7-图像分割-形态学图像处理.
数字图像处理中的形态学与图像分割算法

数字图像处理中的形态学与图像分割算法数字图像处理是计算机科学与工程领域中的一门重要学科,它研究如何对数字图像进行分析、处理和改进。
在数字图像处理中,形态学和图像分割算法是两个重要的概念。
本文将介绍数字图像处理中的形态学和图像分割算法,并探讨它们在实际应用中的作用和局限性。
形态学是一种基于形状和结构的图像处理方法,它模拟了生物学中的形态学概念。
形态学操作主要包括腐蚀、膨胀、开运算和闭运算等。
腐蚀操作通过对图像中的每个像素点进行局部最小值操作,可以去除图像中的小噪声和细小的边缘。
腐蚀操作可以使图像中的物体变得更小,边缘变得更细。
膨胀操作则是通过对图像中的每个像素点进行局部最大值操作,可以填充图像中的空洞和细小的间隙。
膨胀操作可以使图像中的物体变得更大,边缘变得更粗。
开运算是先进行腐蚀操作,再进行膨胀操作,它可以去除图像中的小噪声和细小的边缘,并保持图像的整体形状不变。
闭运算则是先进行膨胀操作,再进行腐蚀操作,它可以填充图像中的空洞和细小的间隙,并保持图像的整体形状不变。
开运算和闭运算是形态学中常用的操作,它们可以用于图像增强、边缘检测和形状分析等应用。
图像分割是将图像划分为若干个子区域的过程,每个子区域具有相似的特征或属性。
图像分割算法可以通过颜色、纹理、边缘和区域生长等特征来实现。
其中,边缘检测是一种常用的图像分割方法,它可以通过检测图像中的边缘来将图像分割为不同的区域。
边缘检测算法主要包括Sobel算子、Canny算子和Laplacian算子等。
除了边缘检测,区域生长也是一种常用的图像分割方法。
区域生长算法通过选择种子点和定义生长准则来将图像分割为不同的区域。
种子点是指具有代表性的像素点,生长准则是指像素点之间的相似性度量。
区域生长算法可以根据不同的生长准则来实现不同的图像分割效果。
形态学和图像分割算法在数字图像处理中具有广泛的应用。
形态学操作可以用于图像增强、噪声去除和形状分析等任务。
图像分割算法可以用于图像识别、目标跟踪和医学图像分析等领域。
《数字图像处理》教学大纲

《数字图像处理》教学大纲
一、课程简介
数字图像处理是机器视觉、模式识别、医学图像处理等的基础,本课程为工程专业的学生提供数字图像处理的基本知识,是理论性和实践性都很强的综合性课程。
课程内容广泛涵盖了数字图像处理的基本原理,包括图像采样和量化、图像算术运算和逻辑运算、直方图、图像色彩空间、图像分割、图像形态学、图像频域处理、图像分割、图像降噪与图像复原、特征提取与识别等。
二、课程目标
通过本课程学习,学生可以掌握数字图像处理的基本方法,具备一定的解决图像处理应用问题的能力,培养解决复杂工程问题的能力。
具体目标如下:
1.掌握数字图像处理的基本原理、计算方法,能够利用专业知识并通过查阅资
料掌握理解相关新技术,对检测系统及处理流程进行创新性设计;
2.能够知晓工程领域中涉及到的数字图像处理技术,理解其适用场合、检测对
象及条件的限制,能根据给定的目标要求,针对工业检测中的工程问题选择和使用合适的技术和编程,进行仿真和分析;
3.能够知晓工程领域中所涉及的现代工具适用原理及方法,根据原理分析和仿
真结果,进行方案比选,确定设计方案,具有检测算法的设计能力;
4.通过校内外资源和现代信息技术,了解数字图像处理发展趋势,提高解决复
杂工程问题的能力。
三、课程目标对毕业要求的支撑关系
四、理论教学内容及要求
四、实验教学内容及要求
五、课程考核与成绩评定
六、教材及参考书。
数字图像处理名词解释

•名词解释(每小题5分,本题共20分)数字图像数字图像是指由被称作像素的小块区域组成的二维矩阵。
将物理图像行列划分后,每个小块区域称为像素(PiXeI)O 数字图像处理指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术.8-连通的定义-对于具有值V的像素P和q ,如果q在集合N&p)中,则称这两个像素是8-连通的。
灰度直方图是指反映•幅图像各灰度级像元出现的频率。
灰度自方图是灰度级的函数,描述的是图像中该灰度级的像素个数。
即:横坐标农示灰度级,纵坐标衣示图像中该灰度级出现的个数。
性质:直方图是•幅图像中各像素灰度值出现次数(或频数)的统计结果,它只反映该图像中不同灰度值出现的次数(或频数),而未反映某•灰度值像素所在位置。
也就是说,它只包含了该图像中某•灰度值的像素出现的概率,而丢失了其所在位置的信息。
用途:用于判断图像量化是否恰当直方图给出了•个简单可见的指示,用来判断•幅图象是否合理的利用了全部被允许的灰度级范圉。
•般•幅图应该利用全部或几乎全部可能的灰度级,否则等于增加了量化间隔。
丢失的信息将不能恢复。
数字图像通常有两种表示形式:位图,矢量图位图和矢量图的比较:1、点位图由像素构成,矢量图由对象构成点位图的基本构图单位是像素,像素包含了色彩信息。
包含不同色彩信息的像素的矩阵组合构成了千变万化的图像。
矢量图形指由代数方程定义的线条或曲线构成的图形。
如:农示-个圆形,矢量图像保存了• 个画圆的命令、圆心的坐标、半径的长度等等。
欲显示该圆,矢量绘图软件则根据圆的坐标、半径等信息,经过方程式计算,将圆“画”在屏幕上。
矢量图像由许多矢量图形元素构成, 这些图形元素称为“对象”。
2、点位图面向像素绘画,矢量图面向对象“构画”两种图像的构成方式不同,其绘画力式也存在差别。
点位图是通过改变像素的色彩实现绘画和画面的修改。
点位图软件捉供了模拟手绘习惯的工具实现绘画。
医学图象处理习题集

8
10.直方图及其性质 有一幅图像,在背景明亮的天空衬托下,有一间亮色屋顶的深色谷仓。假设 0 为暗,255 为亮,在下述各种情况下, 试指出直方图看起来将是什么样子。 (1)正确数字化 (2)数字化时增益调整过低 (3)增益调整过高 (4)数字化时偏置过大 (5)数字化时偏置过小 (6)数字化时增益和偏置均过大 分析解答:数字化过程是将模拟灰度值按要求转化为数字灰度级。一般来说,正常情况下,数字化之前对应的模 拟(电压)值范围为 0~5V。对应的数字灰度级为 0、1、2、…、255,即 0~255。
3.利用像素点(x,y)的4-近邻像素组成一个空间域低通滤波器,滤波过程可以表示为
g ( x, y ) =
1 { f (x + 1, y ) + f (x, y + 1) + f (x − 1, y ) + f (x, y − 1)} 4
(1)求它在频域的等价滤波器H(u,v)。 (2)说明该滤波器是一个低通滤波器。 4.简述图像的同态滤波过程。图像的同态滤波主要应用于哪些需要增强的情形? 5.求下列图像的二维傅立叶变换: 图(a)是长方形图像 f ( x, y ) = ⎨
谷仓 屋顶
天空
谷仓 屋顶
天空
谷仓 屋顶
天空
0
255
0
255
0
255
谷仓 屋顶
天空
谷仓 屋顶
天空
谷仓 屋顶
天空
0
255
0
255
0
255
11.直方图的计算及直方图均衡 已知一幅图像的像素数为 64×64,灰度级为 8 级的图像,其灰度级分布如表所示,要求原来在统一灰度级中的象 素点在均衡化处理后仍在同一灰度级中,对其进行均衡化处理。试给出均衡化处理后的灰度级分布——完成下表。 三、频率域图象增强、图像的正交变换 1.高斯型低通滤波器在频率域中的传递函数是:
图形图像处理技术详解

图形图像处理技术详解图形图像处理技术详解图形图像处理技术是一种用于改善数字图像品质的技术,能够对数字图像进行筛选、分析、修改和重构等操作,使其达到更好的清晰度、对比度和色彩饱和度,提高视觉效果。
它是数字信号处理技术的一部分,具有广泛的应用领域,包括红外图像处理、医学图像处理、通信图像传输等。
本文将从图像处理的目的、方法、应用等方面详细介绍图形图像处理技术。
一、图像处理的目的在数字图像处理中,我们希望通过一系列的算法对图像进行一些有效的处理,从而达到以下目的:1.提高图像质量通过使用图像增强技术,可大幅度提高图像的质量。
这包括去噪声、增强对比度、锐化边缘和平滑图像等技术。
这些技术常用于医学图像处理中,如MRA、CT和MRI等扫描图像,以便在医生进行诊断时更清晰地看到患者的内部结构。
2.图像压缩图像压缩是将原始图像数据进行编码以减少数据文件的大小。
这些技术包括基于矩阵分解的压缩和基于中心点的压缩等。
应用广泛的JPEG、PNG和GIF格式的文件都是通过图像压缩技术生成的。
3.目标物体识别与判断目标判断和识别是另一个重要的图像处理应用领域。
此要求对图像的特征信息进行提取,包括目标形状、颜色、纹理等。
这些技术常用于工业自动化中,如机器人视觉系统或自动驾驶汽车中。
二、图像处理的方法图像处理的方法包括图像增强、滤波、边缘检测、形态学处理、数据压缩、图像分割和特征提取等。
1.图像增强图像增强是图像处理中最重要的技术之一,用于减少噪声、增强图像对比度、锐化边缘和平滑图像等。
常用的图像增强技术包括直方图均衡化、空间域滤波器、频域滤波器和规范化等。
2.滤波滤波是去除图像噪声的一种常用方法。
常见的滤波器有高斯滤波、中值滤波和拉普拉斯滤波等。
这些滤波器可以分别清除不同类型和程度的噪声,从而提高图像的质量。
3.边缘检测边缘检测是一种从图像中检测并提取边缘的技术。
边缘是图像中两个不同区域之间的交界处。
常用的边缘检测算法包括Sobel算子、Prewitt算子和Canny算子等。
数字图像处理第四版拉斐尔课后答案

数字图像处理第四版拉斐尔课后答案数字图像处理(美)Rafael C. Gonzalez(拉斐尔·C. 冈萨雷斯),Richard E. Woods(理查德·E. 伍兹)课后习题答案1. 新增了关于精确直⽅图匹配、⼩波、图像变换、有限差分、k均值聚类、超像素、图割、斜率编码的内容。
2. 扩展了关于⾻架、中轴和距离变换的说明,增加了紧致度、圆度和偏⼼率等描述⼦。
3. 新增了哈⾥斯-斯蒂芬斯⾓点探测器及*稳定极值区域的内容。
扫⼀扫⽂末在⾥⾯回复答案+数字图像处理⽴即得到答案4. 重写了关于神经⽹络和深度学习的内容,全⾯介绍了全连接深度神经⽹络,新增了关于深度卷积神经⽹络的内容。
5. 为学⽣和教师提供⽀持包,⽀持包可从本书的配套⽹站下载。
6. 新增了⼏百幅图像、⼏⼗个新图表和上百道新习题。
在数字图像处理领域,本书作为主要教材已有40多年。
第四版是作者在前三版的基础上修订⽽成的,是前三版的发展与延续。
除保留前⼏版的⼤部分内容外,根据读者的反馈,作者对本书进⾏了全⾯修订,融⼊了近年来数字图像处理领域的重要进展,增加了⼏百幅新图像、⼏⼗个新图表和上百道新习题。
全书共12章,即绪论、数字图像基础、灰度变换与空间滤波、频率域滤波、图像复原与重构、⼩波变换和其他图像变换、彩⾊图像处理、图像压缩和⽔印、形态学图像处理、图像分割、特征提取、图像模式分类。
本书的读者对象主要是从事信号与信息处理、通信⼯程、电⼦科学与技术、信息⼯程、⾃动化、计数字图像处理课后答案(美)Rafael C.Gonzalez(拉斐尔·C. 冈萨雷斯),Richard E. Woods(理查德·E. 伍兹)算机科学与技术、地球物理、⽣物⼯程、⽣物医学⼯程、物理、化学、医学、遥感等领域的⼤学教师和科技⼯作者、研究⽣、⼤学本科⾼年级学⽣及⼯程技术⼈员。
Rafael C. Gonzalez: 1965于美国迈阿密⼤学获电⽓⼯程学⼠学位;1967年和1970年于美国佛罗⾥达⼤学盖恩斯维尔分校分别获电⽓⼯程硕⼠学位和博⼠学位。
数字图像处理基础教学大纲

(理论)课程教学大纲课程名称:数字图像处理基础(原名图形图像基础)课程编码:0403339学分:3总学时:48适用专业:计算机应用先修课程:数学分析、线性代数、概率论、C语言程序设计一、课程的性质、目的与任务:本课程是一门学科基础课,考核方式为:考察。
本课程是图像处理、计算机视觉、模式识别、多媒体技术等学科的基础,是一门多学科交叉、理论性和实践性都很强的综合性课程,是计算机类专业学生的一门重要专业课程。
通过对本课程的学习,使学生了解数字图像的基本概念、数字图像形成的原理,掌握数字图像处理的理论基础和技术方法,着重掌握数字图像的增强、复原、压缩和分割的基本理论和实现方法,为将来从事相关领域工作和科学研究奠定基础。
二、教学基本要求:了解数字图像处理的发展历程、空间处理及频域处理的基本方法及理论、数字图像彩色空间极其转换、数学形态学的基本概念及理论。
理解直方图概念及作用,图像平滑概念及常用方法原理,图像分割的原理及常用方法原理,彩色图像处理的基本方法原理,图像复原的概念及常用方法的原理。
掌握使用Matlab进行图像处理编程、直方图均衡化的方法、离散傅立叶变换的方法、空间噪声滤波及频域噪声滤波的方法、腐蚀/膨胀运算及开/闭运算的方法、常用边缘检测方法、通过全局阈值进行灰度图像二值化的方法。
三、教学内容(一)概论 2学时1、数字图像处理的基本概念;2、图像处理技术的发展历程;3、数字图像处理技术的应用。
(二)数字图像处理基础6学时1、数字图像的表示;2、Matlab编程环境3、M函数编程简介(三)数字图像的空间处理6学时1、空间图像增强的背景知识;2、基本灰度变换、直方图处理;3、线性空间滤波;4、非线性空间滤波(四)数字图像的频域处理5学时1、傅立叶变换和频域介绍2、频域的平滑滤波器3、频域的锐化滤波器(五)图像复原5学时1、图像退化/复原过程的模型、噪声模型2、单纯噪声条件下的图像复原空间滤波、频率域滤波削减周期噪声;3、退化函数4、逆滤波、维纳滤波及最小二乘法滤波(六)彩色图像处理5学时1、彩色空间及彩色图像处理基础2、彩色变换3、彩色图像的空间滤波彩色基础、彩色模型、伪彩色处理、全彩色处理基础及彩色变换。
关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。
通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。
下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。
通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。
2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。
我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。
3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。
通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。
4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。
通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。
5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。
通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。
6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。
通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。
7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。
通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。
8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。