初中数学 相交线
初中数学知识点:相交线与平行线知识点
一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错: 因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
( )相等的两个角互为对顶角。
( )2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:① 根据三种角的概念来区分 ②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
特别注意:① 三角形的三个内角均互为同旁内角;② 同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。
人教版初中数学七年级下 相交线和平行线知识点总结
人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。
本文将对其中的重点知识点进行总结。
5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。
其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。
2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。
垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。
3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。
画法可采用“一靠二移三画”的方法。
4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。
记忆时应结合图形进行理解。
本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。
在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。
垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。
它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。
点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。
线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。
平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。
判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。
平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。
同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。
初中数学 什么是相交线
初中数学什么是相交线
相交线是指在平面上两条直线相交于一个点的情况。
下面我将详细介绍相交线的概念以及与之相关的性质:
1. 相交线的定义:
相交线是指在平面上两条直线相交于一个点的情况。
这个相交点是两条直线的公共点,也是这两条直线的交点。
2. 相交线的性质:
-两条相交线的交点是这两条直线上的点,也是这两条直线的公共点。
-相交线的交点将平面分成四个部分,分别是交点的四个象限。
-相交线的交点是两条直线的垂直平分线,即交点到两条直线的距离相等。
-相交线的交点是两条直线的角平分线,即交点将两条直线的夹角分成两个相等的角。
3. 相交线的应用:
相交线在几何学中有广泛的应用。
例如,在平面几何中,相交线可以用于解决直线的交点、角的平分等问题;在图形的构造中,相交线可以用于定位和布局。
此外,相交线的性质也可以用于证明几何定理和推理。
需要注意的是,相交线是指两条直线在平面上相交于一个点的情况。
以上是有关相交线的概念和性质的介绍。
希望以上内容能够满足你对相交线的了解。
初中数学 什么是相交线
初中数学什么是相交线相交线是指在平面上相交的两条线。
在平面几何中,我们可以通过两个基本概念来定义相交线:直线和交点。
直线是无限延伸的,由无数个点组成的连续直线。
它可以由两个点确定,也可以由方程表示。
直线具有无宽度和无厚度的特点。
交点是指两条线在平面上相交的点。
当两条线共享相同的点时,我们称之为交点。
交点可以是一个,也可以是无数个,或者不存在。
在平面几何中,相交线是指两条线在平面上形成的交点。
具体而言,相交线是两条直线在平面上的交点形成的线段。
当两条直线相交时,它们可以形成四个角,其中相对的两个角被称为互补角,它们的和为90度。
相交线可以具有不同的性质和特征。
根据相交线的关系,我们可以将其分类为以下几种情况:1. 相交垂直线:当两条直线相互垂直时,它们形成的交点线段是相交垂直线。
相交垂直线的特点是形成的角为90度。
2. 相交平行线:当两条直线相互平行但不重合时,它们形成的交点线段是相交平行线。
相交平行线的特点是形成的角不为90度。
3. 相交交叉线:当两条直线相交且形成的交点不在任一直线上时,它们形成的交点线段是相交交叉线。
相交交叉线的特点是形成的角既不为90度也不为180度。
相交线在几何学中具有重要的应用和意义。
它们可以帮助我们研究平面的性质和关系,解决各种几何问题,如求解角度、证明定理等。
通过研究相交线,我们可以深入理解几何学的基本原理和概念。
总结起来,相交线是指在平面上相交的两条线所形成的交点线段。
它们可以是相交垂直线、相交平行线或相交交叉线,具有不同的性质和特征。
相交线在几何学中有着广泛的应用,并能帮助我们解决各种几何问题。
初中数学-平行线与相交线
F A D
O B E
练习3:下列命题是真命题的有( C, E, G ) A、相等的角是对顶角; B、不是对顶角的角不相等; C、对顶角必相等; D、有公共顶点的角是对顶角; E 、邻补角的和一定是180°; F、互补的两个角一定是邻补角; G、两条直线相交,只要其中一个角的大小确 定了,那么另外三个角的大小就确定了。
随堂 练习
3、垂直与垂线
(1)概念:两条直线相交形成一个直角时称两 条直线垂直,其中一条直线是另一条的垂线, 交点叫垂足。 (2)垂线的性质:在同一平面内,经过一点有 且只有一条直线与已知直线垂直。
(3)点到直线的距离:
连接直线外一点与直线上各点的所有线段中, 垂线段最短。简称:垂线段最短。
直线外一点到此直线的垂线段的长度叫做点到 直线的距离。
例题3:如图,在宽18米、长32米的长方形草地ABCD的中 间有一条宽2米的曲折的小路,你能否算出草地的面积?
A D
解:小路边沿的两条曲线,因小 路宽度的一致,形状、长度是完 全一样的,故可以将其中的一条 经过平移与另一条重合。 利用平移,两条曲线重合,将 中间的小路“挤”没了!小路 两边的草地重新“拼接”成一 个新的长方形,此长方形只是 比原长方形一边短了2米。
3 4 O' O 1 2 A B
祝大家学习愉快!
A D F C
B E
∴ EF// BC。 (平行于同一条直线的两条直线互相平行)
例题2:如图,EF⊥AB,CD⊥AB,∠EFB=∠GDC, A 求证:∠AGD=∠ACB。
证明: ∵ EF⊥AB,CD⊥AB (已知) ∴ AD∥BC ∴ ∠EFB= ∠DCB (两直线平行,同位角相等) ∵ ∠EFB=∠GDC (已知) ∴ ∠DCB=∠GDC (等量代换)
七年级下册数学相交线与平行线知识点归纳
七年级下册数学相交线与平行线知识点归纳相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(成正比),邻补角(优势互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧)内错角z(在两条直线内部,位于第三条直线两侧)同旁内角u(在两条直线内部,坐落于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、横向三要素:横向关系,横向记号,像距6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最长。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,存有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的认定:①同位角相等,两直线平行。
②内错角成正比,两直线平行。
③同旁内角互补,两直线平行。
11、推断:在同一平面内,如果两条直线都旋转轴同一条直线,那么这两条直线平行。
(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、正数整数,泛称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
人教版初中数学七年级下册5.1.1《相交线》教案
在今天的课堂上,我们探讨了相交线的概念和性质,以及它们在实际生活中的应用。我注意到,学生在理解同位角、内错角、同旁内角这些概念时,起初有些混淆。我通过反复举例和直观演示,帮助他们逐步理清了这些角的区别和联系。这也提醒我,对于这类几何基础概念的教学,直观性和重复性是非常重要的。
我尝试了一种新的教学方法,让学生在小组讨论中解决实际问题,感觉效果还不错。学生们积极参与,讨论热烈,通过合作探究,他们不仅加深了对相交线性质的理解,还学会了如何将这些知识应用到解决具体问题中。这一点让我感到很欣慰,也证明了实践活动在数学教学中的价值。
人教版初中数学七年级下册5.1.1《相交线》教案
一、教学内容
人教版初中数学七年级下册5.1.1《相交线》教案:
1.理解相交线的概念,掌握两条直线相交形成的四个角及其分类。
2.学习同位角、内错角、同旁内角的概念,并能够识别和判条直线是否垂直。
4.探索并掌握垂直的性质及其应用,如:垂直线段最短、直角三角形的性质等。
4.强化学生的数学建模能力,将相交线的性质应用于解决实际问题,培养运用数学知识解决现实问题的能力。
5.培养学生的数学运算能力,通过几何作图和计算,巩固基本的几何变换和代数运算技能。
三、教学难点与重点
1.教学重点
-两条直线相交形成的四个角的识别及其分类,特别是同位角、内错角、同旁内角的定义和特点。
-垂直的概念及其判断方法,理解两条直线垂直的条件。
-掌握垂直性质及其在实际问题中的应用,如直角三角形的性质和垂线段最短原理。
-通过几何作图和计算,运用相交线和垂直的知识解决具体问题。
举例解释:
-在讲解同位角、内错角、同旁内角时,重点强调它们在两条相交直线上的位置关系和数量关系,通过直观图示和实际操作加深学生理解。
初中数学知识归纳相交线与相交线的特性
初中数学知识归纳相交线与相交线的特性相交线在初中数学中是一个重要的概念,它涉及到几何图形的相交关系以及相应的特性。
在本文中,我们将对相交线以及相交线的一些重要特性进行归纳和总结。
接下来,我们将从理论和实际问题两个方面来深入探讨。
1. 相交线的定义和性质相交线是指在平面上两条线段或直线遇到时所形成的交点线段或交点直线。
相交线有以下几个重要的性质:1.1 交点存在性:两条不平行的线段或直线必定相交,即它们至少有一个交点。
1.2 交点唯一性:两条线段或直线如果相交,它们的交点是唯一的,也就是说,两个不同的线段或直线最多只能有一个公共交点。
1.3 线段交点:如果两条线段相交,且交点处于两条线段之间,那么交点所形成的线段称为线段的交点。
1.4 直线交点:如果两条直线相交,交点可以看作是两条直线的公共点。
2. 相交线的分类相交线可以根据相交形状的不同进行分类。
以下是几种常见的相交线分类:2.1 垂直交线:两条直线相交成直角时,称其为垂直交线。
垂直交线是直角的基础,产生了很多直角相关的定理和公式。
2.2 平行交线:两条直线平行时,它们没有公共交点,称这两条直线为平行交线。
平行交线也有很多相关的特性和定理。
2.3 倾斜交线:两条直线既不垂直也不平行时,它们称为倾斜交线。
倾斜交线的特性要通过其夹角以及斜率来分析。
3. 相交线的应用相交线及其特性在解决实际问题中起到了重要的作用。
以下是几个常见的应用场景:3.1 几何图形的判定:通过相交线的特性,我们可以判定两个几何图形是否相交。
这在解决几何题目和证明问题时非常有用。
3.2 角的关系:相交线所形成的角具有一些重要的关系,如相对角、内错角、同旁内角等。
通过角的关系,我们可以推导出许多重要的几何定理。
3.3 坐标系的运用:在坐标系中,相交线的特性可以通过斜率和截距来求解。
这对于线性方程的解和图形的绘制非常重要。
4. 相交线的延伸与相交线相关的概念还有很多,比如垂线、平分线、对称轴等。
人教版初中数学七年级下相交线和平行线知识点总结
人教版初中数学七年级下 相交线与平行线知识点总结5、1相交线 1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角就是成对出现的,对顶角就是具有特殊位置关系的两个角;⑵如果∠α与∠β就是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定就是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定就是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角就是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB ⊥CD,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3、垂线的画法:ABCD O⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象就是线段的线。
4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离 记得时候应该结合图形进行记忆。
如图,PO ⊥AB,同P 到直线AB 的距离就是PO 的长。
PO 就是垂线段。
PO 就是点P 到直线AB 所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都就是“垂线段最短”性质的应用。
5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念 分析它们的联系与区别⑴垂线与垂线段 区别:垂线就是一条直线,不可度量长度;垂线段就是一条线段,可以度量长度。
初中数学 相交线有哪些性质
初中数学相交线有哪些性质相交线在几何学中有许多重要的性质和定理。
下面是一些与相交线相关的重要性质:1. 垂直性质:如果两条线段相交,并且相交的角度为90度,那么这两条线段是相交垂直线。
相交垂直线是几何学中常见的性质,它们形成的交点线段的角度为90度。
2. 平行性质:如果两条线段相交,但相交的角度不为90度,那么这两条线段是相交平行线。
相交平行线的性质是它们形成的交点线段的角度不为90度。
3. 互补性质:如果两条线段相交,并且它们形成的角是互补角,那么这两条线段是相交互补线。
相交互补线的性质是它们形成的交点线段的角度之和为90度。
4. 交叉性质:如果两条线段相交,且它们的交点不在任一直线上,那么这两条线段是相交交叉线。
相交交叉线的性质是它们形成的交点线段的角度既不为90度也不为180度。
5. 交点性质:两条相交线段的交点是它们的公共点,即交点。
交点可以是一个,也可以是无数个,或者不存在。
交点的位置和性质可以通过求解线段的方程或使用几何定理来确定。
6. 角度性质:线段的相交会形成一些角度。
这些角度可以通过测量和计算来确定其大小和性质。
例如,相交垂直线的角度为90度,相交互补线的角度之和为90度。
7. 割线性质:相交线可以将平面分成不同的部分。
这些相交线被称为割线,它们将平面分成多个区域。
割线的位置和数量取决于相交线的位置和方向。
8. 平分性质:相交线可以将角平分成两个相等的角。
这是因为相交线将角度分成两个互补角,它们的角度之和为90度。
9. 交叉点数性质:在平面上,如果有n条线段相互交叉,那么交点的数目可以通过以下公式计算:N = (n * (n - 1)) / 2。
这个公式可以用来计算交叉线的交点数。
这些是与相交线相关的一些重要性质。
通过理解和应用这些性质,我们可以更好地理解相交线在几何学中的作用和应用。
同时,这些性质也为我们解决几何问题和证明定理提供了重要的依据和方法。
初中数学相交线教案详案
初中数学相交线教案详案一、教学目标知识与技能:1. 了解相交线的概念,能够识别和画出相交线。
2. 掌握对顶角和邻补角的概念,能够找出图形中的一个角的邻补角和对顶角。
3. 理解对顶角相等的性质,并能运用它解决一些问题。
过程与方法:1. 经历探究对顶角、邻补角的位置关系的过程,建立空间观念。
2. 通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力。
情感态度价值观:1. 培养学生的观察能力、思考能力和解决问题的能力。
2. 培养学生的合作意识和团队精神。
二、教学重难点教学重点:1. 邻补角、对顶角的概念,对顶角的性质与应用。
2. 对顶角相等的性质的探索。
教学难点:1. 理解对顶角相等的性质的探索。
2. 运用对顶角相等的性质解决实际问题。
三、教学过程1. 导入新课利用生活中的实例,如交错的道路、相交的铁轨等,引导学生观察和思考相交线的概念。
让学生尝试画出相交线,并描述它们的特点。
2. 探究新知(1)介绍邻补角和对顶角的概念通过展示图形,引导学生找出一个角的邻补角和对顶角。
让学生用量角器测量各角的度数,发现它们之间的关系。
(2)探索对顶角相等的性质让学生观察和分析图形,发现对顶角相等的性质。
引导学生通过实际操作,改变图形的位置和方向,验证对顶角相等的性质。
3. 巩固练习设计一些练习题,让学生运用所学的知识解决实际问题。
例如,找出图形中的对顶角和邻补角,判断对顶角是否相等等。
4. 课堂小结对本节课的主要内容进行总结,强调邻补角、对顶角的概念和性质。
引导学生明确对顶角相等的性质在实际问题中的应用。
5. 布置作业设计一些作业题,让学生进一步巩固和提高所学的知识。
例如,画出给定角度的相交线,找出图形中的对顶角和邻补角等。
四、教学反思在教学过程中,要注意引导学生观察和思考,培养学生的抽象概括能力。
同时,要关注学生的学习情况,及时解答学生的疑问,提高教学效果。
在设计练习题和作业题时,要注重难易程度的把握,既要让学生能够巩固所学知识,又要有一定的挑战性,激发学生的学习兴趣。
初中数学 什么是相交线和平行线的性质
初中数学什么是相交线和平行线的性质相交线和平行线是初中数学中关于直线的重要概念。
它们在几何学中有着广泛的应用,用于描述和分析直线的位置关系。
在本文中,我们将详细讨论相交线和平行线的概念、性质和应用。
一、相交线相交线是指两条直线在同一平面内相交的情况。
相交线具有以下几种情况:1. 相交于一点:当两条直线在同一平面内相交于一个点时,这两条直线称为相交于一点。
2. 不相交:当两条直线在同一平面内没有交点时,这两条直线称为不相交。
3. 相交于一条直线:当两条直线在同一平面内相交于一条直线时,这两条直线称为相交于一条直线。
相交线具有一些重要的性质。
首先,两条相交线之间有且仅有一个交点。
其次,相交线之间的交点是唯一的,不受其他直线的影响。
此外,两条相交线之间的交点将平面分成四个部分,这四个部分称为角。
二、平行线平行线是指在同一平面内没有交点的直线。
平行线具有以下几种情况:1. 平行:当两条直线在同一平面内没有交点且方向相同时,这两条直线称为平行。
2. 不平行:当两条直线在同一平面内有交点或方向不同时,这两条直线称为不平行。
平行线具有一些重要的性质。
首先,平行线之间的距离是恒定的,即平行线之间的任意两点之间的距离相等。
其次,平行线之间的任意一条线段与平行线之间的其他线段成比例。
此外,平行线之间的任意一条线段与平行线之间的其他线段的对应角是相等的。
三、性质相交线和平行线具有一些重要的性质。
下面我们将分别讨论相交线和平行线的性质。
1. 相交线的性质:a. 相交线之间的交点将平面分成四个部分,这四个部分称为角。
相邻的两个角称为邻角,互补的两个角称为补角,补角的和为180度。
b. 相交线上的对应角是相等的。
c. 相交线上的内错角互补,外错角互补。
d. 相交线上的同旁内角相等,同旁外角相等。
2. 平行线的性质:a. 平行线之间的距离是恒定的,即平行线之间的任意两点之间的距离相等。
b. 平行线之间的任意一条线段与平行线之间的其他线段成比例。
七年级下册第一单元相交线的知识点
七年级下册第一单元相交线的知识点
1. 相交线:只有一个公共点的两条直线,叫相交线。
2. 邻补角:两条直线相交,有一条公共边,且另一条边互为反向延长线的两个角叫邻补角。
两直线相交所成的四个角中存在两对邻补角。
3. 对顶角:两条直线相交,一个角两边与另一个角两边互为反向延长线的两个角叫对顶角。
两直线相交,有2对对顶角。
对顶角相等。
4. 垂线:两条直线相交所成的四个角中,如果有一个角是直角时,这两条直线就互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
垂线的性质包括过一点有且只有一条直线与已知直线垂直,以及连接直线外一点与直线上各点的所有线段中,垂线段最短。
另外,垂线是一条直线,具有垂直关系的两条直线所成的4个角都是90度,垂直是相交的特殊情况。
垂线的画法可以通过已知直线和一点,利用直角三角板来画出。
以上知识点是七年级下册第一单元相交线的主要内容,通过学习这些知识点,学生可以更好地理解直线之间的位置关系,为后续学习打下基础。
初中数学七年级-5.1.1相交线
知识点一 邻补角和对顶角的概念
握紧把手时,随着两个把手之间的角逐渐变小, 剪刀刃之间的角也相应变小直到剪开布片。如果 把剪刀的构造看作两条相交的直线,这就关系到 两条相交直线所成的角的问题。
知识点一 邻补角和对顶角的概念
12 43
问题:两条相交直线.形成的小于平角的 角有几个?
知识点一 邻补角和对顶角的概念
“引导学生读懂数学书” 课题研究成果配套课件
新的数学方法和概念,常常比 解决数学问题本身更重要.
—— 华罗庚
“引导学生读懂数学书” 课题研究成果配套课件
5.1 相交线
怀集县凤岗镇初级中学 戴碧雄
一、学习目标
1、了解两条直线相交所构成的角,理 解并掌握对顶角、邻补角的概念和性 质. 2、理解对顶角性质的推导过程,并会 用这个性质进行简单的计算.
练一练 ∠其_11_、_中和_如_互∠_图_为4_,、邻直∠_补_线2_角∠_和A_的1B_∠和和_有_3∠C∠;_D_13互_相_和∠为_交∠_∠3对_于2、和2顶和点_∠角_∠O_4,的_4_则有___、
_________、_______.
练一练 2、下列各图中∠; 1、∠2是邻补角吗?为 什么?
答:第2个图是,由邻补角的定义可知 _________________________________.
练一练
3、如图所示,∠1和∠2是对顶角的图形 有( A )
1
2
1 2
1 2
2 1
A.1个 B.2个 C.3个 D.4个
知识点二 邻补角和对顶角的性质
2、1、解互:为如邻图补角的两个角的和等于180°.
1、如二果、两新个课角引的入和等于______,就说这两
个角互为余角;
课题:相交线初中数学
课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3.通过辨别对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。
【合作探究】1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?b5E2RGbCAP 例如:<1)∠AOC 和∠BOC 有一条公共边OC ,它们的另一边互为,称这两个角互为。
用量角器量一量这两个角的度数,会发现它们的数量关系是p1EanqFDPw <2)∠AOC 和∠BOD <有或没有)公共边,但∠AOC 的两边分别是∠BOD 两边的,称这两个角互为。
用量角器量一量这两个角的度数,会发现它们的数量关系是。
DXDiTa9E3d的两个角叫邻补角。
的两个角叫对顶角。
4.探究对顶角性质.在图1中,∠AOC 的邻补角有两个,是和,根据“同角的补角相等”,可以得出=,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等.RTCrpUDGiT 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.5PCzVD7HxA 你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?【巩固运用】1.例题:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.【达标测评】1.如图所示,∠1和∠2是对顶角的图形有( >A.1个B.2个C.3个D.4个2.如图(1>,三条直线AB,CD,EF相交于一点O, ∠AOD的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。
初中的数学相交线与平行线典型题型总结材料(全面)
辅导教案教学目的1、理解邻补角、对顶角的概念及性质;理解垂线、垂线段等概念2、了解平行线的概念,理解同一平面内两条直线的位置关系,掌握平行公理及推论3、理解平行线的性质和距离;会判断是什么命题,分清命题的题设和结论4、通过实例认识平移,掌握平移的概念及性质授课日期及时段2016年 3月教学内容一、相交线1、在平面内,不重合的两条直线的位置关系只有两种:相交与平行。
2、相交线的定义:在平面内有一个公共交点的两条直线,叫做相交线3、互为邻补角:(1)定义:如果两个角有一条公共边且有一个公共顶点,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角。
(2)性质:从位置看:互为邻角; 从数量看:互为补角; 4、互为对顶角:(1)定义:如果两个角有有一个公共顶点且它们的两边互为反向延长线,具有这种关系的两个角互为对顶角。
(2)性质:对顶角相等例.如图,直线AB 与CD 相交于点O ,若∠AOD=70°,∠BOE-∠BOC=50°,求∠DOE 的度数.T ——相交线与平行线单元回顾例.如图5-1-21,直线AB、CD、EF相交于O点.∠AOF=4∠BOF,∠AOC=90°,求∠DOF的度数.二、垂直1、(1)定义:垂直是相交的一种特殊情形。
当两条直线相交所形成的四个角中有一个角是直角,那么这两条直线互相垂直。
它们交点叫做垂足。
其中的一条直线叫做另一条直线的垂线。
(2)性质:在同一平面内,过一点有且只有一条直线和已知直线垂直。
(3)表示方法:用符号“⊥”表示垂直。
2、任何一个“定义”既可以做判定,又可以做性质。
3、垂线段的定义:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段。
4、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
5、区分:点到直线的距离:直线外一点到这条直线的垂线段的长度。
两点间的距离:连接两点间的线段的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
1.理解对顶角和邻补角的概念,能在图形中辨认.
2.掌握对顶角相等的性质和它的推证过程.
3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.
重点:在较复杂的图形中准确辨认对顶角和邻补角.
难点:在较复杂的图形中准确辨认对顶角和邻补角.
教学过程
一、创设情境,引入课题
问题:请同学们观察下面的图片,说一说那些道路是交错的,那些是平行的?
【教学提示】学生以小组为单位展开讨论,选代表发言,并口答为什么.例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
【教学说明】要求学生能用文字语言说理,并让学生写出推理过程,由于本阶段对于推理的要求处在入门阶段,因此形式上可不做过分要求。
【教学提示】表格中的结论均由学生自己口答填出.
目标导学1:理解对顶角和邻补角的概念,并会在图形中进行辨别
1.观察图片,注意剪刀剪开布片过程中有关角的变化.
2.将剪刀抽象为几何图形并画一画.
答:如图:
几何语言描述图形:直线AB、CD相交于点O.
概念:如果两条直线有一个公共点,就说这两条直线相交,公共点叫做这两条直线的交点。
3.观察上图,同桌讨论。
(1)两条直线相交组成几个角?
(2)这两条直线相交得到哪几对角?
(3)每对角中两个角的位置有怎样的关系?
(4)根据它们的位置和度数的关系将这几对角进行分类.
4.概念归纳
(1)∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.
(2)∠1与∠2是直线AB、CD相交得到的,有公共顶点O,且有一条公共边,像这样的两个角叫做邻补角过线、角的有关知识的基础上,进一步研究两直线位置关系的第一课时.对顶角是几何求解、证明中的一个基本图形,其中对顶角相等也是证明中常用的结论,以此实现角之间的相互转化.内容相对简单,但又非常重要。对顶角的概念出来后,立即找到生活原型,以加强认识,联系生活.在辨别给出图形是否为对顶角的一组题目中,果然如课前所料,学生的几何语言运用不够熟练、严谨,我耐心地纠正,原因是几何开始一定要让学生重视几何语言的表述,养成学习几何的好习惯.在这个题目中我始终让学生对照定义辨别,加强认识.探究对顶角相等这个性质是本课时的重难点,所以我的设计是先画图量角,让学生有一个感性认识,同时让学生认识到度量是有误差的,所以叫学生记下读数,提出可不可以根据一个角的度数,计算出其对顶角的度数这样一个问题,其实这个问题设计是承上启下的,因为在证明时我听到他们说出“和刚才计算一样”的话.练习题的设置一来是巩固,二来时让学生体会转化思想.
4.变式练习
学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.
变式1:把∠l=40°变为∠2-∠1=40°
变式2:把∠1=40°变为∠2是∠l的3倍
变式3:把∠1=40°变为∠1:∠2=2:9.
三、巩固训练,熟练技能
1.(1)若∠1与∠2是对顶角,∠1=16º,则∠2=______º;
(2)若∠3与∠4是邻补角,则∠3+∠4 =______º.
2.若∠1与∠2为对顶角,∠1与∠3互补,则∠2+∠3=º.
3.要测量两堵围墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?
四、归纳总结,板书设计
五、课后作业,目标检测
见《学练优》本课时内容
【教学备注】
【教师提示】教师统一学生观点并板书.
5.概念深化
(1)找一找上图中还有没有对顶角,如果有,是哪两个角?
(2)找一找上图中还有没有邻补角,如果有,是哪两个角?
学生口答:∠2和∠4再也是对顶角.∠3与∠2、∠1与∠4、∠3与∠4也互为邻补角。
6.初步应用
例1:(1)下列图中的∠1与∠2是邻补角吗?为什么?
【教师强调】邻补角的特点:①顶点相同;②有一条公共边,另一边互为反向延长线;③成对出现。
(2)下列各图中∠1、∠2是对顶角吗?
【教师强调】对顶角的特点:①顶点相同;②角的两边互为反向延长线;③成对出现的。
(3)请分别画出下图中∠1的对顶角和∠2的邻补角.
学习目标2:掌握对顶角的性质并会推导
问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?
1.动手操作,推出性质
已知,直线AB与CD相交于O点(如图),试猜想∠1、∠3的大小关系,并借助量角器或其他方式验证你的想法.
答:∠1=∠3.
思考:你能用说理的方法推出∠1=∠3吗?
解:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),
∴∠l=∠3(同角的补角相等).
或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),
∴∠1=∠3(等量代换).
教师提醒:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.
2.性质归纳:对顶角相等.
3.初步应用
例1:如图,直线a、b相交,∠1=40º,求∠2,∠3,∠4的度数.
解:∵∠1=∠3(对顶角相等),∠1=40º(已知)
∴∠3=40º .
又∵∠1+∠2=180º(邻补角定义),∠1=40º(已知)
∠2=∠4(对顶角相等)
∴∠4=∠2=180º-∠1 =140º .
教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题.
二、目标导学,探索新知
不足之处:本节课通过对比教学,学生对概念的理解及简单的一些推理说明基本能掌握,但可能是课堂上没有照顾到所有的学生导致部分学习有困难的孩子对推理说明类似的题目在解题过程中出现乱、繁等现象(个别学生甚至无法下手).课后要根据实际情况及时进行补差补缺,争取不让一个孩子掉对.