最小二乘法_相关系数_excel
相关性与最小二乘估计
02
最小二乘估计
最小二乘法的起源与原理
起源
最小二乘法最早由法国数学家勒让德于1805年提出,作为解决误差分析问题的数学工具。
原理
最小二乘法基于最小化预测值与实际观测值之间的平方误差和,通过求解线性方程组来找到最佳参数 估计值。
最小二乘估计的步骤
构建模型
根据问题背景和数据特征,选 择合适的数学模型,通常为线 性模型。
对异常值敏感
最小二乘法对异常值比较敏感,异常值可能会对参数估计造成较大影 响。
无法处理非线性关系
最小二乘法只适用于线性回归模型,对于非线性关系的数据无法给出 准确的参数估计。
无法处理分类变量
最小二乘法无法直接处理分类变量,需要将其转化为虚拟变量或哑变 量才能使用。
05
相关性与最小二乘估计的实际应用
相关性系数
计算方法
相关性系数通过计算两个变量之间的皮尔逊积矩相关系数、斯皮尔曼秩相关系数等来获得。
解释
相关性系数的大小和方向可以用来判断两个变量之间的关联程度和方向。
相关性检验
方法
相关性检验通常采用皮尔逊相关系数 检验、斯皮尔曼秩相关检验等统计方 法。
目的
通过相关性检验可以判断两个变量之 间是否存在显著的相关性,以及这种 关系的强度和方向。
相关性与最小二乘估计
• 相关性概念 • 最小二乘估计 • 相关性与最小二乘估计的关系 • 最小二乘估计的优缺点 • 相关性与最小二乘估计的实际应用 • 案例分析
01
相关性概念
定义与性质
定义
相关性描述两个或多个变量之间关系 的强度和方向,通常用相关系数表示。
性质
相关性系数介于-1和1之间,其中1表 示完全正相关,-1表示完全负相关, 0表示无相关性。
Excel数据分析(加载宏)
用Excel做数据分析——回归分析实例某溶液浓度正比对应于色谱仪器中的峰面积,现欲建立不同浓度下对应峰面积的标准曲线以供测试未知样品的实际浓度。
已知8组对应数据,建立标准曲线,并且对此曲线进行评价,给出残差等分析数据。
这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。
在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。
选择成对的数据列,将它们使用“X、Y散点图”制成散点图。
在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。
由图中可知,拟合的直线是y=15620x+6606.1,R2的值为0.9994。
因为R2 >0.99,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于99.99%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。
为了进一步使用更多的指标来描述这一个模型,我们使用数据分析中的“回归”工具来详细分析这组数据。
在选项卡中显然详细多了,注意选择X、Y对应的数据列。
“常数为零”就是指明该模型是严格的正比例模型,本例确实是这样,因为在浓度为零时相应峰面积肯定为零。
先前得出的回归方程虽然拟合程度相当高,但是在x=0时,仍然有对应的数值,这显然是一个可笑的结论。
所以我们选择“常数为零”。
“回归”工具为我们提供了三张图,分别是残差图、线性拟合图和正态概率图。
重点来看残差图和线性拟合图。
在线性拟合图中可以看到,不但有根据要求生成的数据点,而且还有经过拟和处理的预测数据点,拟合直线的参数会在数据表格中详细显示。
本实例旨在提供更多信息以起到抛砖引玉的作用,由于涉及到过多的专业术语,请各位读者根据实际,在具体使用中另行参考各项参数,此不再对更多细节作进一步解释。
残差图是有关于世纪之与预测值之间差距的图表,如果残差图中的散点在中州上下两侧零乱分布,那么拟合直线就是合理的,否则就需要重新处理。
最小二乘法标准偏差(se)和相关系数
最小二乘法标准偏差(se)和相关系数随着数据分析的不断深入和发展,最小二乘法标准偏差和相关系数作为两种重要的统计量,在许多领域的应用逐渐受到重视。
它们能够帮助我们对数据进行更深入的分析和推断,从而更好地理解数据之间的关系和趋势。
本文将分别从最小二乘法标准偏差和相关系数两个方面进行介绍和讨论。
最小二乘法标准偏差(se)1. 最小二乘法的基本概念最小二乘法是一种常见的参数估计方法,其基本思想是通过最小化观测值与拟合值之间的残差平方和来确定参数的估计值。
上线性回归分析中,我们常常通过最小二乘法来拟合一条直线,使得残差最小。
而最小二乘法标准偏差(se)则是衡量残差的离散程度,它是残差的标准差的估计值。
2. 计算公式最小二乘法标准偏差的计算公式如下:se = √(Σ(yi - ŷi)² / (n - 2))其中,se代表最小二乘法标准偏差,yi代表观测值,ŷi代表拟合值,n代表样本量。
通过该公式,我们可以得到最小二乘法标准偏差的估计值,进而对数据的拟合程度有一个直观的认识。
3. 应用范围最小二乘法标准偏差主要用于评估最小二乘法拟合的准确度,当se较小时,说明残差较小,拟合效果较好;反之,se较大时,说明残差较大,拟合效果较差。
最小二乘法标准偏差可以帮助我们评价拟合模型的表现,并据此进行进一步的分析和推断。
相关系数1. 相关系数的概念相关系数是用来衡量两个变量之间线性关系密切程度的统计量,它能够帮助我们判断两个变量之间的相关性强弱。
在实际应用中,我们通常使用皮尔逊积差相关系数来进行相关性的分析,其取值范围为-1到1,分别表示负相关、无相关和正相关。
2. 计算公式皮尔逊积差相关系数的计算公式如下:r = Σ((xi - x̄) * (yi - ȳ)) / √(Σ(xi - x̄)²* Σ(yi - ȳ)²)其中,r代表相关系数,xi和yi分别代表两个变量的观测值,x̄和ȳ分别代表两个变量的平均值。
excell计算最小二乘
是在某大学论文中发现最好的解决办法.贴上来给大家看看.希望大家能参与讨论.看看有无更好的解决办法.1、最小二乘法是以误差理论为依据,在诸数据处理方法中,误差最小,精确性最好。
然而在实际教学过程中因其计算比较繁杂,学生很少采用这一方法,影响了学生运用最小二乘法进行数据处理能力的培养。
随着计算机的普及,运用最小二乘法进行数据处理有了有力的工具,然而采用编写程序的方法处理数据学生仍感到并不简便。
寻找简便易学、容易掌握的计算方法是解决学生掌握最小二乘法进行数据处理的关键。
笔者认为运用最常见的学生也比较了解的软件Excel 进行最小二乘法的计算,其过程简便而且容易掌握。
2 运用Excel 进行最小二乘法的计算Excel 中有多种工具可用于最小二乘法的计算,其中的“函数”、“图表向导”、“数据分析”在处理数据时各有特点,用于最小二乘法计算时不需要编写程序,处理数据非常简便。
例:温度变化时,测得某铜线的电阻,数据记录在Excel 中如表1 ,求在0 ℃时铜线的电阻及其温度系数。
表1 实验数据记录表A B C D E F G H I J K1 t/ ℃ 2510 3010 3510 4010 4510 5010 5510 6010 6510 70102 R/ Ω 11579 11611 11639 11670 11698 11727 11758 11787 11814 11846这一问题可以用Excel 通过三种不同的方法进行最小二乘法计算。
211 运用Excel 中的“函数”进行计算Excel 中有各类函数三百余个,分别用于各种不同的计算。
其中的线性回归拟合线方程的斜率函数SLOPE、线性回归拟合线方程的截距函数INTERCEPT 以及相关系数函数CORREL 可用来确定线性方程y = ax + b 的a 、b 两个系数和计算相关系数以判别线性回归是否合理。
如在上例中,在空白的单元格单击“插入”菜单中的“fx 函数”,在弹出的对话框中分别选中函数名为“SLOPE”、“INTERCEPT”、“CORREL ”的函数,在各自的对话框中输入存放数α据的单元格区域B2 : K2 和B1 : K1 便可获得斜率a = R0 = 0. 00589 ;截距b = R0 = 1. 433 和Ωα相关系数R = 0. 9999 的结果。
Excel数据分析:相关系数、协方差、回归的案例演示「超详细!!」
Excel数据分析:相关系数、协方差、回归的案例演示「超详细!!」文末领取【旅游行业数据报告】1相关系数1. 相关系数的概念著名统计学家卡尔·皮尔逊设计了统计指标——相关系数(Correlation coefficient)。
相关系数是用以反映变量之间相关关系密切程度的统计指标。
相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。
如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
相关系数的计算公式为:复相关系数(multiple correlation coefficient):反映一个因变量与一组自变量(两个或两个以上)之间相关程度的指标。
它是包含所有变量在内的相关系数。
它可利用单相关系数和偏相关系数求得。
其计算公式为:当只有两个变量时,复相关系数就等于单相关系数。
Excel中的相关系数工具是单相关系数。
2. 相关系数工具的使用CORREL 和 PEARSON 工作表函数均可计算两个测量值变量之间的相关系数,条件是每种变量的测量值都是对N 个对象进行观测所得到的。
(丢失任何对象的任何观测值都会导致在分析中忽略该对象。
)相关系数分析工具特别适合于当N 个对象中的每个对象都有两个以上的测量值变量的情况。
它提供一张输出表(相关矩阵),其中显示了应用于每个可能的测量值变量对的 CORREL(或 PEARSON)值。
与协方差一样,相关系数是描述两个测量值变量之间的离散程度的指标。
与协方差的不同之处在于,相关系数是成比例的,因此它的值与这两个测量值变量的表示单位无关。
(例如,如果两个测量值变量为重量和高度,当重量单位从磅换算成千克时,相关系数的值并不改变。
用Excel做数据分析
用Excel做数据分析——回归分析2007-08-29 作者:来源:网络我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。
很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。
它们虽很专业,但其实使用Excel就完全够用了。
我们已经知道在 Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘支持下加载“分析数据库”。
加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项实例某溶液浓度正比对应于色谱仪器中的峰面积,现欲建立不同浓度下对应峰面积的标准曲线以供测试未知样品的实际浓度。
已知8组对应数据,建立标准曲线,并且对此曲线进行评价,给出残差等分析数据。
这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。
在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。
选择成对的数据列,将它们使用“X、Y散点图”制成散点图。
在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。
由图中可知,拟合的直线是y=15620x+6606.1,R2的值为0.9994。
因为R2 >0.99,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于99.99%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。
为了进一步使用更多的指标来描述这一个模型,我们使用数据分析中的“回归”工具来详细分析这组数据。
用Excel做数据分析
用Excel做数据分析我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。
很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。
它们虽很专业,但其实使用Excel就完全够用了。
我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘支持下加载“分析数据库”。
加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项实例某溶液浓度正比对应于色谱仪器中的峰面积,现欲建立不同浓度下对应峰面积的标准曲线以供测试未知样品的实际浓度。
已知8组对应数据,建立标准曲线,并且对此曲线进行评价,给出残差等分析数据。
这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。
在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。
选择成对的数据列,将它们使用“X、Y散点图”制成散点图。
在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。
由图中可知,拟合的直线是y=15620x+6606.1,R2的值为0.9994。
因为R2 >0.99,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于99.99%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。
为了进一步使用更多的指标来描述这一个模型,我们使用数据分析中的“回归”工具来详细分析这组数据。
excel数据分析功能
Excel完成专业化数据统计、分析工作前言使用Excel自带的数据分析功能可以完成很多专业软件才有的数据统计、分析,这其中包括:直方图、相关系数、协方差、各种概率分布、抽样与动态模拟、总体均值判断,均值推断、线性、非线性回归、多元回归分析、时间序列等内容。
下面将对以上功能逐一作使用介绍,方便各位普通读者和相关专业人员参考使用。
点这里看专题:用Excel完成专业化数据统计、分析工作注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘中加载“分析数据库”。
加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项。
直方图一、使用方向某班级期中考试进行后,需要统计各分数段人数,并给出频数分布和累计频数表的直方图以供分析。
以往手工分析的步骤是先将各分数段的人数分别统计出来制成一张新的表格,再以此表格为基础建立数据统计直方图。
使用Excel中的“数据分析”功能可以直接完成此任务。
二、操作步骤1.打开原始数据表格,制作本实例的原始数据要求单列,确认数据的范围。
本实例为化学成绩,故数据范围确定为0-100。
2.在右侧输入数据接受序列。
所谓“数据接受序列”,就是分段统计的数据间隔,该区域包含一组可选的用来定义接收区域的边界值。
这些值应当按升序排列。
在本实例中,就是以多少分数段作为统计的单元。
可采用拖动的方法生成,也可以按照需要自行设置。
本实例采用10分一个分数统计单元。
3.选择“工具”-“数据分析”-“直方图”后,出现属性设置框,依次选择:输入区域:原始数据区域;接受区域:数据接受序列;如果选择“输出区域”,则新对象直接插入当前表格中;选中“柏拉图”,此复选框可在输出表中按降序来显示数据;若选择“累计百分率”,则会在直方图上叠加累计频率曲线;4.输入完毕后,则可立即生成相应的直方图,这张图还需要比较大的调整。
主要是:横纵坐标的标题、柱型图的间隔以及各种数据的字体、字号等等。
用Excel软件进行实验数据处理
§2—5 用Excel软件进行实验数据处理Excel是一个功能较强的电子表格软件,具有强大的数据处理、分析和统计等功能。
它最显著的特点是函数功能丰富、图表种类繁多。
用户能在表格中定义运算公式,利用软件提供的函数功能进行复杂的数学分析和统计,并利用图表来显示工作表中的数据点及数据变化趋势。
在大学物理实验中,可帮助我们处理数据、分析数据、绘制图表。
Excel软件操作便捷、掌握容易,用于实验数据的处理非常方便。
下面简单介绍其在实验数据处理中的一些基本方法。
1.工作表、工作簿、单元格、区域等概念1)工作表启动Excel后,系统将打开一个空白的工作表。
工作表有256列,用字母A,B,C,…命名;有65536行,用数字1,2,3…命名。
2)工作簿一个Excel文件称为一个工作簿,一个新工作簿最初有3个工作表,标识为Sheetl,Sheet2,Sheet3,若标签为白色即为当前工作表,单击其他标签即可成为当前工作表。
3)单元格工作表中行与列交叉的小方格称为单元格,Excel中的单元格地址来自于它所在的行和列的地址,如第C列和第3行的交叉处是单元格C3,单元格地址称为单元格引用。
单击一个单元格就使它变为活动单元格,它是输入信息以及编辑数据和公式的地方。
4)表格区域表格区域是指工作表中的若干个单元格组成的矩形块。
指定区域:用表格区域矩形块中的左上角和右下角的单元格坐标来表示,中间用“:”隔开。
如A3:E6为相对区域,$A$3:$E$6为绝对区域。
$A3:$E6或A$3:E$6为混合区域。
5)工作表中内容的输入① 输入文本文本可以是数字、空格和非数字字符的组合,如:1234,1+2,A&ab、中国等,单击需输入的单元格,输入后,按方向键或回车键来结束。
② 输入数字在Excel中数字只可以为下列字符:30大学物理实验0123456789+ ,( ),*/%,E。
输入负数:在数字前冠以减号(—),或将其置于括号中。
最小二乘法各个参数的含义
最小二乘法各个参数的含义
最小二乘法是一种常用的参数估计方法,用于拟合数据并找到最优的拟合曲线。
在最小二乘法中,有几个重要的参数需要理解和掌握,包括:
1.截距(intercept):拟合曲线与y轴交点的数值,表示在x=0时的值。
2.斜率(slope):拟合曲线的斜率,表示在每单位x变化时y的变化。
3.残差(residual):拟合曲线与实际数据之间的误差,即实际y值和拟合曲线y值之间的差距。
4.平均残差(mean residual):所有残差的平均值,用于表示拟合曲线的整体误差。
5.标准误差(standard error):对残差的标准偏差,表示拟合曲线的精度。
6.相关系数(correlation coefficient):用于衡量实际数据和拟合曲线之间的相关性,取值范围为-1到1,越接近于1表示相关性越强。
以上参数都是在最小二乘法中非常重要的概念,理解并掌握它们的含义和计算方法有助于正确地应用最小二乘法进行数据拟合。
- 1 -。
标准曲线的最小二乘法拟合和相关系数
标准曲线的最小二乘法拟合和相关系数(合肥工业大学控释药物研究室尹情胜)1 目的用最小二乘法拟合一组变量(,,i=1-n)之间的线性方程(y=ax+b),表示两变量间的函数关系;(开创者:德国数学家高斯)一组数据(,,i=1-n)中,两变量之间的相关性用相关系数(R)来表示。
(开创者:英国统计学家卡尔·皮尔逊)2 最小二乘法原理用最小二乘法拟合线性方程时,其目标是使拟合值()与实测值()差值的平方和(Q)最小。
式(1)3 拟合方程的计算公式与推导当Q最小时,;得到式(2)、式(3):式(2)式(3)由式(3)和式(4),得出式(4)和式(5):式(4)式(5)式(4)乘以n,式(5)乘以,两式相减并整理得斜率a:斜率(k=xy/xx,n*积和-和积)式(6)截距b的计算公式为公式(5),也即:截距b=(y-x)/n,差平均差)式(7)4 相关系数的意义与计算公式相关系数(相关系数的平方称为判定系数)是用以反映变量之间相关关系密切程度的统计指标。
相关系数(也称积差相关系数)是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
相关系数r xy取值在-1到1之间。
r xy = 0时,称x,y不相关;| r xy | = 1时,称x,y完全相关,此时,x,y之间具有线性函数关系;| r xy | < 1时,X的变动引起Y的部分变动,r xy的绝对值越大,x的变动引起y的变动就越大,|r xy | > 0.8时称为高度相关,当0.5< | r xy|<0.8时称为显著相关,当0.3<| r xy |<0.5时,成为低度相关,当| r xy | < 0.3时,称为无相关。
(式(7)5 临界相关系数的意义5.1 临界相关系数中显著性水平(α)与置信度(P)的关系显著性水平取0.05,表示置信度为95%;取0.01,置信度就是99%。
excel线性拟合
excel线性拟合
excel线性拟合是利用excel来分析数据之间的线性关系,使用线性回归的方法,通过最小二乘法拟合出数据之间的最佳拟合线。
操作步骤如下:1。
将源数据输入excel;2。
点击数据->图表->折线图;3。
点击图表右上角的选项中添加回归线;4。
根据自己的需求选择一条最合适的回归线;5。
点击回归线右上角的增加标签选项,得到系数。
通过excel线性拟合可以得出相关系数,表明数据之间的线性关系,从而推断出数据的趋势和变化趋势,为决策提供更准确的数据分析。
最小二乘法
最小二乘法: 以B 为横坐标x ,以()RR 0 为纵坐标y ,则:y bx a =+ 引入平均值: x =∑=n i i x n 11; y =∑=n i i y n 11; 2x =∑=n i i x n 121; ∑==n i i i y x n xy 11所以:___________2_____2xy x yb a y b x x x-⋅==--;附:最小二乘法线性拟合我们知道,用作图法求出直线的斜率b 和截距a ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,由于所选图纸大小、所取分度大小、描点大小及个人视觉的差异,所得结果往往不同,因此作图法是一种很粗略的数据处理方法,求出的a 和b 误差较大。
用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要计算过程没有错误,得到的斜率和截据都是唯一的。
最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。
显然,关键是如何求出最佳的a 和b 。
(1)求回归直线设直线方程的表达式为:bx a y += (2-6-1)对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略(实际实验中总有一个变量的误差相对较小,可以忽略,作为X 分量),则在同一x i 下,测量点y i 和直线上的对应点a+bx i 的偏差d i 如图(2-6-2)所示:d 1=y 1-a -bx 1 d 2=y 2-a -bx 2┇d n =y n -a -bx n显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+ |d 2|+……+ |d n |又不好解方程,因而不可行。
巧用Excel计算线性回归和制作曲线 (2)
巧用Excel计算线性回归和制作曲线经常碰到客户要求提供线性曲线,如千斤顶、测力环等等。
对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。
很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。
它们虽很专业,但其实使用Excel就完全够用了。
我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘支持下加载“分析数据库”。
加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项实例某溶液浓度正比对应于色谱仪器中的峰面积,现欲建立不同浓度下对应峰面积的标准曲线以供测试未知样品的实际浓度。
已知8组对应数据,建立标准曲线,并且对此曲线进行评价,给出残差等分析数据。
这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。
在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。
选择成对的数据列,将它们使用“X、Y散点图”制成散点图。
在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。
由图中可知,拟合的直线是y=15620x+,R2的值为。
因为R2 >,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。
为了进一步使用更多的指标来描述这一个模型,我们使用数据分析中的“回归”工具来详细分析这组数据。
在选项卡中显然详细多了,注意选择X、Y对应的数据列。
“常数为零”就是指明该模型是严格的正比例模型,本例确实是这样,因为在浓度为零时相应峰面积肯定为零。