电大离散数学(本)形考任务2知识讲解
离散数学形考任务2集合论部分概念及性质
![离散数学形考任务2集合论部分概念及性质](https://img.taocdn.com/s3/m/dc633170777f5acfa1c7aa00b52acfc789eb9fe5.png)
离散数学形考任务2集合论部分概念及性质概念在离散数学中,集合论是一个重要的分支。
集合是由对象(元素)组成的全体,这些对象可以是任何事物。
集合论研究集合的性质、操作和关系。
集合集合是指具有相同特性或共同属性的对象的整体。
集合可以用大写字母表示,例如A、B、C。
元素集合中的对象称为元素。
一个元素可以属于一个或多个集合。
子集如果集合A的所有元素也是集合B的元素,那么集合A是集合B的子集。
用符号A ⊆ B表示。
真子集如果集合A是集合B的子集且集合A不等于集合B,那么集合A是集合B的真子集。
用符号A ⊂ B表示。
并集两个集合A和B的并集,表示为A ∪ B,是包含所有A和B 中元素的集合。
交集两个集合A和B的交集,表示为A ∩ B,是同时属于A和B 的元素构成的集合。
补集给定一个集合U,集合A的补集,表示为A'或A^c,是指属于U但不属于A的元素构成的集合。
性质集合论有一些基本性质和规则,以帮助我们理解和操作集合。
1. 交换律:对于任意两个集合A和B,A ∪ B = B ∪ A,A ∩B = B ∩ A。
交换律:对于任意两个集合A和B,A ∪ B = B ∪ A,A ∩B = B ∩ A。
2. 结合律:对于任意三个集合A、B和C,(A ∪ B) ∪ C = A∪ (B ∪ C),(A ∩ B) ∩ C = A ∩ (B ∩ C)。
结合律:对于任意三个集合A、B和C,(A ∪ B) ∪ C = A ∪ (B ∪ C),(A ∩ B) ∩ C = A ∩(B ∩ C)。
3. 分配律:对于任意三个集合A、B和C,A ∪ (B ∩ C) = (A∪ B) ∩ (A ∪ C),A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)。
分配律:对于任意三个集合A、B和C,A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)。
4. 幂集性质:对于任意集合A,A的幂集是指包含A的所有子集的集合。
离散数学形考任务2集合论部分例题及解答
![离散数学形考任务2集合论部分例题及解答](https://img.taocdn.com/s3/m/fdcff9ea3086bceb19e8b8f67c1cfad6195fe916.png)
离散数学形考任务2集合论部分例题及解
答
本文档将提供离散数学形考任务2集合论部分的例题及解答。
以下是几个例题及其解答:
1. 例题:设集合 A = {1, 2, 3, 4, 5},集合 B = {3, 4, 5, 6, 7},求
A 与
B 的交集。
解答:A 与 B 的交集即为两个集合中共有的元素。
根据给定,A 与 B 的交集为 {3, 4, 5}。
2. 例题:设集合 A = {x | x 是奇数,且1 ≤ x ≤ 10},集合 B = {x | x 是质数,且1 ≤ x ≤ 10},求 A 与 B 的并集。
解答:A 与 B 的并集即为两个集合中所有元素的集合。
根据给定,A 中的元素为 {1, 3, 5, 7, 9},B 中的元素为 {2, 3, 5, 7},因此A 与 B 的并集为 {1, 2, 3, 5, 7, 9}。
3. 例题:设集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},求 A 与
B 的差集。
解答:A 与B 的差集即为属于A,但不属于B 的元素的集合。
根据给定,A 与 B 的差集为 {1, 2}。
4. 例题:设集合 A = {1, 2, 3, 4, 5},集合 B = {3, 4, 5, 6, 7},求
A 与
B 的补集。
解答:A 与 B 的补集即为 A 中不属于 B 的元素的集合。
根据
给定,A 与 B 的补集为 {1, 2}。
以上是离散数学形考任务2集合论部分的例题及解答。
希望对
你的研究有所帮助!。
(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案
![(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案](https://img.taocdn.com/s3/m/e0037d7826284b73f242336c1eb91a37f111327e.png)
(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案 100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩 = 形成性考核×30% + 终结性考试×70% 形考任务1 单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2 若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:B. 对称题目4 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C=( ).选择一项:D. {1, 2, 3, 4} 题目5 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:C. 2 题目6 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:D. 传递的题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:C. 8 题目9 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).选择一项:B. 无、2、无、2 题目10 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2,1>,<3, 1>},则h =().选择一项:D. f◦g 判断题题目11 设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对题目12 空集的幂集是空集.()选择一项:错题目13 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:错题目14 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>,<3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对题目15 设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:错题目16 如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对题目17 设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()选择一项:对题目18 设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对题目19 若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:错题目20 设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对形考任务2 单项选择题题目1 无向完全图K4是().选择一项:C. 汉密尔顿图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:D. 5 题目3 设无向图G的邻接矩阵为则G的边数为( ).选择一项:A. 7 题目4 如图一所示,以下说法正确的是 ( ) .选择一项:C. {(d, e)}是边割集题目5 以下结论正确的是( ).选择一项:C. 树的每条边都是割边题目6 若G是一个欧拉图,则G一定是( ).选择一项:B. 连通图题目7 设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .选择一项:题目8 图G如图三所示,以下说法正确的是 ( ).选择一项:C. {b, c}是点割集题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).选择一项:A. (a)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).选择一项:D. (d)只是弱连通的判断题题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( ) 选择一项:对题目12 汉密尔顿图一定是欧拉图.( ) 选择一项:错题目13 设连通平面图G的结点数为5,边数为6,则面数为4.( ) 选择一项:错题目14 设G是一个有7个结点16条边的连通图,则G为平面图.( ) 选择一项:错题目15 如图八所示的图G存在一条欧拉回路.( ) 选择一项:错题目16 设图G如图七所示,则图G的点割集是{f}.( ) 选择一项:错题目17 设G是一个图,结点集合为V,边集合为E,则( ) 选择一项:对题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( ) 选择一项:错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图.( ) 选择一项:对题目20 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( ) 选择一项:对形考任务3 单项选择题题目1 命题公式的主合取范式是( ).选择一项:题目2 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:题目3 命题公式的主析取范式是( ).选择一项:题目4 下列公式成立的为( ).选择一项:题目5 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6 前提条件的有效结论是( ).选择一项:B. ┐Q 题目7 命题公式(P∨Q)→R的析取范式是 ( ).选择一项:D. (┐P∧┐Q)∨R 题目8 下列等价公式成立的为( ).选择一项:题目9 下列等价公式成立的为( ).选择一项:题目10 下列公式中 ( )为永真式.选择一项:C. ┐A∧┐B ↔ ┐(A∨B) 判断题题目11 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( ) 选择一项:对题目12 设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( ) 选择一项:对题目13 下面的推理是否正确.( ) (1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) 选择一项:错题目14 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 选择一项:对题目15 命题公式P→(Q∨P)的真值是T.( ) 选择一项:对题目16 命题公式┐P∧P的真值是T.( ) 选择一项:错题目17 谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( ) 选择一项:对题目18 命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 选择一项:错题目19 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 选择一项:对题目20 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( ) 选择一项:错形考任务4 要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传形考任务 5 网上学习行为(学生无需提交作业,占形考总分的10%)附:元宇宙(新兴概念、新型虚实相融的互联网应用和社会形态)元宇宙(Metaverse)是整合了多种新技术而产生的新型虚实相融的互联网应用和社会形态,通过利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间。
国家开放大学电大本科《离散数学》网络课形考网考作业及答案
![国家开放大学电大本科《离散数学》网络课形考网考作业及答案](https://img.taocdn.com/s3/m/1a1682a1bdeb19e8b8f67c1cfad6195f312be8b9.png)
国家开放大学电大本科《离散数学》网络课形考网考作业及答案国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩=形成性考核×30%+终结性考试×70%形考任务1单项选择题题目1若集合A={a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{a},4},则下列表述正确的是().选择一项:题目3设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R的()闭包.选择一项:A.传递B.对称C.自反和传递D.自反题目4设集合A={1,2,3},B={3,4,5},C={5,6,7},则A∪B–C=().选择一项:A.{1,2,3,5}B.{4,5,6,7}C.{2,3,4,5}D.{1,2,3,4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A.1B.3C.2D.0题目6集合A={1,2,3,4}上的关系R={|x=y且x,y∈A},则R的性质为().选择一项:A.不是对称的B.反自反C.不是自反的D.传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是().选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A.3B.2C.8D.6题目9设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为().选择一项:A.6、2、6、2B.无、2、无、2C.8、1、6、1D.8、2、8、2题目10设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,<3,2>},h={<1,3>,<2,1>,<3,1>},则h=().选择一项:A.f◦fB.g◦fC.g◦gD.f◦g判断题题目11设A={1,2}上的二元关系为R={|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.()选择一项:对错题目12空集的幂集是空集.()选择一项:对错题目13设A={a,b},B={1,2},C={a,b},从A到B的函数f={,},从B到C的函数g={<1,b>,<2,a>},则g°f={<1,2>,<2,1>}.()选择一项:对错题目14设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,8>,<2,6>,<3,4>,<4,2,>}可以构成函数f:.()选择一项:对错题目15设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∩(C-B)={1,2,3,5}.()选择一项:对错题目16如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对错题目17设集合A={a,b,c,d},A上的二元关系R={,,,},则R具有反自反性质.()选择一项:对错题目18设集合A={1,2,3},B={1,2},则P(A)-P(B)={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对错题目19若集合A={1,2,3}上的二元关系R={<1,1>,<1,2>,<3,3>},则R是对称的关系.()选择一项:对错题目20设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=那么R-1={<6,3>,<8,4>}.()选择一项:对错形考任务2单项选择题题目1无向完全图K4是().选择一项:A.树B.欧拉图C.汉密尔顿图D.非平面图题目2已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().选择一项:A.4B.8C.3D.5设无向图G的邻接矩阵为则G的边数为().选择一项:A.7B.14C.6D.1题目4如图一所示,以下说法正确的是().选择一项:A.{(a,e),(b,c)}是边割集B.{(a,e)}是边割集C.{(d,e)}是边割集D.{(a,e)}是割边题目5以下结论正确的是().选择一项:A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.树的每条边都是割边D.无向完全图都是欧拉图题目6若G是一个欧拉图,则G一定是().选择一项:A.汉密尔顿图B.连通图C.平面图题目7设图G=,v∈V,则下列结论成立的是().选择一项:题目8图G如图三所示,以下说法正确的是().选择一项:A.{b,d}是点割集B.{c}是点割集C.{b,c}是点割集D.a是割点题目9设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是().选择一项:A.(a)是强连通的B.(d)是强连通的C.(c)是强连通的D.(b)是强连通的题目10设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是().选择一项:A.(b)只是弱连通的B.(c)只是弱连通的C.(a)只是弱连通的D.(d)只是弱连通的判断题题目11设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.()选择一项:对题目12汉密尔顿图一定是欧拉图.()选择一项:对错题目13设连通平面图G的结点数为5,边数为6,则面数为4.()选择一项:对错题目14设G是一个有7个结点16条边的连通图,则G为平面图.()选择一项:对错题目15如图八所示的图G存在一条欧拉回路.()选择一项:对错题目16设图G如图七所示,则图G的点割集是{f}.()选择一项:对错题目17设G是一个图,结点集合为V,边集合为E,则()选择一项:对题目18设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()选择一项:对错题目19如图九所示的图G不是欧拉图而是汉密尔顿图.()选择一项:对错题目20若图G=,其中V={a,b,c,d},E={(a,b),(a,d),(b,c),(b,d)},则该图中的割边为(b,c).()选择一项:对错形考任务3单项选择题题目1命题公式的主合取范式是().选择一项:题目2设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().选择一项:题目3命题公式的主析取范式是().选择一项:题目4下列公式成立的为().选择一项:题目5设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6前提条件的有效结论是().选择一项:A.QB.┐QC.PD.┐P题目7命题公式(P∨Q)→R的析取范式是().选择一项:A.(P∨Q)∨RB.┐(P∨Q)∨RC.(P∧Q)∨RD.(┐P∧┐Q)∨R题目8下列等价公式成立的为().选择一项:题目9下列等价公式成立的为().选择一项:题目10下列公式中()为永真式.选择一项:A.┐A∧┐B↔┐(A∧B)B.┐A∧┐B↔A∨BC.┐A∧┐B↔┐(A∨B)D.┐A∧┐B↔┐A∨┐B判断题题目11设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()选择一项:对错题目12设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()选择一项:对错题目13下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)选择一项:对错题目14含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()选择一项:对错题目15命题公式P→(Q∨P)的真值是T.()选择一项:对错题目16命题公式┐P∧P的真值是T.()选择一项:对错题目17谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()选择一项:对错题目18命题公式┐(P→Q)的主析取范式是P∨┐Q.()选择一项:对错题目19设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()选择一项:对错题目20设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()选择一项:对错形考任务4要求:学生提交作业有以下三种方式可供选择:1.可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2.在线提交word文档.3.自备答题纸张,将答题过程手工书写,并拍照上传形考任务5网上学习行为(学生无需提交作业,占形考总分的10%)。
国开形成性考核50501《离散数学(本)》形考任务(1-3)试题及答案
![国开形成性考核50501《离散数学(本)》形考任务(1-3)试题及答案](https://img.taocdn.com/s3/m/15841ef3e2bd960591c67743.png)
国开形成性考核《离散数学(本)》形考任务(1-3)试题及答案(课程ID:50501,整套相同,如遇顺序不同,Ctrl+F查找,祝同学们取得优异成绩!)形考任务1 集合论部分概念及性质一、单项选择题题目:1、设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是()。
【A】:f°g ={<5,a >, <4,b >}【B】:g°f ={<a,5>, <b,4>}【C】:f°g ={<a,5>, <b,4>}【D】:g°f ={<5,a >, <4,b >}答案:g°f ={<a,5>, <b,4>}题目:2、设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为()。
【A】:8、1、6、1【B】:无、2、无、2【C】:8、2、8、2【D】:6、2、6、2答案:无、2、无、2题目:3、设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ()。
【A】:{<2, 1>, <4, 3>, <6, 5>}【B】:{<2, 1>, <3, 2>, <4, 3>}【C】:{<2, 3>, <4, 5>, <6, 7>}【D】:{<2, 2>, <3, 3>, <4, 6>}答案:{<2, 3>, <4, 5>, <6, 7>}题目:4、设集合A ={1 , 2, 3}上的函数分别为:()。
电大离散数学期末复习要点与重点考试资料知识点复习考点归纳总结
![电大离散数学期末复习要点与重点考试资料知识点复习考点归纳总结](https://img.taocdn.com/s3/m/6c3dd3badd88d0d232d46a00.png)
三一文库( )*电大考试*电大离散数学期末复习要点与重点考试资料考点归纳总结离散数学是中央广播电视大学开放教育本科电气信息类计算机科学与技术专业的一门统设必修学位课程,共72学时,开设一学期.该课程的主要内容包括:集合论、图论、数理逻辑等.下面按章给出复习要点与重点.第1章 集合及其运算复习要点 1.理解集合、元素、集合的包含、子集、相等,以及全集、空集和幂集等概念,熟练掌握集合的表示方法.具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素..集合的表示方法:列举法和描述法.注意:集合的表示中元素不能重复出现,集合中的元素无顺序之分.掌握集合包含(子集)、真子集、集合相等等概念.注意:元素与集合,集合与子集,子集与幂集,∈与⊂(⊆),空集∅与所有集合等的关系.空集∅,是惟一的,它是任何集合的子集.集合A 的幂集P (A )=}{A x x ⊆, A 的所有子集构成的集合.若∣A ∣=n ,则∣P (A )∣=2n . 2.熟练掌握集合A 和B 的并A ⋃B ,交A ⋂B ,补集~A (~A 补集总相对于一个全集).差集A -B ,对称差⊕,A ⊕B =(A -B )⋃(B -A ),或A ⊕B =(A ⋃B )-(A ⋂B )等运算,并会用文氏图表示.掌握集合运算律(见教材第9~11页)(运算的性质).3.掌握用集合运算基本规律证明集合恒等式的方法.集合的运算问题:其一是进行集合运算;其二是运算式的化简;其三是恒等式证明.证明方法有二:(1)要证明A =B ,只需证明A ⊆B ,又A ⊇B ;(2)通过运算律进行等式推导.重点:集合概念,集合的运算,集合恒等式的证明.第2章 关系与函数复习要点1.了解有序对和笛卡儿积的概念,掌握笛卡儿积的运算.有序对就是有顺序二元组,如<x , y >,x , y 的位置是确定的,不能随意放置.注意:有序对<a ,b >≠<b , a >,以a , b 为元素的集合{a , b }={b , a };有序对(a , a )有意义,而集合{a , a }是单元素集合,应记作{a }.集合A ,B 的笛卡儿积A ×B 是一个集合,规定A ×B ={<x ,y >∣x ∈A ,y ∈B },是有序对的集合.笛卡儿积也可以多个集合合成,A 1×A 2×…×A n .2.理解关系的概念:二元关系、空关系、全关系、恒等关系.掌握关系的集合表示、关系矩阵和关系图,掌握关系的集合运算和求复合关系、逆关系的方法.二元关系是一个有序对集合,},{B y A x y x R ∈∧∈><=,记作xRy .关系的表示方法有三种:集合表示法,关系矩阵:R ⊆A ×B ,R 的矩阵⎪⎪⎭⎫ ⎝⎛==⎪⎩⎪⎨⎧/==⨯n j m i b R a Rb a r r M j i j i ij n m ij R ,...,2,1,...,2,101,)(. 关系图:R 是集合上的二元关系,若<a i , b j >∈R ,由结点a i 画有向弧到b j 构成的图形.空关系∅是唯一、是任何关系的子集的关系; 全关系},,{A b a b a E A ∈><=A A ⨯≡; 恒等关系},{A a a a I A ∈><=,恒等关系的矩阵M I 是单位矩阵.关系的集合运算有并、交、补、差和对称差. 复合关系}),,(,{2121R c b R b a b c a R R R >∈<∧>∈<∃><=∙=;复合关系矩阵:21R R R M M M ⨯=(按布尔运算);有结合律:(R ∙S )∙T =R ∙(S ∙T ),一般不可交换. 逆关系},,{1R y x x y R >∈<><=-;逆关系矩阵满足:T R R M M =-1;复合关系与逆关系存在:(R ∙S )-1=S -1∙R -1.3.理解关系的性质(自反性和反自反性、对称性和反对称性、传递性的定义以及矩阵表示或关系图表示),掌握其判别方法(利用定义、矩阵或图,充分条件),知道关系闭包的定义和求法.注:(1)关系性质的充分必要条件:① R 是自反的⇔I A ⊆R ;②R 是反自反的⇔I A ⋂R =∅;③R 是对称的 ⇔R =R -1;④R 是反对称的⇔R ⋂R -1⊆I A ;⑤R 是传递的⇔R ∙R ⊆R .(2)I A 具有自反性,对称性、反对称性和传递性.E A 具有自反性,对称性和传递性.故I A ,E A 是等价关系.∅具有反自反性、对称性、反对称性和传递性.I A 也是偏序关系.4.理解等价关系和偏序关系概念,掌握等价类的求法和作偏序集哈斯图的方法.知道极大(小)元,最大(小)元的概念,会求极大(小)元、最大(小)元、最小上界和最大下界.等价关系和偏序关系是具有不同性质的两个关系. ⎩⎨⎧==+⎭⎬⎫⎩⎨⎧+偏序关系等价关系传递性反对称性对称性自反性 知道等价关系图的特点和等价类定义,会求等价类.一个子集的极大(小)元可以有多个,而最大(小)元若有,则惟一.且极元、最元只在该子集内;而上界与下界可以在子集之外.由哈斯图便于确定任一子集的最大(小)元,极大(小)元.5.理解函数概念:函数(映射),函数相等,复合函数和反函数.理解单射、满射和双射等概念,掌握其判别方法.设f 是集合A 到B 的二元关系,∀a ∈A ,存在惟一b ∈B ,使得<a , b >∈f ,且Dom(f )=A ,f 是一个函数(映射).函数是一种特殊的关系.集合A ×B 的任何子集都是关系,但不一定是函数.函数要求对于定义域A 中每一个元素a ,B 中有且仅有一个元素与a 对应,而关系没有这个限制.二函数相等是指:定义域相同,对应关系相同,而且定义域内的每个元素的对应值都相同.函数有:单射——若)()(2121a f a f a a ≠⇒≠;满射——f (A )=B 或,,A x B y ∈∃∈∀使得y =f (x );双射——单射且满射.复合函数,:,:,:C A f g C B g B A f →→→ 则 即))(()(x f g x f g = .复合成立的条件是:)(Dom )(Ran g f ⊆.一般g f f g ≠,但f g h f g h )()(=.反函数——若f :A →B 是双射,则有反函数f -1:B →A ,},)(,,{1A a b a f B b a b f ∈=∈><=-,f f g f f g ==-----11111)(,)( 重点:关系概念与其性质,等价关系和偏序关系,函数.第3章 图的基本概念复习要点1.理解图的概念:结点、边、有向图,无向图、简单图、完全图、结点的度数、边的重数和平行边等.理解握手定理.图是一个有序对<V ,E >,V 是结点集,E 是联结结点的边的集合.掌握无向边与无向图,有向边与有向图,混合图,零图,平凡图、自回路(环),无向平行边,有向平行边等概念.简单图,不含平行边和环(自回路)的图、在无向图中,与结点v (∈V )关联的边数为结点度数deg (v );在有向图中,以v (∈V )为终点的边的条数为入度deg -(v ),以v (∈V )为起点的边的条数为出度deg +(v ),deg(v )=deg +(v ) +deg -(v ).无向完全图K n 以其边数)1(21-=n n E ;有向完全图以其边数)1(-=n n E . 了解子图、真子图、补图和生成子图的概念. 生成子图——设图G =<V , E >,若E '⊆E ,则图<V , E '>是<V , E >的生成子图. 知道图的同构概念,更应知道图同构的必要条件,用其判断图不同构.重要定理:(1) 握手定理 设G =<V ,E >,有∑∈=V v E v 2)deg(; (2) 在有向图D =<V , E >中,∑∑∈+∈-=V v V v v v )(deg )(deg;(3) 奇数度结点的个数为偶数个.2.了解通路与回路概念:通路(简单通路、基本通路和复杂通路),回路(简单回路、基本回路和复杂回路).会求通路和回路的长度.基本通路(回路)必是简单通路(回路).了解无向图的连通性,会求无向图的连通分支.了解点割集、边割集、割点、割边等概念.了解有向图的强连通强性;会判别其类型.设图G =<V ,E >,结点与边的交替序列为通路.通路中边的数目就是通路的长度.起点和终点重合的通路为回路.边不重复的通路(回路)是简单通路(回路);结点不重复的通路(回路)是基本通路(回路).无向图G 中,结点u , v 存在通路,u , v 是连通的,G 中任意结点u , v 连通,G 是连通图.P (G )表示图G 连通分支的个数.在无向图中,结点集V '⊂V ,使得P (G -V ')>P (G ),而任意V "⊂V ',有P (G -V ")=P (G ),V '为点割集. 若V '是单元集,该结点v 叫割点;边集E '⊂E ,使得P (G -V ')>P (G ),而任意E "⊂E ',有P (G -E ")=P (G ),E '为边割集.若E '是单元集,该边e 叫割边(桥).要知道:强连通−−→−必是单侧连通−−→−必是弱连通,反之不成立. 3.了解邻接矩阵和可达矩阵的概念,掌握其构造方法及其应用.重点:图的概念,握手定理,通路、回路以及图的矩阵表示.第4章 几种特殊图复习要点1.理解欧拉通路(回路)、欧拉图的概念,掌握欧拉图的判别方法.通过连通图G 的每条边一次且仅一次的通路(回路)是欧拉通路(回路).存在欧拉回路的图是欧拉图.欧拉回路要求边不能重复,结点可以重复.笔不离开纸,不重复地走完所有的边,走过所有结点,就是所谓的一笔画.欧拉图或通路的判定定理(1) 无向连通图G 是欧拉图⇔G 不含奇数度结点(即G 的所有结点为偶数度);(2) 非平凡连通图G 含有欧拉通路⇔G 最多有两个奇数度的结点;(3) 连通有向图D 含有有向欧拉回路⇔D 中每个结点的入度=出度.连通有向图D 含有有向欧拉通路⇔D 中除两个结点外,其余每个结点的入度=出度,且此两点满足deg -(u )-deg +(v )=±1.2.理解汉密尔顿通路(回路)、汉密尔顿图的概念,会做简单判断.通过连通图G 的每个结点一次,且仅一次的通路(回路),是汉密尔顿通路(回路).存在汉密尔顿回路的图是汉密尔顿图.汉密尔顿图的充分条件和必要条件(1) 在无向简单图G =<V ,E >中,∣V ∣≥3,任意不同结点V v u G v u ≥+∈)deg()deg(,,,则G 是汉密尔顿图.(充。
国家开放大学《离散数学》形考任务2
![国家开放大学《离散数学》形考任务2](https://img.taocdn.com/s3/m/524f6c5ffd0a79563d1e7274.png)
《离散数学》形考任务二一、单项选择题图G如图三所示,以下说法正确的是( ).A.{c}是点割集B.a是割点C.{b, c}是点割集D.{b, d}是点割集正确答案是:{b, c}是点割集图G如图四所示,以下说法正确的是( ) .A.{(a, d)}是割边B.{(a, d) ,(b, d)}是边割集C.{(b, d)}是边割集D.{(a, d)}是边割集正确答案是:{(a, d) ,(b, d)}是边割集如图一所示,以下说法正确的是( ) .A.{(a, e)}是边割集B.{(a, e) ,(b, c)}是边割集C.{(a, e)}是割边D.{(d, e)}是边割集正确答案是:{(d, e)}是边割集如图二所示,以下说法正确的是( ).A.{a, e}是点割集B.{d}是点割集C.e是割点D.{b, e}是点割集正确答案是:e是割点设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2B.v+e-2C.e+v+2D.e-v-2正确答案是:e-v+2设图G=<V, E>,v∈V,则下列结论成立的是( ) .A.B.deg(v)=2| E |C.D.deg(v)=| E |正确答案是:已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).A.4B.5C.3D.8正确答案是:5若G是一个欧拉图,则G一定是( ).A.汉密尔顿图B.连通图C.平面图D.对偶图正确答案是:连通图设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.m-nB.m-n+1C.n-m+1D.m+n+1正确答案是:m-n+1无向树T有8个结点,则T的边数为( ).A.6B.9C.7D.8正确答案是:7设无向图G的邻接矩阵为则G的边数为( ).A.5B.4C.3D.6正确答案是:5无向图G存在欧拉回路,当且仅当().A.G连通且所有结点的度数全为偶数B.G连通且至多有两个奇数度结点C.G中所有结点的度数全为偶数D.G中至多有两个奇数度结点正确答案是:G连通且所有结点的度数全为偶数以下结论正确的是( ).A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.无向完全图都是欧拉图D.树的每条边都是割边正确答案是:树的每条边都是割边已知无向图G的邻接矩阵为则G有().A.6点,8边B.5点,7边C.6点,7边D.5点,8边正确答案是:5点,7边设无向图G的邻接矩阵为则G的边数为( ).A.14B.1C.7D.6正确答案是:7若G是一个汉密尔顿图,则G一定是( ).A.连通图B.欧拉图C.对偶图D.平面图正确答案是:连通图设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六A.(c)只是弱连通的B.(a)只是弱连通的C.(b)只是弱连通的D.(d)只是弱连通的正确答案是:(d)只是弱连通的无向完全图K4是().A.汉密尔顿图B.树C.欧拉图D.非平面图正确答案是:汉密尔顿图设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).A.(d)是强连通的B.(c)是强连通的C.(b)是强连通的D.(a)是强连通的正确答案是:(a)是强连通的无向简单图G是棵树,当且仅当( ).A.G的边数比结点数少1B.G连通且结点数比边数少1C.G中没有回路.D.G连通且边数比结点数少1正确答案是:G连通且边数比结点数少1二、判断题设G是一个连通平面图,且有6个结点11条边,则G有7个面.( )正确答案是“对”。
电大离散数学本)形考任务
![电大离散数学本)形考任务](https://img.taocdn.com/s3/m/4daa7d980242a8956bece4ec.png)
离散数学作业2离散数学集合论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1.可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2.在线提交word 文档3.自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B ==,P (A )-P (B )={{3},{1,3},{2,3},{1,2,3}},A ?B ={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}.2.设集合A 有10个元素,那么A 的幂集合P (A )的元素个数为1024.3.设集合A ={0,1,2,3},B ={2,3,4,5},R 是A 到B 的二元关系,则R 的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.4.设集合A ={1,2,3,4},B ={6,8,12},A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=><那么R -1={<6,3>,<8,4>}.5.设集合A ={a ,b ,c ,d },A 上的二元关系R ={<a ,b >,<b ,a >,<b ,c >,<c ,d >},则R 具有的性质是没有任何性质.6.设集合A ={a ,b ,c ,d },A 上的二元关系R ={<a ,a >,<b ,b >,<b ,c >,<c ,d >},若在R 中再增加两个元素<c,b><d,c>,则新得到的关系就具有对称性.7.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有2个.8.设A ={1,2}上的二元关系为R ={<x ,y >|x ?A ,y ?A ,x +y =10},则R 的自反闭包为<1,1>,<2,2>.9.设R 是集合A 上的等价关系,且1,2,3是A 中的元素,则R 中至少包含<1,1>,<2,2>,<3,3>等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1,a >,<2,b >},从B 到C 的函数g ={<a ,4>,<b ,3>},则Ran(g ?f )={<1,b>,<2,a>}.二、判断说明题(判断下列各题,并说明理由.)1.若集合A ={1,2,3}上的二元关系R ={<1,1>,<2,2>,<1,2>},则(1)R 是自反的关系;(2)R 是对称的关系.解:(1)错误。
国开形成性考核50501《离散数学(本)》形考任务(1-3)试题及答案
![国开形成性考核50501《离散数学(本)》形考任务(1-3)试题及答案](https://img.taocdn.com/s3/m/15841ef3e2bd960591c67743.png)
国开形成性考核《离散数学(本)》形考任务(1-3)试题及答案(课程ID:50501,整套相同,如遇顺序不同,Ctrl+F查找,祝同学们取得优异成绩!)形考任务1 集合论部分概念及性质一、单项选择题题目:1、设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是()。
【A】:f°g ={<5,a >, <4,b >}【B】:g°f ={<a,5>, <b,4>}【C】:f°g ={<a,5>, <b,4>}【D】:g°f ={<5,a >, <4,b >}答案:g°f ={<a,5>, <b,4>}题目:2、设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为()。
【A】:8、1、6、1【B】:无、2、无、2【C】:8、2、8、2【D】:6、2、6、2答案:无、2、无、2题目:3、设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ()。
【A】:{<2, 1>, <4, 3>, <6, 5>}【B】:{<2, 1>, <3, 2>, <4, 3>}【C】:{<2, 3>, <4, 5>, <6, 7>}【D】:{<2, 2>, <3, 3>, <4, 6>}答案:{<2, 3>, <4, 5>, <6, 7>}题目:4、设集合A ={1 , 2, 3}上的函数分别为:()。
国家开放大学电大本科《离散数学》网络课形考任务2作业及答案
![国家开放大学电大本科《离散数学》网络课形考任务2作业及答案](https://img.taocdn.com/s3/m/dfd84dc11eb91a37f0115c42.png)
国家开放大学电大本科《离散数学》网络课形考任务2作业及答案此任务2 g选择题题目1 无向完全图K4是()、选择一项:A、树 B、欧拉图 C、汉密尔顿图 D、非平面图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为()、选择一项: A、4 B、8 C、3 D、5 题目3 设无向图G的邻接矩阵为 011111 0 0111 0 0 0 011 0 011 01 0 则G 的边数为( 选择一项: A、7 B、14 C、6 D、1 题目4 如图一所示,以下说法正确的是()、选择一项: A、 ((a, e), (b, c)}是边割集 B、{(a, e)}是边割集 C、{(d, e)}是边割集 D、((a, e)}是割边题目5 以下结论正确的是()、选择一项: A、有n个结点n-l条边的无向图都是树B、无向完全图都是平面图 C、树的每条边都是割边 D、无向完全图都是欧拉图题目6 若G是一个欧拉图,则G一定是()、选择一项: A、汉密尔顿图 B、连通图 C、平面图 D、对偶图题目7 设图G=, vGV,则下列结论成立的是()、选择一项:A、云 d做、)=2|% B、2>“ = |司 w C、 deg(v)=2|S| D、deg(v)=|E| 题目8 图G如图三所示,以下说法正确的是()、选择一项: A、(b, d}是点割集 B、{c}是点割集 C、{b, c}是点割集 D、 a是割点题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是()、选择一项: (a)是费连通的 B、 (d)是强连通的 C、 (c)是强连通的D、 (b)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是()、选择一项: A、 (b)只是弱连通的 B、 (c)只是弱连通的 C、 (a)只是弱连通的 D、 (d)只是弱连通的判断逝题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树、()选择一项:对错题目12 汉密尔顿图一定是欧拉图、()选择一项:对错题目13 设连通平面图G的结点数为5,边数为6,则面数为4、()选择一项:对错题目14 设G是一个有7个结点16条边的连通图,则G为平面图、()选择一项:对错题目15 如图八所示的图G存在一条欧拉回路、()选择一项:对错题目16 设图G如图七所示,则图G的点割集是{f}、()选择一项:对错题目172>瞒)=2圜设G是一个图,结点集合为V,边集合为E,则代衫()选择一项:对错题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树、()选择一项:对错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图、()选择一项:对错题目20 若图 G=,其中 V=( a, b, c, d }, E={ (a, b), (a, d), (b, c), (b, d)},则该图中的割边为(b, c)、()选择一项:对。
国家开放大学电大本科《离散数学》网络课形考任务2作业及答案
![国家开放大学电大本科《离散数学》网络课形考任务2作业及答案](https://img.taocdn.com/s3/m/394505bb3169a4517723a3af.png)
A. 有n个结点n-1条边的无向图都是树
B. 无向完全图都是平面图
C. 树的每条边都是割边
D. 无向完全图都是欧拉图
题目6
若G是一个欧拉图,则G一定是( ).
选择一项:
A. 汉密尔顿图
B. 连通图
C. 平面图
D. 对偶图
题目7
设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .
选择一项:
选择一项:
对
错
题目17
设G是一个图,结点集合为V,边集合为E,则 ( )
选择一项:
对
错
题目18
设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( )
选择一项:
对
错
题目19
如图九所示的图G不是欧拉图而是汉密尔顿图.( )
选择一项:
对
错
题目20
若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( )
题目8
图G如图三所示,以下说法正确的是 ( ).
选择一项:
A. {b, d}是点割集
B. {c}是点割集
C. {b, c}是点割集
D. a是割点
题目9
设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).
选择一项:
A. (a)是强连通的
B. (d)是强连通的
C. (c)是强连通的
选择一项:
对
错
题目12
汉密尔顿图一定是欧拉图.( )
选择一项:
对
(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案
![(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案](https://img.taocdn.com/s3/m/e0037d7826284b73f242336c1eb91a37f111327e.png)
(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案 100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩 = 形成性考核×30% + 终结性考试×70% 形考任务1 单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2 若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:B. 对称题目4 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C=( ).选择一项:D. {1, 2, 3, 4} 题目5 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:C. 2 题目6 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:D. 传递的题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:C. 8 题目9 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).选择一项:B. 无、2、无、2 题目10 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2,1>,<3, 1>},则h =().选择一项:D. f◦g 判断题题目11 设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对题目12 空集的幂集是空集.()选择一项:错题目13 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:错题目14 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>,<3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对题目15 设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:错题目16 如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对题目17 设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()选择一项:对题目18 设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对题目19 若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:错题目20 设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对形考任务2 单项选择题题目1 无向完全图K4是().选择一项:C. 汉密尔顿图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:D. 5 题目3 设无向图G的邻接矩阵为则G的边数为( ).选择一项:A. 7 题目4 如图一所示,以下说法正确的是 ( ) .选择一项:C. {(d, e)}是边割集题目5 以下结论正确的是( ).选择一项:C. 树的每条边都是割边题目6 若G是一个欧拉图,则G一定是( ).选择一项:B. 连通图题目7 设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .选择一项:题目8 图G如图三所示,以下说法正确的是 ( ).选择一项:C. {b, c}是点割集题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).选择一项:A. (a)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).选择一项:D. (d)只是弱连通的判断题题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( ) 选择一项:对题目12 汉密尔顿图一定是欧拉图.( ) 选择一项:错题目13 设连通平面图G的结点数为5,边数为6,则面数为4.( ) 选择一项:错题目14 设G是一个有7个结点16条边的连通图,则G为平面图.( ) 选择一项:错题目15 如图八所示的图G存在一条欧拉回路.( ) 选择一项:错题目16 设图G如图七所示,则图G的点割集是{f}.( ) 选择一项:错题目17 设G是一个图,结点集合为V,边集合为E,则( ) 选择一项:对题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( ) 选择一项:错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图.( ) 选择一项:对题目20 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( ) 选择一项:对形考任务3 单项选择题题目1 命题公式的主合取范式是( ).选择一项:题目2 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:题目3 命题公式的主析取范式是( ).选择一项:题目4 下列公式成立的为( ).选择一项:题目5 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6 前提条件的有效结论是( ).选择一项:B. ┐Q 题目7 命题公式(P∨Q)→R的析取范式是 ( ).选择一项:D. (┐P∧┐Q)∨R 题目8 下列等价公式成立的为( ).选择一项:题目9 下列等价公式成立的为( ).选择一项:题目10 下列公式中 ( )为永真式.选择一项:C. ┐A∧┐B ↔ ┐(A∨B) 判断题题目11 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( ) 选择一项:对题目12 设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( ) 选择一项:对题目13 下面的推理是否正确.( ) (1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) 选择一项:错题目14 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 选择一项:对题目15 命题公式P→(Q∨P)的真值是T.( ) 选择一项:对题目16 命题公式┐P∧P的真值是T.( ) 选择一项:错题目17 谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( ) 选择一项:对题目18 命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 选择一项:错题目19 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 选择一项:对题目20 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( ) 选择一项:错形考任务4 要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传形考任务 5 网上学习行为(学生无需提交作业,占形考总分的10%)附:元宇宙(新兴概念、新型虚实相融的互联网应用和社会形态)元宇宙(Metaverse)是整合了多种新技术而产生的新型虚实相融的互联网应用和社会形态,通过利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间。
开放大学离散数学形考2
![开放大学离散数学形考2](https://img.taocdn.com/s3/m/8341a3b1cfc789eb172dc8d9.png)
开放大学离散数学形考2闭包为 {<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g ︒ f )= {4,3} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立.因为关系R 中缺少元素<2, 1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:不是等价关系因为3是A 的一个元素,由于<3,3>不在R 中,R 不具有自反性,等价关系R 必须有(对A 中任意元素a, R 含<a,a>),所以R 不是A 上的等价关系!3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.解:错误,按照定义,图中不存在最大元和最小元ο ο ο οa b c d 图οο οg ef h ο4.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},,判断下列关系f是否构成函数f:A→,并说明理由.B(1) f={<1, 4>, <2, 2,>, <4, 6>, <1, 8>};(2) f={<1, 6>, <3, 4>, <2, 2>};(3) f={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1)不构成函数,因为它的定义域Dom(f)≠A(2)也不构成函数,因为它的定义域Dom(f)≠A(3)构成函数,首先它的定义域Dom(f)={1,2,3,4}=A,其次对于A中的每一个元素a,在B中都有一个唯一的元素b,使<a,b>∈f三、计算题1.设}4,2{===CAE,求:B5,4,3,2,1{=},},5,2,1{},4,1{(1) (A⋂B)⋃~C;(2) (A⋃B)-(B⋂A) (3) P(A)-P(C);(4) A⊕B.解:(1)(A⋂B)⋃~C={1}⋃{1,3,5}={1,3,5}(2)(A⋃B)-(B⋂A) = {1,2,4,5}-{1}={2,4,5}(3)P(A) = {φ,{1},{4},{1,4}}P(C) = {φ,{2},{4},{2,4}}P(A)-P(C)={{1},{1,4}}(4)A⊕B = (A⋃B)-(B⋂A)={2,4,5}2.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(A-B);(2)(A∩B);(3)A×B.解:(1)(A-B)={{1},{2}}(2)(A∩B)={1,2}(3)A×B ={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1,{1,2}>,<2,1 >,<2,2>,<2,{1,2}>}3.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y<0},试求R,S,R•S,S•R,R-1,S-1,r(S),s(R).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}S=φR•S=φS•R=φR-1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>}S-1 =φr(S)={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}4.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.(1) 写出关系R的表示式;(2 )画出关系R的哈斯图;(3) 求出集合B的最大元、最小元.解:(1)R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>, <2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(2)(3)集合B没有最大元,最小元是2.四、证明题1.试证明集合等式:A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).解:设,若x∈A⋃ (B⋂C),则x∈A 或x∈B⋂C即x∈A 或x∈B且x∈A 或x∈C即x∈A⋃B 且x∈A⋃C即x∈T=(A⋃B) ⋂ (A⋃C)所以A⋃ (B⋂C)⊆(A⋃B) ⋂ (A⋃C)反之若x∈(A⋃B) ⋂ (A⋃C),则x∈A⋃B 且x∈A⋃C即x∈A 或x∈B且x∈A 或x∈C即x∈A 或x∈B⋂C即x∈A⋃ (B⋂C)所以(A⋃B) ⋂ (A⋃C)⊆A⋃ (B⋂C)因此A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C)2.试证明集合等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C).解:设S=A⋂ (B⋃C),T = (A⋂B) ⋃ (A⋂C) 若x∈S,则x∈A 且x∈B⋃C即x∈A 且x∈B或x∈A 且x∈C,也即x∈A⋂B 或x∈A⋂C 即x∈T所以S⊆T反之,若x∈T,则x∈A⋂B或x∈A⋂C即x∈A 且x∈B 或x∈A 且x∈C也即x∈A且x∈B⋃C 即x∈S 所以T⊆S因此T=S.3.对任意三个集合A, B和C,试证明:若A B = A C,且A,则B = C.解:设x∈A,y∈B,则<x,y>∈AxB,因为AxB = AxC,故<x,y>∈AxC,则y∈C,所以B⊆C,设x∈A,z∈C,则<x,z>∈ZxB,因为AxB = AxC,故<x,z>∈AxB,则z∈B 所以C⊆B故得A=B4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.解:R1和R2 是自反的,∀x∈A,<x,x>∈R2, 则<x,x>∈R1∩R2 ,所以是R1∩R2自反的。
国家开发大学(电大)离散数学形考任务二部分答案
![国家开发大学(电大)离散数学形考任务二部分答案](https://img.taocdn.com/s3/m/56511fa0fad6195f302ba661.png)
不正确
获得5.00分中的0.00分
标记题目
题干
已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().
选择一项:
A.8
B.3
C.4
D.5
反馈
你的回答不正确
正确答案是:5
题目
未回答
满分5.00
标记题目
题干
图G如图四所示,以下说法正确的是( ).
C.{(a, d)}是割边
D.{(a, d ) ,( b, d)}是边割集反馈
选择一项:
A.( P∧Q)∨(P∨Q)
B.( P∨Q)
C.( P∧Q)
D.┐(┐P∧┐Q)
反馈
你的回答不正确
正确答案是:(P∨Q)
前提条件 的有效结论是().
选择一项:
A.┐P
B.Q
C.┐Q
D.P
反馈
你的回答不正确
正确答案是:┐Q
设命题公式G:,则使公式G取真值为1的P,Q,R赋值分
别是( ).
选择一项:
对
错
反馈
正确的答案是“错”
设A(x):x是人,B(x):x是教师,则命题“有人是教师 ”可符号化为( ) 选择一项:
A.
B.
C.
D.
反馈
你的回答正确
正确答案是: 命题公式(P∨Q)→R的析取范式是(). 选择一项:
A.(┐P∧┐Q)∨R
B.┐(P∨Q)∨R
C.( P∨Q)∨R
D. ( P正确
获得5.00分中的0.00分 标记题目
题干 如图二所示,以下说法正确的是().
图二
选择一项:
A.{d}是点割集
B.e是割点
国家开发大学(电大)离散数学形考任务二部分答案
![国家开发大学(电大)离散数学形考任务二部分答案](https://img.taocdn.com/s3/m/327067b4482fb4daa58d4bc7.png)
无向树T有8个结点,则T的边数为( ).选择一项:A. 7B. 9C. 8D. 6反馈你的回答不正确正确答案是:7题目2不正确获得5.00分中的0.00分标记题目题干设图G=<V, E>,v V,则下列结论成立的是( ) .选择一项:A.B. deg(v)=2| E |C. deg(v)=| E |D.反馈你的回答不正确正确答案是:题目3不正确获得5.00分中的0.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五选择一项:A. (b)是强连通的B. (c)是强连通的C. (d)是强连通的D. (a)是强连通的反馈你的回答不正确正确答案是:(a)是强连通的题目4不正确获得5.00分中的0.00分标记题目题干设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.选择一项:A.B.C.D.反馈你的回答不正确正确答案是:题目5不正确获得5.00分中的0.00分标记题目题干无向完全图K4是().选择一项:A. 树B. 非平面图C. 欧拉图D. 汉密尔顿图反馈你的回答不正确正确答案是:汉密尔顿图题目6不正确获得5.00分中的0.00分标记题目题干已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:A. 8B. 3C. 4D. 5反馈你的回答不正确正确答案是:5题目7未回答满分5.00标记题目题干图G如图四所示,以下说法正确的是( ) .选择一项:A. {(a, d)}是边割集B. {(b, d)}是边割集C. {(a, d)}是割边D. {(a, d) ,(b, d)}是边割集反馈你的回答不正确正确答案是:{(a, d) ,(b, d)}是边割集题目8不正确获得5.00分中的0.00分标记题目题干以下结论正确的是( ).选择一项:A. 无向完全图都是平面图B. 无向完全图都是欧拉图C. 树的每条边都是割边D. 有n个结点n-1条边的无向图都是树反馈你的回答不正确正确答案是:树的每条边都是割边题目9不正确获得5.00分中的0.00分标记题目题干如图二所示,以下说法正确的是( ).图二选择一项:A. {d}是点割集B. e是割点C. {b, e}是点割集D. {a,e}是点割集反馈你的回答不正确正确答案是:e是割点题目10不正确获得5.00分中的0.00分标记题目题干若G是一个汉密尔顿图,则G一定是( ).选择一项:A. 欧拉图B. 连通图C. 平面图D. 对偶图你的回答不正确正确答案是:连通图标记题目信息文本判断题题目11正确获得5.00分中的5.00分标记题目题干设G是一个连通平面图,且有6个结点11条边,则G有7个面.( ) 选择一项:对错反馈正确的答案是“对”。
离散数学网络课程形成性考核2形考任务
![离散数学网络课程形成性考核2形考任务](https://img.taocdn.com/s3/m/47a1600f580216fc700afd53.png)
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,则P(A)-P(B )= {{3}, {1,2,3}, {1, 3 }, {2,3}} ,A⨯B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈xyR⋂<且=且>∈∈{B,,xAyAyBx}则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3>.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<>∈A2,x,,xy{B那么R-1={<6,3>,<8,4>}5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性,反对称性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>, <2, 2>, <3, 3> 等元素.10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是{<1, a >, <2, b >},或{<1, b >, <2, a >}二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.(1)R不是自反关系,因为没有有序对<3,3>.(2)R不是对称关系,因为没有有序对<2,1>2.如果R1和R2是A上的自反关系,判断结论:“R-11、R1∪R2、R1∩R2是自反的”是否成立?并说明理由.解:成立.因为R1和R2是A上的自反关系,即I A⊆R1,I A⊆R2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}},A⨯B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈xyR⋂<且=且>∈∈{B,,xAyAyBx}则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<那么R-1={<6,3>,<8,4>}.>∈A2,x,,xy{B5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是没有任何性质.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c,b> <d,c> ,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为<1,1>,<2,2> .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3> 等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g ︒ f )= {<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.解:(1)错误。
R 不具有自反的关系,因为<3,3>不属于R (2)错误。
R 不具有对称的关系,因为<2,1>属于R2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:不是等价关系。
因为3是A 的一个元素, 但 <3,3>不在关系R 中。
等价关系R 必须有: 对A 中任意元素a, R 含<a,a>3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.解:错误集合A 的最大元不存在,a 是极大元4.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A →,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2) f ={<1, 6>, <3, 4>, <2, 2>}; (3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1)不构成函数。
因为对于3属于A ,在B 中没有元素与之对应(2)不构成函数。
因为对于4属于A ,在B 中没有元素与之对应 (3)构成函数。
因为A 中任意一个元素都有A 中唯一的元素相对应三、计算题1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{====C B A E ,求:(1) (A ⋂B )⋃~C ; (2) (A ⋃B )- (B ⋂A ) (3) P (A )-P (C ); (4) A ⊕B .ο ο ο ο a b c d 图一 ο ο ο ge f hο解:(1)(A ⋂B)⋃~C={1}⋃}5,3,1{}5,3,1{= (2)(A ⋃B)- (B ⋂A)={1,2,4,5}-{1}={2,4,5}(3)}}4,2{},4{},2{,{}}4,1{},4{},1{,{)()(φφ-=-C P A P }}4,1{},1{{= (4)A ⊕B =(A ⋃B)-(A ⋂B )=}5,4,2{}1{}5,4,2,1{=-2.设A ={{1},{2},1,2},B ={1,2,{1,2}},试计算(1)(A -B ); (2)(A ∩B ); (3)A ×B .解:(1)A -B ={{1},{2}} (2)A ∩B ={1,2} (3)A×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,<2, {1,2}>}3.设A ={1,2,3,4,5},R ={<x ,y >|x ∈A ,y ∈A 且x +y ≤4},S ={<x ,y >|x ∈A ,y ∈A 且x +y <0},试求R ,S ,R •S ,S •R ,R -1,S -1,r (S ),s (R ).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>} S=空集 R •S=空集 S •R=空集R-1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>} S-1 =空集r(S)={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}4.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6}.(1) 写出关系R 的表示式; (2 )画出关系R 的哈斯图; (3) 求出集合B 的最大元、最小元.解(1)R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>, <3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(3)集合B没有最大元,最小元是2四、证明题1.试证明集合等式:A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).证明:设,若x∈A⋃ (B⋂C),则x∈A或x∈B⋂C,即 x∈A或x∈B 且 x∈A或x∈C.即x∈A⋃B 且 x∈A⋃C ,即 x∈T=(A⋃B) ⋂ (A⋃C),所以A⋃ (B⋂C)⊆ (A⋃B) ⋂ (A⋃C).反之,若x∈(A⋃B) ⋂ (A⋃C),则x∈A⋃B 且 x∈A⋃C,即x∈A或x∈B 且 x∈A或x∈C,即x∈A或x∈B⋂C,即x∈A⋃ (B⋂C),所以(A⋃B) ⋂ (A⋃C)⊆ A⋃ (B⋂C).因此.A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).2.试证明集合等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C).证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B ∪C,即x∈A且x∈B 或x∈A且x∈C,也即x∈A∩B 或x∈A∩C ,即x∈T,所以S⊆T.反之,若x∈T,则x∈A∩B 或x∈A∩C,即x∈A且x∈B 或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以T⊆S.因此T=S.3.对任意三个集合A, B和C,试证明:若A B = A C,且A,则B = C.证明:(1)对于任意<a,b>∈A×B,其中a∈A,b∈B,因为A×B= A×C,必有<a,b>∈A×C,其中b ∈C因此B⊆C(2)同理,对于任意<a,c>∈A×C,其中,a∈A,c∈C,因为A×B= A×C必有<a,c>∈A×B,其中c∈B,因此C⊆B由(1)(2)得B=C4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:若R与S是集合A上的自反关系,则任意x∈A,<x,x>∈R,<x,x>∈S,从而<x,x>∈R∩S,注意x是A的任意元素,所以R∩S也是集合A上的自反关系.。