人教版七年级下册数学期末考试试卷及答案doc

合集下载

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。

2. 已知一个数的平方等于36,则这个数是______或______。

3. 下列各数中,是无理数的是______、______、______。

4. 一个等边三角形的周长为15,则它的边长是______,面积是______。

5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。

三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。

2. (10分)解方程:2x - 5 = 3x + 1。

3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。

A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。

A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。

A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。

A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。

A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。

A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。

A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。

A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。

A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。

A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。

12. 下列各数中,是无理数的是__________。

13. 下列等式中,正确的是__________。

14. 若一个正方形的边长是a,则它的面积是__________。

15. 下列各数中,是负数的是__________。

16. 若一个数的平方是16,则这个数是__________。

17. 下列各数中,是正整数的是__________。

18. 若一个数的绝对值是7,则这个数是__________。

19. 下列各数中,是偶数的是__________。

20. 若一个数的立方是27,则这个数是__________。

三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。

22. 已知一个数的平方是9,求这个数。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

新人教版七年级数学下册期末考试题【含答案】

新人教版七年级数学下册期末考试题【含答案】

新人教版七年级数学下册期末考试题【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.一5的绝对值是( )A .5B .15C .15-D .-55.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.若|a|=5,b=﹣2,且ab>0,则a+b=________.4.若+x x-有意义,则+1x=___________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程:3531 132x x-+ -=2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、A5、B6、B7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、83、-74、15、16、48三、解答题(本大题共6小题,共72分)1、3x .2、3 53、(1)(4,-2);(2)作图略,(3)6.4、60°5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆;(2)至多能购进B型车20辆.。

人教版七年级数学下册期末测试题及答案(共五套)

人教版七年级数学下册期末测试题及答案(共五套)

七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2023年人教版七年级数学下册期末考试卷及答案【A4打印版】

2023年人教版七年级数学下册期末考试卷及答案【A4打印版】

2023年人教版七年级数学下册期末考试卷及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列图形中,不是轴对称图形的是( )A .B .C .D .3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB=,则阴影部分的面积是__________.3.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组x3y1 {3x2y8+=--=2.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t0 1 2 3 …(h)油箱剩余油量Q100 94 88 82 …(L)①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、B6、C7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、83、3 44、-405、40°6、5三、解答题(本大题共6小题,共72分)1、x2 y1⎧⎨⎩==-2、(1)m=-5 (2)373、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤403;(3)两人相遇时间为第8分钟.4、36平方米5、(1)800,240;(2)补图见解析;(3)9.6万人.25003km.6、①Q=100﹣6t;② 10L;③。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。

新人教版七年级数学下册期末考试卷及答案【完整版】

新人教版七年级数学下册期末考试卷及答案【完整版】

新人教版七年级数学下册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.2的相反数是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、-405、﹣2.6、2或-8三、解答题(本大题共6小题,共72分)1、1x2、3 53、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。

七年级下册数学期末试卷及答案人教版

七年级下册数学期末试卷及答案人教版

七年级下册数学期末试卷及答案人教版一、选择题(每题2分,共40分)1. 下列谁是数学家?()A. 马化腾B. 郭守敬C. 李连杰D. 阿里巴巴答案:B2. 下列哪个不属于数学中的基本运算?()A. 加法B. 除法C. 乘法D. 减法答案:B3. 一个矩形的长是3cm,宽是2cm,它的周长是()A. 8cmB. 10cmC. 6cmD. 4cm答案:10cm4. 下列哪个是质数?()A. 6B. 9C. 11D. 15答案:C5. 下列哪个不是等式?()A. 3 + 5 = 8B. 6 ÷ 2 = 2C. 7 × 1 = 7D. 9 + 3 ≠ 12答案:D6. 下列哪个数是奇数?()A. 58B. 29C. 102D. 36答案:B7. 一个三角形的三个角分别是60度、80度和()度。

A. 40B. 20C. 100D. 80答案:408. 下列哪个是正比例函数?()A. y = 2x + 1B. y = 2xC. y = x²D. y = 1/x答案:B9. 下列哪个不是平行四边形?()A. 正方形B. 长方形C. 菱形D. 梯形答案:D10. 下列哪个是数轴上的点?()A. 0.5B. 0.5cmC. 1/2D. 1:2答案:A11. 8.5 ÷ 0.5 = ()A. 17B. 1.7C. 85D. 0.85答案:1712. 下列哪个不是正整数的代表?()A. 0B. 1C. 2D. 3答案:A13. 下列哪个图形面积最大?()A. 长方形B. 正方形C. 三角形D. 圆形答案:D14. 用字母表示未知数,下列哪个是方程?()A. 3 + x = 7B. 3 > xC. 2xD. x + 3答案:A15. 下列哪个是钝角三角形?()A. 30度-60度-90度三角形B. 等腰直角三角形C. 直角三角形D. 锐角三角形答案:D二、填空题(每空2分,共40分)16. 计算$3\times(-4)=$()答案:-1217. 下列哪个角是顶角?∠ABC,∠ACD,∠BCD中,顶角是______。

人教版七年级下册数学期末考试试题及答案

人教版七年级下册数学期末考试试题及答案

人教版七年级下册数学期末考试试题及答案七年级下册数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1、下列各点中,位于第二象限的是()A、(2,3)B、(2,-3)C、(-2,3)D、(-2,-3)2、对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A、条形统计图能清楚地反映事物的变化情况B、折线统计图能清楚地表示出每个项目的具体数目C、扇形统计图能清楚地表示出各部分在总体中所占的百分比D、三种统计图可以互相转换3、下列方程组是二元一次方程组的是()A、x y5z x 5B、x y3xy 2C、x y32x y 4D、x y11x y 44、下列判断不正确的是()A、若a b,则4a4bB、若2a3b,则a bC、若a b,则ac bcD、若ac bc,则a b5、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)6、下列调查适合作抽样调查的是()A、了解XXX“天天向上”栏目的收视率B、了解初三年级全体学生的体育达标情况C、了解某班每个学生家庭电脑的数量D、“辽宁号”航母下海前对重要零部件的检查7、已知点A(m,n)在第三象限,则点B(m,-n)在()A、第一象限B、第二象限C、第三象限D、第四象限8、关于x,y的方程组y2x mx2y 5x2y5m的解满足x y6,则m的值为()A、1B、2C、3D、49、为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法正确的有()A、这6000名学生的数学会考成绩的全体是总体;B、每个考生的数学会考成绩是个体;C、抽取的200名考生的数学会考成绩是总体的一个样本;D、样本容量是200.10、已知:正方形ABCD的面积为64,被分成四个相同的长方形和一个面积为4的小正方形,则a,b的长分别是()A、a=5,b=3B、a=3,b=5C、a=6.5,b=1.5D、a=1.5,b=6.5一、改错题1.今天我们研究了一道非常有意思的数学题目,它是这样的:有一只猴子摘了若干个桃子,第一天它吃了其中的一半,然后再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃,请问这只猴子摘了多少个桃子?改为:今天我们研究了一道非常有趣的数学题目:一只猴子摘了一些桃子,第一天它吃了其中的一半,再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃。

人教版七年级数学下册期末考试测试卷(含答案)精选全文

人教版七年级数学下册期末考试测试卷(含答案)精选全文

精选全文完整版(可编辑修改)人教版七年级数学下册期末考试测试卷(含答案)班级: 姓名: 得分:时间:120分钟 满分:120分一、选择题(共10小题,每题3分,共30分)1.如果m 是任意实数,则点P (m ﹣4,m+3)一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.实数a 在数轴上的位置如图所示,则|a -2.5|=( )A .a -2.5B .2.5-aC .a +2.5D .-a -2.5 3.下列选项中的式表示正确的是( )A.255=±B. 255±=C. 255±=±D.2(5)-=-5 4.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解一批灯泡的使用寿命 5.如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB ∥CD 的条件个数有( ) A .1 B .2 C .3 D .46.如图,已知AC ∥BD ,∠CAE=35°,∠DBE=40°,则∠AEB 等于( )A .30°B .45°C .60°D .75°7.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是 ( )A .第一象限B .第二象限C .第三象限D .第四象限8.小颖家离学校1 200米,其中一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x 分钟,下坡用了y 分钟,可列方程组为 ( )A.35120016x y x y +=⎧⎨+=⎩B.35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C.35 1.216x y x y +=⎧⎨+=⎩D.351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 9.若点P(2k-1,1-k)在第四象限,则k的取值范围为( ) A 、k>1 B 、k<21 C 、k>21 D 、21<k<1 10.下列判断不正确的是( )A 、若a b >,则4a 4b -<-B 、若2a 3a >,则a 0<C 、若a b >,则22ac bc > D 、若22ac bc >,则a b > 二、填空题(共10小题,每题3分,共30分)11.如图是统计学生跳绳情况的频数分布直方图,如果跳 75次以上(含75次)为达标,则达标学生所占比例为 .12.81的算术平方根是 ,-8的立方根是 .13.当a=______时,P (3a+1,a+4)在x 轴上,到y 轴的距离是______ . 14.已知点A (2-a ,a +1)在第四象限,则a 的取值范围是15.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P 1,第2次碰到矩形的边时的点为P 2,……第n 次碰到矩形的边时的点为P n . 则点P 3的坐标是 ,点P 2015的坐标是 .16.如图,已知直线AD ,BE ,CF 相交于点O ,OG ⊥AD ,且∠BOC =35°,∠FOG =30°,则∠DOE =________.17.如图,直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .19.关于x 、y 的方程组x m 6y 3m +=⎧⎨-=⎩中,x y += .20.我们定义a b c d=ad -bc ,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x +y 的值是________.三、解答题(共60分)21.(5分)计算:(-1)2438--3)2︱22.(10分)解下列二元一次方程组(1)⎩⎨⎧=-+=01032y x x y (2) ⎩⎨⎧-=-=+421y x y x23.(6分)解不等式组:()()⎪⎩⎪⎨⎧>+-+≤-213351623x x x x ,并把不等式组解集在数轴上表示出来.24.(6分)如图,蚂蚁位于图中点A (2,1)处,按下面的路线移动:(2,1)→(2,4)→(7,4)→(7,7)→(1,7)→(1,1)→(2,1).请你用线段依次把蚂蚁经过的路线描出来,看看它是什么图案,并括号内写出来.( )25.(6分)如图,直线AB ∥CD ,∠GEB 的平分线EF 交CD 与点F ,∠HGF=40°,求∠EFD 的度数.HEFGD CBA26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;321C P DAB321CP DAB 1l 2l 1l 2l 3l l 图①图②27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.答案.26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;【答案】(1)∠3+∠1=∠2成立,理由见解析;(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.【解析】(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.理由如下:过点P 作PE ∥l 1,∴∠1=∠APE ;∵l 1∥l 2,∴PE ∥l 2,∴∠3=∠BPE ;又∵∠BPE-∠APE=∠2,∴∠3-∠1=321C P DAB321CP DAB 1l 2l 1l 2l 3l 3l 图①图②∠2.考点:平行线的性质.27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【答案】(1)购买一个足球需要50元,购买一个篮球需要80元;(2)最多可以购买30个篮球.【解析】考点:1、二元一次方程组的应用;2、不等式的应用.28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【答案】(1)3x-5;(2)145;(3)175.【解析】试题分析:(1)直接含x的代数式表示该校七年级学生的总数即可;(2)根据题意列出不等式,即可求解.(3)分别设出客车的数量,列出方程,求解,分别进行讨论即可得出结论. 试题解析:(1)30x-5;(2)由题意知:50(x-2)≥30x-5,∴x≥194,∵当x越小时,参加的师生就越少,且x为整数.∴当x=5时,参加的师生最少,即30×5-5=145人.考点:1.一元一次不等式的应用;2.二元一次方程的应用.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)

2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。

A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。

A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。

()2. 任何两个有理数相乘都是无理数。

()3. 一个等边三角形的三个角都是60度。

()4. 两个锐角之和一定大于90度。

()5. 任何两个等腰三角形的底角相等。

()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。

2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。

3. 下列哪一个数是无理数______。

4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。

5. 下列哪一个图形是矩形______。

四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。

2. 简述勾股定理及其应用。

3. 简述有理数的定义和性质。

4. 简述平行四边形的性质和判定。

5. 简述等边三角形的性质和判定。

五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。

2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级 姓名 成绩(考试时间:120分钟 )第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数3.14,),之间依次增加一个两个,,,,26...(262262226.4-0,57.1,9-722-π其中无理数的个数是( ) A .2B .3C .4D .52.9的平方根是( )A .3B .3±C .3D .3±3.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况、针对这个问题,下面说法正确的是( )A 、300名学生是总体B 、每名学生是个体C 、50名学生是所抽取的一个样本D 、这个样本容量是504.如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是( )A .53°B .63°C .73°D .27°5.若a <b ,则下列不等式中成立的是( )A .a +5>b +5B .﹣5a >﹣5bC .3a >3bD .6.若方程()133a 2=++-y xa 是关于x ,y 的二元一次方程,则a 的值为( )A.-3B.2±C.3±D.3 7.点P(-3,4)到x 轴的距离是( )A 、-3B 、3C 、4D 、5. 8.若点P (a,a -3)在第四象限,则a 的取值范围是( )A.0a 3<<-B.3a 0<<C.3a >D.0a <9.已知⎩⎨⎧=-=12y x 是方程52=+y kx 的一个解,则k 的值为( )23.-A 23.B 32.-C 32.D 10.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A.6折B.7折C.8折D.9折11.如图,a//b,M,N 分别在a,b 上,P 为两平行线间一点,那么=∠+∠+∠321( )︒180.A ︒270.B ︒360.C ︒540.D12.若不等式组⎩⎨⎧->-≥-2210x x x a 有解,则a 的取值范围是( )A.1a ->B.1a -≥C.1a ≤D.1a <第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 13.比较大小:13___________3 (填“>,=,<”) ;14. P(3, −4)到y 轴的距离是___________.15.已知二元一次方程2x -3y=6,用关于x 的代数式表示y ,则y=______.16.已知:如图,AB ∥CD ,EF ∥CD,且∠ABC =20°,∠CFE =30°,则∠BCF 的度数是___________.17.若y 同时满足y +1>0与y -2<0,则y 的取值范围是 .三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤) 18.计算(5分)3336463-1125.041-0-27-++19.解方程组(5分)237342x y x y +=⎧⎨-=⎩20.(6分)解下列不等式组,并把解集在数轴上表示出来。

新人教版七年级数学下册期末考试题(附答案)

新人教版七年级数学下册期末考试题(附答案)

新人教版七年级数学下册期末考试题(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.下列图形具有稳定性的是()A.B.C.D.5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如果23a b-=22()2a b aba a b+-⋅-的值为()A3B.23C.33D.37.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.3.因式分解:2218x -=______.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.若264a =,则3a =________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)()()64233x x -+=- (2)2134134x x ---=2.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.3.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x 的图象于点P .(1)求反比例函数y=k x的表达式; (2)求点B 的坐标;(3)求△OAP 的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、A5、A6、A7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、()()2a b a b++.3、2(x+3)(x﹣3).4、2m≤-5、±26、±3三、解答题(本大题共6小题,共72分)1、()11x=;()24x=-.2、﹣1≤x<2.3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、60°5、(1)20%;(2)6006、(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为(8x+4.6)元.(2)乘客坐了8千米,应付费19元;(3)他乘坐了12千米.。

[人教版]七年级下册数学《期末考试题》(带答案)

[人教版]七年级下册数学《期末考试题》(带答案)

人教版七年级下册期末考试数学试卷一.选择题1.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A. B.C. D.2.下列各项调查中合理的是()A. 对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈B. 为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查C. “长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况D. 采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受3.如图,x的值是()A. 80B. 90C. 100D. 1104.方程x﹣y=﹣2与下面方程中的一个组成的二元一次方程组的解为24xy=⎧⎨=⎩,那么这个方程可以是()A3x﹣4y=16 B. 2(x+y)=6x C. 14x+y=0 D.4x﹣y=05.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A. 点AB. 点BC. 点CD. 点D6.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A. 每人分7本,则剩余4本B. 每人分7本,则剩余的书可多分给4个人C. 每人分4本,则剩余7本D. 其中一个人分7本,则其他同学每人可分4本7.关于,x y的二元一次方程组2420x myx y+=⎧⎨-=⎩有正整数解,则满足条件的整数m的值有()个A. 1B. 2C. 3D. 48.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A. ①②B. ①③C. ②③D. ①②③二.填空题9.已知a>b,则﹣4a+5_____﹣4b+5.(填>、=或<)10.两根木棒的长度分别为7cm和10cm,要选择第三根木棒,把它们钉成一个三角形框架,则第三根木棒的长度可以是..._________cm(写出一个答案即可).11.《孙子算经》是中国古代重要的数学著作之一,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱.设甲原有x文钱,乙原有y文钱,可列方程组是________.12.若一个多边形的内角和是它的外角和的2倍,则经过这个多边形的一个顶点最多可以画_____条对角线.13.如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=PA,PD=PB,连接CD.测得CD长为10m,则池塘宽AB为_____m.理由是_____.14.已知方程组33224x y mx y m+=-+⎧⎨+=⎩的解满足不等式x﹣y>0,则实数m的取值范围是_____.15.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E;则用等式表示∠BAC与∠B、∠E的关系为_____.16.某次的测试均为判断题,如果认为该题的说法正确,就在答案框的题号下填“√”,否则填“×”.测试共10道题,每题10分,满分100分.图中的小明,小红,小刚三张测试卷.小明和小红两张已判了分数,则该判小刚_____分.小明:1 2 3 4 5 6 7 8 9 10 得分××√×√××√√×90小红:1 2 3 45 6 7 8 9 10 得分 × √√√×√×√√√40小刚: 1 2 3 4 5 6 7 8 9 10 得分 × √√√×××√√√三.解答题17.解方程组: (1)12312x y x y -=⎧⎨+=⎩;(2)223346x yx y ⎧+=-⎪⎨⎪-=⎩;18.(1)解不等式:x +4>3(x ﹣2)并把解集数轴上表示出来.(2)x 取哪些整数时,不等式5x ﹣1<3(x +1)与2x﹣1≥﹣2都成立. 19.如图,AD ∥BC ,∠BAD =90°,以点B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过C 点作CF ⊥BE .垂足为F .(1)线段BF = (填写图中现有一条线段); (2)证明你的结论.20.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠CAB=50°,∠C=60°,求∠DAE 和∠BOA 的度数.21.某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;级别 AB C D E F月均用水量x (t)0<x≤55<x≤1010<x≤1515<x≤2020<x≤2525<x≤30频数(户) 6 12 m 10 4 2(1)本次调查采用的方式是(填“全面调查”或“抽样调查);(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x≤20”组对应的圆心角度数是72°,则本次调查的样本容量是,表格中m的值是,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t的家庭大约有多少户?22.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy 中,已知△ABC 的顶点A (﹣2,0),B (2,0),C (2,4),对△ABC 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a ,将得到的点先向右平移m 单位,冉向上平移n 个单位(m >0,n >0),得到△ABC 及其内部的点,其中点A ,B 的对应点分别为A ′(1,2),B ′(3,2).△ABC 内部是否存在点F ,使得点F 经过上述操作后得到的对应点F ′与点F 重合,若存在,求出点F 的坐标;若不存在请说明理由.23.已知CA =CB ,CD 是经过∠BCA 顶点C 的一条直线.E ,F 是直线CD 上的两点,且∠BEC =∠CF A =α. (1)若直线CD 在∠BCA 的内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图1,若∠BCA =90°,α=90°,则BE CF ;EF |BE ﹣AF |(填“>”,“<”或“=”); ②如图2,若0°<∠BCA <180°,请添加一个关于α与∠BCA 数量关系的条件 ,使①中的两个结论仍然成立,补全图形并证明.(2)如图3,若直线CD 在∠BCA 的外部,∠BCA =α,请用等式直接写出EF ,BE ,AF 三条线段的数量关系 .(不要求证明)四.附加题24.小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341.原来两个加数是多少?25.已知AD是△ABC 的中线,若△ABD与△ACD的周长分别是14和12.△ABC的周长是20,则AD的长为.26.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:油电混动汽车普通汽车购买价格(万元)17.48 15.98每百公里燃油成本(元)31 46某人计划购入一辆上述品牌的汽车.他估算了用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计行驶的公里数至少为多少公里?27.已知锐角三角形ABC的三个内角满足∠A>∠B>∠C,α是∠A﹣∠B,∠B﹣∠C以及90°﹣∠A中的最小者,则当∠B=度时,α的最大值为28.如图,在平面直角坐标系中,B点坐标为(﹣2,0),A点坐标为(a,b),且b≠0.(1)若b>0,且∠ABO:∠BAO:∠AOB=10:5:21,在AB上取一点C,使得y轴平分∠COA.在x轴上取点D,使得CD平分∠BCO,过C作CD的垂线CE,交x轴于E.①依题意补全图形;②求∠CEO的度数;(2)若b是定值,过O作直线AB的垂线OH,垂足为H,则OH的最大值是.(直接写出答案)答案与解析一.选择题1.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A. B.C. D.【答案】A【解析】【分析】根据高线的定义即可得出结论.【详解】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点睛】本题考查的是作图−基本作图,熟知三角形高线的定义是解答此题的关键.2.下列各项调查中合理的是()A. 对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈B. 为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查C. “长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况D. 采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受【答案】D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、对“您觉得该不该在公共场所禁烟”作民意调查,将要调查的问题放到访问量很大的网站上,这样大部分上网的人就可以看到调查问题并及时反馈,调查具有局限性,故此选项错误;B、为了了解全校同学喜欢课程情况,对某班男同学进行抽样调查,错误,适合全面调查;C、“长征﹣3B火箭”发射前,采用抽样调查的方式检查其各零部件的合格情况,错误,适于全面调查;D、采用抽样调查的方式了解国内外观众对电影《流浪地球》的观影感受,故此选项正确.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图,x的值是( )A. 80B. 90C. 100D. 110【答案】C【解析】【分析】根据四边形的内角和=360°列方程即可得到结论.【详解】解:根据四边形的内角和得,x+x+10+60+90=360,解得:x=100,故选:C.【点睛】本题考查多边形的内角和定理,掌握(n-2)•180°(n≥3)且n为整数)是解题的关键.4.方程x﹣y=﹣2与下面方程中的一个组成的二元一次方程组的解为24xy=⎧⎨=⎩,那么这个方程可以是()A. 3x﹣4y=16B. 2(x+y)=6xC. 14x+y=0 D.4x﹣y=0【答案】B【解析】【分析】把已知方程与各项方程联立组成方程组,使其解为x=2,y=4即可.【详解】解:A、联立得:34162x yx y-=⎧⎨-=-⎩,解得:2422xy=-⎧⎨=-⎩,不合题意;B、联立得:2()62x y x x y+=⎧⎨-=-⎩,解得:24xy=⎧⎨=⎩,符合题意;C、联立得:10 42x yx y⎧+=⎪⎨⎪-=-⎩,解得:8525xy⎧=-⎪⎪⎨⎪=⎪⎩,不合题意;D、联立得:42yxx y⎧-=⎪⎨⎪-=-⎩,不合题意;故选:B.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.5.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A. 点AB. 点BC. 点CD. 点D【答案】D【解析】【分析】根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.6.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A. 每人分7本,则剩余4本B. 每人分7本,则剩余的书可多分给4个人C. 每人分4本,则剩余7本D. 其中一个人分7本,则其他同学每人可分4本【答案】B【解析】【分析】根据不等式表示的意义解答即可.【详解】解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.【点睛】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.7.关于,x y的二元一次方程组2420x myx y+=⎧⎨-=⎩有正整数解,则满足条件的整数m的值有()个A. 1B. 2C. 3D. 4 【答案】C【解析】分析】根据方程组有正整数解,确定出整数m的值.【详解】解:2420x myx y+=⎧⎨-=⎩①②,①-②×2得:(m+4)y=4,解得:y=4 4m+,把y=44m+代入②得:x=84m+,由方程组有正整数解,得到x与y都为正整数,得到m+4=1,2,4,解得:m=-3,-2,0,共3个,故选C.【点睛】此题考查二元一次方程组的解,解题关键在于掌握方程组的解即为能使方程组中两方程都成立的未知数的值.8.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A. ①②B. ①③C. ②③D. ①②③【答案】C【解析】【分析】①求出80元以上的人数,由75~80元的人数不能确定可以判断此结论;②根据图中信息,可得大多数人乘坐地铁的月均花费在60−120之间,据此可得平均每人乘坐地铁的月均花③该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣.【详解】解:①∵200+100+80+50+25+25+15+5=500,而75~80元的人数不能确定,∴在所调查的1000人中一定有一半或超过一半的人月均花费超过小明,此结论错误;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;综上,正确的结论为②③,故选:C.【点睛】本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.二.填空题9.已知a>b,则﹣4a+5_____﹣4b+5.(填>、=或<)【答案】<【解析】【分析】根据不等式的基本性质即可解决问题.【详解】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点睛】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.10.两根木棒的长度分别为7cm和10cm,要选择第三根木棒,把它们钉成一个三角形框架,则第三根木棒cm(写出一个答案即可).的长度可以是..._________【答案】答案不唯一,如8.【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,则第三根木棒应>两边之差即3cm,而<两边之和17cm.【详解】设第三边木棒的长度为xcm,根据三角形的三边关系,得10-7<x<10+7,3<x<17.故答案是:答案不唯一,如8.【点睛】考查了三角形三边关系,能够熟练运用三角形的三边关系(“任意两边之和>第三边,任意两边之差<第三边”)求得第三边的取值范围.11.《孙子算经》是中国古代重要的数学著作之一,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱.设甲原有x文钱,乙原有y文钱,可列方程组是________.【答案】1482248 3x yx y⎧+=⎪⎪⎨⎪+=⎪⎩【解析】【分析】此题等量关系为:甲+乙的一半=48;甲的23+乙=48,据此可列出方程组.【详解】解:设甲原有x文钱,乙原有y文钱,由题意可得,1482248 3x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.12.若一个多边形的内角和是它的外角和的2倍,则经过这个多边形的一个顶点最多可以画_____条对角线.【答案】3【解析】【分析】首先设这个多边形有n 条边,由题意得方程(n−2)×180=360×2,再解方程可得到n 的值,然后根据n 边形从一个顶点出发可引出(n−3)条对角线可得答案. 【详解】解:设这个多边形有n 条边,由题意得: (n ﹣2)×180=360×2, 解得:n =6,从这个多边形的一个顶点出发的对角线的条数是6﹣3=3, 故答案为:3.【点睛】此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式.13.如图所示,要测量池塘AB 宽度,在池塘外选取一点P ,连接AP ,BP 并分别延长,使PC =PA ,PD =PB ,连接CD .测得CD 长为10m ,则池塘宽AB 为_____m .理由是_____.【答案】 (1). 10; (2). 全等三角形的对应边相等 【解析】 【分析】这种设计方案利用了“边角边”判断两个三角形全等,利用对应边相等,得AB =CD .方案的操作性强,需要测量的线段和角度在陆地一侧即可实施. 【详解】在△APB 和△CPD 中PA PCAPB CPD PB PD =⎧⎪∠=∠⎨⎪=⎩, ∴△APB ≌△CPD (SAS );∴AB =CD =10米(全等三角形对应边相等).故池塘宽AB 为10m .理由是全等三角形的对应边相等. 故答案为:10,全等三角形的对应边相等.【点睛】此题考查全等三角形的判定及性质,根据所给条件即可依据SAS 证明三角形全等,利用全等的性质是解决实际问题的一种方法. 14.已知方程组33224x y m x y m+=-+⎧⎨+=⎩的解满足不等式x ﹣y >0,则实数m 的取值范围是_____.【答案】m<1【解析】【分析】将两个方程相减可得x−y=−2m+2,结合x−y>0得出关于m的不等式,解之可得.【详解】解:将两个方程相减可得x﹣y=﹣2m+2,∵x﹣y>0,∴﹣2m+2>0,解得:m<1,故答案为:m<1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤和熟练运用等式的基本性质是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E;则用等式表示∠BAC与∠B、∠E的关系为_____.【答案】∠BAC=2∠E+∠B【解析】【分析】根据角平分线的定义得到∠ACE=∠DCE,根据三角形的外角性质计算即可.【详解】解:∵CE是△ABC的外角∠ACD的平分线,∴∠ACE=∠DCE,由三角形的外角性质可知,∠BAC=∠E+∠ACE,∠DCE=∠E+∠B,∴∠BAC=2∠E+∠B,故答案为:∠BAC=2∠E+∠B.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16.某次的测试均为判断题,如果认为该题的说法正确,就在答案框的题号下填“√”,否则填“×”.测试共10道题,每题10分,满分100分.图中的小明,小红,小刚三张测试卷.小明和小红两张已判了分数,则该判小刚_____分.小明:小红:小刚:【答案】50【解析】【分析】仔细观察小红、小刚的答案,可发现只有第6题答案不一样,因此可以讨论6的答案,结合小明试卷及其得分,可得出答案.【详解】解:①假设第6题正确答案为×,则小明、小刚二人做正确,小红做错,那么小明与小红应该有5个题的选择答案不一样,对比刚好满足;而小红与小刚只有第6题答题不一样,所以小刚比小红多做对第6题这一题,该判小刚为50分;②假设第6题正确答案为√,则小明、小刚二人做错,小红做正确,那么小红还答对了另外3题,也即是小明与小红应该还有3个题的选择答案不一样,对比得出假设不存立;综上可得判小刚得50分.故答案为:50.【点睛】本题属于应用类问题,解答本题需要我们仔细观察三份试卷的相同之处与不同之处,注意利用假设、论证的思想.三.解答题17.解方程组:(1)1 2312 x yx y-=⎧⎨+=⎩;(2)2 23346x yx y⎧+=-⎪⎨⎪-=⎩;【答案】(1)32xy=⎧⎨=⎩;(2)23xy=-⎧⎨=-⎩【解析】【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)12312x yx y-=⎧⎨+=⎩①②,①×3+②得:5x=15,解得:x=3,把x=3代入①得:y=2,则方程组的解为32xy=⎧⎨=⎩;(2)方程组整理得:3212346x yx y+=-⎧⎨-=⎩①②,①﹣②得:6y=﹣18,解得:y=﹣3,把y=﹣3代入①得:x=﹣2,则方程组的解为23xy=-⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(1)解不等式:x+4>3(x﹣2)并把解集在数轴上表示出来.(2)x取哪些整数时,不等式5x﹣1<3(x+1)与2x﹣1≥﹣2都成立.【答案】(1)x <5,数轴见解析;(2)﹣2、﹣1、0、1 【解析】 【分析】(1)依据解不等式的基本步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:(1)x +4>3x ﹣6, x ﹣3x >﹣6﹣4, ﹣2x >﹣10, x <5,将不等式的解集表示在数轴上如下:(2)解不等式5x ﹣1<3(x +1),得:x <2, 解不等式2x﹣1≥﹣2,得:x ≥﹣2, 则不等式组的解集为﹣2≤x <2,所以不等式组的整数解为﹣2、﹣1、0、1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.如图,AD ∥BC ,∠BAD =90°,以点B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过C 点作CF ⊥BE .垂足为F .(1)线段BF = (填写图中现有的一条线段); (2)证明你的结论. 【答案】(1)AE ;(2)见解析 【解析】 【分析】(1)由已知得BF=AE ;(2)由AD 与BC 平行得到一对内错角相等,再由一对直角相等,且BE=CB ,利用AAS 得到△AEB ≌△FBC ,利用全等三角形对应角相等即可得证. 【详解】解:(1)BF =AE , 故答案为AE ; (2)证明:∵CF ⊥BE , ∴∠A =∠BFC =90°, ∵AD ∥BC , ∴∠AEB =∠FBC ,在△AEB 和△FBC 中,,BAD BFC AEB FBC BE BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,∴△AEB ≌△FBC (AAS ), ∴BF =AE .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 20.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠CAB=50°,∠C=60°,求∠DAE 和∠BOA 的度数.【答案】∠DAE =5°,∠BOA =120°. 【解析】 【分析】先利用三角形内角和定理可求∠ABC ,在直角三角形ACD 中,易求∠DAC ;再根据角平分线定义可求∠CBF 、∠EAF ,可得∠DAE 的度数;然后利用三角形外角性质,可先求∠AFB ,再次利用三角形外角性质,容易求出∠BOA .【详解】∵∠A =50°,∠C =60° ∴∠ABC =180°−50°−60°=70°, 又∵AD 是高,∴∠ADC=90°,∴∠DAC=180°−90°−∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC−∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.21.某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;级别 A BC D E F月均用水量x (t)0<x≤55<x≤1010<x≤1515<x≤2020<x≤2525<x≤30频数(户) 6 12 m 10 4 2(1)本次调查采用的方式是(填“全面调查”或“抽样调查);(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x≤20”组对应的圆心角度数是72°,则本次调查的样本容量是,表格中m的值是,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t的家庭大约有多少户?【答案】(1)抽样调查;(2)50、16;(3)160户【解析】【分析】(1)由“随机调查了该小区部分家庭”可得答案;(2)用B 级别户数除以其所占比例可得样本容量,用总户数减去其它级别户数求出C 级别户数m 的值; (3)利用样本估计总体思想求解可得.【详解】解:(1)由于是随机调查了该小区部分家庭, 所以本次调查采用的方式是抽样调查, 故答案:抽样调查;(2)本次调查的样本容量是10÷72360=50,m =50﹣(6+12+10+4+2)=16, 补全频数分布直方图如下:故答案为:50、16;(3)该小区月均用水量超过15t 的家庭大约有500×104250++=160(户).【点睛】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.22.(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴t ,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.如图1,若点A 表示的数是﹣3,则点A ′表示的数是 ,若点B ′表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '点E 重合,则点E 表示的数是 .(2)在平面直角坐标系xOy 中,已知△ABC 的顶点A (﹣2,0),B (2,0),C (2,4),对△ABC 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a ,将得到的点先向右平移m 单位,冉向上平移n 个单位(m >0,n >0),得到△ABC 及其内部的点,其中点A ,B 的对应点分别为A ′(1,2),B ′(3,2).△ABC 内部是否存在点F ,使得点F 经过上述操作后得到的对应点F ′与点F 重合,若存在,求出点F 的坐标;若不存在请说明理由.【答案】(1)0,3,32;(2)(4,4) 【解析】 【分析】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可. 【详解】解:(1)点A ′:﹣3×13+1=﹣1+1=0, 设点B 表示的数为a ,则13a +1=2, 解得a =3,设点E 表示的数为b ,则13b +1=b , 解得b =32; 故答案为:0,3,32; (2)根据题意,得:212302a m a m a n -+=⎧⎪+=⎨⎪⋅+=⎩,解得:1222 amn⎧=⎪⎪=⎨⎪=⎪⎩,设点F的坐标为(x,y),∵对应点F′与点F重合,∴12x+2=x,12y+2=y,解得x=y=4,所以,点F的坐标为(4,4).【点睛】本题考查了坐标与图形的变化,数轴上点右边的总比左边的大的性质,读懂题目信息是解题的关键.23.已知CA=CB,CD是经过∠BCA顶点C的一条直线.E,F是直线CD上的两点,且∠BEC=∠CF A=α.(1)若直线CD在∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA数量关系的条件,使①中的两个结论仍然成立,补全图形并证明.(2)如图3,若直线CD在∠BCA的外部,∠BCA=α,请用等式直接写出EF,BE,AF三条线段的数量关系.(不要求证明)【答案】(1)①=,=;②α+∠BCA=180°,补全图形和证明见解析;(2)EF=BE+AF【解析】【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级下册数学期末考试试卷及答案doc一、选择题1.下列各式从左到右的变形中,是因式分解的是( ). A .x (a-b )=ax-bx B .x 2-1+y 2=(x-1)(x+1)+y 2 C .y 2-1=(y+1)(y-1) D .ax+bx+c=x (a+b )+c2.已知,则a 2-b 2-2b 的值为A .4B .3C .1D .03.下列计算正确的是( )A .a +a 2=2a 2B .a 5•a 2=a 10C .(﹣2a 4)4=16a 8D .(a ﹣1)2=a ﹣24.x 2•x 3=( ) A .x 5 B .x 6 C .x 8 D .x 9 5.若8x a =,4y a =,则2x y a +的值为( ) A .12 B .20 C .32 D .256 6.计算a 10÷a 2(a≠0)的结果是( ) A .5a B .5a - C .8a D .8a - 7.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 8.计算28+(-2)8所得的结果是( )A .0B .216C .48D .299.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠; A .①B .②C .③D .④10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题11.若{14x y =-=是二元一次方程3x +ay =5的一组解,则a = ______ .12.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm ,则正方形的面积与长方形的面积的差为_____(用含有字母a 的代数式表示).13.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.14.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______. 15.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.16.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____.17.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.18.()a b -+(__________) =22a b -.19.若2a +b =﹣3,2a ﹣b =2,则4a 2﹣b 2=_____.20.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.三、解答题21.解方程组:41325x y x y +=⎧⎨-=⎩.22.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.23.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有ACQB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.24.阅读下列各式:(a•b )2=a 2b 2,(a•b )3=a 3b 3,(a•b )4=a 4b 4… 回答下列三个问题: (1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = . (3)请应用上述性质计算:(﹣0.125)2017×22016×42015.25.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2. 26.计算:(1)22(2).(3)xy xy (2)23(21)ab a b ab -+-(3)(32)(32)x y x y +- (4)()()a b c a b c ++-+ 27.计算: (1)()22020113.142π-⎛⎫-+-+ ⎪⎝⎭(2)()2462322x y x xy --(3)()()22342a b a a b --- (4)()()2323m n m n -++-28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积,故B 错误;C. 把一个多项式转化成几个整式积,故C 正确;D. 没把一个多项式转化成几个整式积,故D 错误; 故选C.2.C解析:C 【分析】先将原式化简,然后将a−b =1整体代入求解. 【详解】()()2212221a b a b b a b a b ba b b a b -∴--+--+--=,====.故答案选:C . 【点睛】此题考查的是整体代入思想在代数求值中的应用.3.D解析:D 【分析】根据负整数指数幂、合并同类项、幂的乘方与积的乘方、同底数幂的乘法等知识点进行作答. 【详解】解:A 、a +a 2不是同类项不能合并,故本选项错误;B 、根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,∴a 5•a 2=a 7,故本选项错误;C 、根据幂的乘方法则:底数不变,指数相乘,(﹣2a 4)4=16a 16,故本选项错误;D 、(a ﹣1)2=a ﹣2,根据幂的乘方法则,故本选项正确; 故选:D . 【点睛】本题考查了合并同类项,同底数的幂的乘法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握.4.A解析:A 【分析】根据同底数幂乘法,底数不变指数相加,即可. 【详解】 x 2•x 3=x 2+3=x 5, 故选A. 【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.5.D解析:D 【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解. 【详解】解:∵()222=84256x y x y a a a +⋅=⋅=.故选D . 【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.6.C解析:C 【解析】 【分析】根据同底数幂的除法法则即可得. 【详解】1021028(0)a a a a a -÷==≠故选:C. 【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.7.D解析:D 【分析】通过幂的运算公式进行计算即可得到结果. 【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误;C .()23326aa a ⨯==,故C 错误;D .5501a a a ÷==,故D 正确;故选:D . 【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.8.D解析:D 【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案. 【详解】 解:28+(-2)8 =28+28 =2×28 =29. 故选:D .此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.9.B解析:B【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴不能得到AB∥CD的条件是②.故选:B.【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.10.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确;从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确,故选:B.【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题11.2【分析】把方程的解代入二元一次方程,即可得到一个关于a 的方程,即可求解. 【详解】解:把代入方程得:-3+4a=5, 解得:a=2. 故答案是:2. 【点睛】 本题主要考查了二解析:2 【解析】 【分析】把方程的解代入二元一次方程,即可得到一个关于a 的方程,即可求解. 【详解】解:把14x y =-⎧⎨=⎩代入方程得:-3+4a=5,解得:a=2. 故答案是:2. 【点睛】本题主要考查了二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.正确解一元一次方程是解题的关键.12.【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差. 【详解】 解:设长方解析:24a【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差. 【详解】解:设长方形的宽为xcm ,则长方形的长为(x +a )cm , ∵图(1)的正方形的周长与图(2)的长方形的周长相等, ∴正方形的边长为:2()242x a x x a+++=,∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭ 222444x ax a x ax ++=--=24a . 故答案为:24a .【点睛】本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式.13.m <2 【分析】根据不等式的性质即可求解. 【详解】 依题意得m-2<0 解得m <2 故答案为:m <2. 【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m <2 【分析】根据不等式的性质即可求解. 【详解】 依题意得m-2<0 解得m <2 故答案为:m <2. 【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.14.8 【解析】 【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可. 【详解】设这个多边形的边数是n , 则(n-2)•180°-360°=720°, 解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.15.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题16.4×10-5【解析】试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法解析:【解析】试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法17.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:1(5﹣2)×180°=108°,5则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.18.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b --【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 19.-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a ﹣b =2,∴4a2﹣b2=(2a+b )(2a ﹣b )=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a +b =﹣3,2a ﹣b =2,∴4a 2﹣b 2=(2a +b )(2a ﹣b )=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键. 20.2【分析】利用多项式乘以多项式法则计算(x ﹣4)(x +6)=x2+2x ﹣24,从而得出m =2.【详解】解:∵(x ﹣4)(x +6)=x2+2x ﹣24=x2+mx ﹣24,∴m=2,故答案为2解析:2【分析】利用多项式乘以多项式法则计算(x ﹣4)(x +6)=x 2+2x ﹣24,从而得出m =2.【详解】解:∵(x ﹣4)(x +6)=x 2+2x ﹣24=x 2+mx ﹣24,∴m =2,故答案为2.【点睛】本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.三、解答题21.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.22.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299a b ⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CFAD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.24.(1)1, 1, (2)a n b n , a n b n c n ,(3)132-. 【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】 解:(1)(2×12)100=1,2100×(12)100=1; (2)(a•b )n =a n b n ,(abc )n =a n b n c n , (3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×132 =(﹣1)2015×132 =﹣1×132 =﹣132. 【点睛】本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.25.23x x +-;1-【分析】先通过整式的乘法及乘法公式对原式进行去括号,然后通过合并同类项进行计算即可化简原式,再将2x =-代入即可得解.【详解】解:原式222221343x x x x x x x =-+-++-=+-将2x =-代入,原式2(2)(2)34231=-+--=--=-.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的乘法公式及合并同类项的运算方法是解决本题的关键.26.(1) 3512x y ;(2)3222-6-33a b a b ab +;(3) 229-4x y ;(4)2222-a ac c b ++ 【分析】(1)直接利用积的乘方和单项式乘单项式法则计算即可;(2)直接利用单项式乘多项式法则计算即可;(3)直接利用平方差公式计算即可;(4)先利用平方差公式展开,再利用完全平方公式计算即可.【详解】解:(1)原式2443x y xy =⋅3512x y =;(2)原式23233ab a b ab ab ab =-⋅-⋅+2232633a b a b ab =--+;(3)原式2294x y =-;(4)原式22()a c b =+-2222a ac c b =++-.【点睛】本题考查了整式乘法和乘法公式的运用,熟练掌握整式的乘法法则及乘法公式是解决本题的关键.27.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.28.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.。

相关文档
最新文档