,故A 错; 对于B.有 23ab <-,若232a b π<<-,有()2cos >cos 3a b -,故B 错;对于C. 23a b +<,若232a b π<+<,有()2sin sin 3a b +>,故C 错;对于D. 222333sin cos cos 2222a a a ππ+⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为b <3-2a <3,所以2cos >cos(3)b a -∵22332a a π+-<-∴()223cos 3cos 2a a π+⎛⎫->-⎪⎝⎭∴()22233cos cos 3cos sin 22a a b a π+⎛⎫⎛⎫>->-=- ⎪ ⎪⎝⎭⎝⎭,故D 对.故选:D. 【点睛】利用函数单调性比较大小,需要在同一个单调区间内.5.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解, ∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=; 当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<. 故选:A6.C解析:C 【分析】根据()f x 的图象,可求出()f x 的解析式,进而根据图象平移变换规律,可得到()g x 的解析式,然后求出单调增区间即可. 【详解】由()f x 的图象,可得1A =,311ππ4126T =-,即πT =,则2ππT ω==,所以2ω=,由π16f ⎛⎫=⎪⎝⎭,可得πsin 216ϕ⎛⎫⨯+= ⎪⎝⎭,所以ππ22π62k ϕ⨯+=+()k ∈Z ,则π2π6k ϕ=+()k ∈Z , 又π2ϕ<,所以π6ϕ=,故()πsin 26f x x ⎛⎫=+ ⎪⎝⎭. 将()f x 的图象向右平移π6个单位长得到函数πππsin 22sin 2666y x x ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,故函数()πsin 26g x x ⎛⎫=- ⎪⎝⎭, 令πππ2π22π262k x k -≤-≤+()k ∈Z ,解得()ππππ63k x k k -≤≤+∈Z , 所以()g x 的单调增区间为()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z . 故选:C. 【点睛】本题考查三角函数的图象性质,考查三角函数图象的平移变换,考查三角函数的单调性,考查学生的推理能力与计算求解能力,属于中档题.7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性;(4)从图象的特殊点,排除不合要求的解析式..8.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.9.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.10.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-= ⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭, 由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭, 由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意;综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 11.B解析:B 【分析】 由32341234T πππ⎛⎫=--= ⎪⎝⎭可求出T π=,进而可得2ω=,令 ()22122k k Z ππϕπ⨯+=+∈结合()0,ϕπ∈即可求得ϕ的值,再根据三角函数图象的伸缩变换即可求()g x 的解析式. 【详解】 由图知32934123124T ππππ⎛⎫=--== ⎪⎝⎭, 所以T π=,可得2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+, 令()22122k k Z ππϕπ⨯+=+∈,所以()23k k Z πϕπ=+∈,因为()0,ϕπ∈,所以令0k =,可得3πϕ=,所以()2sin 23f x x π⎛⎫=+⎪⎝⎭, 将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变), 可得()2sin 43g x x π⎛⎫=+ ⎪⎝⎭,故选:B12.B解析:B 【分析】根据函数在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,可得周期的范围,进而得到关于ω的方程与不等式,结合n *∈N 可求ω的值,从而可得答案. 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫=⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =, 可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个. 故选:B 【点睛】关键点点睛:本题主要考查余弦函数的几何性质,解题的关键是利用单调区间以及对称点、最值点与周期的关系列出不等式.二、填空题13.【分析】由最值求得由周期求得由最高点的坐标求得【详解】由题意所以又所以所以故答案为:【点睛】方法点睛:由函数图象确定三角函数的解析式主要参考正弦函数图象中五点法由最大值和最小值确定由周期确定利用点的解析:2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭. 【分析】由最值求得A ,由周期求得ω,由最高点的坐标求得ϕ. 【详解】由题意2A =,4312T πππ⎛⎫=⨯-=⎪⎝⎭,所以22πωπ==, 2sin 2212πϕ⎛⎫⨯+= ⎪⎝⎭,2,62k k Z ππϕπ+=+∈,又2πϕ<,所以3πϕ=.所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭. 故答案为:2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.【点睛】方法点睛:由函数图象确定三角函数的解析式,主要参考正弦函数图象中“五点法”,由最大值和最小值确定A ,由周期确定ω,利用点的坐标确定ϕ,这样可得出表达式()sin()f x A x ωϕ=+.14.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ.则=4sin()4cos 462f ππϕϕ⎛⎫+==± ⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.15.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数,故②错误; ()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④. 【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16.10【分析】由函数与直线的图象可知它们都关于点中心对称再由向量的加法运算得最后求得向量的模【详解】由函数与直线的图象可知它们都关于点中心对称所以【点睛】本题以三角函数和直线的中心对称为背景与平面向量解析:10 【分析】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知,它们都关于点3(1,0)A 中心对称,再由向量的加法运算得1253...5PA PA PA PA +++=,最后求得向量的模. 【详解】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知, 它们都关于点3(1,0)A 中心对称,所以1253...5||5(010PA PA PA PA +++===. 【点睛】本题以三角函数和直线的中心对称为背景,与平面向量进行交会,考查运用数形结合思想解决问题的能力.17.【分析】先利用两角和的正弦公式化简的解析式然后再利用图象平移变换的规律求平移后的解析式最后由奇偶性可得的最小值【详解】将其图象向左平移个单位长度后得的图象由图象为偶函数图象可得所以令得故答案为:【点 解析:6π【分析】先利用两角和的正弦公式化简()f x 的解析式,然后再利用图象平移变换的规律求平移后的解析式,最后由奇偶性可得ϕ的最小值. 【详解】1()sin 2sin 2sin 2sin 2cos 2322f x x x x x x π⎛⎫=++=++ ⎪⎝⎭3sin 22226x x x π⎛⎫==+ ⎪⎝⎭ , 将其图象向左平移(0)ϕϕ>个单位长度后,得()22266y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭的图象,由图象为偶函数图象可得262k ππϕπ+=+()k Z ∈所以62k ϕππ=+ ()k Z ∈ 令0k =,得6π=ϕ. 故答案为:6π 【点睛】本题主要考查了三角函数图象的平移变换,以及三角函数的奇偶性,属于中档题.18.【分析】根据函数f (x )的图象与性质求出Tω和φ的值写出f (x )的解析式再求出的值即可【详解】函数f (x )=2sin (ωx+φ)图象相邻两条对称轴间的距离为∴从而得ω=又f(x)=2sin(2x+φ【分析】根据函数f (x )的图象与性质求出T 、ω和φ的值,写出f (x )的解析式,再求出4f π⎛⎫⎪⎝⎭的值即可. 【详解】函数f (x )=2sin (ωx +φ)图象相邻两条对称轴间的距离为2π,∴22T π=,从而得ω=222T πππ==, 又f (x )=2sin (2x +φ)的图象经过点,26π⎛⎫ ⎪⎝⎭,∴2sin 26πϕ⎛⎫⨯+ ⎪⎝⎭=2,即3π+φ=2π+2k π,k ∈Z ,又因为0<φ<π,所以φ=6π,故f (x )=2sin 26x π⎛⎫+ ⎪⎝⎭,∴2sin 2446f πππ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了正弦型函数的图象与性质的应用问题,属于中档题.19.【分析】利用已知条件得到函数的周期再利用奇偶性结合周期性将给定值转换到给定区间求得结果即可【详解】∵是定义域为的奇函数且为偶函数∴即∴则即函数是以4为周期的周期函数又∵当时∴故答案为:【点睛】本题主 解析:14-【分析】利用已知条件得到函数的周期,再利用奇偶性结合周期性将给定值转换到给定区间,求得结果即可. 【详解】∵()f x 是定义域为R 的奇函数,且()1f x -为偶函数, ∴()()()111f x f x f x -=--=-+,即()()2=-+f x f x , ∴()()2f x f x +=-,则()()()42f x f x f x +=-+=, 即函数()f x 是以4为周期的周期函数, 又∵当[]0,1x ∈时,()2f x x =,∴295112224f f f ⎛⎫⎛⎫⎛⎫==-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:14-. 【点睛】本题主要考查函数的奇偶性的应用,涉及函数的周期性,求出函数的周期是解题的关键,属于中档题.20.【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数的奇偶性【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】因为函数()()()2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈. 又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 三、解答题21.(1)70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;(2)12⎛ ⎝⎦. 【分析】(1)由()f x 的相邻两条对称轴的距离是2π,可得函数的周期,从而得出ω的值,由平移得出()g x 的解析式,根据()g x 图像关于原点对称,可求出ϕ的值,从而可求()f x 单调增区间,得出答案.(2)令23t x π=+则4,33t ππ⎡⎤∈⎢⎥⎣⎦,则[2s n i t ∈,根据()230f x m -=+有两解,即2sin 32t m =-有两解,从而可得答案. 【详解】解:由()f x 的相邻两条对称轴的距离是2π,则22T ππω==,1,ω∴= ()()2sin 2f x x ϕ∴=+()2sin 2sin 2326x g x x ππϕϕ⎡⎤⎛⎫-+ ⎪⎢⎛⎫==-+ ⎪⎝⎥⎝⎣⎦⎭⎭函数()g x 的图像关于原点对称,3k πϕπ-+=,,2πϕ<所以3πϕ=()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭(1)由222232k x k πππππ-≤+≤+,k Z ∈得51212k x k ππππ-≤≤+,k Z ∈ 令0k =得51212x ππ-≤≤ 1k =得7131212x ππ≤≤ ()f x ∴在[]0,π增区间是70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦()2令23t x π=+,0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∴∈⎢⎥⎣⎦所以[2s n i t ∈若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,由2sin y t =322m ≤-<,即123m <≤12m ∴<≤m ∴的取值范围是12⎛ ⎝⎦【点睛】关键点睛:本题考查求正弦型函数的单调增区间和根据方程的解个数求参数的范围问题,解答本题的关键是设23t x π=+,由0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∈⎢⎥⎣⎦所以[2s n ,2]i 3t ∈-若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,然后数形结合求解,属于中档题.22.(1)单调增区间为,44k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)存在,)5,3⎡⎣. 【分析】(1)先对函数化简得()2sin f x x ω=,由函数图像上相邻的两个最高点之间的距离为π,可得函数的周期为π,从而由周期公式可得2ω=,则()2sin 2f x x =,由22222k x k ππππ-+≤≤+,可求得()f x 的单调增区间;(2)由题意得点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在5sin 2y x a =+上,所以2sin 25x x a =,由此可得方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,其中5sin θ=2cos 3θ=,只要函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点即可 【详解】(1)函数()223cos 2cos 1212212212x x x f x ωπωπωπ⎛⎫⎛⎫⎛⎫=++-++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3cos 2sin 2sin 6666x x x x ππππωωωω⎛⎫⎛⎫⎛⎫=+-+=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由题意,最小正周期T π=,即2||T ππω==,因为0>ω,所以2ω=,即有()2sin 2f x x =, 令22222k x k ππππ-+≤≤+,解得44k x k ππππ-+≤≤+,从而得()f x 的单调增区间为,44k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈(2)由题意,点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在2y x a =+上,有:22sin 22x a x π⎛⎫-+= ⎪⎝⎭,即方程2sin 2x x a =,即方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,其中sin 3θ=,2cos 3θ=,θ为锐角当0,42x πθ⎡⎤∈+⎢⎥⎣⎦时,函数sin(2)y x θ=-单调递增,且当0x =时,sin(2)sin()sin x θθθ-=-=-=; 当42x πθ=+时,sin(2)sin12x πθ-==,所以1y ≤≤, 当,422x πθπ⎡⎤∈+⎢⎥⎣⎦时,函数sin(2)y x θ=-单调递减,且当2x π=时,sin(2)sin()sin 3x θπθθ-=-==,所以13y ≤≤, 所以要使方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解,即函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,所以133a≤<3a <; 综上所述,在0,2π⎡⎤⎢⎥⎣⎦上存在两个不同的实数1x ,2x 满足条件,此时a 的取值范围是). 【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,解题的关键是把点()()11,x f x ,()()22,x f x 关于8x π=的对称点都在函数cos y x x a =+的图象上,转化为点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在2y x a =+上,从而可得方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,再转化为函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,属于中档题 23.(1)712a π=-,1b =,()f x 的递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)24π或724π【分析】(1)根据图中最大值得2A =,得出周期可求得2ω=,由23f π⎛⎫-=- ⎪⎝⎭可求出ϕ,即可求得,a b ,令222,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;(2)利用解析式直接求解即可. 【详解】(1)由图可得2A =,35341234T πππ⎛⎫=--= ⎪⎝⎭,则T π=,22πωπ∴==, ()2sin(2)f x x ϕ∴=+,22sin 233f ππϕ⎛⎫⎛⎫-=-+=- ⎪ ⎪⎝⎭⎝⎭,则22,32k k Z ππϕπ-=-+∈,则2,6k k Z πϕπ=+∈,||2πϕ<,6πϕ∴=,()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,2sin16b π=∴=,7343412T a ππππ=--=--=-, 令222,262k x k k Z πππππ-+≤+≤+∈,解得,36k x k k Z ππππ-+≤≤+∈,∴()f x 的递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)()2sin 26f παα⎛⎫=+= ⎪⎝⎭sin 26πα⎛⎫+= ⎪⎝⎭, [0,]απ∈,132,666πππα∴⎡⎤+∈⎢⎥⎣⎦, 264ππα∴+=或3264ππα+=,则24πα=或724π. 【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ. 24.(1)ω=2,6π=ϕ;(2)5,6ππ⎡⎤--⎢⎥⎣⎦,,36ππ⎡⎤-⎢⎥⎣⎦,2π,π3;.(3)最小值为12,最大值为1716. 【分析】(1)先由函数图象,先得到周期,求出ω,再由最大值点,求出ϕ;(2)由(1)的结果,确定函数解析式,利用正弦函数的单调性,求出函数增区间,再由给定区间,即可得出结果;(3)先化简得到()sin 23x x πϕ⎛⎫=- ⎪⎝⎭,根据函数()g x 在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,得到222sin 23sin 2133ππa x x ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭在,62ππ⎡⎤⎢⎥⎣⎦上有解,令sin 23t x π⎛⎫=- ⎪⎝⎭,由正弦函数性质,求出,62x ππ⎡⎤⎢⎥⎣⎦时,[]0,1t ∈,再结合二次函数的性质,得到2231y t t =-++的范围,即可得出结果.【详解】 (1)由图象可知:22362T πππ=-=,T π=,则22Tπω==, 又22,62k k Z ππϕπ⨯+=+∈得26k πϕπ=+,又2πϕ<,所以6π=ϕ, (2)()sin 26f x x π⎛⎫+⎝=⎪⎭,由222,262k x k k Z πππππ-≤+≤+∈得,,36k x k k Z ππππ-≤≤+∈,令1k =-,得4536x ππ-≤≤-,因x ππ-≤≤,则56x ππ-≤≤-,令0k =,得36x ππ-≤≤,令1k =,得2736x ππ≤≤,因x ππ-≤≤,则2ππ3x ,所以()f x 在[,]-ππ上的单调递增区间为5,6ππ⎡⎤--⎢⎥⎣⎦,,36ππ⎡⎤-⎢⎥⎣⎦,2π,π3;. (3)()sin 2sin 21212126126x f x f x x x ππππππϕ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+=-+-++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1sin 2sin 2sin 22sin 2323x x x x x ππ⎛⎫⎛⎫=-+==- ⎪ ⎪⎝⎭⎝⎭,2()2sin 23sin 22133g x x x a ππ⎛⎫⎛⎫=---+- ⎪ ⎪⎝⎭⎝⎭,由函数()g x 在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,则222sin 23sin 2133ππa x x ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭在,62ππ⎡⎤⎢⎥⎣⎦上有解, 令sin 23t x π⎛⎫=-⎪⎝⎭,由,62x ππ⎡⎤∈⎢⎥⎣⎦,则220,33x ππ⎡⎤-∈⎢⎥⎣⎦,即[]0,1t ∈,则223171723121,488y t t t ⎛⎫⎡⎤=-++=--+∈ ⎪⎢⎥⎝⎭⎣⎦, 所以17128a ≤≤,即117216a ≤≤, 故a 的最小值为12,最大值为1716. 【点睛】 思路点睛:求解含三角函数的二次式在给定区间上的最值时,一般需要用换元法,将三角函数换成t 来表示,得到关于t 的二次函数,由三角函数的性质,得到t 的范围,再结合二次函数的性质,即可求解.25.(1)()f x 的值域为[]1,2-,单调减区间为62ππ⎡⎤⎢⎥⎣⎦, ;(2)56πϕ= 【分析】(1)由条件可得72666x πππ⎡⎤+∈⎢⎥⎣⎦,,则1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,可得值域,由3222,262k x k k Z πππππ+≤+≤+∈可得答案.(2)由()f x 关于3x π=对称,则2,32k k Z ππϕπ+=+∈⨯可得答案.【详解】 (1)当6π=ϕ时,()2sin(2)6f x x π=+ 当0,2x π⎡⎤∈⎢⎥⎣⎦时,72666x πππ⎡⎤+∈⎢⎥⎣⎦,,则1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以[]()1,2f x ∈- 由3222,262k x k k Z πππππ+≤+≤+∈ 4222,33k x k k Z ππππ+≤≤+∈ 所以2,63k x k k Z ππππ+≤≤+∈ 由0,2x π⎡⎤∈⎢⎥⎣⎦,则0k =时,263x ππ⎡⎤∈⎢⎥⎣⎦,,即此时减区间为62ππ⎡⎤⎢⎥⎣⎦, 所以当,0,62x ππϕ⎡⎤=∈⎢⎥⎣⎦时,()f x 的值域为[]1,2-,单调减区间为62ππ⎡⎤⎢⎥⎣⎦,; (2)由()f x 关于3x π=对称,则2,32k k Z ππϕπ+=+∈⨯即,6k k Z πϕπ=-∈,又(0,)ϕπ∈,所以56πϕ=【点睛】关键点睛:本题考查三角函数的值域、单调性和对称性等性质,解答本题的关键是由72666x πππ⎡⎤+∈⎢⎥⎣⎦,,得出1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,,根据()f x 关于3x π=对称,得到2,32k k Z ππϕπ+=+∈⨯,属于中档题.26.(1)()5040cos()15th t π=-;(2)5t =分钟或25t =分钟;(3)h 最大值为40米.【分析】(1)由题意可知高度h 与时间t 的关系符合()sin()h t A t B ωϕ=++,根据已知求出,,,A B ωϕ的值,写出解析式即可.(2)设()30h t =,解方程求出(0,30)t ∈即为距离地面的高度恰好为30米的时间. (3)有题意列出游客甲、游客乙距离地面的高度解析式分别为12(),()h t h t ,利用三角函数有12|()()|h t h t -的最大值为所求h 的最大值. 【详解】(1)由题意,设()sin()h t A t B ωϕ=++,得:9010A B A B +=⎧⎨-+=⎩,解得40,50A B ==,又当0t =时,(0)40sin 5010h ϕ=+=, ∴22k πϕπ=-,不妨令0k =有2πϕ=-,而230T πω==得15πω=,∴()5040cos()15th t π=-,(2)由题意有()5040cos()3015th t π=-=,即1cos()152tπ=, ∴153tππ=或5153t ππ=,得5t =或25t =. (3)若游客甲高度解析式为1()5040cos()15th t π=-,则游客乙高度解析式为2()5040cos()153t h t ππ=--,∴12cos()cos()1515|()()|40|cos()cos()|40||40|cos()|1531522153ttt tt h t h t πππππππ-=--=-=+∴令153t πππ+=,解得10t =,此时12|()()|h t h t -的最大值为40米.【点睛】关键点点睛:根据实际问题构建三角函数模型,进而由题设求对应高度的时间,以及应用三角恒等变换求两游客的高度差最大值.。
【标准卷】上海同济初级中学小学英语三年级下册期末复习题(答案解析)
一、单选题1.This is my _____.He's from____.A. brother; the USAB. friend; the UK2.—________is my cap?—It's under the chair.A. WhatB. WhoC. Where3.你把朋友Tom介绍给别人时,你应说:A. I'm Tom.B. This is Tom.C. Good morning, Tom. 4.—Who's that _____?— She's my friend.A. boyB. girlC. man 5.—Who's that _______?—He's my brother.A. boyB. girlC. woman 6.—Where are you from?—________________A. I'm from China.B. I'm Mike.C. I'm six years old. 7.It's short ____ fat.A. andB. or8.你不知道那位妇女是谁时,你会问:A. Who's that woman?B. Who's that man?9.选出不同类的单词()A. bigB. pigC. bear10.这是我的奶奶。
A. This is my grandma.B. This is my grandpa.二、填空题11.选择正确的翻译。
⑴我是英国人。
________⑵很高兴见到你。
________⑶你好,我是张鹏。
________⑷你呢? ________A. What about you ?B. I'm from the UK.C. Nice to meet you.D. Hi, I'm Zhang Peng.12.句子排序。
上海同济初级中学化学上册期中试题和答案
上海同济初级中学化学上册期中试题和答案一、选择题(培优题较难)1.下列微观模拟图中●和○分别表示不同元素的原子,其中表示单质的是A.B.C.D.2.科学家用单个分子制戚的“纳米车”能在人工操纵下运输药物分子到病源处释放,杀死癌细胞。
下列叙述错误的是()A.分子是由原子构成的B.分子之间有间隙C.分子是肉眼不能够直接看见的D.分子在人为外力作用下才能运动3.宏观辨识和微观剖析是化学核心素养之一。
下列说法正确的是 ( )A.反应前后元素的种类及化合价均未发生改变B.参加反应的和的微粒个数比是4:3C.反应涉及到的物质中,是由原子构成的单质,只有属于氧化物D.该反应生成的单质和化合物的质量比时3:204.下列是几种粒子的结构示意图,有关它们的叙述,你认为正确的是A.②表示的是阴离子B.①②③④表示的是四种不同元素C.③属于金属元素D.①③所表示的粒子化学性质相似5.河水净化的主要步骤如下图所示。
有关说法错误的是A.步骤Ⅰ可出去难溶性杂质B.X试剂可以是活性炭C.步骤Ⅲ可杀菌.消毒D.净化后的水是纯净物6.下列关于空气的说法中,不正确的是( )A.工业上采用分离液态空气法获得氧气B.二氧化硫是空气污染物之一C.空气中氧气质量占空气质量的21% D.空气中的氧气来源于绿色植物的光合作用7.某同学制作的试剂标签如下,其中化学式书写不正确...的是( )A.B.C.D.8.实验室用装有等质量的两份氯酸钾的试管a和b分别加热制取氧气过程中,某同学误把少量高锰酸钾当成二氧化锰加入b试管,下面是试管a、b中产生氧气的质量随时间变化的图象,其中正确的是()A.B.C.D.9.在一密闭的容器中,一定质量的碳粉与过量的氧气在点燃的条件下充分反应,容器内各相关量与时间(从反应开始计时)的对应关系正确的是( )A.B.C.D.10.下列关于过滤操作的叙述不正确的是A.滤纸的边缘要低于漏斗口B.液面不要低于滤纸的边缘C.玻璃棒要靠在三层滤纸的一边D.漏斗下端的管口要紧靠烧杯内壁11.化学实验是化学学习的重要方法。
上海同济初级中学七年级数学上册第二章《整式的加减》复习题(答案解析)
1.化简2a -[3b -5a -(2a -7b )]的值为( ) A .9a -10b B .5a +4b C .-a -4b D .-7a +10b A解析:A 【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b , 故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.2.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 3.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C 【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积. 【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-. 故选:C . 【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.4.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a A解析:A 【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果. 【详解】解:根据题意得:b <a <0,且|a |<|b |, ∴a -b >0,a +b <0, ∴原式=a -b -a -b =-2b . 故选:A . 【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键. 5.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号. 6.下列式子中,是整式的是( ) A .1x + B .11x + C .1÷x D .1x x+ A 解析:A 【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可. 【详解】解:A. 1x +是整式,故正确; B.11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1x x +是分式,故错误. 故选A. 【点睛】本题主要考查了整式,关键是掌握整式的概念.7.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:496 497 498 499 500 501 502 503 504 505 506507508509510511512513由图可知:501+502+503+504=2010满足题意.故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.8.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D 【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可. 【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1, 即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数, ∴从2013到2014再到2015,箭头的方向是.故选:D . 【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键. 9.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 10.若23,33M N x M x +=-=-,则N =( ) A .236x x +- B .23x x -+ C .236x x -- D .23x x - D解析:D 【分析】根据N=M+N-M 列式即可解决此题. 【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-; 故选D. 【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用. 11.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式 C .该多项式的常数项是1 D .该多项式的二次项系数是1-B解析:B 【分析】直接利用多项式的相关定义进而分析得出答案. 【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误; 故选:B . 【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=,∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.13.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个 B .8个C .4个D .5个C解析:C 【分析】根据单项式的定义逐一判断即可. 【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式, -2是单项式, 3b-是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C. 【点睛】本题考查单项式的定义,熟练掌握定义是解题关键. 14.下列各对单项式中,属于同类项的是( ) A .ab -与4abc B .213x y 与212xy C .0与3-D .3与a C解析:C 【分析】根据同类项的定义逐个判断即可. 【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项; D .3与a 不是同类项. 故选C . 【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C 【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可. 【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -. ∴第5个树枝为15+42=31,第6个树枝为:31+52=63, ∴第(6)个图比第(2)个图多63−3=60个 故答案为C 【点睛】此题考查图形的变化类,解题关键在于找出其规律型.1.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3 【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案. 【详解】解:()221325x k xy y xy +----=()22335x k xy y +---,∵多项式不含xy项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.2.数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n个数为an (n为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n个数为an(n为正整数)观察发现规解析:65【分析】设该数列中第n个数为a n(n为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n=2a n﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n个数为a n(n为正整数),观察,发现规律:a1=3=2+1,a2=5=2a1﹣1,a3=9=2a2﹣1,a4=17=2a3﹣1,…,a n=2a n﹣1﹣1.∴a6=2a5﹣1=2×(2a4﹣1)﹣1=2×(2×17﹣1)﹣1=65.故答案为65.3.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn的值然后即可得到m+n的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数, ∴m =45,n =20, ∴m +n =65. 故答案为:65. 【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.4.与22m m +-的和是22m m -的多项式为__________.【分析】直接利用整式的加减运算法则计算得出答案【详解】设多项式A 与多项式的和等于∴A=-()故答案为:【点睛】本题主要考查了整式的加减正确去括号和合并同类项是解题关键 解析:32m -+【分析】直接利用整式的加减运算法则计算得出答案. 【详解】设多项式A 与多项式22m m +-的和等于22m m -, ∴A=22m m --(22m m +-)2222m m m m =---+32m =-+.故答案为:32m -+. 【点睛】本题主要考查了整式的加减,正确去括号和合并同类项是解题关键.5.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2. 【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即: 第1个图形有8根火柴棒, 第2个图形有14=6×1+8根火柴棒, 第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.6.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.a b a b a b()[()(2)]【详解】解:依题意有+++--a b a b a b()[()(2)]a b a b a b=+++-+[2]=+++-+a b a b a b2=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.7.将连续正整数按以下规律排列,则位于第7行第7列的数x是________________.?136********259142027?48131926??7121825??111724??1623??22 ?? ? ? ? x ?【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是解析:85【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列数,第四行的第四列数,进而得出变化规律,由此得出结果.【详解】第一行的第一列的数是 1;第二行的第二列的数是 5=1+4;第三行的第三列的数是 13=1+4+8;第四行的第四列的数是 25=1+4+8+12;......第n 行的第n 列的数是1+4+8+12+...+4(n-1)=1+4[1+2+3+...+(n+1)]=1+2n(n-1);∴第七行的第七列的数是1+2×7×(7-1)=85;故答案为:85.【点睛】本题考查数字的变化规律,学生通过观察、分析、归纳发现其中的规律,从而利用规律解决问题.8.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.9.在x y +,0,21>,2a b -,210x +=中,代数式有______个.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)【分析】用个位上的数字表示出十位和百位上的数然后根据数的表示列式整理即可得答案【详解】∵个位数字为n 十位数字比个位数字少2百位数字比个位数字多1∴十位数字为n-2百位数字为n+1∴这个三位数为100解析:11180n +【分析】用个位上的数字表示出十位和百位上的数,然后根据数的表示列式整理即可得答案.【详解】∵个位数字为n,十位数字比个位数字少2,百位数字比个位数字多1,∴十位数字为n-2,百位数字为n+1,∴这个三位数为100(n+1)+10(n-2)+n=111n+80.故答案为111n+80.【点睛】本题考查了列代数式,主要是数的表示,表示出三个数位上的数字是解题的关键.1.已知多项式-13x2y m+1+12xy2-3x3+6是六次四项式,单项式3x2n y2的次数与这个多项式的次数相同,求m2+n2的值.解析:13【解析】试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n的值,把m,n的值代入到m2+n2中,计算即可得到求解.试题根据题意得2+m+1=6,2n+2=6解得:m=3, n=2,所以m2+n2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.2.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.4.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键.。
2020-2021上海同济初级中学七年级数学上期中试卷附答案
2020-2021上海同济初级中学七年级数学上期中试卷附答案一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .+26nB .+86nC .44n +D .8n2.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A .甲B .乙C .相同D .和商品的价格有关 3.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示这个数的结果为(单位:mm )( )A .4.3×10﹣5B .4.3×10﹣4C .4.3×10﹣6D .43×10﹣5 4.有理数 a ,b 在数轴上的点的位置如图所示,则正确的结论是( )A .a <﹣4B .a+ b >0C .|a|>|b|D .ab >0 5.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯ C .66.04810⨯ D .60.604810⨯ 6.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a=52bB .a=3bC .a=72bD .a=4b7.解方程2153132x x +--=,去分母正确的是( ) A .2(21)3(53)1x x +--= B .21536x x +--=C .2(21)3(53)6x x +--=D .213(53)6x x +--=8.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km9.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( )A .90元B .72元C .120元D .80元10.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我11.如图,将一三角板按不同位置摆放,其中1∠与2∠互余的是( )A .B .C .D .12.代数式:216x y x +,25xy x +,215y xy -+,2y ,-3中,不是整式的有( ) A .4个 B .3个 C .2个 D .1个二、填空题13.A ∠与B Ð的两边分别平行,且A ∠比B Ð的2倍少45°,则A ∠=__________.14.23-的相反数是______. 15.一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了__________道题.16.一个角与它的补角之差是20°,则这个角的大小是____. 17.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.18.某商店一套夏装进价为200元,按标价8折出售可获利72元,则该套夏装标价为______________元.19.30万=42.3010⨯ ,则2.30中“0”在原数中的百位,故近似数2.30万精确到百位.20.用黑白两色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:则第n 个图案中有白色纸片________张.三、解答题21.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示) (4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.22.在数轴上有点A ,B ,C ,它们表示的数分别为a ,b ,c ,且满足:()24980a b c -+-++=;A ,B ,C 三点同时出发沿数轴向右运动,它们的速度分别为:1A V =(单位/秒),2B V =(单位/秒),3C V =(单位/秒).(1)求a ,b ,c 的值;(2)运动时间t 等于多少时,B 点与A 点、C 点的距离相等?23.已知:有理数a ,b ,c 在数轴上的位置如图,化简:|||||||3|a c b a b c a a +---+-+.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?25.某市电力公司对全市用户采用分段计费的方式计算电费,收费标准如下表所示:若某用户7月份的电费是139.2元,则该用户7月份用电为多少度?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6.【详解】解:图①中有8根,即2+6=8⨯图②中有14根,即2+62+⨯图③中有20根,即263……+;∴第n个图有:26n故选:A.【点睛】本题考查列代数式,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n条小鱼所需要的火柴棒的根数.2.B解析:B【解析】【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.【详解】设原价为x元,则甲超市价格为x×(1-10%)×(1-10%)=0.81x乙超市为x×(1-20%)=0.8x,3.A解析:A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4.C解析:C【解析】由数轴得:-4<a <-3,1<b <2,∴a+b <0,|a|>|b|,ab <0,则结论正确的选项为C ,故选C.5.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.6.B解析:B【解析】【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式.【详解】如图,设左上角阴影部分的长为AE ,宽为AF=3b ,右下角阴影部分的长为PC ,宽为CG=a ,∵AD=BC ,即AE+ED=AE+a ,BC=BP+PC=4b+PC ,∴AE+a=4b+PC ,即AE ﹣PC=4b ﹣a ,∴阴影部分面积之差()()2=⋅-⋅=+-⋅+⋅=-+-.S AE AF PC CG PC4b a3b PC a3b a PC12b3ab∵S始终保持不变,∴3b﹣a=0,即a=3b.故选B.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7.C解析:C【解析】试题分析:方程两边同乘以6得2(2x+1)-3(5x-3)=6,故答案选C.考点:去分母.8.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】科学记数法表示:384 000=3.84×105km故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.C解析:C【解析】【分析】设乙商品的成本价格为x元,则根据甲、乙两件商品以同样的价格卖出,列出方程,即可求出答案.【详解】解:设乙商品的成本价格为x,则80(120%)(120%)x ⨯+=•-,解得:120x =;∴乙商品的成本价是120元.故选:C .【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确列出一元一次方程进行解题.10.D解析:D【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D .点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.11.C解析:C【解析】【分析】根据余角的定义,可得答案.【详解】解:C 中的121809090∠∠+=-=o o o ,故选C .【点睛】本题考查余角,利用余角的定义是解题关键.12.C解析:C【解析】【分析】根据整式的概念,进行判断即可.【详解】216x y x+分母中含有未知数,是分式,不是整式, 25xy x +是多项式,是整式,215y xy -+是多项式,是整式, 2y分母中含有未知数,是分式,不是整式, -3是单项式,是整式, ∴不是整式的有216x y x +、2y ,共2个, 故选C.【点睛】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.二、填空题13.或【解析】【分析】由∠A 与∠B 的两边分别平行可得到∠A=∠B 或者∠A 与∠B 互补再结合已知条件即可求出∠A 的度数【详解】∵∠A 和∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°当∠A=∠B 时∠A=解析:45︒或105︒【解析】【分析】由∠A 与∠B 的两边分别平行,可得到∠A=∠B 或者∠A 与∠B 互补,再结合已知条件即可求出∠A 的度数.【详解】∵ ∠A 和∠B 的两边分别平行∴ ∠A=∠B 或∠A+∠B=180°, 当∠A=∠B 时,∠A=45°当∠A+∠B=180°时∵ ∠A 比∠B 的两倍少45°,∴ ∠A=2∠B-45°,∵ ∠A=2∠B-45° ,∠A+∠B=180°∴ ∠A=105︒.综上可知∠A 的度数为45︒或105︒故答案为:45︒或105︒.【点睛】此题考查了平行线的性质与方程组的解法.此题难度不大,解题的关键是由∠A 和∠B 的两边分别平行,即可得∠A=∠B 或∠A+∠B=180°,注意分类讨论思想的应用. 14.【解析】试题解析:根据只有符号不同的两个数互为相反数可得的相反数是 解析:23试题解析:根据只有符号不同的两个数互为相反数,可得23的相反数是2315.22【解析】【分析】将答对题数所得的分数减去打错或不答所扣的分数在由题意知小明答题所得的分数大于等于85分列出不等式即可【详解】解:设小明答对了x道题则他答错或不答的共有(25-x)道题由题意得4x解析:22【解析】【分析】将答对题数所得的分数减去打错或不答所扣的分数,在由题意知小明答题所得的分数大于等于85分,列出不等式即可.【详解】解:设小明答对了x道题,则他答错或不答的共有(25-x)道题,由题意得4x-(25-x)×1≥85,解得x≥22,答:小明至少答对了22道题,故答案为:22.【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.本题尤其要注意所得的分数是答对题数所得的分数减去打错或不答所扣的分数.16.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=解析:100°【解析】【分析】设这个角为α,根据互为补角的两个角的和等于180°表示出它的补角,然后列出方程求出α即可.【详解】设这个角为α,则它的补角180°-α,根据题意得,α-(180°-α)=20°,解得:α=100°,故答案为100°.【点睛】本题考查了余角和补角的概念,是基础题,设出这个角并表示出它的补角是解题的关键.17.【解析】【分析】根据题意观察探索规律知全部智慧数从小到大可按每三个数分一组从第2组开始每组的第一个数都是4的倍数归纳可得第n组的第一个数为4n(n≥2)又因为所以第2020个智慧数是第674组中的第解析:【解析】根据题意观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n(n≥2),又因为202036731=?L,所以第2020个智慧数是第674组中的第1个数,从而得到4×674=2696【详解】解:观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得第n组的第一个数为4n(n≥2).∵202036731=?L,∴第2020个智慧数是第674组中的第1个数,即为4×674=2696.故答案为:2696.【点睛】本题考查了探索规律的问题,解题的关键是根据题意找出规律,从而得出答案.18.340【解析】【分析】设该服装标签价格为x元根据售价-进价=利润即可得出关于x的一元一次方程解之即可得出结论【详解】解:设该服装标签价格为x元根据题意得:x-200=72解得:x=340答:该服装标解析:340【解析】【分析】设该服装标签价格为x元,根据售价-进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该服装标签价格为x元,根据题意得:810x-200=72,解得:x=340.答:该服装标签价格为340元.故答案为:340.【点睛】本题考查了一元一次方程的应用,根据售价-进价=利润,列出关于x的一元一次方程是解题的关键.19.无20.3n+1【解析】【分析】试题分析:观察图形发现:白色纸片在4的基础上依次多3个;根据其中的规律用字母表示即可【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张第解析:3n+1【解析】【分析】试题分析:观察图形,发现:白色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,…第n个图案中有白色纸片=3n+1张.故答案为3n+1.【点睛】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系.三、解答题21.(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC﹣2AB=12.【解析】【分析】(1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)AB原来的长为3,所以AB=t+2t+3=3t+3,再由AC=9,得AC=t+4t+9=5t+9,由原来BC=6,可知BC=4t−2t+6=2t+6;(4)由3BC−2AB=3(2t+6)−2(3t+3)求解即可.【详解】(1)∵|a+2|+(c−7)2=0,∴a+2=0,c−7=0,解得a=−2,c=7,∵b是最小的正整数,∴b=1;故答案为:−2;1;7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,t .22.(1)a=4,b=9,c=﹣8;(2)6【解析】【分析】(1)根据非负数的性质可得关于a、b、c的方程,解方程即得答案;(2)先根据数轴上两点间的距离的表示方法得出B点与A点、C点的距离,进而可得关于t 的方程,解方程即可求出结果.【详解】解:(1)根据题意,得:a -4=0,b -9=0,c +8=0,解得a =4,b =9,c =﹣8; (2)运动t 秒时,A 、B 、C 三点运动的路程分别为:t 、2t 、3t ,此时,B 点与A 点的距离为:2945t t t -+-=+,B 点与C 点的距离为:()239817t t t -+--=-, 由题意,得:517t t +=-,所以517t t +=-,解得:6t =;或()517t t +=--,此时t 的值不存在.所以当6t =时,B 点与A 点、C 点的距离相等.【点睛】本题主要考查了数轴上两点间的距离和一元一次方程的知识,属于常考题型,正确理解题意、准确用含t 的关系式表示B 点与A 点、C 点的距离是解题的关键.23.2b .【解析】【分析】先由a 、b 、c 在数轴上的位置可确定a >0,c <b <0,b a c <<,进而可确定,,,3a c b a b c a a +-+-的符号,再根据绝对值的性质去掉绝对值符号,然后根据整式的加减运算法则计算即可.【详解】解:由题意得:a >0,c <b <0,b a c <<,所以0,0,0,30a c b a b c a a +<-<+-<>,所以原式=()()()3a c b a b c a a -+-----+-+⎡⎤⎡⎤⎣⎦⎣⎦=3a c b a b c a a --+-++-+=2b .【点睛】本题主要考查了数轴、有理数的绝对值和整式的加减运算等知识,属于常考题型,根据点在数轴上的位置确定相关式子的符号、熟练进行绝对值的化简和整式的加减运算是解题的关键.24.①最高分:92分;最低分70分;②低于80分的学生有5人,所占百分比50%;③10名同学的平均成绩是80分.【解析】(1)根据题意分别让80分加上记录结果中最大的数就是最高分,加上最小数就是最低分;(2)共有5个负数,即不足80分的共5人,计算百分比即可;(3)直接让80加上记录结果的平均数即可求算平均成绩.25.262度【解析】【分析】先判断出是否超过120度,然后列方程计算即可.【详解】解:因为180×0.5=90,(280﹣180)×0.6=60,90+60=150,而150>139.2,所以7月份用电是“超过180度但不超过280度”.故设7月份用电x度,由题意,得180×0.5+(x﹣180)×0.6=139.2解得x=262答:该用户7月份用电为262度.【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,根据等量关系得出方程,难度一般.。
上海同济初级中学人教版初中九年级物理下册第十八章《电功率》测试题(有答案解析)
一、选择题1.在用电高峰时,家庭电路中的电压会比其他时段的220V稍微降低。
一盏标有“220V 100W”的白炽灯,在用电高峰和其他时段相比()A.额定功率不变,灯泡变暗B.实际功率不变,灯泡变暗C.实际功率减小,灯泡变亮D.额定功率减小,灯泡变亮2.小明帮爷爷在院落装照明灯,他将标有“220V 100W”的节能灯接在家庭电路中,通电后节能灯比正常发光时暗,经检测它两端的实际电压为198V,则这盏节能灯的实际功率为()A.100W B.81W C.50W D.25W3.甲、乙两只灯泡的I-U关系图象如图所示,现将甲、乙两灯串联在电路中,当甲灯两端电压为2 V时,乙灯消耗的功率是()A.2 W B.0.8 W C.1. 2 W D.3 W4.在如图所示的电路中,电源电压保持不变,闭合开关,滑动变阻器的滑片P向右移动时,下列说法正确的是()A.电流表示数变大B.电路消耗的总功率不变C.小灯变亮D.电压表示数变小5.小乐家有额定电压相同的电烤箱和电饭锅各一个,按照每度电0.5元的计费标准,将它们正常工作1小时的用电费用绘制成了如图所示的柱状图。
下列判断正确的是()A.电烤箱正常工作时的电压最高B.正常工作时,它们做功一样快C.电烤箱正常工作时的电流大于电饭锅的电流D.在一个月内,小乐家电烤箱的用电费用一定比电饭锅的用电费用多6.为防止患有阿尔茨海默病的爷爷半夜走失,小明同学发现了一个可贴在爷爷脚底的薄膜式压力传感器,当爷爷起床行走时,电路中电流改变引发报警并向手机APP发送信息。
如图甲所示是它的等效电路图。
其压敏电阻R与压力F的关系如图乙所示,那么,当爷爷起床行走时()A.压敏电阻随着压力的增大而增大B.电路中电流增大,R两端电压增大C.电路中R0两端电压增大D.电路中消耗总功率减小7.下列主要运用电流热效应工作的用电器是()A.电烤火炉B.电风扇C.电视机D.手机8.如图是小松同学做电学实验时所画电路图的一部分,根据此图中所提供器材,可以直接研究的问题是()A.测小灯泡消耗的电能B.测小灯泡产生的热量C.测小灯泡的实际电功率D.以上都不对9.下列措施中,属于利用电流热效应的是()A.电视机的后盖有很多孔B.电烤箱上禁止覆盖物体C.电饭锅里装有发热板D.电脑的主机中安装微型风扇10.生活中的许多现象都与物理知识息息相关,以下描述中符合生活实际的是()A.一节新电池的电压为2V B.白炽灯的正常工作电流约为0.1AC.家用彩电的电功率约为2000W D.成年人的电阻约为36Ω11.如下图所示电路中,L1、L2是小灯泡,电源电压为3V,当开关S闭合时,两灯均能发光,电压表的示数为1.2V。
同济初级中学特色课程建设方案
同济初级中学特色课程建设方案一、指导思想我校特色课程的开发应紧紧围绕《上海市中长期教育改革和发展规划纲要》“为了每一个学生的终身发展”的核心理念,通过系统规划和实践努力使特色课程在外延和内涵两方面都着力于培养和提升学生的科学素养和人文素养,使办学理念和课程方案之间形成互为因果的逻辑体系。
尝试使我校特色课程的所有科目在内容上形成“向学生兴趣靠拢、向学科知识靠拢、向健康生活靠拢、向人类文化靠拢”的四大特征,落实“学生第一、质量第一、健康第一”的理念,对培养学生具有开阔的视野和健康的身心、具有科学素养和人文情怀、最终成为精神丰富、人格高尚的可持续性发展的人才产生积极而深远的影响。
二、课程建设目标1、完成特色课程的构建。
在课程开发与实施中遵循“为了每一个学生的终身发展”这一核心理念,将“学生”和“质量”放在首位。
以满足学生兴趣特长发展为核心,让学生在课程之中体验快乐。
2、让有个性、有特长的教师能够走上特色课程建设之路。
通过编写校本教材,制定特色课程教育目标、内容框架与实施策略等,逐步使教师掌握课程建设的相应规范与要求以及课程开发的基本技能,提升教师课程建设水平,促进教师的专业自主发展。
3、通过利用校外资源,在实践研究中创新,完善学校的特色课程体系,通过资源共享实现学校的均衡发展和多样发展。
4、通过开课特色课程使学生之所学更科学有效,使学校的办学理念融会于学生的学习过程中,以提升我校的核心竞争力。
三、课程建设内容1、《生活中的中草药》特色课程我国是中草药的发源地。
开展“生活中的中草药”科普活动,让学生在活动中走进大自然,认识中草药,热爱中草药,了解我国中医药领域的文化积淀。
课程通过观察、实践、收集资料以及调查分析等活动方法,引导学生通过不同的渠道,运用不同方法去收集资料,分析和处理信息。
课程组织:负责人:王红卫成员:钟佳慧、唐晓莹、孙奕珠、黄媛媛、(陆菁)课程计划:1)通过各类活动让学生认识中草药,了解我国中医药领域的文化积淀。
上海同济初级中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(有答案解析)
一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.已知抛物线E :()220y px p =>的焦点为F ,准线为l ,经过点F 的直线交E 于A ,B 两点,过点A ,B 分别作l 的垂线,垂足分别为C ,D 两点,直线AB 交l 于G点,若3AF FB =,下述四个结论: ①CFDF②直线AB 的倾斜角为π4或3π4 ③F 是AG 的中点④AFC △为等边三角形 其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④3.已知直线2y kx =+与椭圆2219x y m+=总有公共点,则m 的取值范围是( )A .4m ≥B .09m <<C .49m ≤<D .4m ≥且9m ≠4.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .25.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .256.已知三角形ABC 的三个顶点都在椭圆:22143x y +=上,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在线的斜率分别为1k ,2k ,3k ,且1k ,2k ,3k 均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .3-C .1813-D .32-7.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为2,左、右焦点分别为1F 、2F ,A 在C 的左支上,1AF x ⊥轴,A 、B 关于原点对称,四边形12AF BF 的面积为48,则12F F =( )A .8B .4C.D.8.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( ) A.y x = B.y = C.y x = D.y =9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 CD10.12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ︒∠=,则12F PF △的面积是( )A .2B .4C .8D .1611.已知双曲线22221x y a b-=(0a >,0b >)的左焦点为F ,过原点的直线与双曲线分别相交于A ,B 两点.已知20AB =,16AF =,且3cos 5ABF ∠=,则双曲线的离心率为( ) A .5B .3C .2D12.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-二、填空题13.已知椭圆2214x y P +=,是椭圆的上顶点,过点P 作直线l ,交椭圆于另一点A ,设点A 关于原点的对称点为B ,则PAB S的最大值为________.14.已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且2AK AF =,则△AFK 的面积为 .15.双曲线221(0)x y mn m n-=≠的离心率为2,有一个焦点与抛物线24y x =的焦点重合,则m n ⋅的值为___________16.椭圆2214924x y +=上一点P 与椭圆的两个焦点12,F F 的连线相互垂直,则12PF F △的面积为______.17.中心在原点的椭圆1C 与双曲线2C 具有相同的焦点()1,0F c -、()()2,00F c c >,P 为1C 与2C 在第一象限的交点,112PF F F =且25PF =,若双曲线2C 的离心率()22,3e ∈,则椭圆1C 的离心率1e 的范围是__________.18.某桥的桥洞呈抛物线形(如图),桥下水面宽16米,当水面上涨2米后达到警戒水位,水面宽变为12米,此时桥洞顶部距水面高度约为___________米(精确到0.1米)19.设双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F 、2F ,过1F 的直线与C 的左支交于M 、N 两点,若12MF F △是以1MF 为底边的等腰三角形,且1123MF NF =,则双曲线C 的离心率是________. 20.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,第一象限的点P 在渐近线上,满足12F PF 2π∠=,直线1PF 交双曲线左支于点Q ,若点Q 是线段1PF 的中点,则该双曲线的离心率为_____.三、解答题21.已知抛物线E 的顶点为原点O ,焦点F 在x 轴正半轴,点()2,Q m 在抛物线E 上,且3QF =.(1)求抛物线E 的方程;(2)过点()2,0P 且斜率为()0k k >的直线l 与抛物线E 交于A ,B 两点,且线段AB 的中点横坐标为4,求ABO 的面积.22.设椭圆()222210x y a b a b+=>>的左焦点为F 2b =,其中A 为左顶点,O 为坐标原点.(1)求椭圆离心率e 的值;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线相切,圆心C 在直线1x =上,且//OC AP ,求椭圆方程.23.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,焦距为2.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 的上顶点,过点P 作两条相互垂直的直线1l ,2l 分别与椭圆相交于M 、N 两点,若4tan 3∠=PNM ,求直线1l 的方程. 附:多项式因式分解公式()()32238642322-+-=--+t t t t t t .24.已知F 是抛物线()2:20C y px p =>的焦点,()1,M t 是抛物线上一点,且32MF. (1)求抛物线C 的方程;(2)已知斜率存在的直线l 与抛物线C 交于A ,B 两点,若直线AF ,BF 的倾斜角互补,则直线l 是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.25.已知椭圆的焦点在x 轴上,一个顶点为()0,1,离心率e =,过椭圆的右焦点F 的直线l 与坐标轴不垂直,且交椭圆于A ,B 两点 (1)求椭圆的标准方程 (2)当直线l 的斜率为12时,求弦长AB 的值. 26.已知抛物线C :2y x =,过点1,0A 的直线交抛物线C 于()11,P x y ,()22,Q x y 两点,O 为坐标原点. (1)证明:OP OQ ⊥;(2)点()3,0B -,设直线PB ,QB 分别与抛物线C 交于另一点M ,N ,过点O 向直线MN 作垂线,垂足为D .是否存在定点E ,使得DE 为定值?若存在,求出点E 的坐标及DE ;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.D解析:D 【分析】由题意画出图形,由平面几何知识可得①正确;设出AB 的方程,与抛物线方程联立,可得A ,B 横坐标的积,结合已知向量等式求解A 的坐标,再求出AF 所在直线斜率,可得AB 的倾斜角,判断②错误,再结合选项可知D 正确.【详解】解:如图,由抛物线定义可知,AC AF =,BD BF =, 则AFC ACF CFO ∠=∠=∠,BFD BDF DFO ∠=∠=∠, 则2AFC BFD CFO DFO CFD π∠+∠=∠+∠=∠=,CF DF ∴⊥,故①正确;设AB 所在直线方程为()2p y k x =-, 联立2()22p y k x y px⎧=-⎪⎨⎪=⎩,得22222(2)04k p k x k p p x -++=.设1(A x ,1)y ,2(B x ,2)y ,则2124p x x =,又3AF FB =,∴123()22p px x +=+,即123x x p =+, 联立2121243p x x x x p⎧=⎪⎨⎪=+⎩ ,解得12px =-(舍)或132x p =,则13y p =,即3(,3)2A p p ,则333122FA Pk p p ==-,可得直线AB 的倾斜角为3π,④正确 由对称性,若A 在x 轴下方,则直线AB 的倾斜角为23π,故②错误. 由3(,3)2A p p ,(,0)2p F ,G 点的横坐标为2p -,可得F 是AG 的中点,故③正确;故选:D . 【点睛】本题考查抛物线的简单性质,考查数形结合的解题思想方法,考查运算求解能力,是中档题.3.D解析:D 【分析】由直线2y kx =+恒过(0,2)点,将问题转化为点(0,2)在椭圆2219x ym+=上或椭圆内,【详解】因为直线2y kx =+恒过(0,2)点,为使直线1y kx =+与椭圆2219x ym +=恒有公共点,只需点(0,2)在椭圆2219x y m +=上或椭圆内,所以220219m+≤,即4m ≥.又9m ≠,所以4m ≥且9m ≠. 故选:D. 【点睛】本题考查直线与椭圆的位置关系,关键在于直线恒过的点在椭圆上或椭圆的内部,属于中档题.4.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2c =. 【详解】由题意,渐近线方程为by x a=±, ∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =, ∴1222OABSa b =⋅⋅=,即2ab =,∴24c ==当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论.因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则2127·1616k PF PF x ==-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.6.A解析:A 【分析】设()11,A x y ,()22,B x y ,()33,C x y ,()11,D s t ,()22,E s t ,()33,M s t ,利用A ,B在椭圆上,代入椭圆方程,两式相减得:111413t k s =-,同理可得:222413t k s =-,333413t k s =-,再利用已知条件即可得出结果. 【详解】设()11,A x y ,()22,B x y ,()33,C x y ,()11,D s t ,()22,E s t ,()33,M s t , 因为A ,B 在椭圆上,所以2211143x y +=,2222143x y +=, 两式相减得:121211121213344y y x x sk x x y y t -+==-⨯=-⨯-+, 即111413t k s =-, 同理可得222413t k s =-,333413t k s =-, 所以31212312311143t t tk k k s s s ⎛⎫++=-++ ⎪⎝⎭因为直线OD 、OE 、OM 的斜率之和为1, 所以12311144133k k k ++=-⨯=-, 故选:A. 【点睛】关键点睛:本题主要考查椭圆的简单性质的应用.利用平方差法转化求解斜率是解决本题的关键.7.A解析:A 【分析】设122F F c =,求出1AF,由题意可知四边形12AF BF 为平行四边形,根据四边形12AF BF 的面积为48可得出关于a 的等式,由此可求得12F F .【详解】设122F F c =,由于双曲线的离心率为2ce a==,2c a ∴=,则223b c a a =-=, 所以,双曲线C 的方程为222213x y a a-=,即22233x y a -=,将x c =-即2x a =-代入双曲线C 的方程可得3y a =±,13AF a ∴=,由于A 、B 关于原点对称,1F 、2F 关于原点对称,则四边形12AF BF 是平行四边形,四边形12AF BF 的面积2341248S a a a =⨯==,解得2a =,12248F F c a ∴===.故选:A. 【点睛】关键点点睛:本题考查双曲线几何性质的应用,利用四边形的面积求双曲线的焦距,解题的关键就是利用双曲线的离心率将双曲线的方程转化为只含a 的方程,在求解相应点的坐标时,可简化运算.8.C解析:C 【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b ,得渐近线方程. 【详解】由题意已知椭圆的焦点坐标为(6,0)±,即为双曲线的焦点坐标,双曲线中6c =, 渐近线方程为by x a=±,其中一条为0bx ay -=, 于是有226616b ba b ==+,1b =,∴5a =, ∴渐近线方程为55y x =±. 故选:C . 【点睛】关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b .解题时要注意椭圆中222a b c =+,双曲线中222+=a b c .两者不能混淆.9.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H ,因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭,将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b a a c ,222422c aa a c ,223c a =,==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.10.B解析:B 【分析】先求出双曲线的a,b,c ,再利用12Rt PF F 中三边关系求出128PF PF =,再由直角三角形面积公式即得结果. 【详解】由2214x y -=-得标准方程为2214x y -=得221,4a b ==,2145c ∴=+=c ∴= 故12Rt PF F 中,()222212121212121222=2F F PF PF PF PFPF PF PF PF F F c ⎧==+⎪⎪=⎨+-=-⎪⎪⎩128PF PF ∴=所以12118422S PF PF =⋅=⨯=. 故选:B. 【点睛】本题考查了双曲线的定义和几何性质,考查了直角三角形的边长关系和面积公式,属于中档题.11.A解析:A 【分析】在AFB ∆中,由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠,即可得到|BF |,设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.即可得到a ,c ,进而求得离心率. 【详解】在AFB ∆中,||20AB =,||16AF =,且3cos 5ABF ∠=, 由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠, 从而可得2(||12)0BF -=,解得||12BF =.设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.||16BF ∴'=,||10FF '=.2|1612|a ∴=-,220c =,解得2a =,10c =. 5ce a∴==. 故选:A.【点睛】本题考查余弦定理、双曲线的定义、对称性、离心率、矩形的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12,所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.二、填空题13.2【分析】由题意设直线的方程代入椭圆中求出点的坐标进而由题意得点的坐标再整理成用到均值不等式形式求出面积的最大值【详解】由题意可知直线的斜率一定存在因此设直线的方程为代入椭圆方程整理得所以所以所以由解析:2 【分析】由题意设直线PA 的方程代入椭圆中,求出点A 的坐标,进而由题意得点B 的坐标,PABS1||||2A B OP x x =-,再整理成用到均值不等式形式,求出面积的最大值. 【详解】由题意可知直线的斜率一定存在,因此设直线l 的方程为1y kx =+, 代入椭圆方程整理得22(14)80k x kx ++=, 所以2814kx k -=+,所以221414k y k -=+所以A 28(14k k -+,2214)14k k -+,由题意得B 28(14k k +,2241)14k k-+, 所以三角形PAB 的面积21116||||||2214A B k S OP x x k =-=+因为0k ≠, 所以118||821244PABSk k==+.故答案为:2. 【点睛】关键点睛:一是要构建三角形面积的方案,采用了割补思想,二是在求最值时转化为基本不等式问题,这些都是解决本问题的关键.14.【详解】由双曲线得右焦点为即为抛物线的焦点∴解得∴抛物线的方程为其准线方程为过点作准线垂足为点则∴∴∴∴ 解析:32【详解】由双曲线22179x y -=得右焦点为()40,即为抛物线22y px = 的焦点,∴42p = ,解得8p = .∴抛物线的方程为216y x = .其准线方程为()440x K =-∴-,, .过点A 作AM ⊥准线,垂足为点M .则AM AF =.∴AK =.∴45MAK ∠=︒.∴KF AF =.∴221183222AKFSKF ==⨯=. 15.【分析】由题即可求得对的正负分类即可表示出再利用双曲线离心率为2列方程即可求得问题得解【详解】由题可得:抛物线的焦点坐标为所以双曲线中方程表示双曲线所以同号当同正时则解得:则此时当同负时则解得:则此 解析:316【分析】由题即可求得1c =,对,m n 的正负分类,即可表示出22,a b ,再利用双曲线离心率为2列方程,即可求得,m n ,问题得解. 【详解】由题可得:抛物线24y x =的焦点坐标为()1,0, 所以双曲线中1c =方程()2210x y mn m n -=≠表示双曲线所以,m n 同号.当,m n 同正时,54a b =-,则2c ea ===,解得:14m = 则222314n b c a m ==-=-=,此时1334416m n ⋅=⨯=. 当,m n 同负时,22,a n b m =-=-,则2c ea ===,解得:14n =- 则222314m b c a n -==-=+=,此时1334416m n ⎛⎫⎛⎫⋅=-⨯-= ⎪ ⎪⎝⎭⎝⎭ 综上所述:316m n ⋅= 【点睛】本题主要考查了抛物线的简单性质,还考查了双曲线的简单性质及分类思想,考查双曲线标准方程的,,a b c 的识别,考查计算能力,属于中档题.16.24【分析】设由结合椭圆定义可求得从而易得三角形面积【详解】椭圆中设由则又∴∴故答案为:24【点睛】本题考查椭圆的焦点三角形面积问题考查椭圆的定义属于基础题解析:24 【分析】设12,PF m PF n ==,由12PFPF ⊥结合椭圆定义可求得mn ,从而易得三角形面积. 【详解】椭圆2214924x y +=中7a =,b =5c =,设12,PF m PF n ==,由12PFPF ⊥,则()2222100m n c +==,又214m n a +==, 2224100214m n c m n a ⎧+==⎨+==⎩,∴2222()()141004822m n m n mn +-+-===, ∴121242PF F S mn ==△. 故答案为:24. 【点睛】本题考查椭圆的焦点三角形面积问题,考查椭圆的定义,属于基础题.17.【分析】由于P 为与在第一象限的交点分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到再分别由其对应离心率公式表示并由不等式性质求得答案【详解】设椭圆:与双曲线:因为P 为与在第一象限的交点所以焦点三解析:32,53⎛⎫⎪⎝⎭【分析】由于P 为1C 与2C 在第一象限的交点,112PF F F =,分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到2a c m =-,再分别由其对应离心率公式表示并由不等式性质求得答案. 【详解】设椭圆1C :()222210x y a b a b +=>>与双曲线2C :()222210,0x y m n m n-=>>,因为P 为1C 与2C 在第一象限的交点,112PF F F =,所以焦点三角形12PF F 是以2PF 为底边的等腰三角形,即在椭圆中有1221122222PF PF aPF a c PF F F c⎧+=⎪⇒=-⎨==⎪⎩①;同理,在双曲线中有222PF c m =-②,由①②可知,2a c m =-,因为()221112,3,,32c e m e ⎛⎫=∈∈ ⎪⎝⎭,且12111222c c e m a c m c e ====---, 由不等式的性质可知,132,53e ⎛⎫∈ ⎪⎝⎭. 故答案为:32,53⎛⎫⎪⎝⎭【点睛】本题考查椭圆与双曲线共焦点问题中求椭圆的离心率范围问题,属于中档题.18.【分析】首先根据题意建立直角坐标系并设出抛物线方程根据抛物线上的点确定方程再通过求出点的坐标即可得到答案【详解】如图建立空间直角坐标系:设抛物线为由题知:抛物线过所以解得即抛物线方程为当时所以桥洞顶 解析:2.6【分析】首先根据题意建立直角坐标系并设出抛物线方程,根据抛物线上的点确定方程,再通过求出点的坐标,即可得到答案. 【详解】如图建立空间直角坐标系:设抛物线为2y ax c =+,由题知:抛物线过(6,2)D ,(8,0)B .所以362640a c a c +=⎧⎨+=⎩,解得114327a b ⎧=-⎪⎪⎨⎪=⎪⎩. 即抛物线方程为2132147y x =-+. 当0x =时,327y =. 所以桥洞顶部距水面高度约为32182 2.677-=≈米. 故答案为:2.6 【点睛】本题主要考查抛物线的应用,同时考查了待定系数法求方程,属于中档题.19.【详解】取的中点P 连接由题可知且所以又则在中在中得又所以故答案为:【点睛】本题考查双曲线离心率的求解涉及双曲线定义的应用考查计算能力属于中等题 解析:75【详解】取1F M 的中点P ,连接2PF ,由题可知212=MF F F ,且1132MF NF =, 所以22MF c =,MP c a =-,1F P c a =-. 又1132MF NF =,则()13NF c a =-,23NF c a =-. 在2Rt NPF △中,22222NP PF NF +=,在2Rt MPF △中,22222MP PF MF +=,得()()()()2222342c a c a c c a ---=--⎡⎤⎣⎦,2251270c ac a -+=,()()750a c a c --=.又1e >,所以75e =. 故答案为:75.【点睛】本题考查双曲线离心率的求解,涉及双曲线定义的应用,考查计算能力,属于中等题.20.【分析】由题意结合渐近线的性质可得则把点坐标代入双曲线方程可得化简即可得解【详解】点在第一象限且在双曲线渐近线上又直线的斜率为又点是线段的中点又在双曲线上化简得因为故解得故答案为:【点睛】本题考查了 51【分析】由题意结合渐近线的性质可得(,)P a b ,则,22a c b Q -⎛⎫⎪⎝⎭,把Q 点坐标代入双曲线方程可得222222()44a cb b a a b -⋅-⋅=,化简即可得解. 【详解】12F PF 2π∠=,点P 在第一象限且在双曲线渐近线上,∴121||2OP F F c ==, 又直线OP 的斜率为ba,∴(,)P a b , 又 1(,0)F c -,点Q 是线段1PF 的中点,∴,22a c b Q -⎛⎫⎪⎝⎭, 又 ,22a c b Q -⎛⎫⎪⎝⎭在双曲线22221(0,0)x y a b a b -=>>上, ∴222222()44a cb b a a b -⋅-⋅=,化简得222222()5420b ac a b a ac c ⋅-=⇒--+=,∴2240e e --=,因为1e >,故解得1e =1. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了计算能力,属于中档题.三、解答题21.(1)24y x =;(2) 【分析】(1)设出抛物线方程,根据抛物线定义可列式求出;(2)设直线l 的方程为2x ty =+,联立直线与抛物线,根据中点横坐标求出t ,再求出底和高即可得出面积. 【详解】解:(1)依题意设抛物线E 的方程为()220y px p =>,则准线方程为2px =-, 由3QF =,依定义得232p+=,解得2p =, ∴抛物线E 的方程为24y x =.(2)设直线l 的方程为2x ty =+,()11,A x y ,()22,B x y ,由224x ty y x=+⎧⎨=⎩消x 得2480y ty --=, 则124y y t +=,128y y =-, ∵线段AB 的中点横坐标为4,∴1242x x +=, 即128x x +=,∴12228ty ty +++=,即()124t y y +=, 可得244t =,∴21t =,12y y -===故ABO的面积为1211222OP y y -=⨯⨯=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)12;(2)22413y x +=.【分析】(1)由已知等式结合222a b c =+可得离心率ca; (2)由(1)可得椭圆方程为2222143x y c c+=,写出直线l 方程,与椭圆方程联立可求得交点P 坐标,由//OC AP ,求得C 点坐标,这样由圆与x 轴相切得半径,再由圆与直线l 相切,可求得c ,从而得椭圆方程. 【详解】(1)设椭圆的半焦距为c由2222b a b c ⎧=⎪⎨=+⎪⎩得12c e a == (2)由(1)知2,a c b ==故椭圆方程为2222143x y c c+=,由题意(),0F c -,则直线l 的方程为()34y x c =+ 点P 的坐标满足()222214334x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简得到2276130x cx c +-=解得1=x c 或2137cx =-(舍)代入到l 的方程解得132y c =,所以3,2P c c ⎛⎫ ⎪⎝⎭由圆心C 在直线1x =上,可设()1,C t因为(),2,0OC AP A c -∥,故3212ct c c=+,可得12t=因为圆C 与x 轴相切,所以圆的半径长为12R =又由圆C 与l 相切,圆心到直线的距离12d =,可得12c =所以,1,a b ==椭圆的方程为22413y x +=.【点睛】关键点点睛:本题考查求椭圆的离心率,求椭圆方程,只要知道关于,,a b c 的齐次等式即可求得离心率,用参数c 写出椭圆方程和直线方程,求出交点P 的坐标,从而可得圆心坐标,利用直线与圆相切是解题关键.23.(1)2212x y +=;(2)21y x =-+或21y x =+.【分析】(1)结合焦距和离心率求得a ,c ,再计算b ,即得方程;(2)先判断直线斜率存在且不为零,先设斜率写直线方程,联立直线与椭圆求得弦长PM ,根据垂直设另一条直线,同理可求PN ,直角三角形利用比例关系求得斜率,即得结果. 【详解】解:(1)设椭圆的焦距为2c ,由题意得22c =,可得1c =,,可得c a =,代入1c =,可得a =故1b ==,所以椭圆C 的标准方程为2212x y +=;(2)依题意知直线1l ,2l 斜率存在且不为零,由点P 的坐标为()0,1,设直线PM 的方程为1y kx =+,联立方程22121x y y kx ⎧+=⎪⎨⎪=+⎩,解得01x y =⎧⎨=⎩或2224211221k x k ky k ⎧=-⎪⎪+⎨-⎪=⎪+⎩,可得点M 的坐标为222412,2121k k k k ⎛⎫-- ⎪++⎝⎭, 同理可知,直线PN 的方程为11y x k =-+,解得点N 的坐标为22242,22k k k k ⎛⎫- ⎪++⎝⎭,224121k PM k k =++,22221441122k k PN k k k +=+=++. 由43PMPN =()2222241242121341k k k k k k k +++==++, 由函数()()22221k k f k k +=+为偶函数,故只需要解方程()()22240213k k k k +=>+即可, 方程()()22240213k k k k +=>+可化为3238640k k k -+-=,因式分解为()()223220k k k --+=,而方程23220k k -+=中,判别式44320∆=-⨯⨯<,方程无解,故三次方程的解为2k =,故方程()2224213k k k +=+的解为2k =-或2k =,故直线1l 的方程为21y x =-+或21y x =+.【点睛】 思路点睛:直线与椭圆位置关系中的弦长问题,通常让直线与椭圆方程组方程组,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y ,所以2121AB k x =+-或12AB y y =-,解决相关问题.24.(1)22y x =;(2)过定点,定点为1,02⎛⎫- ⎪⎝⎭. 【分析】(1)根据抛物线的定义可知3122p MF =+=,求出p 后可得抛物线方程. (2) 设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y ,由条件可得0AF BF k k +=,化简即得()()1212121202kx x m x x y y ++-+=,联立直线与抛物线方程,利用韦达定理代入可得2k m =,从而得出答案. 【详解】(1)根据抛物线的定义,31122p MF p =+=⇒=, 抛物线的方程为22y x =,(2)设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y , 直线l 与抛物线的方程联立得()22222202y kx m k x km x m y x=+⎧⇒+-+=⎨=⎩, 12222km x x k -+=,2122m x x k=,则122y y k +=,122m y y k =, 又0AF BF k k +=,即121201122y y x x --+=--, ()122112102x y x y y y +-+=,()()1212121202kx x m x x y y ++-+=, 即22222120m km k m k k k-⋅+⋅-=,整理得:2k m =, 所以直线的方程为()21y m x =+, 即直线经过定点1,02⎛⎫- ⎪⎝⎭. 【点睛】关键点睛:本题考查求抛物线的方程和直线与抛物线的位置关系,考查直线过定点问题,解答本题的关键是由0AF BF k k +=,得到()()1212121202kx x m x x y y ++-+=,然后由方程联立韦达定理代入,属于中档题.25.(1)2215x y +=(2【分析】(1)根据顶点坐标得到1b =,根据离心率c e a ==,结合222a b c =+得到25a =,则可得椭圆的标准方程;(2)联立直线与椭圆,利用弦长公式可求得结果. 【详解】(1)依题意设椭圆的标准方程为22221x y a b+=(0)a b >>,则1b =,c a =,所以22221a b c ⎫=+=+⎪⎪⎝⎭,解得25a =, 所以椭圆的标准方程为2215x y +=.(2)由(1)知(2,0)F ,则直线:l 1(2)2y x =-, 联立221(2)215y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y 并整理得22009x x -=,设1122(,),(,)A x y B x y , 则12209x x +=,120x x =,所以||AB ==20299==. 【点睛】结论点睛:斜率为k 的直线l 与圆锥曲线交于11(,)A x y 、22(,)B x y两点,则弦长||AB =26.(1)证明见解析;(2)存在,满足条件的点9,02E ⎛⎫⎪⎝⎭,相应的92DE =.【分析】(1)设直线:1PQ x my =+,联立方程组得到121y y =-,结合0OP OQ ⋅=,即可求解;(2)设过定点(),0a 的直线x ty a =+,联立方程组,根据根与系数的关系,得到34y y a =-与t 无关,得出对于抛物线2y x =上的两点的直线RS 过定点(),0a ,进而得到9M N y y =-,再结合Rt ODG ,即可求解.【详解】(1)设直线PQ :1x my =+,联立方程组21x my y x=+⎧⎨=⎩,整理得210y my --=,所以121y y =-,又由22121212120OP OQ x x y y y y y y ⋅=+=+=,所以OP OQ ⊥.(2)设过定点(),0a 的直线x ty a =+与抛物线有两个不同交点()33,x y ,()44,x y , 联立方程组2x ty a y x=+⎧⎨=⎩,整理得20y ty a --=,可得34y y a =-与t 无关, 即对于抛物线2y x =上的两点R ,S ,直线RS 过定点(),0a R ⇔,S 的纵坐标之积为a -,由此可得13M y y =,23N y y =,从而1299M N y y y y ==-, 于是可得直线MN 过点()9,0,记为G ,则OD DG ⊥, 取OG 中点为E ,则Rt ODG 中1922ED OG ==, 故存在满足条件的点9,02E ⎛⎫⎪⎝⎭,相应的92DE =.【点睛】解答圆锥曲线的定点、定值问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.。
上海同济初级中学语文初三上册诗歌鉴赏试卷
上海同济初级中学语文初三上册诗歌鉴赏试卷一、九年级上册诗歌鉴赏1.阅读下面这首诗,完成下列小题。
州宅堂前荷花范成大①凌波②仙子静中芳,也带酣红学醉妆。
有意十分开晓露,无情一饷敛斜阳。
泥根玉雪元无染,风叶青葱亦自香。
想得石湖花正好,接天云锦画船凉。
【注释】①范成大(1126—1193),今苏州人,晚年退居家乡石湖。
此诗为范成大外任地方官时所作。
②凌波:水面之上。
(1)本诗颈联写出了荷花怎样的特点?(2)这首诗前四句是怎样描写“州宅堂前荷花”的?请加以赏析。
2.阅读下面的诗歌,完成小题。
白梅(元)王冕冰雪林中著此身,不同桃李混芳尘。
忽然一夜清香发,散作乾坤春。
(1)诗中描绘了白梅的形象,突出了白梅的哪些特征?(2)这首诗主要运用了怎样的写作手法?表达了作者怎样的思想感情?3.前人说孟诗“开端最奇”,而此诗却是“奇在结尾”,请结合全诗具体分析。
洛桥晩望孟郊天津桥下冰初结①,洛阳陌上人行绝;榆柳萧疏楼阁闲②,月明直见嵩山雪。
【注】①天津桥:即洛桥,在今河南省洛阳西郊洛水之上。
②萧疏:形容树木叶落。
4.古诗文阅读春日秦观①一夕轻雷落万丝,霁光浮瓦碧参差。
有情芍药含春泪,无力蔷薇卧晓枝。
初晴游沧浪亭苏舜钦夜雨连明春水生,娇云浓暖弄阴晴。
帘虚日薄花竹静,时有鸠相对鸣。
【注释】①秦观;北宋著名诗歌,先后多次贬官,一生潦倒失意。
①庆历四年,苏舜钦被罢去官职,流寓苏州,在城南营建沧浪亭。
(1)两首诗歌都描述了雨后初晴的景象,《春日》中________写出了春雨淅淅沥沥,《初晴游沧浪亭》中________则写出了雨势不小,河水涨了起来。
(2)《春日》后两句使用了拟人手法,而《初晴游沧浪亭》则使用动静结合的手法,请你选择其一,试做简要赏析,说说它们表达了诗人什么情感。
5.阅读《月夜忆舍弟》,完成小题。
月夜忆舍弟杜甫戍鼓断人行,边秋一雁声。
露从今夜白,月是故乡明。
有弟皆分散,无家问死生。
寄书长不达,况乃未休兵。
(1)诗人从多种角度展开描写,请具体分析首联中听觉描写的作用。
上海同济初级中学化学初三化学上册期末试卷(解析版)
上海同济初级中学化学上册期末试卷(解析版)一、九年级化学上册选择题1.在一个密闭容器中放入甲、乙、丙、丁四种物质,在一定条件下发生反应,一段时间后,测得有关数据如表,则关于此反应认识不正确的是()物质甲乙丙丁反应前质量/g203220反应后质量/g X2820A.该反应的基本类型为化合反应B.反应后甲物质的质量值x=15C.物质丙可能是该反应的催化剂D.参加反应的丁物质与生成的乙物质的质量比为4:72.气体由CH4、C2H4、C2H2中的一种或几种组成,取气体样品在氧气中完全燃烧,测得生成的二氧化碳和水的质量比为22:9,下列对该气体组成的判断正确的是()A.该气体可能含有CH4B.该气体可能是由C2H4和C2H2组成C.该气体- -定含有C2H4D.该气体不可能同时含有CH4、C2H2、C2H23.质量相同的下列四种物质,完全分解后制得氧气质量最多的是()A.B.C.D.4.某元素M的相对原子质量为32,M的氧化物中氧元素的质量分数为60%,则M在此氧化物中的化合价为A.+6 B.+4 C.+2 D.+15.下列叙述与对应的坐标图表示正确的是()A.向硝酸钾的饱和溶液中加入氯化钠B.将相同质量的Zn粉和Mg粉分别加入足量的稀盐酸中C.水的电解D.盐酸和氯化铁混合溶液中加入过量的氢氧化钠溶液6.下列图象不能正确反映其变化过程的是()A.镁在装有空气的密闭容器内燃烧B.电解水生成气体的体积C.加热氯酸钾和二氧化锰的混合物制取氧气D.把铁钉放入硫酸铜溶液中7.下列图像能正确反映对应的变化关系的是A向a.b两支试管中分别加入等质量的样品,a中是氯酸钾,b中是氯酸钾和少量二氧化锰B利用红磷燃烧测定空气中氧气的含量(打开止水夹前)C向一定质量AgNO3和Cu(NO3)2的混和溶液中逐渐加入足量的锌粒DCO和过量容器中完全A.A B.B C.C D.D8.为了测定空气中氧气的含量,设计如图装置,利用传感器技术测得实验过程中温度、压强和氧气浓度随时间变化的曲线如下。
上海同济初级中学初三化学上册期中试卷(解析版)
上海同济初级中学化学上册期中试卷(解析版)一、选择题(培优题较难)1.实验小组用如图装置测定空气中的氧气含量,锥形瓶中空气的体积为100mL,注射器中水的体积为25 mL,装置气密性良好。
下列说法不正确的是A.气球的作用是缓冲装置中的压强变化B.瓶底的细沙可以防止红磷燃烧时集气瓶炸裂C.红磷熄灭后应该等装置冷却到室温,再打开弹簧夹观察现象D.打开弹簧夹后,注射器中的水一定全部进入锥形瓶中2.下列有关催化剂的说法正确的是()A.只能加快反应速率B.二氧化锰在任何化学反应中都是催化剂C.能增加生成物的质量D.质量和化学性质在化学反应前后不变3.下列各图中和分别表示不同元素的原子,则其中表示化合物的是( )A.B.C.D.4.下列加热高锰酸钾制取氧气的部分操作示意图中,正确的是A.检查装置气密性B.加热立即收集C.收满后移出集气瓶 D.结束时停止加热5.碳酸乙烯酯(C3H4O3)可用作锂电池电解液,下列有关碳酸乙烯酯的说法正确的是A.碳酸乙烯酯的相对分子质量为(12×3+1×4+16×3)gB.碳酸乙烯酯中C、H、O三种元素的质量比为12:1:16C.碳酸乙烯酯中C、H、O三种原子的个数比为3:4:3D.碳酸乙烯酯中碳元素的质量分数= ×100%6.化学是在分子、原子的层次上研究物质的性质、组成、结构与变化规律的科学。
下图是某化学反应的微观示意图,下列说法正确的是A.反应前后分子的个数不变B.生成物有三种C.反应前后汞原子和氧原子的个数不变D.是保持氧气化学性质的最小粒子7.下列事实不能作为相应观点的证据的是( )A.尘土飞扬,说明分子是运动的B.电解水得到氢气和氧气,说明分子是可分的C.气体被压缩后体积发生了较大变化,说明气体分子间距较大D.将两个干净平整的铅柱紧压在一起会结合起来,说明分子间存在引力8.在一个密闭容器中放入甲、乙、丙、丁四种物质,在一定条件下充分反应,测得反应前后各物质的质量如下表所示。
上海同济初级中学八年级物理上册第二章《声现象》复习题(答案解析)
一、选择题1.下列关于声现象的说法中正确的是()A.只要物体发出声音,我们就一定能听到B.“隔墙有耳”说明固体可以传声C.在钢铁中的声速小于在水中的声速D.声源的振幅越大,听到声音的响度就一定越大2.白居易的《琵琶行》中有这样的诗句,“大弦嘈嘈如急雨,小弦切切如私语”,这里的急雨和私语主要指的是声音的不同()。
A.音调B.响度C.音色D.频率3.超声雾化器是利用超声波将药物(溶液或粉末)分散成微小的雾滴或微粒。
关于雾化治疗,下列说法错误的是A.利用了超声波可以传递能量B.人耳能听到超声波C.超声波可以在液体中传播D.超声波是由振动产生的4.关于声音,下列说法中正确的是()A.我们能区分出小提琴和二胡的声音,是因为它们发出声音的音调不同B.我们无法听到蝴蝶飞过的声音,是因为它发出声音的响度太小C.敲锣时用力越大,它发出声音的响度越大D.歌唱演员引吭高歌,其中的“高”是指音调高5.如图所示,主要描述声音能够传递能量的是()A.蝙蝠利用超声波确定障碍物位置B.利用声呐探测鱼群位置和海底的情况C.利用“B超”对孕妇作常规检查D.利用超声波击碎人体内的结石6.支付宝用户可以对支付宝账号设置“声音锁”。
设置时用户打开支付宝APP,对着手机读出手机显示的数字,APP将主人的声音信息录入,以后打开支付宝时,APP会把录入的数字随机组合,主人无论轻声或大声,只要读对APP显示的数字即可打开支付宝。
支付宝设置“声音锁”利用了声音的()A.响度和音调B.响度和音色C.音调和音色D.只有音色7.唐朝一寺庙所藏的罄常常无故自鸣,和尚不知其因而被惊吓以致患病,后经人指点方知与前殿的钟有关,击此应彼,故钟鸣罄响。
关于此现象,下列说法正确的是()A.“钟鸣罄响”是一种回声现象B.“罄无故自鸣”说明有些物体不振动也可以产生声音C.“钟鸣罄响”说明钟和罄一起在做相同形式的振动D.“钟鸣罄响”说明钟和罄的音色和音调都不同8.如图所示,小胡同学做有关声现象的实验时,将一个正在发声的音叉贴近面颊,目的是为了()A.估算发声音叉的质量B.体验发声音叉的温度C.感受发声音叉的振动D.判断声音的传播速度9.百米赛跑时,终点计时员必须一看到发令枪冒烟就开始计时,如果计时员听到枪声才开始计时,所记录的成绩与运动员的实际成绩相比,一定()A.少了0.294s B.多了0.294s C.少了0.34s D.多了0.34s10.下列关于声音的说法中不正确的是()A.“响鼓也要重锤敲”,说明声音是由振动产生的,且振幅越大响度越大B.超声波听起来比较高亢,次声波听起来比较低沉C.“闻其声知其人”,说明可以根据音色来判断说话者D.“隔墙有耳”,说明固体能传声11.如图所示的小姑娘正在拉二胡,二胡是中国传统的民族乐器。
上海同济初级中学语文九年级上册文言文试卷
上海同济初级中学语文九年级上册文言文试卷一、文言文1.古诗文阅读。
(一)黄州安国寺记(宋)苏轼元丰二年十二月,余自吴兴守得罪①,上不忍诛,以为黄州团练副使,使思过而自新焉。
其明年二月至黄。
舍馆粗定,衣食稍给,闭门却扫,收召魂魄,退伏思念,求所以自新之方。
得城南精舍曰安国寺,有茂林修竹,陂池亭榭。
间一、二日辄往,焚香默坐深自省察则物我相忘,身心皆空,求罪垢②所从生而不可得。
一念清净,染污③自落,表里翛然④,无所附丽⑤,私窃乐之。
旦往而暮还者,五年于此矣。
寺僧曰继连,为僧首七年,得赐衣⑥。
又七年,当赐号,欲谢去,其徒与父老相率留之。
连笑曰:“知足不辱,知止不殆。
”卒谢去。
余是以愧其人。
七年,余将有临汝之行。
连曰:“寺未有记。
”具石请记之。
余不得辞。
【注释】①指苏轼在吴兴任太守期间因“乌台诗案”获罪,被贬黄州。
②罪垢:指罪孽。
③染污:烦恼。
④翛(xiāo)然:超脱的样子。
⑤附丽:附着,依附。
⑥赐衣:指朝廷对佛教高僧的赐衣和赐封号制度。
(二)行香子·述怀①(宋)苏轼清夜无尘。
月色如银。
酒斟时、须满十分。
浮名浮利,虚苦劳神。
叹隙中驹,石中火②,梦中身。
虽抱文章,开口谁亲。
且陶陶、乐尽天真。
几时归去,作个闲人。
对一张琴,一壶酒,一溪云。
【注释】①元祐元年(1086),苏轼被召还朝,但是政敌多次以类似“乌台诗案”之事欲再度诬陷苏轼,遂提笔抒怀。
②石中火:指击石迸出的一闪即灭的火花。
(1)下列加下划线词意思相同的一项是()A.求所以自新之方往之汝家,必敬必戒B.间一、二日辄往遂于外人间隔C.私窃乐之宴酣之乐D.具石请记之百废具兴用(2)用“/”给文中画线句子断句。
(限断两处)焚香默坐深自省察则物我相忘(3)文中写僧人继连有何用意,请结合文章内容谈谈你的看法。
(4)为苏轼词中画线的句子“叹隙中驹,石中火,梦中身”设计朗读。
(可从停连、语速、节奏、重音、语调等方面入手,答出一点即可)(5)上面两篇古诗文中,苏轼的境遇相同、心境相似,请结合《黄州安国寺记》相关内容,品析词中画横线的诗句“对一张琴,一壶酒,一溪云”语言上的妙处。
2020-2021上海同济初级中学九年级数学上期中试卷附答案
2020-2021上海同济初级中学九年级数学上期中试卷附答案一、选择题1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为( )A .100°B .120°C .130°D .150°3.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .44.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >05.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -= 6.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( )A .2020B .2019C .2018D .20177.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 8.将函数y=kx 2与y=kx+k 的图象画在同一个直角坐标系中,可能的是( ) A . B . C . D .9.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,0)10.一元二次方程x 2+2x +2=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 11.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个 12.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.15.如图,Rt △ABC 中,∠A =90°,AB =4,AC =6,D 、E 分别是AB 、AC 边上的动点,且CE =3BD ,则△BDE 面积的最大值为_____.16.如图,AD 为ABC V 的外接圆O e 的直径,如果50BAD ∠=︒,那么ACB =∠__________.17.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________18.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是_______.19.两个全等的三角尺重叠放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F .已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm ,则CF=______cm .20.用半径为12cm ,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______cm .三、解答题21.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.22.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).23.某市场将进货价为40元/件的商品按60元/件售出,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元/件,每星期该商品要少卖出10件.(1)请写出该商场每月卖出该商品所获得的利润y (元)与该商品每件涨价x (元)间的函数关系式;(2)每月该商场销售该种商品获利能否达到6300元?请说明理由;(3)请分析并回答每件售价在什么范围内,该商场获得的月利润不低于6160元?24.解方程:2411231x x x -=+-- 25.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是 ;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.2.C解析:C【解析】【分析】根据圆周角定理求出∠AOD 即可解决问题.【详解】解:∵∠AOD=2∠ACD ,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C .【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,3.C解析:C【解析】【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.4.B解析:B【解析】【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号.【详解】∵抛物线开口向下,∴a <0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2b a>0, ∴b >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点. 5.A解析:A【解析】【分析】利用配方法把方程2680x x --=变形即可.【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17,故选A .【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.6.B解析:B【解析】【分析】根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得.【详解】解:∵α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,∴α+β=1、α2﹣α=2018,则原式=α2﹣α﹣2(α+β)+3=2018﹣2+3=2019,故选:B .【点睛】考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.7.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD 的弧长为6,然后利用扇形的面积公式:S 扇形DAB =1lr 2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB=11lr=22×6×3=9.故选D.【点睛】本题考查扇形面积的计算.8.C解析:C【解析】【分析】根据题意,利用分类讨论的方法,讨论k>0和k<0,函数y=kx2与y=kx+k的图象,从而可以解答本题.【详解】当k>0时,函数y=kx2的图象是开口向上,顶点在原点的抛物线,y=kx+k的图象经过第一、二、三象限,是一条直线,故选项A、B均错误,当k<0时,函数y=kx2的图象是开口向下,顶点在原点的抛物线,y=kx+k的图象经过第二、三、四象限,是一条直线,故选项C正确,选项D错误,故选C.【点睛】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.9.B解析:B【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故选B..10.D解析:D【解析】【分析】求出b2-4ac的值,根据b2-4ac的正负即可得出答案.【详解】x2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键11.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.12.B解析:B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0,和x轴的正半轴相交.故选项错误;D .由一次函数y =ax ﹣a 的图象可得:a >0,此时二次函数y =ax 2﹣2x +1的图象应该开口向上.故选项错误.故选B .点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y =ax ﹣a 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系,由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y =ax 2+bx +c把A. B. C 三点分别代入得出c =2.5同时可得4a +2b +c =2.5,0.25a +0.5b +c =1解得a =2,b =−4,c =2.5.∴y =2x 2−4x +2.5=2(x −1)2+0.5.∵2>0∴当x =1时,y min =0.5米.14.-1【解析】试题解析:把代入得解得:故答案为解析:-1【解析】试题解析:把1x =代入2230ax x -+=,得,230.a -+=解得: 1.a =-故答案为 1.15.【解析】【分析】设BD=x则EC=3xAE=6﹣3x根据S△DEB=·BD·AE得到关于S与x的二次函数解析式利用配方法变形为顶点式即可【详解】解:设BD=x则EC=3xAE=6﹣3x∵∠A=90°解析:3 2【解析】【分析】设BD=x,则EC=3x,AE=6﹣3x,根据S△DEB=12·BD·AE得到关于S与x的二次函数解析式,利用配方法变形为顶点式即可.【详解】解:设BD=x,则EC=3x,AE=6﹣3x,∵∠A=90°,∴EA⊥BD,∴S△DEB=12•x(6﹣3x)=﹣32x2+3x=﹣32(x﹣1)2+32,∴当x=1时,S最大值=3 2 .故答案为:32.【点睛】本题主要考查二次函数的最值问题,解此题的关键在于根据题意设出未知数,根据题意列出函数解析式.16.40°【解析】【分析】连接BD如图根据圆周角定理得到∠ABD=90°则利用互余计算出∠D=40°然后再利用圆周角定理得到∠ACB的度数【详解】连接BD如图∵AD为△ABC的外接圆⊙O的直径∴∠ABD解析:40°.【解析】【分析】连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=40°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD 为△ABC 的外接圆⊙O 的直径,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-50°=40°,∴∠ACB=∠D=40°.故答案为40°.【点睛】本题考查了圆周角定理.熟练掌握并运用圆周角定理是解决本题的关键.17.x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y 随x 的增大而增大当时y 随x 的增大而减小∵∴当函数值y >0时x 的取值范围是x <-1或x >3故答案为解析:x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3故答案为:x <-1或x >3.【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.18.2【解析】【分析】连接BC 由圆周角定理和垂径定理得出由直角三角形的性质得出得出求出即可【详解】解:连接BC 如图所示:∵AB 是⊙O 的直径弦于H 在中即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理解析:2【解析】【分析】连接BC ,由圆周角定理和垂径定理得出190,32ACB CH DH CD ︒∠====角三角形的性质得出223,323,2AC CH AC BC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H , 19032ACB CH DH CD ∴∠︒=,=== 30A ∠︒Q =,223AC CH ∴==,在Rt ABC ∆中,30A ∠︒=,3232AC BC AB BC ∴==,=,24BC AB ∴=,=,2OA ∴=,即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.19.【解析】试题解析∵将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置使点A 恰好落在边DE 上∴DC=AC∠D=∠CAB∴∠D=∠DAC∵∠ACB=∠DCE=90°∠B=30°∴∠D=∠CAB=6 解析:23【解析】试题解析∵将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,∴DC =AC ,∠D =∠CAB ,∴∠D =∠DAC ,∵∠ACB =∠DCE =90°,∠B =30°,∴∠D =∠CAB =60°,∴∠DCA =60°,∴∠ACF =30°,可得∠AFC =90°,∵AB =8cm ,∴AC=4cm,∴FC=4cos30°.【点睛】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.20.【解析】【分析】根据扇形的弧长等于圆锥的底面周长利用扇形的弧长公式即可求得圆锥的底面周长然后根据圆的周长公式即可求解【详解】解:圆锥的底面周长是:=6π设圆锥底面圆的半径是r则2πr=6π则r=3故解析:【解析】【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【详解】解:圆锥的底面周长是:9012180π⨯=6π,设圆锥底面圆的半径是r,则2πr=6π,则r=3.故答案为:3.【点睛】本题考查圆锥的计算.三、解答题21.(1)a≤174;(2)x=1或x=2【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于a的不等式,即可求出a的取值范围;(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤174;(2)由(1)可知a≤174,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22.(1)作图见解析;(2)作图见解析;(3)2π.【解析】【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC 扫过的面积=22OCC OBB S S -扇形扇形,由此计算即可;【详解】(1)△ABC 关于x 轴对称的△A 1B 1C 1如图所示;(2)△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2如图所示;(3)BC 扫过的面积=22OCC OBB S S -扇形扇形 =()()22222290?·1390?·11360360ππ++-=2π.【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(1)y=−10x 2+100x+6000;(2)每月该商场销售该种商品获利不能达到6300元,理由见解析;(3)每件售价不低于62元且不高于68元时,该商场获得的月利润不低于6160元【解析】【分析】(1)该商品每件涨价x (元),该商场每月卖出该商品所获得的利润y (元),依题意可得y 与x 的函数关系式;(2)不能,把函数关系式用配方法化为y=-10(x-5)2+6250,可得y 有最大值为6250; (3)令-10x 2+100x+6000≥6160,求出x 的取值范围即可.【详解】(1)该商品每件涨价x (元),该商场每月卖出该商品所获得的利润y (元),根据题意得(6040)(30010)=+--y x x∴y=−10x 2+100x+6000故答案为:y=−10x 2+100x+6000(2)每月该商场销售该种商品获利不能达到6300元,理由:∵y=−10x 2+100x+6000=−10(x−5)2+6250,当x=5时,y 取最大值为6250元,小于6300元∴不能达到;(3)依题意有:−10x 2+100x+6000⩾6160,整理得:x 2−10x+16⩽0,∴(x−2)(x−8)⩽0,∴①2080x x -⎧⎨-⎩……或②2080x x -≤⎧⎨-≥⎩, 解①得:2⩽x ⩽8,解②得:x ⩽2且x ⩾8,无解,∴当售价不低于62元且不高于68元时,商场获得的月利润不低于6160元.【点睛】本题考查了二次函数的实际应用,理解两个变量表示的含义,根据题意找到等量关系列出函数关系式是解题的关键.24.4x =-【解析】【分析】方程左右两边同时乘以(x+3)(x-1),将分式方程转化为整式方程,解出x 的值,并检验即可.【详解】 解:4(3)(1)x x +--1=11x -, 去分母,得:24(23)3x x x -+-=+,整理,得:x 2+3x -4=0,解得:x 1=-4,x 2=1.经检验:x 2=1是增根,舍去,∴原方程的解是4x =-.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.25.(1)12;(2)13【解析】【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:21 42 =;故答案为:1 2 .(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率) =41 123=.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.。
上海同济初级中学二年级数学下册第六单元《余数的除法》单元测试题(有答案解析)
上海同济初级中学二年级数学下册第六单元《余数的除法》单元测试题(有答案解析)一、选择题1.一个数除以4,商是23,有余数。
这个数最大是()。
A. 92B. 95C. 972.余数是3的算式是()。
A. 47÷5B. 66÷7C. 60÷83.余数是2的算式是()。
A. 15÷7B. 18÷4C. 16÷34.5名老师带40名同学去公园划船,如果每条船限乘6人,他们至少要租几条船?()A. 7 B. 8 C. 95.每辆车限坐5人,27人同时乘车,至少需要准备()辆车.A. 5B. 6C. 76.在A÷B=14……15中,除数B最小是()。
A. 14B. 15C. 167.在有余数的除法中,除数是5,商是6,被除数最大是()A. 30B. 34C. 358.一条小船最多能坐6人,45人至少需要()条这样的小船。
A. 7B. 8C. 99.一个两位数除以最大的一位数,余数最大是()。
A. 7B. 8C. 910.每条船最多坐5人,两位老师带领34个同学划船,应租()条船。
A. 6B. 7C. 811.把50只兔子关进笼子,每个笼子最多只能关进8只。
至少要准备()个笼子,才能全部关得下。
A. 7B. 6C. 512.小华看一本80页的故事书,如果每天看9页,那么至少要()天才能看完。
A. 8B. 9C. 10二、填空题13.28里面最多有________个6;30里面最多有________个9。
14.按要求填序号。
①8÷3②17÷4③19÷8④26÷4⑤85÷9⑥38÷5⑦58÷9⑧43÷6余数是1________余数是2________余数是3________余数是4________15.30朵小红花平均分给4个小朋友,每个小朋友可以分得________朵,还剩________朵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市同济初级中学2016学年度课程计划(2016年9月——2017年8月)目录一、学校背景分析 ...................................................................................... - 3 -二、课程目标............................................................................................... - 4 -(一)课程建设总目标 ........................................................................ - 4 - (二)学生发展目标 ............................................................................ - 4 -三、课程结构............................................................................................... - 5 -四、课程设置............................................................................................... - 6 -五、课程实施............................................................................................... - 8 -(一)基础型课程的实施 .................................................................... - 8 - (二)拓展型课程的实施 .................................................................. - 10 - (三)探究型课程的实施 .................................................................. - 14 - 六、课程管理............................................................................................. - 16 -(一)组织保障 .................................................................................. - 16 - (二)部门分工保障 .......................................................................... - 17 - 七、课程评价............................................................................................. - 18 -(一)教师评价 .................................................................................. - 18 - (二)学生评价 .................................................................................. - 19 -为进一步贯彻落实《上海市教育委员会关于深化中小学课程改革加强教学工作的若干意见》、《上海市提升中小学(幼儿园)课程领导力三年行动计划》、《关于进一步规范中小学课程教学工作深入实施素质教育的若干意见》,《上海市中小学生学业质量绿色指标(试行)的实施意见》,以及积极响应杨浦区“提升小学、初中学校课程领导力,提高教学有效性第二轮三年行动计划”。
我校将进一步深入实施素质教育,深化教育综合改革,聚焦中华优秀传统文化传承,积极建设互联网课程,提升学生的核心素养,并切实减轻中小学生过重的课业负担,促进中小学生身心健康发展,以学业质量绿色指标为引领,不断规范基础型课程建设,深入发展具有学校特色的拓展型课程和探究型课程,构建并完善符合同济初级中学校情的“阳光课程”体系。
一、学校背景分析近年来,以校长为核心的学校课程管理团队能在正确的育人理念引领下,以市级课题《以中草药课程建设为切入点促进初中生中华传统文化教育的实践研究》为引领,继续探索具有本校特色的“阳光课程”,通过项目申报和科学的管理,认真负责、严谨踏实、团结协作地推进课程的实施,不断提升教育教学质量。
作为新成立的复旦大学附属学校教育集团的成员之一,以及上海市“城市学校少年宫”试点校,学校能以此为契机深入推进三类课程的开发和实施,不仅要将原有的特色课程,例如“身边的中草药”、“民族漫画”、“手球”、“走进四书”等特色课程逐步完善,更要为进一步推进学校的整体课程建设,现就学校情况综合分析如下:同济初级中学学校背景分析二、课程目标(一)课程建设总目标聚焦教育综合改革,以“学生第一、质量第一、健康第一”为课程理念,以“夯实基础、加强监控、关注有效、发展特色”为课程建设策略,努力追求“把爱的阳光播洒到孩子的心中”的教育境界,经过四年时间,把学生培养成为“健康、自信、好问、乐群”的合格初中毕业生。
(二)学生发展目标1、培养广泛的兴趣,有1-2种体育运动爱好,在运动中提高团结协作能力。
2、培养敢于质疑的科学态度和精神,关爱生命、增进身心健康,认识5-8种中草药植物及其药用价值,有培植中草药植物的经历和体会。
3、增强对民族优秀文化的认同和自信,弘扬传统美德、爱国主义和创新精神,能在小组合作中开展民族漫画创作。
4、培养全球意识及国际交往能力,学习与其他国家人民交往的技能,部分学有余力的学生能掌握简单的德语会话。
三、课程结构为了有效达成“健康、自信、好问、乐群”的学生培养目标,学校以市级课题《以中草药课程建设为切入点促进初中生中华传统文化教育的实践研究》为引领,构建“一体多翼”的“阳光课程”体系,形成辐射性的课程链,建设一批以传承中华优秀传统文化为目的,贴近学生、充满参与和探究、师生互动相长的学生社团。
其中“一体”指基础型课程及校本化实施,“多翼”指拓展型、探究型课程,彰显个性,展现智慧学习的风采。
学校通过有效整合Subject(学科),让学生根据自己的兴趣爱好Select(选择)喜欢的课程,并在课程活动中体验Share (分享)的乐趣,感受Succeed(成功)的喜悦,从而培养Sunlight(阳光)的心态和人格。
学校“一体多翼”的“阳光”课程结构四、课程设置严格依据市课程计划规范课程设置和课程计划的执行,开满三类课程,确保艺术、体育、综合实践活动等课程有专任教师,正确处理基础型课程、拓展型课程和探究型课程的关系,各年级保障学生每天一小时的体育锻炼时间和每周“三课、二操、二活动”,规范执行“创新拓展日”、“专题教育”等规定,构建能满足学生自主选择需求的“阳光课程”系列,促进学生全面发展。
1、课时安排表:表1 2016学年同济初级中学课程设置与课时安排一览表2、学校作息时间表:表2 2016学年同济初级中学作息时间表每天上午的大课间活动主要以体育健身类活动为主,每周二下午15:40-16:20以创新拓展活动为主,每周五中午以健康教育等专题教育活动为主。
五、课程实施根据学校课程计划,学校不断完善教学常规管理制度,规范教师教学行为,以“计划、执行、检查、反馈、改进”五环节作为课程实施保障,严格推进课程方案实施。
(一)基础型课程的实施1、丰富教学策略,提升课堂教学效益基础型课程的实施中,继续探索课堂教与学时间的合理分配、学法指导和阳光评价,积极探索构成“创智课堂”的基本要素,研发本校特色的“创智课堂”评价指标。
注重培养学生高品质思维,根据不同年级学生的认知基础,拟定培养学生创新素养的重点。
(1)落实课堂教学时间的合理分配课堂时间(40分钟)= 学生主导主体活动时间+ 学生独立主体活动时间,其中,学生主导主体活动时间是指学生在听教师提问、讲解、归纳和看板书、实验等教师活动时的学生活动时间;学生独立主体活动时间是指教师暂停活动时学生的活动时间。
课堂时间的黄金分割:40×0.618=24.72=25(分钟);40×(1-0.618)=15(分钟),课堂教学的主要内容应在黄金分割时间(25分钟)内完成。
倡导将课堂时间黄金分割并非要求老师简单地、呆板地把课堂40分钟割裂成25分钟和15分钟来使用,这样分割并非对于每节课都是适合的,而是为了改变教师在课堂教学中忽视合理的时间分配甚至无节制地占用学生独立主体活动时间这一现状。
同时引导教师反观自己课堂教学中存在的不良教学习惯和行为,起到一定的警示作用,并通过量化的手法对教与学的时间分配有个基本的约束框架,从而促进教师设计有效的学生学习活动,突出学生的主体地位。
(2)扎实推进对学生开展学法指导在教学五环节中扎实开展对学生学法指导,教案中要明确学法指导的内容,上课时要通过师生互动或生生互动等形式促进对学习方法的指导和探讨,在作业、辅导等环节要指导学生对适合自己的学习方法的总结和归纳,并通过适切的评价策略促进学生之间对学习方法的交流和借鉴。
教导处和科研室在管理过程中,注重引导教师积累学法指导的实践案例。
(3)夯实“阳光评价”科研成果的应用要注重对“阳光评价”科研成果的推广和应用,促进跨学科之间评价策略的交叉使用,要充分发挥校园网络平台和教学资源库的作用,让不同学科、不同年龄、不同风格的教师分享他人的研究成果,促进同伴互助和共同提高,通过实施“阳光评价”策略提升课堂教学的有效性。
2、夯实作业管理,优化课程实施品质倡导教师开展创意作业设计,注重对学生自主、合作、探究精神的培养,提高作业的针对性、实效性、反馈的及时性和评价的多元性,初步形成各年级、各学科分层作业集、学生错题集、教师作业讲评课例和青年教师作业创意设计集等成果,促进教师专业素养的提升。
开展以作业设计为主题的教师基本功训练和竞赛,引导教师达成作业设计与教学目标的一致性,各教研组开展对“好作业”的讨论并达成基本共识。
丰富学生作业的形式,激发学生“愿做作业”的兴趣和“做好作业”的热情。