最新差分进化算法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


(1) 定义适应度函数,编码染色体。由上面的分析,函数f(x)=x2就可作为空间U上 的适应度函数。显然y=x2是一个单调增函数,其取最大值的点x=31是个整数。另一 方面, 5位二进制数也刚好能表示区间[0, 31]中的全部整数。所以, 我们就仅取 [0,31]中的整数来作为参加进化的个体,并且用5位二进制数作为个体x的基因型 编码, 即染色体。
s1’=11000(24), s2’=01101(13), s3’=11000(24), s4’=10011(19)
可以看出,在第一轮选择中适应度最高的染色体s2被选中两次,因而被复制两 次;而适应度最低的染色体s3一次也没有选中而遭淘汰。
交叉 设交叉率pc=100%,即S1中的全体染色体都参加交叉运算。设s1’与s2’配 对,s2’与s4’配对。分别交换后两位基因,得新染色体:
s1’=11100(28), s2’=11100(28), s3’=11000(24), s4’=10011(19)
然后,做交叉运算,让s1’与s4’,s2’与s3’ 分别交换后两位基因,得
s1’’=11111(31), s2’’=11100(28), s3’’=11000(24), s4’’=10000(16)
差分进化算法
1.2基本遗传 算法
2.1 DE的来源
1.1GA的基本
1.3 举例和应用
2.2DE的标准算
概念

单击增加标题内容
GA
遗传算法(Genetic Algorithm)它 是由美国的J.Holland教授1975年首 先提出的模拟达尔文生物进化论的 自然选择和遗传学机理的生物进化 过程的计算模型,是一种通过模拟 自然进化过程搜索最优解的方法。 这个过程将导致种群像自然进化一 样的后生代种群比前代更加适应于 环境,末代种群中的最优个体经过 解码(decoding),可以作为问题 近似最优解。
单击增加标题内容
种群
适应度
编码
遗传操作
演化 算法 共有 的对 象元 素
选择优秀个 体,复制成 为新的群体
初始化种群;
评价种群适应
2

1
决定的参加 交叉的染色 体数,配对 进行交叉操 作,并用产 生的新染色 体代替原染 色体
3
进行变异操 作
得到新的子
4 种群
5
遗传算法
1.3 遗传算法应用举例
例: 利用遗传算法求解区间[0,31]上的二次函数y=x2的最大值。
染 色 体
s1=11100 s2=01001 s3=11000 s4=10011
适 应 度 784 81 576 361
选 择 概 率 0.44 0.04 0.32 0.20
积 累 概 率 0.44 0.48 0.80 1.00
估 计 被 选 中 次 数 2 0 1 1
设这一轮的选择-复制结果为:
分析 可以看出,只要能在区间[0,31]中找到函数值最大的点a,则函数y=x2的 最大值也就可以求得。于是, 原问题转化为在区间[0, 31]中寻找能使y取最大值 的点a的问题。显然, 对于这个问题, 任一点x∈[0, 31]都是可能解, 而函数值f(x)= x2也就是衡量x能否为最佳解的一种测度。那么,用遗传算法的眼光来看, 区间[0, 31]就是一个(解)空间,x就是其中的个体对象, 函数值f(x)恰好就可以作为x的适应度 。这样, 只要能给出个体x的适当染色体编码, 该问题就可以用遗传算法来解决。
估 计 被 选 中 次 数 1 2 0 1
选择-复制 设从区间[0, 1]中产生4个随机数如下:
r1=0.450126, r2=0.110347, r3=0.572496, r4=0.98503 按赌轮选择法,染色体s1, s2, s3, s4的被选中次数依次为:1, 2, 0, 1。于是,经复制 得群体:
s1’’=11100(28), s2’’=01001(9), s3’’=11000(24), s4’’=10011(19)
这一轮仍然不会发生变异。于是,得第三代种群S3:
s1=11100(28), s2=01001(9), s3=11000(24), s4=10011(19)
表1.3.3 第三代种群S4中各染色体的情况
计算S1中各染色体的适应度、选择概率、积累概率等并列于表4.1中。
表1.3.1 第一代种群S1中各染色体的情况
染 色ቤተ መጻሕፍቲ ባይዱ体
s1=01101 s2=11000 s3=01000 s4=10011
适 应 度 169 576 64 361
选 择 概 率 0.14 0.49 0.06 0.31
积 累 概 率 0.14 0.63 0.69 1.00
s1’’=11001(25), s2’’=01100(12), s3’’=11011(27), s4’’=10000(16) 变异 设变异率pm=0.001。这样,群体S1中共有540.001=0.02位基因可以变异。 0.02位显然不足1位,所以本轮遗传操作不做变异。
现在,我们得到了第二代种群S2: s1=11001(25), s2=01100(12), s3=11011(27), s4=10000(16)
(2) 设定种群规模 , 产生初始种群 。我们将种群规模设定为 4,取染色体 s1=01101(13),s2=11000(24),s3=01000(8), s4=10011(19)组成初始种群S1。
(3) 计算各代种群中的各染色体的适应度, 并进行遗传操作,直到适应度最高 的染色体(该问题中显然为“11111”=31)出现为止。
表 1.3.2 第二代种群S2中各染色体的情况
染 色 体
s1=11001 s2=01100 s3=11011 s4=10000
适 应 度 625 144 729 256
选 择 概 率 0.36 0.08 0.41 0.15
积 累 概 率 0.36 0.44 0.85 1.00
估 计 被 选 中 次 数 1 0 2 1
假设这一轮选择-复制操作中,种群S2中的4个染色体都被选中(因为选择概 率毕竟只是一种几率,所以4个染色体恰好都被选中的情况是存在的),我们得到 群体:
s1’=11001(25), s2’=01100(12), s3’=11011(27), s4’=10000(16)
然后,做交叉运算,让s1’与s2’,s3’与s4’ 分别交换后三位基因,得
相关文档
最新文档