第6章 传输层协议

合集下载

016--《H3C认证网络工程师-H3C路由交换技术》 大纲及进程表 (网工 两年) (90+90课时)

016--《H3C认证网络工程师-H3C路由交换技术》 大纲及进程表 (网工 两年) (90+90课时)

《H3C路由交换技术》教学进程表总计学习课时为180 课时,其中理论课时为90 课时,实验课时为90 课时,适用专业: TC精英教育网络工程专业使用,各章节课时分配如下:章节号章节名称理论课时分配实验课时分配说明第1章计算机网络基础 5 5第2章局域网技术基础12 12第3章广域网技术基础7 7第4章网络层协议原理12 12第5章传输层协议原理 5 5第6章应用层协议原理 5 5第7章以太网交换技术12 12第8章IP路由技术12 12第9章网络安全技术基础8 8第10章网络优化和管理基础12 12课时小计90 90课时总计180《H3C路由交换技术》课程教学大纲课程代码:非标教材(自选)课程性质:选修课先修课程:网络基础适用专业:TC教育各专业使用教材:《路由交换技术第1卷(上册、下册)(H3C网络学院系列教程)》清华大学出版社执笔人:王海军审稿人:叶伟一、课程的性质与任务H3C网络学院路由交换技术第1卷对建设中小型企业网络所需的网络技术进行详细介绍,包括网络模型、TCP/IP、局域网和广域网接人技术、以太网交换、IP路由、网络安全基础、网络优化和管理基础等。

本书的最大特点是理论与实践紧密结合,依托H3C路由器和交换机等网络设备精心设计的大量实验,有助于读者迅速、全面地掌握相关的知识和技能。

二、课程的考核方法《H3C路由交换技术》为考查课程,采用做案例方法,即在课程结束后以案例形式进行考核,课程学完后学员可自愿参加H3C公司网络工程师认证考试。

三、课程的目的要求“目的要求”是指通过教师的讲授及学生的认真学习所应达到的教学目的和要求。

结合本课程的教学特点,“目的要求”分为“掌握”、“熟悉”和“了解”三个级别。

“掌握”的内容,要求教师在授课时,进行深入的剖析和讲解,使学生达到彻底明了,能用文字或语言顺畅地表述,并能独立完成操作,同时也是考试的主要内容;“熟悉”的内容,要求教师予以提纲挈领地讲解,使之条理分明,使学生对此内容完全领会,明白其中的道理及其梗概,在考试时会对基本概念、基本知识进行考核;“了解”的内容,要求教师讲清概念及相关内容,使学生具有粗浅的印象。

第六章传输层TCP例题解答

第六章传输层TCP例题解答

例题一:设TCP使用的最大窗口为64KB,而传输信道的带宽可认为是不受限制的,若报文的平均往返时延为20ms,则最大吞吐量是多少?答:传输信道的带宽可认为是不受限制的,则发送时延可忽略。

平均往返时延为20ms,则发送方每秒可发送数据=1/(20*10-3)=50次只有每次都按最大窗口数发送数据才能得到最大的吞吐量。

所以:最大吞吐量=每秒发送数据次数*最大窗口=50*64KB=50*64*1024*8=26.2Mbps例题二:一个TCP连接使用256Kbps的链路,其端到端时延为128ms。

经测试发现吞吐量只有120Kbps。

试问发送窗口是多少?分析:发送时延=8x÷(256×1000),端到端往返时延等于256ms(2×128ms),设窗口值为x(以字节为单位),假定一次最大发送量等于窗口值,由于吞吐量为128Kbps,所以传输效率为50%(128÷256)。

传输效率=发送时延÷总时延,因此,(8x÷(256×1000)) ÷(8x÷(256×1000)+256×0.001)=0.5,得x=8192。

窗口大小为8192字节。

例题三:通信信道带宽为1Gbps,端到端的传播时延为10ms。

TCP的发送窗口为65535字节,试问:可能达到的最大吞吐量是多少?信道利用率是多少?解析:最大吞吐量为:65535×8/20=26.214Mb/s利用率为:26.214Mb/s÷1000Mb/s≈2.6%例题四:主机A向主机B发送一个很长的文件,其长度为L字节。

假定TCP 使用的MSS有1460字节。

(1)在TCP的序号不重复使用的条件下,L的最大值是多少?(2)假定使用上面计算出文件长度,而运输层、网络层和数据链路层所使用的首部开销共66字节,链路的数据率为10Mb/s,试求这个文件所需的最短发送时间。

04741《计算机网络原理》大纲

04741《计算机网络原理》大纲

第1章计算机网络概述1.1 计算机网络的发展1.2 计算机网络的基本概念1.3 计算机网络的分类1.4 计算机网络的标准化第2章计算机网络体系结构2.1 网络的分层体系结构2.2 OSI/RM开放系统互连参考模型2.3 TCP/IP参考模型2.4 OSI/RM与TCP/IP参考模型的比较第3章物理层3.1 物理层接口与协议3.2 传输介质3.3 数据通信技术3.4 数据编码3.5 数据交换路层第4章数据链路层4.1 数据链路层的功能4.2 差错控制4.3 基本数据链路协议4.4 链路控制规程4.5 因特网的数据链路层协议第5章网络层5.1 通信子网的操作方式和网络层提供的服务5.2 路由选择5.3 拥塞控制5.4 服务质量5.5 网络互连5.6 因特网的互连层协议第6章传输层6.1 传输层基本概念6.2 传输控制协议6.3 用户数据报传输协议第7章应用层7.1 域名系统7.2 电子邮件7.3 万维网7.4 其它服务第8章局域网技术8.1 介质访问控制子层8.2 IEEE802标准与局域网8.3 高速局域网8.4 无线局域网技术8.5 移动Ad Hoc网络8.6 局域网操作系统第9章实用网络技术9.1 分组交换技术9.2 异步传输模式9.3 第三层交换技术9.4 虚拟局域网技术9.5 虚拟专用网VPN9.6 计算机网络管理与安全计算机网络原理自学考试大纲出版前言一、课程性质与设置目的二、课程内容与考核目标第1章计算机网络概述第2章计算机网络体系结构第3章物理层第4章数据链路层第5章网络层第6章传输层第7章应用层第8章局域网技术第9章实用网络技术三、关于大纲的说明与考核实施要求附录题型举例后记。

第6章计算机网络知识

第6章计算机网络知识

大学计算机基础
各层次最主要功能归纳
应用层——与用户应用进程的接口,即相当于“做什么? ” 表示层——数据格式的转换,即相当于“对方看起来像什 么?” 会话层——会话的管理与数据传输的同步,即相当于“轮 到谁讲话和从何处讲?” 传输层——从端到端经网络透明的传送报文,即相当于“ 对方在何处?” 网络层——分组交换和路由选择,即相当于“走哪条路可 到达该处?” 数据链路层——在链路上无差错的传送帧,即相当于“每 一步该怎么走?” 物理层——将比特流送到物理媒体上传送,即相当于“对 上一层的每一步应该怎样利用物理媒体?”
大学计算机基础
网络传输介质与网络设备
4.无线传输介质 无线通信介质中的红外线、激光、微波或其他无 线电波由于不需要任何物理介质,非常适用于特殊场 合。它们的通信频率都很高,理论上都可以承担很高 的数据传输速率。 (1)无线电短波通信 (2)微波传输 (3)红外线
大学计算机基础
网络传输介质与网络设备
6.1.4 计算机网络的拓扑结构
1.总线型结构 在总线型拓扑结构中,局域网的各结点都连接 到一条单一连续的物理线路上,如图2-2所示。网上 任何一个结点的信息都可以沿着总线向两个方向传 输扩散,并且能被总线中任何一个结点所接受。
大学计算机基础
计算机网络拓扑结构的优缺点
优点: 结构简单灵活 方便设备扩充 网络速度很快 设备量较少 价格低廉 安装方便 共享资源能力强 便于广播式工作 缺点: 对线路故障敏感 只能有一个节 点来发送数据 线路上任何一处 故障会导致整个 网络的瘫痪
大学计算机基础
计算机网络系统的组成
6.1 计算机网络系统组成 6.1.1 计算机网络
计算机网络是利用网络设备和通讯线路把分布在 不同地理位置的多台计算机系统连接起来,运行网络 系统软件,实现网络资源共享的通信的系统。

第6章 传输层教案(计算机网络)

第6章 传输层教案(计算机网络)

第6章传输层教学目标:1、了解传输层的功能2、掌握TCP和UDP协议的工作原理3、理解TCP和UDP协议和上层通信机制教学重点:传输层的功能,TCP和UDP协议教学难点:TCP和UDP协议通信机制教学课时:4课时教学方法:讲解法、讨论法、演示法、练习法教学内容及过程:第6章传输层6.1内容简介传输层是OSI七层参考模型的第四层,它为上一层提供了端到端(end to end)的可靠的信息传递。

物理层使我们可以在各链路上透明地传送比特流。

数据链路层则增强了物理层所提供的服务,它使得相邻节点所构成的链路能够传送无差错的帧。

网络层又在数据链路层基础上,提供路由选择、网络互联功能。

而对于用户进程来说,我们希望得到的是端到端的服务,传输层就是建立应用间的端到端连接,并且为数据传输提供可靠或不可靠的链接服务。

6.2传输层简介一、传输层的定义传输层是OSI模型的第4层。

一般来说,OSI下3层的主要任务是数据通信,上3层的任务是数据处理。

该层的主要任务用一句话表示就是“向用户提供可靠的端到端的服务,处理数据包的传输差错、数据包的次序、处理传输连接管理等传输方面的问题,以保证报文的正确传输”。

二、传输层功能⏹连接管理⏹流量控制⏹差错检测⏹对用户请求的响应⏹建立无连接或面向连接的通信→面向连接:会话建立、数据传输、会话拆除→无连接:不保证数据的有序到达6.3TCP协议传输层协议为TCP(transmission control ptotocol),因此传输层也被称为TCP层。

TCP 协议是面向连接的端到端的可靠的传输层协议。

它支持多种网络应用程序,对下层服务没有多少要求,同时假定下层只能提供不可靠的数据报服务,并可以在多种硬件构成的网络上运行。

一、TCP分段格式⏹序列号和确认号(32比特)⏹ 窗口(16比特) ⏹ 校验和(16比特) ⏹ 数据(可变大小) ⏹ 头长度(4比特) ⏹ 标志(6比特) ⏹ FIN (完成) ⏹ PSH (推) ⏹ RST (复位) ⏹ SYN (同步) ⏹ 紧急指针(16比特) ⏹ 选项(可变长度) 二、TCP 的连接建立和拆除 1、TCP 的连接建立2、TCP 的连接建立发送 SYN接收 SYN1发送 SYN接收 SYN 发送 SYN, ACK接收 SYN123、TCP 连接建立4、TCP 连接拆除发送 SYN接收 SYN 发送 SYN, ACK建立会话123接收 SYN三、TCP 可靠传输技术当TCP 的连接建立好后,为保证数据传输的可靠,TCP 协议要求对传输的数据都进行确认,为保证确认的正常进行,TCP 协议首先对每一个分段都作了32位的编号,称为序列号。

IPv6技术第6章ppt课件

IPv6技术第6章ppt课件

精选课件ppt
2
6.1 IPv6安全问题
❖ 6.1.1 IPv6安全问题概述
IPv6的安全脆弱性可以分为四类:
❖ ⑴实现和部署上的漏洞和不足,与IPv6协议有关的设计、算法和 软硬件的实现离不开人的工作
❖ ⑵非IP层攻击,IPv6的安全仅作用在IP层,其它层出现对IPv6网 络的攻击仍然存在。
❖ ⑶IPv4向IPv6过渡时期的安全脆弱性,IPv4网络和IPv6网络并存 的环境以及过渡技术存在安全隐患。
精选课件ppt
4
网络安全的特征
❖ 身份可认证性;机密性;完整性;可控性;可审查 性。
❖ 网络安全需要考虑到三个方面:
⑴安全攻击,是任何危及网络系统信息安全的活动; ⑵安全机制,用来保护网络系统不受截听,阻止安全攻
击,恢复受到攻击的系统; ⑶安全服务,提供加强网络信息传输安全的服务,利用
一种或多种安全机制阻止对网络的攻击。
明文M H
密钥K
明文M 发送 明文M
MD 得出报文摘要
加密的报文摘 要
图6.4 用报文摘要实现报文鉴别
精选课件ppt
收方算出的
报文摘要
H
MD
密钥K 比较
MD 得 出 解 密 的 报文摘要
13
6.2 Internet的安全技术
❖ 6.2.1 数据包过滤和防火墙
防火墙所起的作用是:
❖①限制访问者进入一个被严格控制的点; ❖②防止进攻者接近受到保护的设备; ❖③限制人们离开一个严格控制的点。
与操作系统OS集成实施
❖ ⑵将IPsec作为协议栈中的一块(BITS)来实现
这种方法将特殊的IPsec代码插入到网络协议栈中,在网 络协议栈的网络层和数据链路层之间实施

computer networks(Tanenbaum)【第6章 传输层】

computer networks(Tanenbaum)【第6章 传输层】

第六章 传输层传输层解决一个应用进程与另外一个应用进程之间的数据传输的问题。

对网络进行分类,通常也是以传输层为界限来进行分类的:1、 把网络分为通讯子网和资源子网(传输层分在了上面)通讯子网用于传递数据,它不关心数据的意思,通讯子网只有7层协议中的下面三层;资源子网(网上的所有主机)的设2、 传输服务的使用者和传输服务的提供者(传输层分在了下面)传输层以上是应用进程自己要处理的东西,如:进程要发送什么消息,如何理解消息;传输层以下(包括传输层)为进程之间的通讯提供传输服务。

对于需要进行数据通讯的应用进程来讲,它不管数据传输是如何实现,它只是将要传输的数据交给传输层就行了,因此传输层为高层的用户屏蔽了通讯的细节,同时也提供了一组通讯的接口。

的服务质量很好,则传输层的实现就比较简单,只需要提供通讯进程的标识就可以了;如果通讯子网提供的服务质量不好,则所有的数据传输的可靠都必须由传输层自己来保证。

传输服务一、传输层的功能及在协议层中的作用 1、传输层在OSI 模型中的位置1)介于通讯子网和资源子网之间,对高层用户屏蔽了通讯的细节2)弥补了通讯子网所提供服务的差异和不足,提供端到端之间的无差错保证 3)传输层工作的简繁取决于通讯子网提供服务的类型 2、传输层与上下层之间的关系传输层使高层用户看到的好像就在两个传输层实体之间有一条端到端的、可靠的、全双工的通信通道(即:数字管道) 二、传输层为上层提供的服务1、 面向连接的服务(即:可靠的服务):通讯可靠,而且是按序传输的,对数据有效验和重发(针对数据包丢失,传输层采用重传机制解决)针对按序传输(发送顺序和接受顺序是一样的),传输层采用缓冲区来解决:当一个数据到达后,在交给应用进程处理前,传输层要看收到的数据的序号,若序号排在该数据前面的数据没有收到,则收到的数据会暂存在缓冲区,等前面序号的数据到达后,再一起交给应用进程。

如:TCP/IP 模型中应用层协议FTP 、Telnet 等 2、 面向非连接的服务(即:不可靠的服务):提供的是不可靠的传输,对数据无效验和重发,通讯速率高,如:TCP/IP 模型中应用层协议SNMP 、DNS 等 三、传输服务原语1、传输服务原语是应用程序和传输服务之间的接口1)一个典型的面向连接的服务原语(采用C/S 的工作方式提供服务)2、TPDU 的发送过程3、 伯克利套接字(Berkeley Sockets )在TCP/IP 协议当中,用得最多的传输层服务原语就是伯克利套接字。

无线传感网知识点

无线传感网知识点

第一章无线传感网概述1.无线传感器网络的概念:无线传感器网路是一种由多个无线传感器节点和几个汇聚节点构成的网络,能够实时的检测、感知和采集节点部署区域的环境或感兴趣的的感知对象的各种信息,并对这些信息进行处理后一无线的方式发送出去。

2.WSN的特点及优势1)WSN与Ad hoc共有的特征:自组织;分布式;节点平等;安全性差2)WSN特有的特征:计算能力不高;能量供应不可代替;节点变化性强;大规模网络3.无线传感器网络架构:1)协议:物理层,数据链路层,网络层,传输层,应用层物理层:负责载波频率产生、信号的调制解调等工作,提供简单但健壮的信号调制和无线收发技术。

数据链路层:(1)媒体访问控制。

(2)差错控制。

网络层:负责路由发现和维护,是无线传感器网络的重要因素。

传输层:负责将传感器网络的数据提供给外部网络,也就是负责网络中节点间和节点与外部网络之间的通信。

应用层:主要由一系列应用软件构成,主要负责监测任务。

这一层主要解决三个问题:传感器管理协议、任务分配和数据广播管理协议,以及传感器查询和数据传播管理协议。

2)管理平台:(1)能量管理平台(2)移动管理平台(3)任务管理平台(1)管理传感器节点如何使用资源,在各个协议层都需要考虑节省能量。

(2)检测传感器节点的移动,维护到汇聚节点的路由,使得传感器节点能够动态跟踪其邻居的位置。

(3)在一个给定的区域内平衡和调度检测任务。

4.无线传感器网络所面临的挑战:低能耗,实时性,低成本,安全和抗干扰,协作第二章无线传感网物理层设计1.WSN物理层频率的选择:一般选用工业,科学和医疗频段。

ISM(医疗)频段的主要优点是无需注册的公用频段、具有大范围可选频段、没有特定标准、灵活使用。

欧洲使用433MHZ,美国使用915MHZ频段2.WSN结构采用的是无线射频通信第三章数据链路层1.MAC协议分类:1)按节点的接入方式:侦听(间断侦听:DEANAdeng),唤醒(低功耗前导载波侦听MAC协议),调度(主要使用在广播中)2)按信道占用数划分:单信道(主要采用),双信道,多信道3)信道分配方式:竞争型(S-MAC,T-MAC,Sift),分配型(SMACS,TRAMA),混合型(ZMAC),跨层型2.分配型MAC协议采用TDMA,CDMA,SDMA,FDMA等技术3.数据链路层的关键问题:能量效率问题,可扩展性,公平性,信道共享,网络性能的优化4.记忆竞争的S-MAC协议,具有以下特点:(1)周期性的侦听和睡眠(2)使用虚拟载波侦听和物理载波侦听进行冲突避免(3)自适应侦听(4)将长消息分成子段进行消息传递5.基于竞争的T-MAC协议:为了改进S-MAC协议不能根据网络负载调整自己的调度周期的缺点,T-MAC协议根据一种自适应占空比的原理,通过动态地调整侦听与睡眠时间的比值,从而实现节省能耗的目的。

第6章 传输层协议及分析

第6章  传输层协议及分析

6.2.2 UDP协议
1、UDP协议的格式:
S:202.112.143.33 D:202.112.143.11 S:202.112.143.33 D:202.112.143.11
0
源端口号
16
目的端口号 校验和 数据
31
主机A: 202.112.143.1 1
S:202.112.143.33 D:202.112.143.11 S_port:10437 D_port:69
第6章 传输层协议及分析
本章学习导引 6.1 OSI体系结构中传输层 6.2 Internet体系中的传输层 6.3小结

6.1 OSI体系结构中传输层
1、传输层的任务:根据子网的特性最佳地利用网络 资源,并根据会话实体的要求,以最低费用、最 高可靠性为两个端系统(即发送站和目的站)的会话 层之间建立一条运输连接,以透明方式传送报文 2、传输层的主要功能是建立,拆除和管理运输站 3、A类、B类和C类网络 4、传输层所提供的5类协议 5、传输层协议服务数据单元(TPDU)
3、TCP协议和UDP协议的比较:


6.3小结
1、重点 传输层的功能 网络与协议的类之间的关系 TCP、UDP协议 2、难点

TCP协议的理解
S:202.112.143.33 D:202.112.143.11 S_port:3169 D_port:53
主机B: 202.112.14 3.33
长度
主机A: 202.112.143.11
图6.5 UDP数据的端口号
主机B: 202.112.143. 33
图6.6 UDP报文的格式
UDP数据的端口号
图6.2 TCP的报文传送

第6章(623)

第6章(623)

第6章 UDP Socket
其主要方法: ● public synchronized getDate():从数据报中获得数据; ● public synchronized getLength():从数据报中获得数据长 度; ● public synchronized setDate(byte buf[ ]):设置数据报的数 据; ● public synchronized setLength(int length):设置数据报的长 度。 使用UDP实现通信,需要分别建立通信的发送端和接收端程 序。
第6章 UDP Socket 6.1.2 信息传播的形式
信息在网络中传播的形式有三种,分别是:单播 (UniCast)、广播(BroadCast)和组播(MultiCast,或称为多播), 如图6-1所示。采用TCP作为传输协议,信息传递只能实现 点到点的单播形式,如果必须使用TCP作为传输协议而实现 向多个用户发送相同的消息,就必须采用轮流循环的方式进 行点到点的单播,从而降低了信息的实时性也浪费了带宽。 利用UDP作为传输协议,则可以实现所有形式的传播。
第6章 UDP Socket
【例 6-1】 探测本地 UDP 端口使用情况。
1. import java.io.*;
2. import .*;
3. class exp_6_1{
4.
public static void main(String [] args){
5.
DatagramSocket ds = null;
第6章 UDP Socket
【例 6-2】 UDP 接收端程序。
1. import java.io.*;
//引入 IO 类库
2. import .*;

电信传输技术第六章概要

电信传输技术第六章概要

图6-4 长途两级网的网路结构
今后,中国的电话网将近一步形成 由一级长途网和本地网所组成的二级 网络,实现长途无级网。这样,中国 的电话网将由3个层面(长途电话网平 面、本地电话网平面和用户接入网平 面)组成
(2)本地网 ①本地网的类型 类型有两种:一种是特大和大城市 本地网,另一种是中等城市本地网 ②本地网的交换中心及职能 它的职能是负责疏通本局用户的去 话和来话话务
目前我国电话长途网已由四级向两 级转变。省级(包括直辖市)交换中 心构成长途两级网的高平面网(省际平 面),地(市)级交换中心构成长途网 的低平面网(省内平面),然后逐步向 无级网和动态无级网过渡。 长途两级网将国内长途交换中心分 为两个等级,省级(包括直辖市)交 换中心以DC1表示;地(市)级交换中 心以DC2表示
6.1.5电话网的性能要求 电话通信是目前用户最基本的业务 需求,对电话通信网的三项要求是: 接续质量、传输质量和稳定质量。
6.1.6电话网的演进 1.PSTN与ADSL 公用电话网(PSTN,Public Switched Telephone Network)是电 信传输网络中的基础网,传输区域覆 盖全国,利用电话网进行远程信息传 输是投资少、见效快、实现大范围数 字传输最便捷的方法
(4)其他选路方法介绍
由于程控交换机的使用,网络结构 将由静态分级汇接网向动态无级网发 展。在分级汇接中,路由选择原则是 先选直达路由,次选迂回路由,最后 选择汇接路由。而在无级网络中,采 用动态无级选路方式(DNHR, Dynamic Non—Hierarchical Routing),利用 话务量忙时分布的不一致性,根据交 换点位置及业务忙闲,可随时间选择 不同路由(这部分任务由网络管理系 统完成)。
四、计算机网络的拓扑结构 网络中各台计算机连接的形式和方 法称为网络的拓扑结构。其主要有总 线型、星型、环型、树型和网状拓扑 结构。对于点到点信道的基本拓扑结 构类型有星型、环型、树型和网状结 构。对于广播信道的基本拓扑结构类 型有总线型、环型和树型结构。

第6章 UDP协议抓包实践[2页]

第6章 UDP协议抓包实践[2页]

实验6-2 UDP协议抓包实践一、实验目的(1)理解UDP数据包格式(2)掌握通过抓包软件抓取UDP数据包并进行分析的办法二、相关理论与TCP不同,UDP协议并不提供数据传送的保证机制。

如果在从发送方到接收方的传递过程中出现数据报的丢失,协议本身并不能做出任何检测或提示。

因此,通常人们把UDP 协议称为不可靠的传输协议。

相对于TCP协议,UDP协议的另外一个不同之处在于如何接收突发性的多个数据报。

不同于TCP,UDP并不能确保数据的发送和接收顺序。

三、实验内容(1)使用Wireshark软件抓取指定UDP数据包。

(2)对抓取的数据包按协议格式进行各字段含义的分析四、实验步骤(1)打开Wireshark,选择网卡,开启抓包功能。

(2)利用QQ向好友发送任意信息。

然后进入到Wireshark停止抓包。

(3)如果抓取的数据包比较多,在“过滤器”中输入“OICQ”(QQ在应用层使用的协议是OICQ),点击“应用”便可筛选出QQ通信的数据包,如图6-31所示。

图6-31 Wireshark抓包筛选后内容(4)点击第一条数据,可以在数据包封装明细区中看到数据包在传输层使用的UDP的协议。

点开“User Datagram Protocol”前面的“+”,可以看到UDP协议的详细信息,请填写各行代码含义。

User Datagram Protocol, Src Port: terabase (4000), Dst Port: irdmi (8000) //状态行Source port: terabase (4000) //__________________________________ Destination port: irdmi (8000) //__________________________________Length: 47 //UDP数据包长度为______字节,由于头部长度为8字节,因此UDP数据区长度为____字节Checksum: 0x9deb [validation disabled] //____________Good Checksum: FalseBad Checksum: False注:Wireshark软件为了节约时间和资源,对TCP和UDP的校验和没有进行精确计算,只提供了近似值,故为[validation disabled]。

通讯协议有哪几种

通讯协议有哪几种

通讯协议有哪几种在计算机网络通信中,通讯协议是指计算机之间进行通信所必须遵循的规则和约定。

通讯协议可以分为多种类型,每种类型都有其特定的应用场景和特点。

本文将介绍几种常见的通讯协议,包括传输层协议、网络层协议、应用层协议等。

1. 传输层协议。

传输层协议是指在计算机网络中负责实现端到端通信的协议。

常见的传输层协议包括TCP(Transmission Control Protocol)和UDP(User Datagram Protocol)。

TCP是一种面向连接的、可靠的传输协议,它通过三次握手建立连接,保证数据的可靠传输。

TCP具有流量控制和拥塞控制等特点,适用于对数据传输要求较高的场景,如文件传输、网页浏览等。

UDP是一种无连接的、不可靠的传输协议,它不保证数据的可靠传输,但具有低延迟和高效率的特点。

UDP适用于对实时性要求较高的场景,如音视频传输、在线游戏等。

2. 网络层协议。

网络层协议是指在计算机网络中负责实现数据包转发和路由选择的协议。

常见的网络层协议包括IP(Internet Protocol)和ICMP(Internet Control Message Protocol)。

IP是一种主机到主机的协议,它负责将数据包从源主机传输到目标主机。

IP协议使用IP地址来标识主机和子网,实现数据包的路由选择和转发。

ICMP是一种用于在IP网络中传递控制消息的协议,它主要用于网络故障排除和诊断。

ICMP协议可以发送错误报文和请求报文,帮助网络管理员快速定位和解决网络问题。

3. 应用层协议。

应用层协议是指在计算机网络中负责实现特定应用功能的协议。

常见的应用层协议包括HTTP(Hypertext Transfer Protocol)、FTP(File Transfer Protocol)、SMTP(Simple Mail Transfer Protocol)等。

HTTP是一种用于传输超文本数据的协议,它是万维网的核心协议,用于在客户端和服务器之间传输HTML页面、图片、视频等资源。

第6章 Windows中的IPSec

第6章 Windows中的IPSec

IPSec提供协议和安全算法,为网络提供了以 下三种标准的安全措施: 1.认证性(Authentication) 对实体的身份进行鉴别,即网络交互双方能够 在相互不见面的情况下确认对方的身份。 2.机密性(Confidentiality) 机密性一般通过密码技术来对传输的信息进行 加密处理来实现。 3.完整性(integrity) 要预防对信息的随意生成、修改和删除,同时 要防止数据传送过程中信息的丢失和重复,并保证 信息传送次序的统一。完整性一般可通过提取消息 摘要的方式来获得。
内置的IPSec策略适用于同一个活动目录域中 的成员之间使用,使用内置的IPSec策略,可减少 用户的很多配置工作。
定制的IPSec策略适用于不在域内的用户之间 使用IPSec安全机制,这需要较多的配置工作。
6.2.1 使用内置 IPSec策略 为了使用内置的IPSec策略,要求使用IPSec的 安全通信双方必须是同一活动目录域的成员,因为 内置的IPSec策略需要域控制器提供的Kerberos认 证。使用内置的IPSec策略,可以使用最少的配置 来实现域成员之间的IPSec安全通信。配置时,一 般将一台服务器(可以不是域控制器)配置成 IPSec安全服务器,其他的客户机配置成IPSec安全 客户机。 如果两个计算机拥有同样的安全服务器策略, 它将不会发送未经保护的数据,在所有应用数据发 送之前,都要请求IPSec保护。如果两个计算机都 拥有客户策略,因为双方都不要求安全处理,其发 送和接收的数据都没有经过任何保护。
6.1 IPSec基础
6.1.1 IPSec概述 IPSec为Internet工程任务组IETF(Internet Engineering Task Force)为IPv4可选的和IPv6标 准的安全协议,用于增强基于IP的Internet/Intranet 网络安全性。 IPSec位于OSI网络模型的传输层之下,即对IP 层(网络层)进行安全处理,所以它对上层的应用 程序是完全透明的。当在路由器或防火墙上配置了 IPSec时,管理员不需要对上层应用软件做任何配置, 就可以对其增加网络传输的安全处理。即使在终端 系统中执行IPSec,作为上层应用的软件系统也不会 受到影响。

计算机网络第五版课后习题答案第六章

计算机网络第五版课后习题答案第六章

6-01 因特网的域名结构是怎么样的?它与目前的电话网的号码结构有何异同之处?答:(1)域名的结构由标号序列组成,各标号之间用点隔开:. 三级域名 . 二级域名 . 顶级域名各标号分别代表不同级别的域名。

(2)电话号码分为国家号结构分为(中国 +86)、区号、本机号。

6-02 域名系统的主要功能是什么?域名系统中的本地域名服务器、根域名服务器、顶级域名服务器以及权限域名权服务器有何区别?答:域名系统的主要功能:将域名解析为主机能识别的IP地址。

因特网上的域名服务器系统也是按照域名的层次来安排的。

每一个域名服务器都只对域名体系中的一部分进行管辖。

共有三种不同类型的域名服务器。

即本地域名服务器、根域名服务器、授权域名服务器。

当一个本地域名服务器不能立即回答某个主机的查询时,该本地域名服务器就以DNS客户的身份向某一个根域名服务器查询。

若根域名服务器有被查询主机的信息,就发送DNS回答报文给本地域名服务器,然后本地域名服务器再回答发起查询的主机。

但当根域名服务器没有被查询的主机的信息时,它一定知道某个保存有被查询的主机名字映射的授权域名服务器的IP地址。

通常根域名服务器用来管辖顶级域。

根域名服务器并不直接对顶级域下面所属的所有的域名进行转换,但它一定能够找到下面的所有二级域名的域名服务器。

每一个主机都必须在授权域名服务器处注册登记。

通常,一个主机的授权域名服务器就是它的主机ISP的一个域名服务器。

授权域名服务器总是能够将其管辖的主机名转换为该主机的IP地址。

因特网允许各个单位根据本单位的具体情况将本域名划分为若干个域名服务器管辖区。

一般就在各管辖区中设置相应的授权域名服务器。

6-03 举例说明域名转换的过程。

域名服务器中的高速缓存的作用是什么?答:(1)把不方便记忆的IP地址转换为方便记忆的域名地址。

(2)作用:可大大减轻根域名服务器的负荷,使因特网上的 DNS 查询请求和回答报文的数量大为减少。

6-04 设想有一天整个因特网的DNS系统都瘫痪了(这种情况不大会出现),试问还可以给朋友发送电子邮件吗?答:不能;6-05 文件传送协议FTP的主要工作过程是怎样的?为什么说FTP是带外传送控制信息?主进程和从属进程各起什么作用?答:(1)FTP使用客户服务器方式。

第六章 因特网互连协议

第六章 因特网互连协议

第6章因特网互连协议本章重点●因特网与TCP/IP ——因特网的协议z DNSz TCP、UDPz IP、ICMPz ARP与IP的交互简介TCP/IP是Internet上最广泛的网络协议TCP/IP是一个协议簇包括:应用层:FTP, HTTP, DNS等传输层:TCP, UDP网络层:IP, ARP, ICMP, RARP, 各种路由协议因特网的协议栈Application Transport Internet Network Interface Physical 应用层ftp, smtp, http (数据包、流) 传输层 tcp, udp (消息分组)网络层 ip, 路由协议(ip 数据包) 网络链路/网络接口层 ppp, 以太网协议(数据帧) 物理层6.1 因特网编址机制z 因特网目前主要有三种不同形式但可以互相映射的地址管理机制:z 域名地址:(帮助记忆)z IP v4地址:202.204.192.222(32位逻辑编码,用来在因特网中定位主机和路由器的接口)z 介质访问控制(MAC )地址:12-FA-9B-23-DB-11(48位物理编码,用来在局域网中定位主机和路由器的接口)三者之间怎样进行相互影射?6.1 因特网编址机制z TCP/IP协议中各类地址的映射z在广域网中主要使用逻辑编址。

按IP地址来确定网络、网段和主机。

z依靠域名服务系统(DNS)来实现域名地址到IP地址的映射和转换z在局域网中,需要使用网卡的MAC地址来通信,MAC地址是在网卡出厂时就固化在芯片中。

z在局域网中,由各主机上的地址解析协议(ARP)模块负责完成IP地址到MAC地址间的转换。

6.1 因特网编址机制z IP协议采用固定的地址方案来传送数据。

无论在哪种链路上传送IP数据包中的IP地址都是不变的。

z在局域网网段上使用ARP协议,将信宿的IP地址转换为该信宿主机使用的MAC地址,以便将IP数据包再封装在链路帧送到信宿站点。

第六章计算机网络基础答案

第六章计算机网络基础答案

第六章计算机网络基础答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第六章计算机网络基础【例题与解析】1、一个办公室中有多台计算机,每个计算机都配置有网卡,并已经购买了一台网络集线器和一台打印机,一般通过()组成局域网,使得这些计算机都可以共享这一台打印机。

A 光纤B 双绞线C 电话线D 无线【解析】B,参见局域网的组成,在一个办公室中,通过双绞线连接集线器和计算机网卡,然后对计算机进行协议配置和打印机共享配置,则所有的计算机都可以共享这一台打印机。

2、北京大学和清华大学的网站分别为和,以下说法正确的是()。

A 他们同属于中国教育网B 它们都提供www服务C 他们分别属于两个学校的门户网站D 他们使用同一个IP地址【解析】D,域名是层次化的。

cn代表中国,edu代表教育网,pku代表北京大学,tsinghua代表清华大学,www代表提供www服务的主机名,两台www主机不可能使用同一个IP地址。

3、提供可靠传输的运输层协议是()。

A TCPB IPC UDPD PPP【解析】A,在TCP/IP协议簇中,有两个互不相同的传输协议:TCP(传输控制协议)和UDP(用户数据报协议)。

TCP协议是面向连接的协议,它安全,可靠,稳定但是效率不高,占用较多资源。

UDP协议是无连接方式的协议,它的效率高,速度快,占资源少,但是传输机制为不可靠传送,必须依靠辅助的算法来完成传输的控制。

4、下列说法正确的是()。

A Internet计算机必须是个人计算机B Internet计算机必须是工作站C Internet计算机必须使用TCP/IP协议D Internet计算机在相互通信时必须运行同样的操作系统【解析】C,任何计算机,从掌上PC到超级计算机都可以使用TCP/IP连接到Internet。

且上网的计算机可以运行任何使用TCP/IP协议的操作系统进行相互通信。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章传输层协议
学习目标
理解传输层功能及主要协议;
理解端口的概念;
掌握TCP协议和UDP协议的异同;
了解TCP连接的建立过程及可靠性机制。

6.1 传输层概述
6.1.1 传输层及其功能
我们通常将OSI模型中的下面三层称为面向通信子网的层,而将传输层及以上的各层称为面向资源子网或主机的层。

只有资源子网中的端设备才会具有传输层,通信子网中的设备至多只具备OSI下面三层的功能即通信功能。

6.1 传输层概述
6.1.1 传输层及其功能
传输层是OSI参考模型的第4层,它提供了端到端(end-to-end)的信息传递。

传输层的最终目标是向其用户(应用层的进程)提供有效、可靠的服务。

具体来说,传输层具有以下功能和特点:
(1)传输层只在两端(发送端和接收端)存在,因此传输层的功能和实现与当前使用的网络无关,传输层也不管理或干涉数据在网络中传输的路径和过程。

(2)传输层负责操作系统的进程和通信子网之间的接口,即通过传输层将操作系统的不同进程在通信子网中传输的数据加以区分,从而保证在接收端接收的数据能正确的发送到各进程。

(3)传输层提供端到端的错误恢复与流量控制,能对网络层出现的丢包、乱序或重复等问题作出反应。

(4)提供数据分段功能,从而便于丢包重传并较少网络阻塞的概率。

当上层的协议数据包的长度超过传输层所能承载的最大数据传输单元时,要提供必要的分段功能,在接收方的对等层还要提供合并分段的功能。

6.1 传输层概述
6.1.2 传输层端口
传输层端口是逻辑意义上的端口,它是网络通信进程的一种标识。

属于一种抽象的软件结构,包括一些数据结构和I/O(输入输出)缓冲区。

端口在传输层的作用有点类似IP地址在网络层作用或MAC地址在数据链路层的作用,只不过IP地址和MAC地址标识的是主机,而端口标识的是网络进程。

由于同一时刻一台主机上会有大量的网络进程在运行,所以需要有大量的端口号来标识不同的需要访问网络进程。

每个端口都有一个端口标识,一般称为端口号,其长度为16Bit,也就是说在一个IP上可以定义216=65536个端口,其端口号范围从0到65535。

由于TCP/IP 传输层的TCP和UDP两个协议是两个完全独立的软件模块,因此各自的端口号也相互独立,即各自可独立拥有216个端口。

每个IP上的65536个端口又被分为两部分:静态端口和动态端口。

静态端口的范围是0-1023 ,又称固定端口。

它们一般位于应用层协议的服务器端;动态端口的范围是1024-65535,又称随机端口。

它们一般位于应用层协议的客户端。

5
6.1 传输层概述
6.1.2 传输层端口
传输层端口结构如下图所示:
6.1 传输层概述
6.1.2 传输层端口
常见静态端口表
6.1 传输层概述
6.1.2 传输层端口
使用netstat命令查看本机开放端口
6.2 TCP协议
6.2.1 TCP协议格式
6.2 TCP协议
6.2.2 TCP连接建立和拆除过程
(1)TCP连接建立
TCP协议在传输有效数据之前必须先在两端之间建立连接以确保线路和设备的可用性,整个连接过程需要发送和接收3个特定格式的TCP数据包,一般被称为三次握手。

6.2 TCP协议
6.2.2 TCP连接建立和拆除过程
(2)TCP连接拆除
由于TCP连接是全双工的,可以看作两个不同方向的单工数据流传输,因此一个完整连接的拆除涉及两个单向连接的拆除。

拆除连接的握手过程分为四步。

6.2 TCP协议
6.2.3 TCP可靠性传输机制
(1)序列号
TCP发送端要为所发送的每一个分段加上序列号(Sequence Number),保证每个分段能被接收端接收,并只被正确地接收一次。

(2)确认重传
接收端在正确收到发送端数据分段之后向发送端回送一个确认信息,如发送方收不到此确认信息将认为此数据丢失,并重新发送此数据。

6.2 TCP协议
6.2.3 TCP可靠性传输机制
(3)滑动窗口
滑动窗口(Sliding window)是一种流量控制技术,可以避免网络拥塞情况的发生。

滑动窗口的大小意味着接收方还有多大的缓冲区可以用于接收数据,发送方可以通过滑动窗口的大小来确定应该发送多少字节的数据。

在TCP段首部的窗口(Window)字段写入的数值就是滑动窗口的大小,其单位为字节。

当滑动窗口为0时,发送方一般不能再发送数据。

滑动窗口工作过程如下:
(1)TCP连接阶段,双方协商窗口尺寸,同时接收方预留数据缓存区;
(2)发送方根据协商的结果,发送符合窗口尺寸的数据字节流,并等待对方的确认;
(3)发送方根据确认信息,改变窗口的尺寸,增加或者减少发送未得到确认的字节流中的字节数。

调整过程包括:如果出现发送拥塞,发送窗口缩小为原来的
一半,同时将超时重传的时间间隔扩大一倍。

6.3 UDP协议
6.2.3 TCP可靠性传输机制
UDP(User Datagram Protocol,用户数据报协议)是非连接的、不可靠的端到端传输层协议,只提供一种基本的、低延迟的被称为数据报的通信。

UDP协议格式如下:
6.4 应用案例
公司网络拓扑
6.4 应用案例
公司子网划分表
1、了解常见的影响网络性能的因素。

2、理解子网划分的作用;
3、理解带宽和TCP连接数的概念
4、掌握网络性能优化的常见办法。

应用案例四:网络性能优化
案例描述
公司领导发现近期网络较慢,交给小朱一项任务:分析当前网络较慢的原因并提出解决方案。

当前公司的网络拓扑如图所示,其中A楼中的所有主机在C类网192.168.0.0中,B楼中的所有主机在B类网172.16.0.0中,没有划分子网。

内部所有光纤和双绞线均为百兆速率,公司通过租用ISP的一条百兆光纤专线接入Internet。

案例四:网络性能优化
案例分析
如个别电脑网速较慢,则很可能是该电脑中了病毒或木马导致的系统资源不足,如果整个网络中的电脑普遍网速较慢,则常见原因包括:
(1)网络内蠕虫等病毒大规模爆发;
(2)网络中存在环路且没有正确配置;
(3)防火墙过滤策略过多影响出口速度;
(4)网络过大导致广播包过多而降低网络性能;
(5)网络设备硬件故障引起的广播风暴;
(6)出口线路或内部骨干线路带宽不足;
(7)个别电脑建立了过多的连接数,或占用了过多的带宽。

案例四:网络性能优化
案例分析
小朱经过分析发现,公司的电脑普遍网速较慢,因此不是个别电脑的问题,而是整个网络出现了一定的问题。

通过杀毒软件检查以及交换机CPU负载检查没有发现蠕虫病毒(该病毒一般会显著提高交换机CPU负载);
通过检查交换机日志没有在网络中发现环路(环路产生时交换机会有记录);防火墙配置较为简单,且移除防火墙后网速没有提高,因此也排除了防火墙的问题。

通过查看交换机接口的数据包统计信息,发现网内广播包数量较多。

通过查看防火墙,发现总TCP连接数较大。

因此小朱认为公司网速慢的原因应该有可能存在于上述(4)~(7)项中,并提出相应的解决方案。

案例四:网络性能优化
案例解决方案
(1)划分子网以减少广播包数量。

由于A楼约200台电脑在同一网络中,B 楼约500台电脑在同一网络中,因此当进行ARP解析、DHCP请求或发生网卡故障等情况下,会产生大量广播包而影响网络性能。

因此小朱打算划分出7个子网以减少广播包数量:
案例四:网络性能优化
案例解决方案
(2)由于目前只有1条百兆光纤出口,因此平均每个终端只能分到100Mb/(200+500)≈143Kb出口带宽。

因此小朱建议,增加一条百兆光纤出口,同时将内部骨干线路升级为千兆。

相关文档
最新文档