双闭环直流调速系统的设计与仿真实验报告

合集下载

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验魏小景张晓娇刘姣(自动化0602班)摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。

关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真1.引言双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。

由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。

调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。

本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。

2.基本原理和系统建模为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、图1 直流电机双闭环调速系统的动态结构图3.系统设计调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统, 系统参数:直流电动机:220,13.6,1480/m in,0.131/(/m in)e V A r C V r =,允许过载倍数1.5λ=;晶闸管装置:76s K =;电枢回路总电阻: 6.58R =Ω;时间常数:0.018l T s =,0.25m T s =;反馈系数:0.00337/(/min)V r α=,0.4/V A β=;反馈滤波时间常数:0.005oi T s =,0.005on T s =。

双闭环直流调速系统的设计与仿真开题报告

双闭环直流调速系统的设计与仿真开题报告

南京工程学院自动化学院毕业设计开题报告课题名称:双闭环直流调速系统的设计与仿真研究姓名:吴杰班级:10 自动化 1指导教师:张贞艳所在系部:自动化学院专业名称:自动化南京工程学院2014 年3 月毕业设计(论文)开题报告毕业设计的内容和意义一、毕业设计的内容(包括技术要求、图标要求以及工作要求等):1. 简单闭环调速系统系统的性能分析,其中包括单闭环有、无静差转速负反馈调速系统以及带电流截止转速负反馈调速系统的性能分析。

通过比较它们的性能分析结果,得出它们的不足之处,从而引出双闭环直流调速系统。

2. 双闭环直流调速系统的设计,其中包括建立双闭环调速系统的方框图以及仿真模型。

并且通过仿真分析结果,与简单的闭环调速仿真分析进行比较,从而得出双闭环直流调速优越性。

3. 双闭环V-M系统的设计,其中包含调节器的选择和参数设计,相关数据计算,动态结构图仿真,虚拟模型图仿真,仿真结果分析等。

4. 双闭环PWM-M调速系统设计,其中包含调节器的选择和参数设计,相关数据计算,动态结构图仿真,虚拟模型图仿真,仿真结构分析等。

二、毕业设计的意义1. 根据MATLAB/Simulink 仿真平台,研究双闭环直流调速系统的性能。

双闭环直流调速系统是目前应用最广泛的调速系统,该系统具有调速范围宽、稳定性好、精度高等许多优点,在拖动领域中发挥着极其重要的作用[1]。

采用该系统可获得优良的静、动态调速特性。

此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础[2]。

2. 通过比较单闭环有、无静差转速负反馈调速系统和带电流截止负反馈调速系统的仿真结果,从而得到它们各自的不足之处,从而突出双闭环直流调速系统的优越性以及必要性。

3. 通过对双闭环V-M系统和双闭环PWM-M调速系统这两种典型双闭环调速系统的的仿真分析,帮助我们更好的了解和应用双闭环直流调速系统。

4. 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。

双闭环直流调速系统的建模与仿真实验研究

双闭环直流调速系统的建模与仿真实验研究

双闭环直流调速系统的建模与仿真实验研究摘要利用MATLAB下的SIMULINK软件和电力系统模块库(SimPowerSystems)进行系统仿真是十分简单和直观的,用户可以用图形化的方法直接建立起仿真系统的模型,并通过SIMULINK环境中的菜单直接启动系统的仿真过程,同时将结果在示波器上显示出来。

掌握了强大的SIMULINK工具后,会大大增强用户系统仿真的能力。

关键词:matlab;simulink;双闭环;电机;调速ABSTRUCTUsing simlink software of MATLAB and SimPowerSystems ,it is simple and manifest to simulate the ers can build up system model by graph,and run simulative program by pressing the menu of Simulink environment,whose result will display on the er’s capability of simulation will be fortified much with the learning of powerful SIMULINK tools.KEY WORD:matlab;simulink;Double closed loop;electric motor;speed regulation一引言:本课题所涉及的调速方案本质上是改变电枢电压调速。

该调速方法可以实现大范围平滑调速,是目前直流调速系统采用的主要调速方案。

但电机的开环运行性能远远不能满足要求。

按反馈控制原理组成转速闭环系统是减小或消除静态转速降落的有效途径。

转速反馈闭环是调速系统的基本反馈形式。

可要实现高精度和高动态性能的控制,不尽要控制速度,同时还要控制速度的变化率也就是加速度。

双闭环控制的直流脉宽调速系统(H桥)实验报告(2014)

双闭环控制的直流脉宽调速系统(H桥)实验报告(2014)

正转时,闭环控制特性 n = f(Ug)
n(rpm)
1172 1100 1000 902 791 692 594
Ug(V)
4.06 3.78 3.41 3.07 2.69 2.35 2.02
反转时,闭环控制特性 n = f(Ug)
n(rpm)
1168 1096 997
Ug(V)
4.02 3.77 3.43
实验名称:双闭环控制的直流脉宽调速系统(H 桥)
实验目的:
1. 了解 PMW 全桥直流调速系统的工作原理。 2. 分析电流环与速度环在直流调速系统中的作用。
实验仪器设备:
1.DJK01 电源控制屏; 2.DJK08 可调电阻、电容箱; 3.DJK09 单相调压与可调负载; 4.DJK17 双闭环 H 桥 DC/DC 变换直流调速系统; 5.DD03-2 电机导轨、测速发电机及转速表; 6.DJ13-1 直流发电机; 7.DJ15 直流并励发电机; 8.D42 三相可调电阻; 9.慢扫描示波器; 10.万用表。
实验数据及结果:
系统的开环特性 n =f(Id)
n(rpm)
1130
Id(A)
0.9
1160 0.8
1190 0.7
1225 0.58
1265 0.45
1288 0.4
1300 0.37
电动机转速接近 n=l200rpm,闭环机械特性 n =f(Id)
n(rpm)
1168 1146 1116 1101
Ug 不变,改变 RG 使 Id 逐渐下降,测出相应的转速 n 及电流平均值 Id。 2.系统闭环特性的测定:将电流反馈量调节电位器调到最高端。 转向选择开关拨至“正向”,Ug >0,电动机启动后,测量测速发电机输出电压,将高电 位端接入速度反馈的 T1 端,低电位端接入 T2 端,以保证速度反馈为负值。 闭环机械特性的测定: 1) 调节给定 Ug 、转速反馈和电流反馈调节电位器使电机转速 n=1200rpm,这时 Un

“双闭环控制直流电动机调速系统”数字仿真实验

“双闭环控制直流电动机调速系统”数字仿真实验

实验指导书“双闭环控制直流电动机调速系统”数字仿真实验一、实验目的1.熟悉Matlab/Simulink仿真环境;2.掌握Simulink图形化建模方法;3.验证“直流电动机转速/电流双闭环PID控制方案”的有效性。

二、实验内容1.“双闭环直流电动机调速系统”的建模2.电流环/调节器设计3.电流环动态跟随性能仿真实验4.转速环/调节器设计5.转速环动态抗扰性能仿真实验6.系统动态性能分析(给出仿真实验结果与理论分析结果的对比/分析/结论)三、实验步骤1、系统建模A.控制对象的建模建立线性系统动态数学模型的基本步骤如下:(1)根据系统中各环节的物理定律,列写描述据该环节动态过程的微分方程;(2)求出各环节的传递函数;(3)组成系统的动态结构图并求出系统的传递函数。

下面分别建立双闭环调速系统各环节的微分方程和传递函数。

B.额定励磁下的直流电动机的动态数学模型图1给出了额定励磁下他励直流电机的等效电路,其中电枢回路电阻R 和电感L 包含整流装置内阻和平波电抗器电阻与电感在内,规定的正方向如图所示。

图1 直流电动机等效电路由图1可列出微分方程如下:0dd d dI U RI LE dt=++ (主电路,假定电流连续) e E C n = (额定励磁下的感应电动势)2375e L GD dnT T dt-=⋅ (牛顿动力学定律,忽略粘性摩擦)e m d T C I = (额定励磁下的电磁转矩)定义下列时间常数:l LT R=——电枢回路电磁时间常数,单位为s ;2375m e mGD R T C C =——电力拖动系统机电时间常数,单位为s ; 代入微分方程,并整理后得:0()dd d ldI U E R I T dt -=+ m d d L T dE I I R dt-=⋅ 式中,/dL L m I T C =——负载电流。

在零初始条件下,取等式两侧得拉氏变换,得电压与电流间的传递函数0()1/()()1d d l I s R U s E s T s =-+(1)电流与电动势间的传递函数为()()()d dL m E s R I s I s T s=-(2)d Ua) b)Uc)图2 额定励磁下直流电动机的动态结构图 a) 式(1)的结构图 b)式(2)的结构图c)整个直流电动机的动态结构图C .晶闸管触发和整流装置的动态数学模型在分析系统时我们往往把它们当作一个环节来看待。

双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验报告公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]双闭环不可逆直流调速系统实验一、实验目的(1)了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。

(2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。

(3)研究调节器参数对系统动态性能的影响。

二、实验所需挂件及附件三、实验线路及原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。

为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。

双闭环直流调速系统是由速度调节器和电流调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。

实验系统的原理框图组成如下:启动时,加入给定电压Ug,“速度调节器”和“电流调节器”即以饱和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即Ug =Ufn),并在出现超调后,“速度调节器”和“电流调节器”退出饱和,最后稳定在略低于给定转速值下运行。

系统工作时,要先给电动机加励磁,改变给定电压Ug的大小即可方便地改变电动机的转速。

“速度调节器”、“电流调节器”均设有限幅环节,“速度调节器”的输出作为“电流调节器”的给定,利用“速度调节器”的输出限幅可达到限制启动电流的目的。

“电流调节器”的输出作为“触发电路”的控制电压Uct,利用“电流调节器”的输出限幅可达到限制αmax的目的。

在本实验中DJK04上的“调节器I”作为“速度调节器”使用,“调节器II”作为“电流调节器”使用;若使用DD03-4不锈钢电机导轨、涡流测功机及光码盘测速系统和D55-4智能电机特性测试及控制系统两者来完成电机加载请详见附录相关内容。

双闭环直流电动机调速系统

双闭环直流电动机调速系统

04
系统软件设计
控制算法设计
算法选择
算法实现
根据系统需求,选择合适的控制算法, 如PID控制、模糊控制等。
将控制算法用编程语言实现,并集成 到系统中。
算法参数整定
根据系统性能指标,对控制算法的参 数进行整定,以实现最优控制效果。
调节器设计
调节器类型选择
根据系统需求,选择合适 的调节器类型,如PI调节 器、PID调节器等。
在不同负载和干扰条件下测试系统的性能, 验证系统的鲁棒性。
06
结论与展望
工作总结
针对系统中的关键问题,如电流和速度的动态 调节、超调抑制等,进行了深入研究和改进。
针对实际应用中可能出现的各种干扰和不确定性因素 ,进行了充分的考虑和实验验证,提高了系统的鲁棒
性和适应性。
实现了双闭环直流电动机调速系统的优化设计 ,提高了系统的稳定性和动态响应性能。
通过对实验数据的分析和比较,验证了所设计的 双闭环直流电动机调速系统的可行性和优越性。
研究展望
进一步研究双闭环直流电动机 调速系统的控制策略,提高系
统的动态性能和稳定性。
针对实际应用中的复杂环境和 工况,开展更为广泛和深入的 实验研究,验证系统的可靠性
和实用性。
探索双闭环直流电动机调速系 统在智能制造、机器人等领域 的应用前景,为相关领域的发 展提供技术支持和解决方案。
功率驱动模块
总结词
控制直流电动机的启动、停止和方向。
详细描述
功率驱动模块是双闭环直流电动机调速系统的核心部分,负责控制直流电动机的启动、停止和方向。它通常 由电力电子器件(如晶体管、可控硅等)组成,通过控制电动机的输入电压或电流来实现对电动机的速度和 方向的控制。功率驱动模块还需要具备过流保护、过压保护和欠压保护等功能,以确保电动机和整个系统的

双闭环直流调速系统课程设计(matlab仿真设计)

双闭环直流调速系统课程设计(matlab仿真设计)

Hefei University电子信息与电气工程系自动化专业控制系统数字仿真与CAD课程报告课题:直流电动机双闭环调速系统仿真班级:08自动化(1)班*名:**0805070073朱彤0805070068李方舟0805070053指导老师:***摘要:双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。

它具有动态响应快、抗干扰能力强的优点。

我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。

采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。

对最常用的转速、电流双闭环调速系统的工程设计方法进行了详细的推导。

然后采用Matlab/Simulink方法对实际系统进行仿真,找出推导过程被忽略的细节部分对调速系统的影响,给出工程设计和实际系统之间产生差距的原因,有助于在实际中设计出较优的系统。

关键词:直流电机调速系统仿真MatlabAbstract: Double closed loop ( speed loop, current loop DC speed control system ) is a kind of current application is wide, economic, applicable power transmission system.The paper presents the derive ationof engineering design methods in the speed regulation system of speed and current double closed loop in details. Then,a demo is designed and simulated by Matlab/Simulink to study the influence resulted from the details of the derivation,which has been ignored in the speed regulation system. The reason of difference between the engineeringdesign and the real conditions is given to help working out theoptimaldesigninpractice. Keywords: DC motor Speed regulation system Simulation Matlab一、双闭环直流调速系统的介绍双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。

双闭环直流调速系统实验

双闭环直流调速系统实验

实验一 实验二 实验三 实验四 实验五实验五实验五 双闭环直流调速系统实验双闭环直流调速系统实验一.实验目的一.实验目的⒈ 熟悉双闭环直流调速系统的组成、工作原理、调试方法。

⒉ 了解双闭环直流调速系统的静态和动态特性。

二.实验设备二.实验设备⒈ MCL –⒈ MCL – 31 31 31 低压控制电路及仪表。

低压控制电路及仪表。

低压控制电路及仪表。

⒉ MCL –⒉ MCL – 32 32 32 电源控制屏。

电源控制屏。

电源控制屏。

⒊ MCL –⒊ MCL – 33 33 33 触发电路及晶闸管主回路。

触发电路及晶闸管主回路。

触发电路及晶闸管主回路。

⒋ MEL –⒋ MEL – 0303 03 三相可调电阻器。

三相可调电阻器。

三相可调电阻器。

⒌ MEL –⒌ MEL – 11 11 11 电容箱。

电容箱。

电容箱。

⒍ 直流电动机–发电机–测速机组。

⒍ 直流电动机–发电机–测速机组。

⒎ 万用表。

⒎ 万用表。

⒏ 双踪示波器。

⒏ 双踪示波器。

三.三. 实验原理实验原理在双闭环直流调速系统中设置了两个调节器,转速调节器的输出当作电流调节器的输入,电流调节器的输出控制晶闸管整流器的 触发装置。

触发装置。

电流调节器在里面称作内环,转速调节器在外面称作外环,这样就形成转速、电流双闭环调速系统。

双闭环直流调速系统原理图如下图所示。

速系统原理图如下图所示。

为了获得良好的静、动态性能,转速和电流两个调节器都采用采用 PI PI PI 调节器。

转速调节器是调速系统的主导调节器,它使转速跟随其给定电压变调节器。

转速调节器是调速系统的主导调节器,它使转速跟随其给定电压变化,稳态时实现转速无静差,对负载变化起抗扰作用,其输出限幅值决定电机允许的最大电流。

最大电流。

电流调节器电流调节器 使 电流紧紧跟随其电流紧紧跟随其 给定电压变化,对电网电压的波动起及时抗扰作用,在 转速动态过程中能够获得电动机允许的最大电流,从而加快动态过程, 当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。

双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验报告

双闭环不可逆直流调速系统实验一、实验目的(1)了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。

(2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。

(3)研究调节器参数对系统动态性能的影响。

二、实验所需挂件及附件三、实验线路及原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。

为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。

双闭环直流调速系统是由速度调节器和电流调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。

实验系统的原理框图组成如下:启动时,加入给定电压U g,“速度调节器”和“电流调节器”即以饱和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即U g =U fn),并在出现超调后,“速度调节器”和“电流调节器”退出饱和,最后稳定在略低于给定转速值下运行。

系统工作时,要先给电动机加励磁,改变给定电压U g的大小即可方便地改变电动机的转速。

“速度调节器”、“电流调节器”均设有限幅环节,“速度调节器”的输出作为“电流调节器”的给定,利用“速度调节器”的输出限幅可达到限制启动电流的目的。

“电流调节器”的输出作为“触发电路”的控制电压U ct,利用“电流调节器”的输出限幅可达到限制αmax的目的。

在本实验中DJK04上的“调节器I”作为“速度调节器”使用,“调节器II”作为“电流调节器”使用;若使用DD03-4不锈钢电机导轨、涡流测功机及光码盘测速系统和D55-4智能电机特性测试及控制系统两者来完成电机加载请详见附录相关内容。

四、实验内容(1)各控制单元调试。

(2)测定电流反馈系数β、转速反馈系数α。

双闭环直流调速系统的设计与仿真实验报告

双闭环直流调速系统的设计与仿真实验报告

双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。

速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。

电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。

二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。

根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。

同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。

三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。

电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。

四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。

首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。

然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。

五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。

当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。

同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。

此外,通过调整控制参数,可以改善系统的响应速度和稳定性。

六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。

本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。

仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。

“双闭环控制直流电动机调速系统”数字仿真实验

“双闭环控制直流电动机调速系统”数字仿真实验

“双闭环控制直流电动机调速系统”数字仿真实验24、SIMULINK建模我们借助SIMULINK,根据上节理论计算得到的参数,可得双闭环调速系统的动态结构图如下所示:图7 双闭环调速系统的动态结构图(1)系统动态结构的simulink建模①启动计算机,进入MATLAB系统检查计算机电源是否已经连接,插座开关是否打开,确定计算机已接通,按下计算机电压按钮,打开显示器开关,启动计算机。

打开Windows开始菜单,选择程序,选择MATAB6.5.1,选择并点击MATAB6.5.1,启动MATAB程序,如图8,点击后得到下图9:图8选择MATAB程序图9 MATAB6.5.1界面点击smulink 中的continuous,选择transfor Fc n(传递函数)就可以编辑系统的传递函数模型了,如图10。

图10 smulink界面②系统设置选择smulink界面左上角的白色图标既建立了一个新的simulink模型,系统地仿真与验证将在这个新模型中完成,可以看到在simulink目录下还有很多的子目录,里面有许多我们这个仿真实验中要用的模块,这里不再一一介绍,自介绍最重要的传递函数模块的设置,其他所需模块参数的摄制过程与之类似。

将transfor Fc n(传递函数)模块用鼠标左键拖入新模型后双击transfor Fc n(传递函数)模块得到图11,开始编辑此模块的属性。

图11参数表与模型建立参数对话栏第一和第二项就是我们需要设置的传递函数的分子与分母,如我们需要设置电流环的控制器的传递函数:0.01810.0181()0.2920.0180.062ACR s s W s s s++=⋅=,这在对话栏的第一栏写如:[0.018 1],第二栏为:[0.062 0]。

点击OK ,参数设置完成。

如图12。

图12传递函数参数设置设置完所有模块的参数后将模块连接起来既得到图7所示的系统仿真模型。

在这里需要注意的是,当我们按照理论设计的仿真模型得到的实验波形与理想的波形有很大的出入。

双闭环直流电机调速系统SIMULINK仿真实验

双闭环直流电机调速系统SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验小景晓娇姣〔自动化0602班〕摘要:采用工程设计方法对双闭环直流调速系统进展设计,选择调节器构造,进展参数的计算和校验;给出系统动态构造图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形,并进展调试,使双闭环直流调速系统趋于合理与完善。

关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真1.引言双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比拟成熟的系统,在拖动领域中发挥着极其重要的作用。

由于直流电机双闭环调速是各种电机调速系统的根底,直流电机双闭环调速系统的工程设计主要是设计两个调节器。

调节器的设计一般包括两个方面:第一选择调节器的构造,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。

本文就直流电机调速进展了较系统的研究,从直流电机的根本特性到单闭环调速系统,然后进展双闭环直流电机设计方法研究,最后用实际系统进展工程设计,并采用Matlab/Sim-ulink进展仿真。

2.根本原理和系统建模为了实现转速和电流两种负反应分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环构造上看,电流调节环在里面,叫做环,转速调节环在外边叫做外环,这样就形了转速、电图1 直流电机双闭环调速系统的动态构造图3.系统设计调速系统的根本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统, 系统参数:直流电动机:220,13.6,1480/min,0.131/(/min)e V A r C V r =,允许过载倍数1.5λ=;晶闸管装置:76s K =;电枢回路总电阻: 6.58R =Ω;时间常数:0.018l T s =,0.25m T s =;反应系数:0.00337/(/min)V r α=,0.4/V A β=;反应滤波时间常数:0.005oi T s =,0.005on T s =。

直流电动机双闭环调速系统MATLAB仿真实验报告

直流电动机双闭环调速系统MATLAB仿真实验报告

本科上机大作业报告课程名称:电机控制姓名:学号:学院:电气工程学院专业:电气工程及其自动化指导教师:提交日期:20年月日一、作业目的1.熟悉电机的控制与仿真;2.熟悉matlab和simulink等相关仿真软件的操作;3.熟悉在仿真中各参数变化和不同控制器对电机运行的影响。

二、作业要求对直流电动机双闭环调速进行仿真1.描述每个模块的功能2.仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象3.转速PI调节器参数对电机运行性能的影响4.电流调节器改用PI调节器三、实验设备MATLAB、simulink四、实验原理1.双闭环系统结构如图:该系统通过电流负反馈和速度负反馈两个反馈闭环实现对电机的控制,其内环是电流控制环,外环是转速控制环。

内环由电流调节器LT,晶闸管移相触发器CF,晶闸管整流器和电动机电枢回路所组成。

电流调节器的给定信号un。

与电机电枢回路的电流反馈信号相比较,其差值送人电流调节器.由调节器的输出通过移相触发器控制整流桥的输出电压。

在这个电压的作用下电机的电流及转矩将相应地发生变化。

电流反馈信号可以通过直流互感器取白肖流电枢回路,也可以用交流互感器取自整流桥的交流输人电流,然后经整流面得。

这两种办法所得结果相同,但后者应用较多,因为交流互感器结构比较简单。

当电流调节器的给定信号u n大于电流反馈信号uf,其差值为正时,经过调节器控制整流桥的移相角α,使整流输出电压升高,电枢电流增大。

反之,当给定信号u n 小于电流反馈信号时,使整流桥输出电压降低,电流减小,它力图使电枢电流与电流给定值相等。

外环是速度环,其中有一个速度调节器ST,在调节器的输入端送入一个速度给定信号u g,由它规定电机运行的转速。

另一个速度反馈信号u fn米自与电机同轴的测速发电机TG。

这个速度给定信号和实际转速反馈信号之差输人到速度调节器,由速度调节器的输出信号u n作电流调节器输人送到电流调节器,通过前面所讲的电流调节环的控制作用调节电机的.电枢电流Ia和转矩T ,使电机转速发生变化,最后达到转速的给定值。

“双闭环控制直流电动机调速系统”数字仿真实验

“双闭环控制直流电动机调速系统”数字仿真实验

“双闭环控制直流电动机调速系统”数字仿真实验一、引言1.直流电机调速系统概述直流电机调速系统在现代化工业生产中已经得到广泛应用。

直流电动机具有良好的起、制动性能和调速性能,易于在大范围内平滑调速,且调速后的效率很高。

直流电动机有三种调速方法,分别是改变电枢供电电压、励磁磁通和电枢回路电阻来调速。

对于要求在一定范围内无级平滑调速的系统来说,以调节电枢电压方式为最好,调压调速是调速系统的主要调速方式。

直流调压调速需要有专门的可控直流电源给直流电动机,随着电力电子的迅速发展,直流调速系统中的可控变流装置广泛采用晶闸管,将晶闸管的单向导电性与相位控制原理相结合,构成可控直流电源,以实现电枢端电压的平滑调节。

本实验的题目是双闭环直流电机调速系统设计。

采用静止式可控整流器即改革后的晶闸管—电动机调速系统作为调节电枢供电电压需要的可控直流电源。

由于开环调速系统都能实现一定范围内的无级调速,但是许多需要调速的生产机械常常对静差率有要求则采用反馈控制的闭环调速系统来解决这个问题。

如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。

而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。

所以双闭环直流调速是性能很好、应用最广的直流调速系统。

转速、电流双闭环控制直流调速系统根据晶闸管的特性,通过调节控制角α大小来调节电压。

基于实验题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。

本实验的重点是设计直流电动机调速控制器电路,实验采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。

从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。

这就形成了转速、电流双闭环调速系统。

双闭环直流调速系统报告

双闭环直流调速系统报告

双闭环直流调速系统报告⽬录1 设计⽬的及意义 (2)2 ⼯作原理 (3)2.1双闭环直流调速系统的组成与原理 (3)2.2双闭环直流调速系统的静特性分析 (3)2.3双闭环直流调速系统的稳态结构图 (5)2.4双闭环直流调速系统的数学模型 (6)2.5调节器的具体设计 (6)2.6速度环的设计 (8)2.7双闭环直流调速系统仿真 (10)3 ⽅案设计与论证 (11)4 系统硬件设计 (14)4.1主电路 (14)4.2控制电路 (14)4.3驱动电路 ...........................................................................4.4反馈和保护电路 (15)5 系统调试 (15)6 ⼼得体会 (16)参考⽂献 (17)1设计⽬的及意义本设计从直流电动机的⼯作原理⼊⼿,并详细分析了系统的原理及其静态和动态性能。

然后按照⾃动控制原理,对双闭环调速系统的设计参数进⾏分析和计算,利⽤Simulink对系统进⾏了各种参数给定下的仿真,通过仿真获得了参数整定的依据。

转速、电流双闭环直流调速系统是性能很好,应⽤最⼴的直流调速系统, 采⽤转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。

转速、电流双闭环直流调速系统的控制规律,性能特点和设计⽅法是各种交、直流电⼒拖动⾃动控制系统的重要基础。

应掌握转速、电流双闭环直流调速系统的基本组成及其静特性;从起动和抗扰两个⽅⾯分析其性能和转速与电流两个调节器的作⽤;应⽤⼯程设计⽅法解决双闭环调速系统中两个调节器的设计问题,等等。

通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不⾜之处的完善,可提⾼该系统的性能,使其能够适⽤于各种⼯作场合,提⾼其使⽤效率。

2⼯作原理2.1 双闭环直流调速系统的组成与原理图2.1 双闭环直流调速系统的原理图电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输⼊端存在⼀个偏差信号,经放⼤后输出的电压保持为限幅值,速度调节器⼯作在开环状态,速度调节器的输出电压作为电流给定值送⼊电流调节器, 此时则以最⼤电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增⼤直到等于最⼤给定值, 电动机以最⼤电流恒流加速启动。

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真———————————————————————————————— 作者:———————————————————————————————— 日期:1绪论直流调速是现代电力拖动自动控制系统中开展较早的技术。

在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。

晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。

尽管目前交流调速的迅速开展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢送。

但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反响控制理论根底上的直流调速原理也是交流调速控制的根底[1]。

现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但根本控制原理有其共性。

对于那些在实际调试过程中存在很大风险或实验费用昂贵的系统,一般不允许对设计好的系统直接进展实验。

然而没有经过实验研究是不能将设计好的系统直接放到生产实际中去的。

因此就必须对其进展模拟实验研究。

当然有些情况下可以构造一套物理装置进展实验,但这种方法十分费时而且费用又高,而且在有的情况下物理模拟几乎是不可能的。

近年来随着计算机的迅速开展,采用计算机对控制系统进展数学仿真的方法已被人们采纳。

但是长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。

以使系统模型等为计算机所承受,然后再编制成计算机程序,并在计算机上运行。

因此产生了各种仿真算法和仿真软件[2]。

由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。

MATLAB提供动态系统仿真工具Simulink,那么是众多仿真软件中最强大、最优秀、最容易使用的一种。

它有效的解决了以上仿真技术中的问题。

双闭环直流电动机调速系统设计及MATLAB仿真

双闭环直流电动机调速系统设计及MATLAB仿真

目录1、引言 (2)二、初始条件: (2)三、设计要求: (2)四、设计基本思路 (3)五、系统原理框图 (3)六、双闭环调速系统的动态结构图 (3)七、参数计算 (4)1. 有关参数的计算 (4)2. 电流环的设计 (5)3. 转速环的设计 (6)七、双闭环直流不可逆调速系统线路图 (8)1.系统主电路图 (8)2.触发电路 (9)3.控制电路 (12)4. 转速调节器ASR设计 (13)5. 电流调节器ACR设计 (13)6. 限幅电路的设计 (13)八、系统仿真 (14)1. 使用普通限幅器进行仿真 (14)2. 积分输出加限幅环节仿真 (15)3. 使用积分带限幅的PI调节器仿真 (17)九、总结 (19)一、设计目的1.联系实际,对晶闸管-电动机直流调速系统进行综合性设计,加深对所学《自动控制系统》课程的认识和理解,并掌握分析系统的方法。

2.熟悉自动控制系统中元部件及系统参数的计算方法。

3.培养灵活运用所学自动控制理论分析和解决实际系统中出现的各种问题的能力。

4.设计出符合要求的转速、电流双闭环直流调速系统,并通过设计正确掌握工程设计的方法。

5.掌握应用计算机对系统进行仿真的方法。

二、初始条件:1.技术数据(1)直流电机铭牌参数:P N =90KW, U N =440V, I N =220A, n N=1500r/min,电枢电阻Ra=0.088Ω,允许过载倍数λ=1.5;(2)晶闸管整流触发装置:Rrec=0.032Ω,Ks=45-48。

(3)系统主电路总电阻:R=0.12Ω(4)电磁时间常数:T1=0.012s(5)机电时间常数:Tm =0.1s(6)电流反馈滤波时间常数:Toi=0.0025s,转速率波时间常数:Ton=0.014s.(7)额定转速时的给定电压:Unm =10V(8)调节器饱和输出电压:10V2.技术指标(1)该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作错误!未指定书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TG
n
ASR
ACR
U *n +
- U n U i
U
*
i
+
-
U c
TA
V
M
+
-
U d
I d
UP
L
-
M T 双闭环直流调速系统的设计与仿真
1、实验目的
1.熟悉晶闸管直流调速系统的组成及其基本原理。

2.掌握晶闸管直流调速系统参数及反馈环节测定方法。

3.掌握调节器的工程设计及仿真方法。

2、实验内容
1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析
3、实验要求
用电机参数建立相应仿真模型进行仿真
4、双闭环直流调速系统组成及工作原理
晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机—发电机组等组成。

本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压U ct 作为触发器的移相控制电压,改变U ct 的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接,如图 4.1。

把转速调节器的输出当作电流调节器的输入,再用电流的输出去控制电力电子变换器UPE 。

在结构上,电流环作为内环,转速环作为外环,形成了转速、电流双闭环调速系统。

为了获得良好的静、动态特性,转速和电流两个调节器采用PI 调节器。

图4.1 转速、电流双闭环调速系统
5、电机参数及设计要求 5.1电机参数
直流电动机:220V ,136A ,1460r/min ,C e =0.192V • min/r ,允许过载倍数=1.5,晶闸管装置放大系数:K s =40
电枢回路总电阻:R=0.5
时间常数:T l =0.00167s, T m =0.075s 电流反馈系数:β=0.05V/A
转速反馈系数:=0.007 V • min/r
5.2设计要求
要求电流超调量σi ≤5%,转速无静差,空载起动到额定转速时的转速超调量σn ≤10%。

6、调节器的工程设计 6.1电流调节器ACR 的设计
(1)确定电流环时间常数
1)装置滞后时间常数T s =0.0017s ; 2)电流滤波时间常数T oi =0.002s ;
3)电流环小时间常数之和T ∑i =T s +T oi =0.0037s ; (2)选择电流调节结构
根据设计要求σi ≤5%,并且保证稳态电流无差,电流环的控制对象是双惯性型的,且T l /T ∑i =0.03/0.0037=8.11<10,故校正成典型 I 型系统,显然应采用PI 型的电流调节器,其传递函数可以写成
W ACR (s )=K i
τi s +1
τi s
式中K i — 电流调节器的比例系数; τi — 电流调节器的超前时间常数。

(3)计算电流调节器参数
电流调节器超前时间常数:τi =T l =0.03s 。

电流环开环增益:要求σi ≤5%时,取K I T ∑i =0.5,因此
K I =0.5T ∑i
≈135.1s −1
于是,ACR 的比例系数为
K i =K I τi R K s β
≈1.013
(4)校验近似条件
电流环截止频率ωci =K I ≈135.1s −1
1)校验晶闸管装置传递函数的近似条件是否满足:因为1/3T s ≈196.1s −1>ωci ,所以满足近似条件;
2)校验忽略反电动势对电流环影响的近似条件是否满足:3√1/T m T l ≈40.82s −1<ωci ,所以满足近似条件;
3) 校验小时间常数近似处理是否满足条件:(1/3)√1/T m T l ≈180.8s −1>ωci ,所以满足近似条件。

按照上述参数,电流环满足动态设计指标要求和近似条件。

同理,当KT =0.25时,可得K i =0.5067 τi =16.89;
当KT =1.0时,可得K i =2.027 τi =67.567
6.2转速调节器ASR 的设计
(1)确定转速环时间常数
1)电流环等效时间常数为2T ∑i =0.0074s ;
2)电流滤波时间常数T on 根据所用测速发电机纹波情况,取T on =0.01s ; 3)转速环小时间常数T ∑n =2T ∑i +T on ; (2)转速调节器的结构选择
由于设计要求转速无静差,转速调节器必须含有积分环节;又根据动态设计要求,应按典型型系统设计转速环,转速调节器选用比例积分调节器(PI),其传递函数为
W ASR(s)=K n τn s+1τn s
式中K n—电流调节器的比例系数;
τn—电流调节器的超前时间常数。

(3)选择转速调节器参数
按照跟随和抗扰性能都较好的原则取h=5,则转速调节器的超前时间常数为
τn=ℎT∑n=0.087s,
转速开环增益为
K N=
ℎ+1
2ℎ2T∑n2
≈396.4s−2
所以转速调节器的比例系数为
K n=(ℎ+1)βT m C e
2ℎαRT∑n
≈11.7
(4)校验近似条件
转速环截止频率ωcn=K Nτn≈34.5s−1
1)校验电流环传递函数简化条件是否满足:由于(1/3)√K I/T∑i≈63.7s−1>ωcn,所以满足简化条件;
2)校验转速环小时间常数近似处理是否满足条件:由于(1/3)√K I/T on≈38.7s−1>ωcn,所以满足近似条件。

3)核算转速超调量
当h=5时,∆C max/C b=81.2%,而∆n N=I N R/C e=515.2rpm,因此
σn=(∆C max/C b)×2(λ−z)(∆n N T∑n)/(n∗T m)=8.31%<10%
能满足设计要求。

7、仿真模型的建立
利用MATLAB上的SIMULINK仿真平台,建立仿真模型。

如图7.1为电流环的仿真模型,图7.2为加了转速环之后的双闭环控制系统的仿真模型。

图7.1 电流环的仿真模型
_
图7.2 转速环的仿真模型
8、仿真结果分析
当取K i=1.013,τi=33.77时,电流环阶跃响应快,超调量小。

图8.1 电流环仿真结果
当K i=0.5067,τi=16.89时,电流环阶跃响应无超调,但上升时间长。

图8.2 无超调的仿真结果
当K i=2.027,τi=67.567时,电流环阶跃响应超调大,但上升时间短。

图8.3 超调量较大的仿真结果
当K n=11.7,τn=134.48时,图7.2中“step1”中“step time”值为0,“final value”值为10,代表空载状态,此时系统起动速度快,退饱和超调量较大。

图8.4 转速环空载高速起动波形图
当K n=11.7,τn=134.48时,图7.2中“step1”中“step time”值为0,“final value”值为136,代表满载状态,此时系统起动时间延长,退饱和超调量减小。

图8.5 转速环满载高速起动波形图
当K n=11.7,τn=134.48时,图7.2中“step1”中“step time”值为1,“final value”值为10,加入扰动瞬间系统曲线有波动,但迅速恢复稳定。

图8.6 转速环的抗扰波形图
通过以上仿真分析,与理想的电动机起动特性相比,仿真的结果与理论设计具有差距。

为什么会出现上述情况,从理论的设计过程中不难看出,因为在“典型系统的最佳设计法”时,将一些非线性环节简化为线性环节来处理,如滞后环节近似为一阶惯性,调节器的限幅输出特性近似为线性环节等。

经过大量仿真调试,改变电流和转速环调节器的参数,兼顾电流、转速超调量和起动时间性能指标。

9、心得体会
利用MATLAB上的SIMULINK仿真平台对直流调速系统进行理论设计与调试,使得系统的性能分析过程简单且直观。

通过对系统进行仿真,可以准确地了解到理论设计与实际系统之间的偏差,逐步改进系统结构及参数,得到最优调节器参数,使得系统的调试得到简化,缩短了产品的开发设计周期。

该仿真方法必将在直流调速系统的设计与调试中得到广泛应用。

相关文档
最新文档