同余的概念及基本性质
同余方程的求解方法与应用

同余方程的求解方法与应用同余方程是数论中的一个重要概念,它在密码学、编码理论等领域有广泛的应用。
本文将介绍同余方程的求解方法,并讨论其在实际问题中的应用。
一、同余方程的定义与性质同余方程是指形如ax ≡ b (mod m)的方程,其中a、b、m为已知的整数,x为未知数。
同余方程的求解即是要找到满足该方程的整数x的取值。
同余方程具有以下性质:1. 若a ≡ b (mod m),则对任意整数x,ax ≡ bx (mod m)。
2. 若ax ≡ ay (mod m),且a与m互素,则x ≡ y (mod m)。
二、求解同余方程的方法1. 穷举法:逐个尝试整数x的取值,验证是否满足方程。
如果方程有解,则解的集合可以表示为{x | x ≡ x0 (mod m)},其中x0为方程的一个解。
2. 欧拉定理:对于互素的整数a和m,有a^φ(m) ≡ 1 (mod m),其中φ(m)表示小于m且与m互素的正整数的个数。
如果b ≡ a^k (mod m),则可以将方程转化为ak ≡ b (mod m)来求解。
这样做的好处是可以将指数降低,从而简化计算。
3. 扩展欧几里得算法:对于一般的同余方程ax ≡ b (mod m),可以利用扩展欧几里得算法求解。
该算法给出了方程ax + my = d的解,其中d为a和m的最大公约数。
如果b是d的倍数,则方程有解,且解的个数为d个。
三、同余方程的应用1. 密码学:同余方程在密码学中有重要的应用。
例如,在RSA公钥加密算法中,同余方程用于对消息进行加密与解密。
通过选择合适的公钥和私钥,可以实现对消息的加密与解密操作。
2. 信号处理:同余方程可以应用于信号处理中的调频解调技术。
在调频通信系统中,利用同余方程可以进行频率的合成与解析,实现信号的调制与解调操作。
3. 编码理论:同余方程可以应用于编码理论中的纠错码设计。
通过求解一系列同余方程,可以构造出性能良好的纠错码,提高数据传输的可靠性。
同余的基本概念和性质

模相等的同余关系的运算性质
模相等的同余关系满足交换律和结合律 模相等的同余关系满足消去律 模相等的同余关系满足分配律 模相等的同余关系满足幂等律
同余的应用
同余在模方程中的应用
模方程的同余解法 同余在模方程中的应用实例 同余在模方程中的求解步骤 同余在模方程中的优势与局限性
同余在数论中的应用
整除理论:同余是整除理论中的重要概念,用于研究整数之间的除法关系。
● - 同余关系具有反身性,即任意整数a都与自身对模m同余,即a≡a(mod m)。 ● - 同余关系具有对称性,即如果a≡b(mod m),则b≡a(mod m)。 ● - 同余关系具有传递性,即如果a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。 ● - 对于任意整数a、b和c,若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。
同余的性质
模相等的同余关系
● 定义:如果两个整数a和b除以同一个正整数m的余数相同,则称a和b对模m同余,记作 a≡b(mod m)。
● 性质: - 同余关系具有反身性,即任意整数a都与自身对模m同余,即a≡a(mod m)。 - 同余关 系具有对称性,即如果a≡b(mod m),则b≡a(mod m)。 - 同余关系具有传递性,即如果 a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。 - 对于任意整数a、b和c,若a≡b(mod m)且 b≡c(mod m),则a≡c(mod m)。
同余的基本概念和性质
汇报人:XX
目录
同余的定义
同余的性质
01
02
同余的应用
同余的证明方法
03
04
同余的定义
什么是同余
同余的定义:两个整数除以某 个固定整数得到的余数相同, 则称这两个整数同余。
2.1 同余的概念与基本性质

2 同余同余是由大数学家高斯引入的一个概念.我们可以将它理解为“余同”,即余数相同.正如奇数与偶数是依能否被2整除而得到的关于整数的分类一样,考虑除以m (≥2)所得余数的不同,可以将整数分为m 类.两个属于同一类中的数相对于“参照物”m 而言,具有“余数相同”这个性质.这种为对比两个整数的性质,引入一个参照物的思想是同余理论的一个基本出发点.同余是初等数论中的一门语言,是一件艺术品.它为许多数论问题的表述赋予了统一的、方便的和本质的形式.2.1 同余的概念与基本性质定义 如果a 、b 除以m (≥1)所得的余数相同,那么称a 、b 对模m 同余,记作a ≡b (mod m ).否则,称a 、b 对模m 不同余,记作a b ≡(mod m ).性质1 a ≡b (mod m )的充要条件是|m a b -.性质2 若a ≡b (mod m ),c ≡d (mod m ),则a +c ≡b +d (mod m ),a -c ≡b -d (mod m ),ac ≡bd (mod m ). 证明 这些结论与等式的一些相关结论极其相似,它们都容易证明.我们只给出第3个式子的证明. 只需证明:|m ac bd -.因为ac -bd =ac -bc +bc -bd=(a -b )c +b (c -d )由条件|m a b -,|m c d -,知|m ac bd -.说明 与同余有关的许多结论都要用到性质1,事实上,很多数论教材中利用性质1来引入同余的定义.性质3 若a ≡b (mod m ),n 为正整数,则()mod n n a b m ≡.性质4 若a ≡b (mod 1m ),a ≡b (mod 2m ),则a ≡b (mod [1m ,2m ]).性质5 若ab ≡ac (mod m ),则()mod m b c a m ⎛⎫≡ ⎪ ⎪⎝⎭,. 在同余式两边约去一个数时,应将该数与m 的最大公因数在“参照物”中同时约去.性质6 如果(a ,m )=1,那么存在整数b ,使得ab ≡1(mod m ).这个b 称a 对模m 的数论倒数,记为()1mod a m -,在不会引起误解时常常简记为1a -.证明 利用贝祖定理,可知存在整数x 、y 使得ax +my =1.于是,|1m ax -,即()1mod ax m ≡,故存在符合条件的b . 说明 由数论倒数的定义,易知当(a ,m )=1时,()()11mod aa m ≡--.例1 求所有的素数p 、q 、r (p ≤q ≤r ),使得pq +r ,pq +2r ,qr +p ,qr +2p ,rp +q ,rp +2q 都是素数. 解:若p >2,则p 、q 、r 都是奇数,此时pq +r 是一个大于2的偶数,矛盾,故p =2.现在,数2q +r ,2q +2r ,qr +2,qr +4,2r +q ,2r +2q 都是素数.若q 、r 中有偶数,则qr +2为一个大于2的偶数,矛盾,故q 、r 都是奇素数.若q >3,则3qr .此时,若()1mod3qr ≡,则()20mod3qr ≡+,与qr +2为素数矛盾;若qr ≡2()mod3,则()40mod3qr ≡+,与qr +4为素数矛盾,故q =3.这样,数6+r ,6+2r ,3r +2,3r +4,2r +3,2r +9都是素数.若r ≠5,则()0mod5r ≡,但分别当1r ≡,2,3,4(mod5)时,对应地,数3r +2,3r +4,2r +9,6+r 为5的倍数,矛盾,故r =5.直接验证,可知它们满足条件,所求的素数为p =2,q =3,r =5.例2 设n 为大于1的正整数,且1!,2!,…,n !中任意两个数除以n 所得的余数不同.证明:n 是一个素数.证明:注意到,()!0mod n n ≡,而n =4时,有2!()3mod4≡!.因此,如果能够证明:当n 为大于4的合数,都有()()1!0mod n n ≡-,就能依题中的条件导出矛盾,从而证出n 为素数.事实上,若n 为大于4的合数,则可对n 作分解,变为下述两种情形.情形一 可写n =pq ,2≤p <q ,p 、q 为正整数,这时1<p <q <n -1,从而()|1!pq n -, 即()()1!0mod n n ≡-.情形二 当2n p =,p 为素数时,由n >4,知p ≥3,故11<p <2q <(n -1),从而p · (2p ) ()|1!n -,于是,()()1!0mod n n ≡-.综上可知,n 只能是素数.说明 反过来,当n 为素数时,并不能保证1!,2!,…,n !中任意两个数对模n 不同余.例如p =5时,()31mod5≡!!.例3 设整数x 、y 、z 满足()()()x y y z z x x y z ---=++. ①证明:x +y +z 是27的倍数.证明:考虑x 、y 、z 除以3所得的余数,如果x 、y 、z 中任意两个对模3不同余,那么()0120mod3x y z ≡≡++++,但是()()()3x y y z z x ---,这与①矛盾.现在x 、y 、z 中必有两个对模3同余,由对称性,不妨设()mod3x ≡,这时由①式知 3|x y z ++,于是 ()()2mod3z x y x x ≡≡≡-+-,这表明 ()mod3x y z ≡≡,从而由①式知 27|x y z ++.例4 是否存在19个不同的正整数,使得在十进制表示下,它们的数码和相同,并且这19个数之和为1999?解:此题需要用到一个熟知的结论:在十进制表示下,每个正整数与它的数码和对模9同余.(这个结论只需利用()101mod9k ≡即可得证)若存在19个满足条件的不同正整数,则由它们的数码和相同(设这个相同的数码和为k ),可知()199919mod9k ≡,故()1mod9k ≡.又这19个数之和为1999,故其中必有一个数不大于199919,即有一个数≤105,所以k ≤18.结合()1mod9k ≡,知k =1或10. 若k =1,则这19个数为1,10,100,…,和不可能为1999,所以,k =10.而当k =10时,最小的数码和为10的20个正整数是19,28,37,…,91,109,118,127,…,190,208.前面19个数之和为1990,故符合要求的19个正整数中必有一个≥208,此时这19个数之和≥208+(19+28+…+91)+(109+118+127+…+181)=2198>1999, 矛盾.所以不存在19个不同的整数满足条件.例5 设m 、n 、k 为正整数,n ≥m +2,k 为大于1的奇数,并且×21np k =+为素数, 2|21m p +.证明:()121mod n k p ≡-.证明:由条件知()221mod mp ≡-,而n ≥m +2,故12m +是12n n •-的因数,所以, ()()122211mod n t n p •≡--=(这里22n m t n •--=). 现在,由()21mod n k p •≡-,知()()111222211mod n n n n k p ••≡----=,结合上面的结论,即可得()121mod n k p ≡-.说明 本题的背景是讨论费马数(形如221m m F =+的数为费马数)的素因数的性质.例6 设m 为正整数,证明:存在整数a 、b 、k ,使得a 、b 都是奇数,而k ≥0,并且2011201122m a b k •=++. ①证明:①式等价于(在左边不小于右边的情形下)()201120112mod 2m a b =+. ② 我们先证明:满足②的奇数a 、b 是存在的.注意到,对任意奇数x 、y ,有()()111110910x y x y x x y y ⋯-=-+++,上式右边10910x x y y ⋯+++是11个奇数之和,它应为奇数,因此,()111120110mod 2x y ≡- ()2011mod 2x y ⇔≡.这表明:在2011mod 2的意义下,数20111,20113,…,20111121(-)是 数1,3,5,…,201121-的一个排列,从而,存在奇数0b ,使得()112011021mod 2b m ≡-.现在,取一个充分小的负奇数b ,使得 ()20110mod 2b b ≡,且1121m b --≥0,则 ()11112011021210mod 2m b m b ≡≡----,于是,令()1120112112m b a b k b ⎛⎫ ⎪⎝⎭--,,=,,,则符合①.所以,满足条件的a 、b 、k 存在.。
1.同余的概念及基本性质

第三章 同余§1 同余的概念及其基本性质定义 给定一个正整数m ,若用m 去除两个整数a 和b 所得的余数相同,则称,a b 对模m 同余,记作()mod .a b m ≡若余数不同,则称,a b 对模m 不同余,记作()\mod a b m ≡.甲 ()mod .a a m ≡(甲:jia 3声调; 乙:yi 3声调; 丙:bing 3声调; 丁:ding 1声调; 戊:wu 声调; 己:ji 3声调; 庚:geng 1声调; 辛: xin 1声调 天; 壬: ren 2声调; 癸: gui 3声调.)乙 若()mod ,a b m ≡则()mod .b a m ≡丙 若()()mod ,mod ,a b m b c m ≡≡则()mod .a c m ≡ 定理1 ()mod |.a b m m a b ≡⇔-证 设()mod a b m ≡,则12,,0.a mq r b mq r r m =+=+≤<于是,()12,|.a b m q q m a b -=--反之,设|.m a b -由带余除法,111222,0,,0a mq r r m b mq r r m =+≤<=+≤<,于是,()()1221.r r m q q a b -=-+-故,12|m r r -,又因12r r m -<,故()12,mod .r r a b m =≡丁 若()()1122mod ,mod ,a b m a b m ≡≡则,()1212mod .a a b b m ±≡±证 只证“+”的情形.因()()1122mod ,mod a b m a b m ≡≡,故1122,m a b m a b --,于是()()()()11221212|m a b a b a a b b -+-=+-+,所以()1212mod .a a b b m +≡+ 推论 若()mod ,a b c m +≡则()mod .a c b m ≡-戊 若()()1122mod ,mod ,a b m a b m ≡≡则()1212mod .a a bb m ≡ 证 因()()1122mod ,mod a b m a b m ≡≡,故1122|,|.m a b m a b --又因()()()1212111212211122,a a bb a b b a bb a a b b a b -=-+-=-+-故()12121212|,mod .m a a bb a a bb m -≡ 定理2 若()()11mod ,mod ,1,2,,,kki i A B m x y m i k αααα≡≡=则()11111111,,,,mod .k k k kkkk k A xx B y y m αααααααααααα≡∑∑特别地,若()mod ,0,1,,i i a b m i n ≡=,则()111010mod .n n n n n n n n a x a x a b x b x b m ----+++≡+++证 因()mod ,1,2,,i i x y m i k ≡=故,1,2,,iii i x y i k αα≡=,从而()1111mod .k k k k x x y y m αααα≡又因()11mod kkA B m αααα≡,故()()111111111111111,,,,mod ,mod .k k kk k k kkkk k k k A xx B y y m A xx B y y m αααααααααααααααααααα≡≡∑∑己 若()()mod ,,1,ka kb m k m ≡=则()mod .a b m ≡证 因()mod ka kb m =,故()|.m ka kb k a b -=-又因(),1k m =,故()|,mod .m a b a b m -≡庚 (ⅰ)若()mod ,0,a b m k ≡>则()mod .ka kb km ≡ (ⅱ)若()mod ,|,|,|,0,a b m d a d b d m d ≡>则mod .a b m d d d ⎛⎫≡ ⎪⎝⎭证 (ⅰ)因()mod ,0a b m k ≡>,故()()|,|,mod .m a b km k a b ka kb ka kb km --=-≡(ⅱ)因()mod ,a b m ≡故|,.m a b a b mq --=又因|,|,|,0d a d b d m d >111111,,,0,0,0a da b db m dm a b m ===>>>. 于是()111111111,,mod ,mod .a b m da db dm q a b m q a b m d d d ⎛⎫-=-=≡≡ ⎪⎝⎭辛 若()mod ,1,2,,i a b m i k ≡=,则[]()12mod ,,,.k a b m m m ≡证 因()mod ,1,2,,i a b m i k ≡=,故|,1,2,,.i m a b i k -=于是,[][]()1212,,,|,mod ,,,.k k m m m a b a b m m m -≡附记 最小公倍数的一个常用性质是,若12|,|,,|k m a m a m a ,则[]12,,,|.k m m m a证 由带余除法,设[][]1212,,,,0,,,k k a m m m q r r m m m =+≤<,则12|,|,,|k m a m a m a 及12|,|,,|k m a m a m a 得, |,1,2,,.i m r i k =但[]12,,,k m m m 是12,,,k m m m 的最小公倍数,故[]120,,,,|.k r m m m a =壬 若()mod ,|,0,a b m d m d ≡>则()mod .a b d ≡证 因()mod ,a b m ≡故|.m a b -又因|,0d m d >,故()|,mod .d a b a m d -≡ 癸 若()mod a b m ≡,则()(),,.a m b m =证 因()mod a b m ≡,故|.m a b -于是,存在整数t 使得.a b mt -=故.a mt b =+故()(),,.a m b m =例 一个整数0a >被9整除的充分必要条件是n 的各位数字(十进制)的和倍9整除.证 设1101010,010n n n n i a a a a a --=+++≤<.因()101mod9≡,故()()101mod9,10mod9,0,1,,.i i i i a a i n ≡≡=于是,()010mod 9.n nii i i i a a a ===≡∑∑故9|a 的充分必要条件是09|.ni i a =∑作业 P53:2,3,4,5.习题选解2.设正整数1101010,010,n n n n i a a a a a --=+++≤<证明11整除a 的充分必要条件是11整除()01.niii a =-∑证 因为()101mod11≡-,故()()()()101mod11,101mod11,0,1,,.i ii i i i a a i n ≡-≡-=.于是,()()0101mod11.n nii iii i a a a ===≡-∑∑由此可得,11|a 的充分必要条件是()0111.nii i a =-∑3.找出能被37,101整除的判别条件来.解 (ⅰ)因()10001mod37≡,故()()10001mod370.ii ≡≥设11010001000,01000.n n n n i a a a a a --=+++≤<则由()10001mod37i≡得()1000mod37,0,1,,ii i a a i n ≡=,故()01000mod 37.n nii i i i a a a ===≡∑∑由此可得,37|a 的充分必要条件是037.ni i a =∑(ⅱ)因()1001mod101≡-,故()()()1001mod1010.iii ≡-≥ 设110100100,0100,n n n n i a a a a a --=+++≤<则由()()1001mod101ii ≡-得()()1001mod101,0,1,,ii i i a a i n ≡-=,故()01001.n niii i i i a a a ===≡-∑∑由此可得,101|a 的充分必要条件是()01011.niii a =-∑4.证明52641|2 1.+ 证 因()()8163222256,265536154mod 641,2154237166401mod 641,==≡≡=≡≡-故52641|2 1.+5.若a 是任一奇数,则()()221mod 21.nn a n +≡≥证 对n 作数学归纳法.当1n =时,因a 为奇数,故可设121a a =+,则()()2221111112114441a a a a a a -=+-=+=+.而()111a a +是两个连续两个整数的积,一定是2的倍数,从而()122128|1,1mod 2,a a +-≡即1n =时结论正确.假设对()12n n -≥结论正确,即()12121mod 2.n n -+≡下面说明在此假设下,对n 结论正确.因()()()111222221111nn n n a aa a ----=-=-+,而由归纳假设得121n a--是12n +的倍数,又因a 为奇数,故121n a -+也为奇数,于是()()112211n n a a ---+是22n +的倍数,故()221mod 2.nn a +≡。
第2章 同余一

下面我们定义同余类的加法以及乘法,并揭示出其可能
的带式结构。
定义2.1.4 设a,b为模m的同余类,定义加法(“⊕”)为
a b a1 b1,其中 a1 a, b1 b ;
定义乘法(“”)为
d 1 2 4 5 10 20
a : ( a ,20)=d 1 ,3 ,7 ,9 ,11 ,13,17,19 2 ,6 ,14,18 4 ,8 ,12,16 5 ,15 10 20
定义2.1.3 n个整数 a1 , a2 , , an 叫作模n 的完全剩余系(简称 完系),是指 a1 , a2 , , an 彼此模 n 不同余。
1 1 10 10 1(mod11) × ≡×≡ ,
这意味着 1, 1 0 模11 的逆元均为本身;而 26× ≡ 34× ≡ 59× ≡ 78 1 × ≡ (mod11) , 即 2, 3, 4, 5, 6, 7,8, 9 分成 11 3 4 2
−
= 对:2 和6 ,3 和4 ,5 和9 ,7 和8 ,
我们把形如ax =xa ≡ 1(mod m)的整数称为a模m的逆元 (简称a的逆)。
推广的Euclid算法
定理2.1.4` 设 m N ,若(a, m)=1,则a在模m的意义下 存在唯一的逆元; 若(a, m) ≠ 1,则a没有模m的逆元。
前述的性质并不十分困难,但却是重要的。我们可以 举出如下的例证: 整系数多项式同余方程 an xn a1x a0 0 mod m 是 同余理论中的一个核心课题,从前述的基本性质中,我们 至少可以推知以下的认识: (1)若 x0 为 f x 0 mod m 的解,则 y x0 mod m ,都 有 f y 0 mod m ,也就是整系数多项式同余方程的解数 是模的意义下的; (2) 一 次 同 余 方 程 ax ≡ b(mod m) , 在 (a, m)=1 时 的 解 1 a 为 b mod m ,此时解数在模m的意义下为1; n (3)若 m, an 1,则an x a1x a0 0 mod m xn an1an1xn1 an1a1x an1a0 0 mod m 与 是同解方程; f x 0 mod ml 的解必为 f x 0 mod m 的解, (4)若 l N , 这就为探讨解的结构提供了一种可能性。
同余的概念与性质

同余的概念与性质同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。
性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。
性质2:同余关系满足下列规律:(1)自反律:对任何模m 都有)(mod m a a ≡;(2)对称律:若)(mod m b a ≡,则)(mod m a b ≡;(3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。
性质 3:若,,,2,1),(mod s i m b a i i =≡则).(mod ),(mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++推论: 设k 是整数,n 是正整数,(1)若)(mod m c b a ≡+,则)(mod m b c a -≡。
(2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。
性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。
性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。
性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。
性质7:若)(mod m b a ≡,且m m |1,则)(mod 1m b a ≡。
性质8:若)(mod i m b a ≡,s i ,,2,1 =,则]),,,(mod[21s m m m b a ≡这里],,,[21s m m m 表示s m m m ,,,21 的最小公倍数。
同余的概念及其基本性质

学院学术论文题目: 同余的概念及其基本性质学号:学校:专业:班级:姓名:指导老师:时间:摘要:初等数论是研究数的规律,特别是整数性质的数学分支。
它以算术方法为主要研究方法,在日常生活中,我们所要注意的常常不是某些整数,而是这些数用某一固定的数去除所得的余数。
同余概念的产生可以说大大丰富了数学的内容。
同余是数论中的一个基本概念,同余的应用,一:检查因数的一些方法;二:弃九法。
在本专题的学习中,培养我分析推理解决问题的能力,理解问题的实质。
关键字:同余整数算术Summary:The number of elementary number theory is to study the law, in particularinteger nature of the branch of mathematics. It arithmetic method as the main research methods in their daily lives, we are often not to pay attention to some integer, but these numbers with a fixed a number of removal from the remainder. I created the concept of the same can be said to have greatly enriched the content of mathematics. Number theory congruence is a basic concept of the application with more than one: Check factor of some of the ways; 2: abandoned nine law. In the topic of study, training my analysis reasoning ability to solve problems, understand the essence of the problem.Keyword :Congruence Integer Arithmetic引言数论是研究整数性质的一门学科,它是数学中最古老的分支之一,内容极为丰富,曾被数学家说成是数学的皇后。
同余定理知识点总结

同余定理知识点总结同余定理通常被描述为以下形式:如果整数a和b对于模m同余,即a ≡ b (mod m),那么a和b除以模m的余数是相等的。
同余定理可以改写为a mod m = b mod m。
同余定理有两个基本的性质。
首先,它是一种等价关系,具有自反性、对称性和传递性。
其次,同余定理具有乘法和加法性质。
首先,我们来讨论同余定理的基本性质。
同余关系是一种等价关系,即它具有自反性、对称性和传递性。
自反性指的是对于任意的整数a,a ≡ a (mod m)。
这意味着任意整数都与自己对模m同余。
对称性指的是如果a ≡ b (mod m),那么b ≡ a (mod m)。
传递性指的是如果a ≡ b (mod m)且b ≡ c (mod m),那么a ≡ c (mod m)。
这三种性质构成了同余关系的一个等价关系,可以将整数划分为同余类,使得具有相同除模m余数的整数在同一个同余类中。
其次,同余定理具有乘法和加法性质。
对于任意的整数a、b、c和模m,如果a ≡ b (mod m)和c ≡ d (mod m),那么有以下性质:a + c ≡ b + d (mod m)和a * c ≡ b * d (mod m)。
这两个性质表明了同余定理在乘法和加法下的保持性。
同余定理在数论和代数中有广泛的应用。
首先,同余定理常常被用来简化计算。
通过使用同余定理,我们可以将复杂的计算转化为求余数的简单计算,从而节省时间和精力。
其次,同余定理在代数方程的求解中有着广泛的应用。
例如,对于一个模线性方程a * x ≡ b (mod m),我们可以通过同余定理将其转化为x的一元一次同余方程,从而求解出x的取值范围。
此外,同余定理在密码学领域也有着重要的应用。
加密算法中常常使用同余定理来进行模运算,从而实现数据的加密和解密。
在数论中,同余定理还有一些重要的推论。
首先,费马小定理和欧拉定理是同余定理的重要推论。
费马小定理描述了素数模意义下的幂运算规律,欧拉定理描述了任意模意义下的幂运算规律。
数学公式知识:同余与模运算的定义、性质及其应用

数学公式知识:同余与模运算的定义、性质及其应用同余与模运算是数学中一个重要的概念,它们在整数与群论、代数数论、数论几何等不同数学分支中都有着广泛的应用。
本文将着重介绍同余与模运算的定义、性质以及其在数学中的应用。
一、同余和模运算的定义1、同余定义同余是数学中一个非常基本的概念,它是指模相同的两个整数之间的差值是模的整数倍。
换句话说,若整数a与b满足a – b能够被整数n整除,那么就称a和b在模n意义下同余,记为a ≡ b (mod n)。
例如,对于n = 5,可以得到以下同余关系:3 ≡ 13 (mod 5)14 ≡ -1 (mod 5)25 ≡ 0 (mod 5)同余运算具有传递性、反对称性以及自反性,即若a ≡ b (mod n),b ≡ c (mod n),则有a ≡ c (mod n);若a ≡ b (mod n),则不成立b ≡ a (mod n);对于任意整数a,有a ≡ a (mod n)。
2、模运算定义模运算可以看做是一种求余数的运算,它的操作是将一个整数除以另一个整数,然后取余数。
例如,对于a和b两个整数,并设n是一个正整数,则a对n取模为r,可以写成a mod n = r。
这里,r表示整数a除以n所得到的余数,称为模n意义下的a的余数。
二、同余与模运算的性质1、同余的基本性质同余运算具有可加性、可乘性和可减性,即若a₁ ≡ b₁ (mod n),a₂ ≡ b₂ (mod n),则有a₁ + a₂ ≡ b₁ + b₂ (mod n)a₁ × a₂ ≡ b₁ × b₂ (mod n)a₁– a₂ ≡ b₁ - b₂ (mod n)2、模运算的基本性质模运算具有基本的反转性和线性性质,即若a₁ mod n = r₁,a₂mod n = r₂,则有a₁ + a₂ mod n ≡ (r₁ + r₂) mod na₁ × a₂ mod n ≡ (r₁ × r₂) mod n3、Euler定理性质Euler定理是基于费马小定理而得到的一个命题。
同余问题口诀的原理

同余问题口诀的原理同余问题是数论中一个重要的概念,它涉及到整数的相等性和等价关系。
同余问题的口诀是用来帮助我们理解和解决同余问题的一种方法,它通过简洁的语言和易记的句子,将同余问题的原理和性质传达给我们。
同余问题口诀的原理可以概括为以下几点:1. 同余关系的定义:两个整数a和b对于一个给定的模数m来说,如果它们的差是m的倍数,即(a-b)能被m整除,那么我们就说a 与b在模m下同余,记作a≡b(mod m)。
这个定义是同余问题的基础。
2. 同余关系的性质:同余关系具有传递性、对称性和反身性。
传递性表示如果a与b在模m下同余,b与c在模m下同余,那么a 与c在模m下也同余;对称性表示如果a与b在模m下同余,那么b与a在模m下也同余;反身性表示任意整数a在模m下与自身同余。
3. 同余关系的运算规则:同余关系在加法、减法和乘法运算中具有保持性。
即如果a和b在模m下同余,那么a+b在模m下也同余;a-b在模m下也同余;a×b在模m下也同余。
这些运算规则可以帮助我们简化同余问题的求解过程。
4. 同余方程的求解:同余方程是指形如ax≡b(mod m)的方程,其中a、b和m都是已知的整数,x是未知数。
解同余方程的关键是找到一个整数x,使得ax与m的乘积与b在模m下同余。
我们可以利用同余关系的性质和运算规则来解同余方程。
5. 同余类和剩余系:在模m的整数集合中,把与给定整数a同余的所有整数构成的集合,称为a的同余类。
同余类中的任意一个整数称为该同余类的代表元。
剩余系是指模m的所有同余类的集合。
同余类和剩余系是同余问题中的两个重要概念,它们帮助我们对同余问题进行分类和分析。
通过口诀的原理,我们可以更好地理解和解决同余问题。
同余问题在密码学、数论和离散数学等领域应用广泛,掌握同余问题的原理和方法对于我们深入理解数学的应用和推理具有重要意义。
同余问题口诀可以帮助我们记忆和应用同余问题的相关知识,提高解题的效率和准确性。
同余

a 用a modm表示余数r,则 a [ ]m ( a m odm ) m
定理3 整数a, b模m 同余 a modm=b modm
ab (modm) m|a-b a modm=b modm
a=b+km
性质:
(1) ( 2) ( 3)
[(a modm ) (b modm )]modm (a b) modm [(a modm ) (b modm )]modm (a b) modm [(a modm ) (b modm )]modm (a b) modm
(r r ) a b (q q)m
m a b的充分必要条件是 m r r. 但因为 0 r r m , 因此,
且 m r r 的充分必要条件是 r r 0 ,所以 m a b 的充分必 要条件是 r r 0. 这就是定理的结论.
2
2003
2
22 1 4 4(mod 7).
故第 22003 天是星期二。 定理5 若 x y(mod m),
ai bi (mod m),
0 i k, 则 0 i k.
a0 a1 x ak x k b0 b1 y bk yk (mod m).
故 3 n, 9 | n.
k 定理7 设 n ak 1000 a11000 a0 , 0 ai 1000. 则7或11,或
13 n 7或11或 13 a0 a2 - a1 a3 .
例4 设 n 637693.
例5 设n 75312289.
定理10 设a b ( mod m) . 若d | m, 则a b ( mod d) .
同余的 概念与性质

由上例可知,同样的两个数关于不同的模同余关系可能不相同.
例3. 2 求证:(1) 如果a除以m的余数为r(0≤r<m), 那么 a≡r (modm); (2)如果a ≡r (modm),0≤r<m,那么a 除以m的 余数为r。
证明 (1) 由题意得可设, a=mq+r ( 0≤r<m ) . 由于0≤r<m ,所以r除以m的不完全商为0,余数为r,即 r =m· 0+r ( 0≤r<m ) . 根据同余概念,可得a≡r(modm); (2) 因为a ≡ r(modm),所以由同余概念可得· a=mq1+R , r=mq2+R,( 0≤R<m ), 又因为0≤r<m,所以q2=0,即R=r. 因此 得 a=mq1+r (0≤r<m).即a被m除,所得的余数为r.
例3. 12 把由1开始的自然数依次写下来,直写到 第201位为止,就是 201位
12345678910111213…
试问这个数除以3的余数等于几?
解 因为1~9写在一起构成九位数,10~99写在一 起为90 X 2=180位数,所以由1开始的自然数依 次写到99,合计为189位数,由于201-189=12, 因此只需在1写到99后再写上100,101,102,103 四个数.即从1开始的自然数依次写到103就构成 一个201位数(由103个连续的自然数组成). 因为每三个连续自然数的各位数字之和能被3除, 103≡1(mod3),所以这个数除以3的余数为1.
从例3.6的证明,还可以得出如下的结论:
如果 a ≡ b (modm),又d 能整除m以及整除a,b两 个数中的一个,则d 必能整除a,b中的另一个.
初等数论期末复习

2015年5月8日9时1分
二、剩余类与剩余系
定理2.2.1 设m为正整数,则全部整数可分成m个 集合,记作[0],[1],…,[m-1],其中[r] (0 ≤ r ≤m-1)是由一切形如 mq + r (q∈Z) 的整数所组 成的,并且具有下列性质: (1)每一整数必包含在而且仅在上述的一个集合中.
(2) x3 + 2x-12≡0 (mod7). 0, 1, …, 6逐一代入(2) 求解
定义: 如果 a , b 都是整数, m 是一个正整数,那么 当 a ≡ 0 ( mod m)时,我们把 ax ≡ b ( mod m ) 叫做 模m的一次同余方程(或同余式) . 定理 3.1.1 若设m为正整数, a , b为整数, (a,m)=1,
一次同余方程有解的解法 一、欧拉定理法解一次同余方程
定理 3.1.2 若 m 为正整数, a , b为整数, (a, m)=1,则一次同余方程ax ≡ b ( mod m )的唯 m 1 一解为 x ba mod m .
二.同余变形法(系数消去法)
根据同余性质,施行适当的变形求解a≡b(modm):
第二章
同余
一、同余的概念及基本性质
1、同余的概念:
定义2. 1
设m为正整数,称为模。若用m去除两 个整数 a 和 b 所得的余数相同,则称a 和b 对模 m 同余, 记作 a ≡b (mod m). ( 1) 读作a 同余于b 模m。 若a 和b 除以m 所得余数不同,则称a, b 对模m 不同余,记作 a b (mod m).
2015年5月8日9时1分
E
New
弃九法
正整数四则运算(含乘方) 的快速验算方法
若通过计算,a、b的和与积分别是s与p. 而r1、r2、
同余的概念及其基本性质

4.证明:641 232 1 解:依次计算对模641的同余数
22 4,24 16,28 256, 216 256 256 154(mod641) 232 154 154 1(mod641) 232 1 0(mod641)
5.设a为奇数,则a2n 1(mod 2n2 ) (n 1). 解:设a = 2m 1, 当n = 1时,有 a2 = (2m 1)2 = 4m(m 1) 1 1 (mod 23)(*)成立。 设式(*)对于n = k成立,则有
a2k 1(mod 2k2 ) a2k 1 q 2k2 所以 a2k1 (1 q 2k2 )2 1 q 2k3 q2 2(k2)2 记 1 q'2k3 1(mod 2k3 ),q' Z. 这说明式(*)当n = k 1也成立。由归纳法得证.
一般地,求a bc 对模m的同余的步骤如下: ① 求出整数k,使ak 1 (mod m);
② 求出正整数r,r < k,使得bc r (mod k);
③ abc ar (mod m)
——减小幂指数
练习:若a Z ,证明 10|a1985 a1949 . 提示:a5 a(mod10)
一、问题的提出 1、今天是星期一,再过100天是星期几? 再过1010 天呢? 2、3145×92653=2910 93995的横线处漏写了一个 数字,你能以最快的办法补出吗?
3、13511,13903,14589被自然数m除所得余数 相同,问m最大值是多少?
六年级同余数问题知识点

六年级同余数问题知识点同余数问题是六年级数学中较为重要的一个知识点,它涉及到数字的整除性质和模运算等概念。
通过学习同余数问题,孩子们不仅可以培养逻辑思维和数学运算能力,还可以拓宽数学思维的广度,为今后的数学学习打下坚实的基础。
下面将介绍六年级同余数问题的相关知识点。
1. 同余数的定义在数学中,我们用“a≡b(mod n)”来表示“a与b对于模n同余”,即a除以n所得的余数与b除以n所得的余数相等。
另外,模n的余数也可以用“[a]n”来表示。
2. 同余数的性质(1) 若a≡b(mod n),则a+k*n≡b(mod n),其中k为任意整数。
(2) 若a≡b(mod n),且b≡c(mod n),则a≡c(mod n)。
(3) 若a≡b(mod n),则a的加、减、乘、除的运算结果与b的加、减、乘、除的运算结果对模n同余。
(4) 若a≡b(mod n),则对a和b的比较运算结果与对模n的比较运算结果相同。
3. 同余数问题的解决方法(1) 列举法:通过列举题目中所给的数,找出满足同余关系的数对,并确定它们能够满足题目的要求。
(2) 推理法:通过对同余关系的性质进行推理,得出问题的解。
(3) 定理法:运用同余定理进行问题的求解。
常用的同余定理有欧拉定理和费马小定理等。
4. 同余数问题的应用同余数问题不仅在数学中具有重要的地位,也广泛应用于密码学、通信工程、分组密码等领域。
通过同余数问题的研究,人们可以建立起一套完善的密码系统,保护个人信息的安全性。
5. 同余数问题的习题(1) 求解同余方程:给定一个同余方程a*x≡b(mod n),求解未知数x的取值范围。
(2) 判断同余关系:对于给定的两个数a和b,判断它们是否满足a≡b(mod n)的同余关系。
(3) 应用问题:类似数字游戏的应用题目,涉及到时间、积分和货币等实际问题。
通过学习六年级的同余数问题,孩子们不仅可以锻炼数学思维和逻辑推理能力,还可以在应用题中培养数学运用的能力。
同余

或21+X+Y=36,X-Y+13=22
X+Y=6,X-Y=-2,或X+Y=15,X-Y=9, 解得X=2,Y=4。
例3 :求111 被7除的余数。
50
解:∵111111被7整除,
∴
11 1
50
≡11(mod 7)≡4(mod 7)
即余数为4。
例4:求( 257
解: ( 257
i0
( 1 ) a i (mod
i
7)
n
即有7|a的充要条件是 7| 对模11和13同理可证。 注:这里用的是1000进制。
( 1) a i
i
i0
例1:1234567891011…2005 除以3的余数是多少.
解:因为一个数除以3的余数,即其各位数字和 除以3 的余数.所以所求余数
解:两边关于9同余,则有8*3 所以错误. 5,不成立
例判断 28997*39495=1114523641 5是否正确
解:两边关于9同余,则有8*3 所以错误. 5,不成立
定义:称k0 ,k1,…km-1叫做模m的剩余类,设 a0,a1…am-1是m个整数,并且其中任何两数都不 在一个剩余类里,则a0,a1…am-1叫做模m的一个 完全剩余系(简称完系)
第三章 同余
§1 同余的概念及其基本性质
在日常生活中,我们常接触到一些周 期为正整数性的问题.例如:问火车下午2 点从金华出发,30小时后到广州,则到广州 是几点?就是24去除30所得的余数6加2,即 晚上8点到广州,这就是同余问题.今天是星 期一,问过了100天后是星期几等…….,现 在同余理论已发展成为初等数论中内容丰
b. 由同余的定义可知: 相等必同余,同余未 必相等,不同余肯定不相等,这是一种很好 的方法,尤其在证明不相等时非常有用。
初中数学重点梳理:同余式

同余式知识定位数论是初中数学竞赛比较重要的一个知识点,在历年竞赛中占据非常发比例,其中同余理论是初等数论中的重要内容之一,其同余式概念及应用,剩余系概念要熟练掌握。
本文归纳总结了同余的若干性质,将通过例题来说明这些方法的运用。
知识梳理1、同余概念定义1:给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m 同余,记作a≡b(modm),并读作a同余b,模m。
(1)若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以a-b=m(q1-q2),即m|a-b。
反之,(2)若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2。
于是,我们得到同余的另一个等价定义:定义2:若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a与b对模m同余.2、同余定理定理1:(1)a≡a(modm).(2)若a≡b(modm),则b≡a(modm).(3)若a≡b(modm),b≡c(modm),则a≡c(modm).定理2:若a≡b(modm),c≡d(modm),则a±c≡b±d(modm),ac≡bd(modm).证:由假设得m|a-b,m|c-d,所以m|(a±c)-(b±d),m|c(a-b)+b(c-d),即a±c≡b±d(modm),ac≡bd(modm).由此我们还可以得到:若a≡b(modm),k是整数,n是自然数,则a±k≡b±k(modm),ak≡bk(modm),a n≡b n(modm).定理3:若ac≡bc(modm),且(c,m)=1,则a≡b(modm).定理4: 若n ≥2,a ≡b(modm 1),a ≡b(modm 2),…………a ≡b(modm n ),且M=[m 1,m 2,…,m n ]表示m 1,m 2,…,m n 的最小公倍数,则a ≡b(modM)3、剩余类和完全剩余系全体整数集合可按模m 来划分:当且仅当()mod a b m ≡时,a 和b 属于同一类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丙若 则
定理1
证设 ,则 于是,
反之,设 由带余除法, ,于是,
故, ,又因 ,故
丁若 则,
证只证“ ”的情形.因 ,故 ,于是 ,所以
推论若 则
戊若 则
证 因 ,故 又因
故
定理2若
则
特别地,若 ,则
证因 故 ,从而
又因 ,故
己若 则
证因 ,故 又因 ,故
庚(ⅰ )若 则
(ⅱ)若 则
证(ⅰ )因 ,故
4.证明
证因
故
5.若 是任一奇数,则
证对 作数学归纳法.
当 时,因 为奇数,故可设 ,则
.
而 是两个连续两个整数的积,一定是 的倍数,从而 即 时结论正确.
假设对 结论正确,即
下面说明在此假设下,对 结论正确.因
,
而由归纳假设得 是 的倍数,又因 为奇数,故 也为奇数,于是 是 的倍数,故
第三章同余
§1同余的概念及其基本性质
定义给定一个正整数 ,若用 去除两个整数 和 所得的余数相同,则称 对模 同余,记作 若余数不同,则称 对模 不同余,记作 .
甲
(甲:jia 3声调;乙:yi 3声调;丙:bing 3声调;丁:ding 1声调;戊:wu声调;己:ji 3声调;庚:geng 1声调;辛: xin 1声调天;壬: ren 2声调;癸: gui 3声调.)
于是,
故 的充分必要条件是
作业P53:2,3,4,5.
习题选解
2.设正整数
证明 整除 的充分必要条件是 整除
证因为 ,故
.
于是, 由此可得,
的充分必要条件是
3.找出能被 整除的判别条件来.
解(ⅰ)因 ,故 设
则由 得 ,故
由此可得, 的充分必要条件是
(ⅱ)因 ,故
设
则由 得 ,故
由此可得, 的充分必要条件是
(ⅱ)因 故 又因
.于是
辛若,则
证因 ,故 于是,
附记最小公倍数的一个常用性质是,若 ,则
证由带余除法,设
,
则 及 得,
但 是 的最小公倍数,故
壬若 则
证因 故 又因 ,故
癸若 ,则
证因 ,故 于是,存在整数 使得 故 故
例一个整数 被 整除的充分必要条件是 的各位数字(十进制)的和倍 整除.
证设 .因 ,故