2019中考阅卷老师解密中考数学评分规则精品教育.doc
2019中考阅卷按啥标准?看了这些,把该拿到手的分数都拿到精品教育.doc
中考阅卷按啥标准?看了这些,把该拿到手的分数都拿到我们一起来看一下,中考阅卷的标准吧!做到“知己知彼,百战不殆!”阅卷现象1:批改一道题有时只用数十秒,近几年参加中考阅卷的老师透露,一位老师一天平均要批数百份甚至数千份卷子(只批其中一题),批一道题的时间只有几十秒到一分钟。
这是真的,一点都不夸张。
据说一份作文卷,五六十秒改完算是慢的,有的人只用30秒就能改完,一个老师平均一天能批改三四百份作文卷;再比如,有些计算题,十来秒就批改完。
有些同学答物理大题时,都是一写一大片,所以每得出一个重要结论,一定要标上①、②等,尤其力学大题中,求出G动后,电学大题,求出电阻连比后R1:R2:R3后,都要注意标号。
标准答案上也这样印的,我们要写的尽可能与标答一致,最好的书写形式就是往年标答的形式!为的是,方便阅卷老师找到答案。
所以不要站在自己的角度答卷,而是站在阅卷老师的角度去想问题,去写。
对策:面对如此批卷速度,考生在答卷时就要有技巧,首先,卷面要整洁,字迹要工整,层次清楚。
如果书写模糊,涂改很多,难以辨认,都是不能给分的。
其次,概念要准确、叙述要简明,让人一看就明白。
其实生活中,很多事情是相通的。
人和人的第一印象,往往很大程度上,决定了对其的长期印象。
或许并不非常客观,但这是人性的一部分,阅卷也如此。
阅卷现象2:第一印象好,常能得高分,中考批卷,由于时间很紧,很多老师不得不寻找捷径。
据说,有些老师批改卷只凭第一印象,第一印象好,常常就给打高分。
例如有的老师批作文,只是第一段看一下,中间看一下,最后一段看一下,分数打高打低全凭第一感觉。
不论是中考,还是高考阅卷,对于阅卷老师来说,都是时间紧,任务重,因此尽快判完,才是第一利益诉求点,这是符合人性的!因此,详细按照每年考试院出的标准答来答题,要将自己的答案尽可能写的与标准答一致,因此要注意无数的细节。
不管自己字体写的好与不好,这并不重要,重要的是,清楚、清晰,站在阅卷人的角度,来答题。
2019中考生必读:中考数学解题规范精品教育.doc.doc
2019中考生必读:中考数学解题规范审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。
具体内容请看下文中考数学解题规范。
解题是深化知识、发展智力、提高能力的重要手段。
规范的解题能够养成良好的学习习惯,提高思维水平。
在学习过程中做一定量的练习题是必要的,但并非越多越好,题海战术只能加重学生的负担,弱化解题的作用。
要克服题海战术,强化解题的作用,就必须加强解题的规范。
解题的规范包括审题规范、语言表达规范、答案规范及解题后的反思四个方面。
一、审题规范审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。
(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。
目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。
(2)分析条件与目标的联系。
每个数学问题都是由若干条件与目标组成的。
解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。
(3)确定解题思路。
一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。
用哪些联系解题,需要根据这些联系所遵循的数学原理确定。
解题的实质就是分析这些联系与哪个数学原理相匹配。
有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。
二、语言叙述规范语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的重要环节。
因此,语言叙述必须规范。
规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据。
中考数学阅卷评分标准
中考数学阅卷评分标准
中考数学阅卷评分标准主要包括以下几个方面:
1. 答案的准确性:评分标准首先关注的是学生的答案是否准确。
如果答案与标准答案完全一致,学生可以得到满分;如果答案存在小错误,可以酌情给予部分分数;如果答案错误或者完全没有回答,将不会得到任何分数。
2. 解题步骤的完整性:在考察解题方法和步骤的问题中,解题步骤的完整性也是评分的依据之一。
如果学生能够清晰地展示解题思路并给出正确的步骤,可以得到相应的分数;如果步骤不完整或者缺失,将会减分。
3. 解题的思路和方法:在评分时,教师会关注学生解题过程中的思路和方法。
如果学生采用了更简单或有效的解题方法,或者能够展示出创新的思维,可以获得额外的分数;如果解题过程中思路混乱或者方法错误,会相应扣分。
4. 计算和推理的准确性:在数学题中,计算和推理的准确性也是评分的关键。
如果学生在计算过程中出现了算术错误或者推理错误,将会扣分;而如果计算和推理正确,可以得到相应的分数。
5. 书写的清晰和规范性:在评分时,学生的书写清晰度和规范性也是考虑的因素之一。
如果学生能够规范地书写数字、符号和字母,书写清楚,可以获得相应分数;如果书写杂乱或者不规范,会适量扣分。
总体来说,中考数学阅卷评分标准是综合考虑学生答案的准确性、解题步骤的完整性、解题思路和方法、计算和推理的准确性以及书写的清晰和规范性进行评分的。
中考阅卷规则
阅卷中的惋惜
一、试卷中的空白 特别是选择题、填空题的空白
着实是莫大的遗憾。
二、会而不对 对而不全
1、莫名其妙的笔误 2、不可理喻的失误
3、致命的计算错误
4、严重的丢三落四 5、缺少必要的步骤
6、推理上不够严谨
三、时间分配不合理 遇难题花费过多时间,费时不得 分,劳而无功。 到交卷时还有简单的题处于空白 状态。
2、内容比例 数与代数60分左右,约占50%左右; 空间与图形45分左右,约占38%左 右;统计与概率15分左右,约占 12%左右。 3、题型比例 选择题共15个题,每题3分,计45 分,占总分的37.5%;填空题共6 个题,每题3分,计18分,占总分 的15%;解答题共7个题,共57分, 占总分的47.5%。共计28个题。 4、难度比例 适当控制容易题、中等难度题、难 题的比例,总难度控制在0.7左右。 题目设计大体上由易到难设计,难点 适当分散,使各类考生都能够充分 的发挥自己的真实水平。
四、不注意答题格式和布局
部分答题内容写到密封内, 忽视书写顺序 字迹不清晰,难以辨认
中考数学 应对策略
必要的考前准备 ★调整好状态
★今年的考试说 明你读了吗?
■调好自己的生物钟,保 三、 答数学卷要注意陷阱 持良好的身体状况。 ■锻炼集中精力两小时耐 力 ■带全必要的学习用具
调整心态
考前怯场或考试中某一环节暂时 失利时,不要惊慌,不要灰心丧气, 要沉着冷静,进行自我调节。一是 自我暗示。如“自己难,别人也 难”;“我不会做,别人也不一定 会做”;“我要冷静,要放松”等。
遇到难题就像吃鸭脖
人易我易,我不大意 我难人难,我不畏难。 狭路相逢勇者胜 人都急时我淡定。
中考数学阅卷评分标准
中考数学阅卷评分标准是一个综合性的评估体系,旨在确保公平、客观地评价考生的数学能力。
以下是对中考数学阅卷评分标准的一些详细说明:一、整体评分考生的整体评分基于他们的表现是否符合考试要求和是否成功完成考试任务。
这是评估考生是否理解和掌握数学知识的基础。
二、文笔表达考生的文笔表达也是一个重要的评分标准。
数学需要精确的语言来描述问题和答案,因此,清晰、简洁、准确的文笔表达能够展示考生对数学知识的理解和应用。
三、每道题目评分对于每道题目,评分标准包括正确答案的得分、选择题正确答案的得分、填空题正确答案的得分、解答题正确答案的得分以及书写整洁度的得分。
1.正确答案:如果考生正确回答了题目,交点处可以得2分;如果正确求出参数关系式,从而得出答案,则可以得到4分。
2.选择题正确答案:每道题目得2分。
3.填空题正确答案:每道题目得1.5分。
4.解答题正确答案:根据数学推理和解决方法的应用情况,可以给出2-6分的评分;如果给出完整的解答,则可以给出5-9分的评分。
5.书写整洁度:数学句子明确、表达清晰、书写整洁可以得到1分;书写正确、步骤完整、不明出处可以得到2分。
四、简答题正确答案对于简答题,根据答案的完整度、清晰度和准确性,可以给出相应的评分。
五、综合能力考查类题型对于综合能力考查类题型,根据考生是否能有效解决问题和能否解决问题,可以给出相应的评分。
以上就是中考数学阅卷评分标准的主要内容。
请注意,具体的评分标准可能会因地区和考试机构的不同而有所差异。
因此,考生在备考时,除了掌握数学知识外,还需要熟悉考试形式和评分标准,以便在考试中发挥出自己的最佳水平。
中考阅卷规则
调整心态
考前怯场或考试中某一环节暂时 失利时,不要惊慌,不要灰心丧气, 要沉着冷静,进行自我调节。一是 自我暗示。如“自己难,别人也 难”;“我不会做,别人也不一定 会做”;“我要冷静,要放松”等。
遇到难题就像吃鸭脖
人易我易,我不大意 我难人难,我不畏难。 狭路相逢勇者胜 人都急时我淡定。
五、空白试卷上注明“缺考”的,要注意查看后面 是否还有试卷要批。发现试卷有装订问题、有记号、或有 破损等应立即交给大组长处理。 六、结总分:应先将各大题得分与总分栏中该题的 得分数核对无误后方可进行,若存在差错,一律交大组长 及时处理。 七、复合总分:对各题进行纵向求和,查看是否与总 分相符,若有差错交大组长处理。 八、阅卷中有与标准相异,但解答有一定道理的另种 解法,请及时与题组长联系,共同评判,统一标准,千万 不要自作主张。 九、阅卷复核、总分复合后需纠正分数必须由原阅卷 人订正,其他任何人不得改动! 十、单、双号两组评分标准的统一有且只有题组长、 大组长负责协调。
(二)空间与图形 1.图形的认识 (1) 通过丰富的实例,进一步认识点、 线、面。 (2)角 ①通过丰富的实例,进一步认识角。 ②会比较角的大小,能估计一个角的 大小,会计算角度的和与差,认识度、 分、秒,会进行简单换算。 ③了解补角、余角、对顶角,知道等角 的余角相等、等角的补角相等、对顶角 相等。 ④了解角平分线及其性质,。(即知道 角平分线上的点到角的两边距离相等, 角的内部到两边距离相等的点在角的平 分线上)。 (3)相交线与平行线
阅卷中的潜规则
潜规则之一
印象分不能说绝
对没有 看到一份卷面整洁、字迹工整、 布局合理、步骤齐全的试卷, 便认定出自优生之手。 惜才怜 生之情悠然而生。
解读2019年初中数学考试说明-评析中考试题【得分策略】
10道新添加的题目,分别替换的题目是:
4题:数轴、绝对值类的问题替换不等式组的灵活运用; 5、6题:分别用式的变形运算和判断一元二次方程根的情况试题 替换两道估计无理数范围的题目; 11题:运用增长率知识列式替换运用完全平方公式灵活求值; 14题:正多边形的性质和四边形内角和替换平时四边形与圆相结
注重,一合理)
试题的编排突出层次性、巩固性、拓展性、
探索性。综合与实践素材的情境充分考虑学生的 认知水平和活动经验。淡化特殊的解题技巧,不 出偏题怪题。命制的试题要求充分体现核心初中 数学观念:数感、符号意识、空间观念、几何直 观、数据分析观念、推理能力、运算能力和模型 思想。并给出了对这八个概念内涵的解释。
(一)考试性质
在考试性质的指导思想中,四个“坚持有利于”没有 变,而对于数学学科命题的原则,在表述上与14年一致。
1、命题的原则
15年数学学科的命题,坚持围绕《义务教育数学课程
标准(2011年版)》,考查学生对基础知识和基本技能的
理解和掌握程度;设计有层次的试题评价学生的不同水平;
关注学生答题过程,做出客观的整体评价,考查学生知识
⑦掌握平行线分线段成比例的事实;了解相似多边形和相似比(图形的
相似)。
3、变化要求的内容
① 对于角平分线,原来“了解角平分线及其性质”改为:理解 角平分线的概念及其性质和判定(点、线、面和角) 。 ② 对对顶角、余角、补角的要求由“了解”改为“理解”;对 等角的余角(补角)相等,对顶角相等的要求由“知道”改
解读考试说明 评析中考试题 掌握复习策略
数学课标是教材编写的依据; 教材是课标要求的具体呈现。
以课标为核心, 中考命题: 以考试说明为依据, 以教材为载体。
重点考查学生的“四基”和“四能”,
2019陕西省中考数学试卷评析
2019陕西省中考数学试卷评析
2019年陕西中考数学试卷分析
2019年中考数学试卷的命制仍然以《新课标》理念为指导,以《考试说明》为依据,在兼顾数学基础知识点的同时,注重数学思维能力的考查,从不同角度考查学生的核心数学素养和灵活运用知识的能力,遵循了重基础,贯彻考试大纲的基本要求。
试卷的题型延续了往年的风格,和去年相比难易程度在稳定中做了一定的微调,学生看到题目,更容易上手,没有特别的偏、难、怪题目。
一、试卷结构分析
试卷分为第一卷(选择题)和第二卷(非选择题)。
试题分选择题、填空题、解答题三种题型,他们所占分数的百分比分别为25%,10%,65%。
选择题是四选一型的单项选择题;填空题只要求直接写出结果,不必写出计算过程或是推证过程;解答题包括计算题、证明图、做图题和应用题等。
解答题按要求写出文字解答或证明以及演算步骤或是推理过程,解答题将分步赋分。
二、考察内容和考察角度分析
1.试题难度分析
试卷注重考查学生的数学基础知识、基本技能和数学思想方法。
纵观全卷,选择题平稳简洁,填空题难度适中,总体出题思路较常规,没有出现大跨度的跳跃,每道题学生都会很快找到突破口,整体答题感觉会不错,给了学生很大信心,对于数学基础扎实、思维严密、出错少的学生,能够取得不错的成绩。
2.试题与实际应用的衔接。
2019中考数学试卷点评精品教育.doc
中考数学试卷点评立足教材,回归本质中学高级教师鲍雨红2019中考数学试卷遵循《数学课程标准》和《考试说明》的内容范围与要求进行命题。
本着面向全体、稳中求变、变中求新、两考兼顾的原则。
试卷结构合理,知识覆盖面广,重点突出,具有梯度,难易比例适当,有很高的信度、效度和区分度,注重能力考查。
一、立足教材,围绕考纲,导向教学试题基本覆盖了所有的初中数学必学内容,四个学习领域比例恰当。
试题背景让学生很容易切入。
如第12题,取材于考纲第43页第12题,题中加入了中心对称图形的概念与原题和谐地整合,让学生十分亲切但又需要灵活应变。
第24题取材于八下教材第103页课题学习格点多边形的面积计算,将教材中的亮点内容搬到了试卷上,无疑增加了学生的信心,这对教师的教学指明了方向,讲清讲透教材中的学习内容,有着积极的导向作用。
二、注重生活数学,体现数学价值积累数学活动经验、培养学生应用意识是数学课程的重要目标。
学数学用数学,人人学有价值的数学。
引导学生用数学的眼光去观察、思考、解决生活中的问题。
如第16题、第20题、第21题、第22题。
结合地方特色命题,十分自然实现了知识与情景的有效整合,较好地体现了问题背景的公平性。
如第3题,背景内容是2019年具有时代感。
如第4题,以中国传统佳节端午节为背景,人文数学。
如第22题,以宁波火车站为背景体现地域性。
三、凸显核心,重视四基突出核心知识的地位,如:代数式、函数、方程、不等式、三角形、四边形、相似三角形、圆、概率统计等。
一方面重视基础知识,基本技能的考查,起点低,易完成,让绝大多数学生享有成功感。
如第1-10题;第13-17题;第19-24题。
另一方面重视基本思想方法及基本活动经验的考查。
如第11题的数形结合法;如第24题,是一道半开放的改编题,考查了学生想、画、选、算等基本的数学活动经验,是源于课本并高于课本的好题。
如第25题,考查学生阅读理解、分析能力、证明能力、计算能力、画图能力等,还考察了分类讨论的数学思想。
2019年安徽省中考数学试卷参考答案及评分标准(Word版)
2019 年安徽省初中毕业学业考试数一、选择题(本大题共10 小题,每小题4 分,满分 40 分)1、(—2)× 3 的结果是()A 、— 5 B、1 C、— 6 D、62、x2·x4=()A、x5B、x6C、x8D、x93、如图,;图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()4、下列四个多项式中,能因式分解的是()2 2 2 2A、a+1B、 a —6a+9 C 、x +5y D 、x —5y5、某棉纺厂为了解一批棉花的质量,从中随机抽取了 20 根棉花纤维进行测量,其长度 x(单位: mm)的数据分布如右表,则棉花纤维长度的数据在8≤x<32 这个范围的频率为()棉花纤维长度 x 频数0≤x<8 18≤x<16 216≤ x<24 824≤ x<32 632≤ x<40 3A 、0.8 B、 0.7 C、 0.4 D、 0.26、设 n 为正整数,且 n< 65 <n+1 ,则 n 的值为()A 、5 B、 6 C、7 D 、 87、已知 x2— 2x— 3=0,则 2x2— 4x 的值为()A、—6 B 、6 C 、—2或6, D 、—2或 308、如图, Rt Δ ABC中, AB=9, BC=6,∠ B=900,将Δ ABC折叠,使 A点与 BC的中点 D重合,折痕为 MN,则线段 BN的长为()55A 、B、C、4 D 、 5329、如图,矩形 ABCD 中, AB=3, BC=4,动点 P 从 A 点出发,按 A →B →C 的方向在 AB 和 BC 上移动,记 PA=x ,点 D 到直线 PA 的距离为 y ,则 y 关于 x 的函数图象大致是( )10、如图,正方形 ABCD 的对角线 BD 长为 2 2 ,若直线 l 满足:(1)点 D 到直线 l 的距离为 3 ,(2)A 、 C 两点到的距离相等,则符合题意的直线 l 的条 A 数 为(D )A 、1B 、2C 、3D 、4l 的条B A 数 为( C D )二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)C 11、据报载, 2019 年我国将发展固定宽带接入新用户 25000000 户,其中 25000000 用科学记数法表示为12. 某厂今年一月份新产品的研发资金为 a 元,以后每月新产品的研发资金与上月相比增长率都是 x ,则该厂今年三月份新产品的研发资金 y (元)关于 x 的函数关系式为 y=4x 1213.方程=3 的解是 x=x214. 如图,在 ABCD 中,AD=2AB ,F 是 AD 的中点,作CE ⊥AB ,垂足 E 在线段 AB 上,连接 EF 、CF ,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)1)∠ DCF= 1∠ BCD ,( 2)EF=CF ;(3) S ΔBEC =2S ΔCEF ;( 4)∠ DFE=3 ∠ AEF2BEC CEF三、(本大题共 2小题,每小题 8 分,满分 16分)15、计算: 25 — 3 —(— π )0+2019D16、观察下列关于自然数的等式:22( 1)32—4×12=5 (1)22( 2)52—4×22=9 (2)22( 3)72—4×32=13 (3)根据上述规律解决下列问题:1)完成第四个等式: 92— 4×()2=();2)写出你猜想的第 n 个等式(用含 n 的式子表示),并验证其正确性。
中考阅卷标准:深入了解评分规则与标准
中考阅卷标准:深入了解评分规则与标准一、评分规则的重要性评分规则在中考阅卷中扮演着关键的角色。
它不仅是评定考生答卷质量的依据,也是保证评分公正、公平的基础。
而评分标准则是根据教材要求和考核要求制定的,具有一定的权威性和科学性。
二、评分标准的制定原则1.公正性原则:评分标准要求明确、具有普遍适用性,避免主观性和随意性。
2.合理性原则:评分标准要符合教学大纲和考试大纲的要求,既不能过高也不能过低。
3.权威性原则:评分标准要由具备丰富教学和阅卷经验的专家共同制定,具有权威性和可操作性。
三、不同学科的评分规则与标准1.语文:语文试卷通常包括阅读理解、作文等题型,评分重点在于语言表达、文采和写作结构。
2.数学:数学试卷主要考察计算和解题能力,评分基于答题过程和正确率。
3.英语:英语试卷以听力、阅读、写作为主要部分,评分规则注重语法准确性、词汇应用和语言流畅度。
四、评分标准的调整与优化1.借鉴国际标准:不断学习借鉴国际先进评分标准,提高评分技术和水平。
2.结合实际:根据不同地区、不同学科的特点,灵活调整评分标准,达到最佳的评分效果。
五、评分标准的执行与监督1.评分标准落实:各地各校要切实落实评分标准,确保评分过程严谨、公正。
2.监督机制建立:建立评分监督机制,加强对阅卷过程的监督和检查,保障评分工作的规范和准确。
六、总结与展望中考阅卷标准的深入了解,对于评分工作的质量和效率具有重要意义。
希望通过评分规则与标准的不断完善,能够更好地服务于中考评价工作,促进学生素质教育的全面发展。
以上是对中考阅卷标准的深入了解评分规则与标准的相关内容,希望对您有所帮助。
2019上海中考数学卷25题思路解析精品教育.doc
2019上海中考数学卷25题思路解析如图,在⊙O 中AB 是直径,AB=2,点C ,点D 是圆上的两点,连结BD ,AC 交于E ,OD ⊥AC 垂足为F.(1)如图11,若AC=DB ,求弦AC 的长.(2)如图12,E 是DB 的中点,求∠ABD 的余切.(3)连结CB ,DC ,DA 若CB 是⊙O 内接正n 边形的一边,DC 是是⊙O 内接正(n+4)边形的一边,求三角形ADC 的面积.(1)∵AC=DB ,∴弧ADC=弧BCD ,∴弧AD=弧BC ,则∠A=∠B ;又∵∠AOD=2∠B∴∠AOD=2∠A ,则∠AOD+∠A=3∠A ;又∵OD ⊥AC∴∠AFO=900,∴∠AOD+∠A=900,∴3∠A=900,∠A=300;在Rt △AFO 中,AO=1,AF=AO ×cos ∠A=1×cos300=23; 又∵OD ⊥AC∴AC=2 AF =3(2)连结CB ,OE ,∵AB 为直径,∴3∠C=900,又∵∠DFE=900;易证得△BCE ≌△DFE ,∴BC=DF ;又∵是△ABC 的中位线,∴BC=2OF ,则DO=3OF ,又∵DO=1∴OF=31,DF=32 由垂径定理推论,OE ⊥BD∴在Rt △DEO 中,易证得Rt △DFE ∽Rt △EFO ,∴EF 2=OF ×DF=92,则EF=32; 又∵∠ABD=∠D ,cot ∠ABD=cot ∠D=EF DF =2 (3)为了方便研究问题,我们省略线段BD ,标注了α,β,21α 在Rt △AFO 中,21α+∠AOF=900;∠AOF=1800-α-β∴β+21α=900连结OC ,根据⊙O 内接正n 边形的中心角公式,α=n 0360 ,β=43600+n ; ∴4360+n +21·n 360=90解得,n=4 ,n=-2(舍去);此时得α=900 ,β=450 ,∴∠AOF=450 ,为解题方便最好重新画图如下,用割补法,S △ADC = S 四AOCD -S △AOC易证得△AOD ≌△COD ,∴S 四AOCD =2S △ODC ,S △ODC =21OD ·FC ,而FC=OC ·sin450=22,∴S △ODC =21·1·22=42,则S 四AOCD =2S △ODC 22∵S △AOC =21·1·1=2112∴S△ADC = S四AOCD-S△AOC=2。
2019年重庆市中考数学试题(A卷,含解答提示与评分标准)
A B C D O D CB AOD CB A 重庆市2019年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共四个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c(a≠0)的顶点坐标为(a 2b -,a 4b ac 42-),对称轴公式为x=a2b-.一、选择题(本大题12个小题,每小题4分,共48分)1.下列各数中,比-1小的数是( ) A 、2; B 、1; C 、0; D 、-2. 提示:根据数的大小比较.答案D.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( ) 提示:根据主视图的意义.答案A.3.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB 的长是( )A 、2;B 、3;C 、4;D 、5.提示:根据相似三角形的性质.答案C.4.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若∠C=50°,则∠AOD 的度数为( )A 、40°;B 、50°;C 、80°;D 、100°.提示:根据圆的切线性质及圆周角和圆心角的关系性质.答案C. 5.下列命题正确的是( )A 、有一个角是直角的平行四边形是矩形;B 、四条边相等的四边形是矩形;C 、有一组邻边相等的平行四边形是矩形;D 、对角线相等的四边形是矩形. 提示:根据矩形的判定.答案A. 6.估计31)2632(⨯+的值应在( ) A 、4和5之间; B 、5和6之间; C 、6和7之间; D 、7和8之间. 提示:化简得622+.答案C.7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其32的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )BA 、⎪⎩⎪⎨⎧=+=+50y x 3250y 21x ;B 、⎪⎩⎪⎨⎧=+=+50y 32x 50y 21x ;C 、⎪⎩⎪⎨⎧=+=+50y x 3250y x 21;D 、⎪⎩⎪⎨⎧=+=+50y 32x 50y x 21. 提示:根据列二元一次方程组的思路.答案A.8.按如图所示的运算程序,能使输出y 值为1的是( )A 、m=1,n=1;B 、m=1,n=0;C 、m=1,n=2;D 、m=2,n=1.9.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD∥x轴,反比例函数)0x ,0k (xky >>=的图象经过矩形对角线的交点E .若点A(2,0),D(0,4),则k 的值为( )A 、16;B 、20;C 、32;D 、40.提示:易得△DAB∽△AOD,AD=52,则AB=54,所以DB=10,E(4,5).答案B.10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i =1:2.4的山坡AB 上发现有一棵占树CD .测得古树底端C 到山脚点A 的距离AC=26米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角∠AED=48°(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( )(参考数据:sin48°≈0.73,cos8°≈0.67,tan48°≈1.11) A 、17.0米; B 、21.9米; C 、23.3米; D 、33.3米.提示:延长DC 交直线AE 于F.在直角三角形ACF 中,易求得CF=10,AF=24,则EF=30. 所以DF=30×1.11=33.3.答案C.11.若关于x 的一元一次不等式组⎪⎩⎪⎨⎧+<-≤--2x 21x 321)2a 4(41x 的解集是x≤a,且关于y 的分式方程1y14y 1y a y 2=-----有非负整数解,则符合条件的所有整数a 的和为( ) A 、0; B 、1; C 、4; D 、6.ODCBA y/提示:由不等式组的条件得:a<5.由分式方程的条件得:a≥-3的奇数且a≠-1.综上所述:整数a 为-3,1,3.答案B.12.如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC /沿BD 翻折,得到△BDC /,DC /与AB 交于点E ,连结AC /,若AD=AC /=2,BD=3则点D 到BC /的距离为( ) A 、233; B 、7213; C 、7; D 、13.提示:过D 作DF⊥BC /于F ,连接CC /交BD 于G.易得BD⊥CC /,AC /=AD=CD=C /D=2,则∠ADC /=60°,∠DC /G=30°,所以DG=1,C /G=3,BG=BD-DG=2,BC /=7.在△BC /D 中利用面积可求出DF.答案B.二、填空题(本大题6个小题,每小题4分,共24分) 13.计算:10)21()3(-+-π= .提示:根据零指数幂、负整数指数幂.答案3.14. 今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .提示:根据科学记数法的意义.答案2.56×107.15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 .提示:所有结果有36种,符合条件的有9种.答案41. 16.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)提示:菱形面积减去三分之二圆面积.答案π-3232. 17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x .则乙回到公司时,甲距公司的路程是 米.提示:由图知甲的速度为4000÷(12-2-2)=500米/分.乙的速度为4000÷(2+2)=1000米/分. 则乙回到公司时,用了4分钟,而此时甲前行了500×4=2000米.答案6000米.F ED C B A 18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的169种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的4019.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .提示:设已种植的川香面积为4x ,贝母面积为3x ,黄连面积5x.余下面积为y ,其中种植川香面积为a ,贝母面积为b ,黄连面积为y 169.由题意得: )y x 12(4019y 169x 5+=+,解得y=8x ,则y 169=x 29,所以x 27b a =+,又43b x 3a x 4=++. 解得a=x 21,b=3x.所以该村还需种植贝母面积3x ,该村种植这三种中药材的总面积为4x+3x+5x+8x=20x.答案3︰20.三、解答题(本大题7个小题,每小题10分,共70分) 19.计算:(1)(x+y)2-y(2x+y)解:原式=x 2+2xy+y 2-2xy-y 2……(3分)=x 2……(5分)(2)2a 9a )2a a 49a (2--÷--+ 解:原式=2a )3a )(3a ()2a a 492a a 2a (2-+-÷--+-- =)3a )(3a (2a 2a )3a (2+--∙-- ……(9分) =3a 3a +- ……(10分) 20.如图,在△ABC 中,AB=AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF∥BC 交AB 于点F . (1)若∠C=36°,求∠BAD 的度数.(2)求证:FB=FE . 解与证:(1)∵AB=AC,D 是BC 边上的中点.∴∠ADB=∠ADC=90°,∠BAD=∠CAD. ……(3分)∴∠CAD=90°-∠C=90°-36°=54°……(5分) (2)∵BE 平分∠ABC,∴∠EBF=∠EBC ∵EF∥BC,∴∠BEF=∠EBC. ∴∠EBF=∠BEF. ……(9分) ∴FB=FE.21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .80≤x<85,B .85≤x<90,C .90≤x<95,D .95≤x≤100),下面给出了部分七、八年级抽取的学生竞赛成绩统计表50.452100c b 939292八年级七年级方差众数中位数平均数年级八年级抽取的学生竞赛成绩 扇形统计图DC B A a%20%10%信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82 八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可); (3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少? 解:(1)a=40,b=94,c=99. ……(3分)(2)八年级学生掌握防溺水安全知识较好,理由如下(写出其中一条即可):①七、八年级学生的竞赛成绩平均分相同,八年级学生成绩的中位数94高于七年级学生成绩的中位数93; ②七、八年级学生的竞赛成绩平均分相同,八年级学生成绩的众数100高于七年级学生成绩的众数99. ……(6分)(3)∵七年级10名学生中,成绩在C ,D 两组中有6人,八年级10名学生中,成绩在C ,D 两组中有7人. ∴7202013=468(人) 答:估计此次竞赛中,七、八年级成绩优秀的学生有468人. ……(10分) 22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义;对于自然数n ,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位. (1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数. 解:(1)2019不是“纯数”,2020是“纯数”.理由如下:……(2分) ∵在计算2019+2020+2021时,个位9+0+1=10,产生了进位, ∴2019不是“纯数”.∵在计算2020+2021+2022时,个位0+1+2=3,十位2+2++2=6,百位0+0+0=0,千位2+2++2=6,它们都没有产生进位,∴2020是“纯数”. ……(4分)(2)由题意,当“纯数”n 为一位数时n+(n+1)+(n+2)=3n+3<10 ∴n=0,1,2,即在一位数的自然数中,“纯数”有3个.y=x-3答图y=2x-3当“纯数”n 为两位数时,个位不超过2,十位不超过3时,符合“纯数”的定义.∴两位数的自然数中“纯数”有:10,11,12,20,21,22,30,31,32,33共9个, 而100显然也是“纯数”.∴不大于100的“纯数”的个数共有:3+9+1=13个. ……(10分) 23.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧<-≥=)0a (a )0a (a a .结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx-3|+b 中,当x=2时,y= -4当x=0时,y= -1. (1)求这个函数的表达式; (2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质; (3)已知函3x 21y -=的图象如图 所示,结合你所画的函数图象,直 接写出不等式3x 21b 3kx -≤+-的 解集.解:(1)将x=2时,y= -4和x=0时,分别代入y=|kx-3|+b 中,得⎪⎩⎪⎨⎧-=+--=+-1b 34b 3k 2解得:⎪⎩⎪⎨⎧-==4b 23k ∴这个函数的表达式是 43x 23y --=……(3分) (2)函数图象如答图……(5①当x<2时,y 随x 当x>2时,y 随x 的增大而增大. ②当x=2值是-4. ……(7分)(3)不等式的解集是1≤x≤4……(10分)24.某文明小区有50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都入住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅? (2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参P H F EN MDCB A 加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少%a 103;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少%a 41.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%a 185,求a 的值. 解:(1)设该小区共有x 套80平方米的住宅,则有2x 套50平方米的住宅.由题意得: 2×80x+2×50×2x=90000.解得x=250.答:该小区共有250套80平方米的住宅. ……(4分)(2)6月份参加活动的50平方米这部分住户将减少的物管费是: 500×40%(1+2a%)×50×2×%a 103=20000(1+2a%)×%a 103(元), 6月份参加活动的80平方米这部分住户将减少的物管费是: 250×20%(1+6a%)×80×2×%a 41=8000(1+6a%)×%a 41(元), 6月份参加活动的这部分住户将减少的物管费是: [500×40%(1+2a%)×50×2+250×20%(1+6a%)×80×2]×%a 185(元) 即[20000(1+2a%)+8000(1+6a%)]×%a 185(元) 由题意得: 20000(1+2a%)×%a 103+8000(1+6a%)×%a 41=[20000(1+2a%)+8000(1+6a%)]×%a 185. ……(8分)设a%=m ,化简整理得:2m 2-m=0,解得:m 1=0(舍),m 2=0.5. 所以a=50.答:a 的值是50. ……(10分)25.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM⊥AE,垂足为E ,交CD 于点M ,AF⊥BC,垂足为F ,BH⊥AE,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP . (1)若DP=2AP=4,CP=17,CD=5,求△ACD 的面积. (2)若AE=BN ,AN=CE ,求证:AD=2CM+2CE .解与证:(1)作CQ⊥AD,垂足为Q ,如图 ∵DP=2AP=4,∴AP=2,AD=6.设PQ=x ,则DQ=4-x ,又CP=17,CD=5Q P HF ENMDCBA PHF EN MDCB A在直角三角形CDQ 和直角三角形CPQ 中, 根据勾股定理得:2222)x 4(5x )17(--=-解得x=1,所以PQ=1 所以CQ=22PQ CP -=4 ∴S △ACD =CQ AD 21∙=4621⨯⨯=12. ……(4分)(2)∵BH⊥AE,AF⊥BC,∴∠AHB=∠AFC=90°, ∠ANH=90°-∠EAF=∠AEF.∴∠ANB=∠CEA.又BN = AE ,AN=CE ,∴△ANB≌△CEA. ∴∠BAN=∠ACE,AB=AC.∵∠ACF+∠CAF=90°,∴∠BAN+∠CAF=90°,即∠BAC=90° ∴△ABC 为等腰直角三角形,∠ABC=45°,AF=BF=CF. ∵AN=EC,∴NF=EF.连结EN (如图),则△NFE 为等腰直角三角形,∴EF=22NE ,∠ENF=45°. ∵四边形ABCD 是平行四边形,且∠ABC=45°,∴∠ECM=135°. ∵∠ANE=180°-∠ENF=135°,∴∠ANE=∠ECM.∵EM⊥AE,∴∠AEM=90°. ∴∠EAN=90°-∠AEF=∠MEC. 又AN=EC ,∴△ANE≌△ECM,∴NE=CM. ……(8分) ∵四边形ABCD 是平行四边形,∴AD=BC=2FC. ∵FC=FE+EG=22NE+EC=22CM+EC. ∴AD=2FC=2(22CM+EC)=2CM+2CE. ……(10分). 四、解答题:(本大题1个小题,共8分)26.如图,在平面在角坐标系中,抛物线y=x 2-2x-3与x 轴交于点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E . (1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF+FP+31PC 的最小值; (2)在(1)中,当MN 取得最大值,HF+FP+31PC 取得最小值时,把点P 向上平移个22单位得到点Q ,连结AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A /OQ /,其中边A /Q /交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得∠Q /=∠Q /OG ?若存在,请直接写出所有满足条件的点Q /的坐标;若不存在,请说明理由.解:(1)∵点A ,B 是抛物线y=x 2-2x-3与x 轴的交点,点D 是抛物线顶点, ∴点A(-1,0)、点B(3,0)、点D(1,-4). ∴直线BD 的表达式是y=2x-6.∵点N 在抛物线y=x 2-2x-3上,可设点N 的坐标为(t,t 2-2t-3),则点F 的坐标为(t,2t-6).∴FN=(2t -6)-(t 2-2t-3)= -t 2+4t-3. 根据已知条件,可得△MNF∽△EBD,∴DBE BFN MN =,又EB=2,DE=4,∴DB=52. ∴MN=55FN=55)2t (552+--. ∴当t=2时,MN 取得最大值,此时,点F(2,-2),HF=2. ……(2分) 如答图,以CP 为斜边,以31CP 作Rt△CRP,当点F ,P ,R 在一条直线上时,PF+31CP 取得最小值,此时,PF+31CP=RF. 过点F 作FS⊥y 轴,垂足为S.点F ,P ,R在一条直线上,△CPR∽△FPS.则SPFPRP CP =在Rt△SPF 中,SF=2,FP=3SP.∴SP=22,FP=223. ∴CP=CS -PS=221-=222-. ∴RP=31CP=622-.∴RF=RP+PF=622-+223=3241+,∵HF=2, ∴HF+FP+31PC 的最小值为2+3241+=3247+.……(4分) (2)满足条件的点Q /的坐标为: (554-,552-),(552-,554),(554,552),(552,554-).提示:如图,过Q/作x轴的垂线,设垂足为I.在直角三角形OIQ/求解(554-,552-) 同理(554,552)同理(552-,554) 同理(552,554-)。
中考阅卷老师--解密数学评分规则
中考阅卷老师--解密数学评分规则中考阅卷老师--解密数学评分规则其实课本就是最好的复习材料数学试卷每年的变化都不大,学生现阶段复习数学知识,回归于基础是最重要的。
“初中三年课本上最基础的知识脉络,现在应该好好地过一遍,查缺补漏。
基础巩固好之后,就该结合中考试卷的题型,做有针对性的训练了,中考试卷的题型老师在课堂上都教过,学生对每种题型大概怎么做应该掌握。
”不同层次的学生目前学习的侧重点也不同,基础弱的学生在这个阶段一定要用好教材,初中三年的六本数学课本上的知识脉络,整体把握知识,最基础的是教材上所有的黑体字(定义、定理)、例题,这样比较全面,不会遗漏。
中等和中等以上的学生这个时候就应该进行有针对性的训练了,中考考什么题型就练什么题型,自己哪些知识薄弱就多加强自己的薄弱环节。
另外,老师在课堂上讲到的解题经验、复习的建议,学生都应该按要求去落实。
现在做题目应该要掐着时间做了,很多学生到了考场时间就不够用,这和临考训练时不掐时间做题目也有一定的关系,比如规定8分钟写出来的题目,8分钟就要练出来,除了定时,还要定量,现在这个阶段也不建议学生进行题海战术了,各个类型的题目都涉及到,薄弱的多练。
”此外,阅卷老师对基础好的学生也给出了建议,好学生除了夯实好基础外,有能力的话要把综合性的、有难度的23、24道题拿出来练练,“老师已经领着学生练过近几年的综合题了,好学生可以再去做一遍,或者把做过的这些题归类复习,发现解题方法的异同。
”数学评分有个小“秘密”对于即将参加中考的学生来说,掌握一些答题的技巧和方法非常重要,如果学生能够明确中考的评分细则,那就更有利了。
“例如数学试卷中的选择题的答案,ABCD,基本上都会出现,而且各个选项的个数也比较平均。
也就是说学生可以把最没把握的一道选择题留在最后再做,甚至只需做有把握的7道试题即可,而且学生也可以根据这个标准对自己做出的选项进行自测。
”另外考生120分钟要答完120分的试卷,因此要科学合理时间安排时间,一般情况第40分钟时应该做到19~20题,第60分钟应该做到21~22 题;23题和24题需要40~50分钟完成;答题过程也应先易后难,若遇到难题可以暂时放下,有空余时间再攻克。
解读初三数学评分标准
解读初三数学评分标准初三数学评分标准解读在初三数学考试中,评分标准是评判学生答卷质量的依据,它直接影响着学生的成绩和未来的学习发展。
准确理解数学评分标准对于学生自身的学习提升和备考有着重要的指导意义。
本文将对初三数学评分标准进行解读,帮助学生了解评分标准的要求和应注意的事项。
一、试卷整体评分标准初三数学试卷一般分为选择题、填空题、解答题三个部分。
在评分标准中,试卷整体的评分准则主要包括答题全面性、答案的准确性、计算的正确性和答题步骤的清晰性四个方面。
1. 答题全面性评判答题全面性的标准是指学生是否对所有的题目进行了回答。
在答题过程中,学生应该尽量回答所有的题目,确保没有遗漏。
2. 答案的准确性答案的准确性是评价学生能力的重要标志。
学生在回答题目时,需要准确地计算出答案,避免出现计算错误。
3. 计算的正确性计算的正确性是衡量学生计算能力的关键因素。
学生在计算过程中,应当注意计算的准确性,避免出现粗心错误。
4. 答题步骤的清晰性清晰的答题步骤能够让批卷老师更好地理解学生的思路和解题过程。
学生在解答问题时,应当清晰地展示解题思路和步骤,确保容易被他人理解。
二、解答题评分标准初三数学试卷中的解答题部分是考察学生综合运用数学知识和解题技巧的重要环节。
在解答题的评分标准中,主要包括四个方面:问题分析与解题思路、中间步骤和计算、解答的准确性和解题方法的规范性。
1. 问题分析与解题思路问题分析与解题思路是解答题过程中最关键的一步。
学生需要能够准确分析问题,并制定出解题思路。
批卷老师根据学生解答问题的思路和方法,评价学生的问题分析和解题思维能力。
2. 中间步骤和计算中间步骤和计算是解答题过程中的重要环节。
学生需要展示解题过程中的中间步骤,确保计算过程的可读性和正确性。
如果学生只给出最终答案而没有中间计算步骤,可能会导致扣分。
3. 解答的准确性解答的准确性是评判解答题得分的重要标准。
学生在解答题中,需要准确回答问题,确保解答的正确性,如果答案错误,则可能会导致扣分。
中考数学阅卷评分原则和体会
中考数学阅卷评分原则和体会在中考数学阅卷工作期间,我感慨颇多,唯恐遗忘不敢怠慢,现作记录如下,供以后学子参考:一、阅卷评分原则阅卷老师在评卷之前被要求先进行试评。
首先由专家组讨论制定标准答案、评分标准并进行细化,把题目的多种解答方法和每一个得分点都列出来。
在实际阅卷中,只要是评分细则认可的,符合专家组合议认定的得分点,就可给分。
但也只有见到认定的这些踩分点才给分,否则写得再多也无用。
因为评卷规定:不能灵活给分,不能酌情给分,否则容易造成大量的仲裁卷,因为系统规定得分误差要达到0误差。
二、阅卷心得体会有鉴于此,结合自身的阅卷,我觉得广大考生有必要注意把握以下答卷技巧:1.注意答题序号和位置关于填空题答错位置的情况,规定填空题中如果调换了两个题目的顺序,是不会给分数的,就算错误了。
这包括同一个题中有两个空,如果填写顺序反了,也算错误,不能得分。
在解答题中,如果将题目位置答错或者随意更改题号,按规定,阅卷老师需要做提交处理,提交到该题的题组长处,再由组长调出该密号所对应的试卷的全卷,找出答错位置的部分,进行单独评分,甚至必要时调阅原纸质试卷。
但是相当麻烦。
另外要强调,解答题目时,不能答在所给答题区域的方框外。
答题时,有同学写不下了,想在下面挤一行,有的挤到别的题目上了,有些挤到框框外面去了,这些都不可能在阅卷时看到。
扫描只能扫到当前题目所给答题区域以内,答在以外的任何地方,和没有做答是完全一样的效果。
2.板面设计要合理重点一定要突出,叙述以踩点、清晰、简洁、工整为佳。
不少学生看到卷面空白的地方还比较多,开始答题的时候写得比较松散,但越是写到后面越发现写不下,也知道不能写到指定区域的外面,就画一箭头把步骤带到有空白的地方,东一个箭头,西一个箭头,过程板书极其混乱,这对自己的得分非常不利。
3.还要注意答题的完整性,有问必有答平时有些学生审题不细心,题没看完就开始做,按照自己的惯性思维稀里糊涂做完了,这个时候产生的后果往往是致命的。
数学阅卷试卷评分标准
数学阅卷试卷评分标准
认真对待每一次考试,并公正公平的批阅试卷,统一标准,任何人不得随意更改试卷上的分数,发现错误或有异议必须由教研组长与阅卷老师共同商议后具体处理。
注重学生的学习成果,流水批改,杜绝误批漏批现象。
特制定评卷要求如下:
(1)填空题:注意单位的填写……
①计算题评分标准
★列竖式计算,要求相同数位对齐,否则扣0.5分,结果不正确不给分。
若竖式正确,横式不正确或漏写,扣一半分。
题目抄错,不得分。
★解方程
要求写“解”字,否则扣0.5分,等号不对齐扣0.5分。
★脱式计算
结果错误不给分。
其他按题目要求酌情考虑,要求化简的一律要化简,否则扣分处理。
②应用题评分标准
★列式正确、计算正确、单位合理、答语完整得全分。
★列式正确、计算不正确扣一半分。
如果为多步应用题,分步计算时,结果错误则只按步骤给相应步骤分。
★题目抄错,方法正确不得分。
★单位不正确或漏写扣0.5分/个。
★答语不完整扣0.5分。
★列方程解应用题一定要有解、设,否则扣1分。
说明:
a.非知识性扣分必须在卷头标明。
b.任何人不得随意更改试卷上的评分,发现误批或有异议必
须由教研组长与阅卷老师共同商议后具体处理。
c.评卷老师应注意保持卷面的整洁,评卷符号要规范,标写
位置要统一,对勾不能打成斜线。
d.注重学生学习成果,流水批改,杜绝错误。
2019中考数学各题型拿分方法精品教育.doc
中考数学各题型拿分方法选择题1。
排除法。
排除法是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
2。
特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。
在解决时可将问题提供的条件特殊化。
使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。
利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
3。
通过猜想、测量的方法,直接观察或得出结果。
这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
填空题1。
直接法:根据题干所给条件,直接经过计算、推理或证明,得出正确答案。
2。
图解法:根据题干提供信息,绘出图形,从而得出正确的答案。
首先,应按题干的要求填空,如有时填空题对结论有一些附加条件,如用具体数字作答,精确到……等,有些考生对此不加注意,而出现失误,这是很可惜的。
其次,若题干没有附加条件,则按具体情况与常规解答。
应认真分析题目的隐含条件。
总之,填空题与选择题一样,因为它不要求写出解题过程,直接写出最后结果。
打好基础,强化训练,提高解题能力,才能既准又快解题。
另一方面,加强对填空题的分析研究,掌握其特点及解题方法,减少失误。
填空题主要题型:一是定量型填空题,二是定性型填空题,前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考阅卷老师解密中考数学评分规则
其实课本就是最好的复习材料
数学试卷每年的变化都不大,学生现阶段复习数学知识,回归于基础是最重要的。
“初中三年课本上最基础的知识脉络,现在应该好好地过一遍,查缺补漏。
基础巩固好之后,就该结合中考试卷的题型,做有针对性的训练了,中考试卷的题型老师在课堂上都教过,学生对每种题型大概怎么做应该掌握。
”
不同层次的学生目前学习的侧重点也不同,基础弱的学生在这个阶段一定要用好教材,初中三年的六本数学课本上的知识脉络,整体把握知识,最基础的是教材上所有的黑体字(定义、定理)、例题,这样比较全面,不会遗漏。
中等和中等以上的学生这个时候就应该进行有针对性的训练了,中考考什么题型就练什么题型,自己哪些知识薄弱就多加强自己的薄弱环节。
另外,老师在课堂上讲到的解题经验、复习的建议,学生都应该按要求去落实。
现在做题目应该要掐着时间做了,很多学生到了考场时间就不够用,这和临考训练时不掐时间做题目也有一定的关系,比如规定8分钟写出来的题目,8分钟就要练出来,除了定时,还要定量,现在这个阶段也不建议学生进行题海战术了,各个类型的题目都涉及到,薄弱的多练。
”
此外,阅卷老师对基础好的学生也给出了建议,好学生除了
夯实好基础外,有能力的话要把综合性的、有难度的23、24道题拿出来练练,“老师已经领着学生练过近几年的综合题了,好学生可以再去做一遍,或者把做过的这些题归类复习,发现解题方法的异同。
”
数学评分有个小“秘密”
对于即将参加中考的学生来说,掌握一些答题的技巧和方法非常重要,如果学生能够明确中考的评分细则,那就更有利了。
“例如数学试卷中的选择题的答案,ABCD,基本上都会出现,而且各个选项的个数也比较平均。
也就是说学生可以把最没把握的一道选择题留在最后再做,甚至只需做有把握的7道试题即可,而且学生也可以根据这个标准对自己做出的选项进行自测。
”
另外考生120分钟要答完120分的试卷,因此要科学合理时间安排时间,一般情况第40分钟时应该做到19~20题,第60分钟应该做到21~22 题;23题和24题需要40~50分钟完成;答题过程也应先易后难,若遇到难题可以暂时放下,有空余时间再攻克。
特别需要注意的是,数学符号语言书写要规范,文字语言表述要明确,图形语言规范得体,切记除了画图用铅笔外,其余答题都用中性笔或钢笔(包括作图题的结论);答题过程要胆大心细,沉着冷静,审题仔细,规范答题。