初中不等式综合练习(经典题--易错题)(1)
人教七下 9.1.1不等式及其解集经典题及易错题(含解析)
9.1 不等式及其解集经典题1.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克分析:我们把这样一个问题如果抽象成数学问题,实际上就是妈妈和小明的体重之和比爸爸的体重轻.设小明的体重为x千克,则x+50<70,在A、B、C、D四个选项中,能使不等式成立的答案只有A项.答案:A2. 用数轴表示不等式34x<的解集正确的是()01010101A B C D分析:根据利用数轴来表示解集的方法可知,当34x<时,用空心圈,所以答案在B和C中,又因为是小于,所以向左画线,即正确的答案是C. 答案:C3.若32是方程23x=的唯一解,则x=12是不等式2x<3的()A.唯一解B.一个根C.一个解D.解集分析:不等式的解集包含着无数个能使不等式左右两边相等的未知数的值,所以x=12是不等式2x<3的一个解.答案:C4.不等式2x-6<0的解集在数轴上表示正确的是().A. B. C. D.分析:根据不等式确定它的解集是x<3,在根据利用数轴来表示不等式的解集的方法确定正确的答案是B.答案:B5. 不等式x≤5的正整数解有()个.A.3B.4C.5D.6分析:根据正整数的概念及不等式解集的概念可知,满足要求的数有1,2,3,4,5共5个,所以答案为C.答案:B6. 在数值-3,-2.5,0,1,123,2,4,5,8中,____________能使不等式3x<12成立.分析:把数值代入不等式,只要能够使不等式成立就可以,-3,-2.5,0,1,123,2这些数代入不等式,都能吏3x<12成立.解答:-3,-2.5,0,1,123,27. 如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a b,的不等式表示为.分析:从图形的叠放位置可以看出a与b的大小关系是a>b.解答:a>b8. 同桌的甲、乙两名同学,争论着一个问题:甲同学说:“5a>4a”,乙同学说:“这不可能”,请你评说一下两名同学的观点究竟哪个正确?为什么?举例说明.分析: 在题目中a是一个字母,它可以代替任意一个有理数,当a是负数时,5a<4a,当a=0时,5a=4a,当a是正数时,5a>4a.解答:当a是负数时,5a<4a,当a=0时,5a=4a,当当a是负数时,5a<4a,当a=0时,5a=4a,当是正数时,5a>4a.9. 在数轴上表示下列不等式的解集:(1)x≥-3.5 (2)x<-1.52-11-2-3-432-11-2-3-43(3)x≥2 (4)-1≤x<22-11-2-3-432-11-2-3-43分析: 掌握利用数轴来表示不等式的解集的方法,空心点与实心圈的区别与联系,大于与小于画线方向, x≥2根据绝对值的意义可以分为x≥2或x≤-2.解答:(1)(2)2-11-2-3-43(3)(4).10.已知x的12与3的差小于x的-12与-6的和,根据这个条件列出不等式。
初中数学不等式(组)易错题
不等式(组)常见易错题分类A组易错题1、直线y=mx+b与y=kx在同一平面直角坐标系中的图象如图所示,则关于x的不等式mx+b<kx的解集为()2、如图,直线y1=kx+2与直线y2=mx相交于点P(1,m),则不等式mx<kx+2的解集是()3、如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n的解集是.4、如图,直线y1=﹣2x与直线y2=kx+b相交于点A(a,2),并且直线y2=kx+b经过x轴上点B(2,0),则不等式(k+2)x+b≥0的解集是5、如图,经过点(4,0)的直线:y=﹣x+b与直线:y=ax交于点P(n,3),则不等式组﹣x+b≥ax>0的解集是.6、如图,直线y1=kx和直线y2=ax+b相交于点(1,2).则不等式组ax+b>kx>0的解集为()7、如图是一次函数y=x+3的图象,当﹣3<y<3时,x的取值范围是()8、解不等式组:,并写出所有非负整数解.9、解不等式组,把解集在所给数轴上表示出来,并写出其整数解.B 组常考题一、已知不等式解集求字母系数的值或其范围1、是否存在整数?423,-<+>-x x m mx m 的解为使不等式?如果存在,求出m 的值,否则说明理由。
3、已知a 、b 为常数,若0>+b ax 的解集是31<x ,则0<-a bx 的解集是( ). 4、如果关于x 的不等式(2a -b )x+a -5b >0的 解为x <107 ,求关于x 的不等式ax >b 的解集. 5、对于x ≥1的一切实数,不等式()12x a -≥a 都成立,则a 的取值范围 ; 二、由已知方程(组)解的取值范围求字母系数的取值范围1、.关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是( )2、k 为何值时,等式|-24+3a|+0232=⎪⎭⎫⎝⎛--b k a 中的b 是负数?3、已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________。
初一不等式经典易错题解析
初一不等式经典易错题解析初一不等式经典易错题解析初一学生在学习不等式时,难免会遇到一些经典易错题,这在一定程度上也给学习带来了一些困扰。
在本文中,我们将对初一不等式中一些经典易错题进行解析,希望对同学们的学习有所帮助。
一、乘方不等式易错点在不等式中,乘方往往是初一学生们考试时经常遇到的问题,其中特别容易发生的错误包括:1. 未进行“正负性”分析乘方在不等式中的作用是使变量的取值范围变广,但我们必须检查其“正负性”,否则就会出现错误的答案。
比如,当我们遇到以下不等式时:(1)x^2-6x+5>0(2)x^2+6x+5>0根据情况,我们可以把这两个不等式转化为因式分解的形式。
对于第一个式子,我们可以得到x在0到5之外或者在1到正无穷之间;而对于第二个式子,我们可以得到x在正无穷到-1或者在-5到正无穷之外。
在情况(1)中,我们需要特别注意的是,当x在1到5之间时,式子的取值就会变为负数,因此其“正负性”分析对于解题至关重要。
2. 公因数舍去的问题在乘方问题中,如果变量被约分后就会导致解题出现偏差。
例如:对于以下不等式而言:(3)2x^2+3x-2<0当我们对其进行因式分解,会得到2(x+1)(x-2)<0,但我们需要注意,当x=-1时,x+1=0,此时2(x+1)(x-2)的分子是0,不符合数学逻辑规律,我们需要忽略掉这种情况。
因此,正确的解题思路应该是用区间法将不等式的解空间分为三段,分别为x<-1、-1<x<2、2<x。
二、加减不等式易错点在初一不等式题型中,加减不等式也经常出现。
在处理这类问题中,需要注意以下问题:1. 未进行化简,直接求解很多时候,初一学生在解加减不等式时直接将式子简化,导致解题出现了较大偏差。
事实上,在处理不等式问题时,我们需要把含有常数的项先整合。
例如:对于以下不等式而言:(4)2x+1<3x-4如果我们直接拆方程,化简后得到x>5,但这种做法是错误的,因为我们在拆方程之前必须将常数加起来,然后再消元,即:(5)-x<-5x>5因此,式子的解空间是x>5。
(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案解析(1)
(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案解析(1)一、选择题1.关于x 、y 的方程组222x y mx y m+=⎧⎨+=+⎩的解为整数,则满足这个条件的整数m 的个数有( )A .4个B .3个C .2个D .无数个【答案】A【解析】【分析】先解二元一次方程组x 、y ,然后利用解为整数解题即可【详解】解方程组222x y mx y m +=⎧⎨+=+⎩得到242m x m y m ⎧=⎪⎪-⎨⎪=⎪-⎩因为方程组的解为整数,所以m 可以为0、1、3、4,所以满足条件的m 的整数有4个,选A【点睛】本题主要考查二元一次方程组的解,解出x 、y 再利用解为整数求解是本题关键2.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 【答案】B【解析】【分析】 本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B .【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y ==【答案】A【解析】【分析】 设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4.二元一次方程3420x y +=的正整数解有( )A .1组B .2组C .3组D .4组【答案】A【解析】【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得.【详解】 ∵由3420x y += 可得,34y 203, 54x y x =-=-,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y==-(不符题意).故答案是A.【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.5.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.6.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组 ( )A .1204010x y y x +=⎧⎨=⎩B .1201040x y y x +=⎧⎨=⎩C .1204020x y y x +=⎧⎨=⎩D .1202040x y y x +=⎧⎨=⎩【答案】C【解析】【分析】 首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可.【详解】∵一共有120张白铁皮,其中x 张制作盒身,y 张制作盒底,∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =,∴可列方程组为:1204020x y y x +=⎧⎨=⎩, 故选:C.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.7.下列4组数值,哪个是二元一次方程2x+3y =5的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩【答案】B【解析】【分析】 二元一次方程2x+3y =5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【详解】A 、把x =0,y =35代入方程,左边=0+95=95≠右边,所以不是方程的解; B 、把x =1,y =1代入方程,左边=右边=5,所以是方程的解;C 、把x =2,y =﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D 、把x =4,y =1代入方程,左边=11≠右边,所以不是方程的解.故选B .【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.8.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种物品(两种都买)的方案有()A.3种B.4种C.5种D.6种【答案】C【解析】【分析】设1袋笔的价格为x元,1本笔记本的价格为y元,根据“若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元”,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出结论,再设可购买a袋笔和b本笔记本,根据总价=单价×数量可得出关于a,b的二元一次方程,结合a,b均为正整数即可得出结论.【详解】设1袋笔的价格为x元,1本笔记本的价格为y元,依题意,得:4x+6y-22=x+2y+34,∴3x+4y=56,即y=14-34 x.∵x,y均为正整数,∴411xy⎧⎨⎩==,88xy⎧⎨⎩==,125xy⎧⎨⎩==,162xy⎧⎨⎩==.设可购买a袋笔和b本笔记本.①当x=4,y=11时,4x+6y-22=60,∴4a+11b=60,即a=15-114b,∵a,b均为正整数,∴44ab⎧⎨⎩==;②当x=8,y=8时,4x+6y-22=58,∴8a+8b=58,即a+b=294,∵a,b均为正整数,∴方程无解;③当x=12,y=5时,4x+6y-22=56,∴12a+5b=56,即b=56125a-,∵a,b均为正整数,∴34 ab==⎧⎨⎩;④当x=16,y=2时,4x+6y-22=54,∴16a+2b=54,即b=27-8a,∵a,b均为正整数,∴119ab⎧⎨⎩==,211ab⎧⎨⎩==,33ab⎧⎨⎩==.综上所述,共有5种购进方案.故选:C.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.方程组的解为,则被遮盖的前后两个数分别为()A.1、2 B.1、5 C.5、1 D.2、4【答案】C【解析】【分析】把x=2代入x+y=3求出y,再将x,y代入2x+y即可求解.【详解】根据,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C.【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y值为解题关键.10.对于实数a、b定义运算“※”:22()()a ab a ba bab b a b⎧-≥=⎨-<⎩※,例如2424428=-⨯=※,若x,y是方程组33814x yx y-=⎧⎨-=⎩的解,则y※x等于()A.3B.3-C.1-D.6-【答案】D【解析】【分析】先根据方程组解出x和y的值,代入新定义计算即可得出答案.【详解】解:∵33814x y x y -=⎧⎨-=⎩∴21x y =⎧⎨=-⎩所以()()2y x=-12=-12-2=-2-4=-6⨯※※. 故选:D .【点睛】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.11.已知2728x y x y +=⎧⎨+=⎩,那么x y -的值是( ) A .-1B .0C .1D .2【答案】A【解析】【分析】观察方程组,利用第一个方程减去第二个方程即可求解.【详解】 2728x y x y ①②+=⎧⎨+=⎩, ①-②得,x-y=-1.故选A.【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.已知关于x ,y 的方程组34{3x y a x y a+=--=,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x +y=4-a 的解;②当a=-2时,x 、y 的值互为相反数;③若x≤1,则1≤y≤4;④5{1x y ==-是方程组的解,其中正确的是( ) A .①②B .③④C .①②③D .①②③④ 【答案】C【解析】【分析】【详解】解:解方程组34{3x y a x y a +=--=,得12{1x a y a=+=-, ∵-3≤a ≤1,∴-5≤x ≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a 两边相等,结论正确;②当a=-2时,x=1+2a=-3,y=1-a=3,x ,y 的值互为相反数,结论正确;③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1,∴-3≤a ≤0∴1≤1-a ≤4∴1≤y ≤4结论正确,④5{1x y ==-不符合-5≤x≤3,0≤y≤4,结论错误;故选:C .【点睛】本题考查二元一次方程组的解;解一元一次不等式组.13.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A .2753x y y x +=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x -=⎧⎨=⎩D .2753x y x y +=⎧⎨=⎩ 【答案】B【解析】【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可.【详解】根据图示可得,2753x y x y +=⎧⎨=⎩故选B .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.14.5|21|0a b a b ++-+=,则2019()b a -等于( )A .1-B .1C .20195D .20195-【答案】A【解析】【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值.【详解】12110a b -+=,所以50,210,a b a b ++=⎧⎨-+=⎩①②由②,得21b a =+③,将③代入①,得2150a a +++=,解得2a =-,把2a =-代入③中,得3b =-,所以20192019()(1)1b a -=-=-. 故选A.【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.15.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗.A .6B .8C .10D .12【答案】B【解析】【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解.【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得: 11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗故选B .【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.16.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .设普通公路长、高速公路长分别为km km x y 、,则可列方程组为( )A .2 2.210060x y x y =⎧⎪⎨+=⎪⎩B .2 2.260100x y x y =⎧⎪⎨+=⎪⎩C .2 2.260100x y x y =⎧⎪⎨+=⎪⎩D .2 2.210060x y x y =⎧⎪⎨+=⎪⎩ 【答案】C【解析】【分析】设普通公路长、高速公路长分别为xkm 、ykm ,由普通公路占总路程的13,结合汽车从A 地到B 地一共行驶了2.2h ,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】设普通公路长、高速公路长分别为xkm 、ykm ,依题意,得: 2 2.260100x y x y =⎧⎪⎨+=⎪⎩ 故答案为:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.17.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( ) A .4B .1-C .2D .1 【答案】D【解析】【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值.【详解】 2315x y a x y +=-⎧⎨-=⎩①② ①2⨯+②得3363x y a +=+21x y a +=+∵3,x y +=∴1a =故答案为:D .【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.18.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩ B .5152x y x y =-⎧⎪⎨=+⎪⎩ C .525x y x y =+⎧⎨=-⎩ D .525x y x y =-⎧⎨=+⎩【答案】A【解析】【分析】 根据“用绳索去量竿,绳索比竿长5尺”可知5x y =+,然后进一步利用“如果将绳索对半折后再去量竿,就比竿短5尺”可知152x y =-,由此即可得出相应的方程组,从而得出答案.【详解】由题意得:绳索长x 尺,竿长y 尺,∵绳索比竿长5尺,∴5x y =+,又∵将绳索对半折后再去量竿,就比竿短5尺,∴152x y =-, ∴可列方程组为:5152x y x y =+⎧⎪⎨=-⎪⎩, 故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意找出正确的等量关系是解题关键.19.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( )A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A【解析】【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【详解】解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A .【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.20.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩,给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是()A .①②B .①③C .②③D .①②③ 【答案】D【解析】【分析】①将5k =代入方程组可得3563510x y x y +=⎧⎨+=⎩,解方程组即可作出判断; ②将10k =代入方程组可得35631010x y x y +=⎧⎨+=⎩求得方程组的解后,再将解代入61516x y +=即可作出判断;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,根据k 为整数即可作出判断. 【详解】解:①当5k =时,关于x 、y 的二元一次方程组为:3563510x y x y +=⎧⎨+=⎩,此时方程组无解,故本说法正确;②当10k =时,关于x 、y 的二元一次方程组为:35631010x y x y +=⎧⎨+=⎩,解得2345x y ⎧=⎪⎪⎨⎪=⎪⎩,将其代入61516x y +=,能使其左右两边相等,故本说法正确; ③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,因为k 为整数而x 、y 不能都为整数,故本说法正确.故选:D【点睛】此题考查了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中两方程同时成立的未知数的值.。
自学初中数学资料 不等式综合复习(资料附答案)
自学资料一、不等式综合复习【错题精练】例1.已知关于x的不等式ax<b的解为x>﹣2,则下列关于x的不等式中,解为x<2的是()A. ax+2<﹣b+2B. ﹣ax﹣1<b﹣1C. ax>bD.【解答】由已知不等式的解集确定出a为负数,确定出所求不等式即可.解:∵关于x的不等式ax<b的解为x>﹣2,∴a<0,则解为x<2的是﹣ax﹣1<b﹣1,故选:B.【答案】B例2.若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,则a的取值范围是()第1页共25页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 1<a≤7B. a≤7C. a<1或a≥7D. a=7【解答】求出不等式2x<4的解,求出不等式(a﹣1)x<a+5的解集,得出关于a的不等式,求出a即可.本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于a的不等式是解此题的关键.解:解不等式2x<4得:x<2,∵不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,∴a﹣1>0,x,∴≥2,﹣2≥0,≥0,≥0,∵a﹣1>0,∴解得:1<a≤7,故选:A.【答案】A例3.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值范围是__________ .第2页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】【答案】1<z<11例4.若不等式x<a只有5个正整数解,则a的取值范围.【答案】5<a≤6.例5.定义新运算:对于任意实数a,b都有:a⊕b=a(a−b)+1.如:2⊕5=2×(2﹣5)+1=﹣5,那么不等式3⊕x<13的解集为.【答案】x>−1.【举一反三】1.若关于x的不等式3m−2x<5的解集是x>3,则实数m的值为..【答案】1132.我们把称作二阶行列式,规定他的运算法则为,如:,如果有,则x__________ .第3页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【解答】解:列不等式得:2x﹣(3﹣x)>0,整理得:2x﹣3+x>0,解得:x>1.故答案为:x>1.【答案】x>13.不等式组无解,则a的取值范围是__________.【解答】二、三角形的初步知识综合复习【错题精练】例1.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF的度数为()A. 45°∠AB. 90∠AC. 90°﹣∠AD. 180﹣∠A【解答】由题中条件可得△BDE≌△CFD,即∠BDE=∠CFD,∠EDF可由180°与∠BDE、∠CDF的差表示,进而求解即可.解:∵AB=AC,∴∠B=∠C,∵BD=CF,BE=CD∴△BDE≌△CFD,∴∠BDE=∠CFD,第4页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=∠C,∵∠A+∠B+∠C=180°.∴∠A+2∠EDF=180°,∴∠EDF=90°﹣∠A.故选:B.【答案】B例2.如图∠BAC的平分线AD与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=22,AC=10,则BE=.【答案】6.例3.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,求∠EFC的度数.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45∘,又∵AB=AC,∴∠ABC=12(180∘−∠BAC)=12(180∘−45∘)=67.5∘,∴∠CBE=∠ABC−∠ABE=67.5∘−45∘=22.5∘,∵AB=AC,AF⊥BC,∴BF=CF,第5页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训∴BF=EF,∴∠BEF=∠CBE=22.5∘,∴∠EFC=∠BEF+∠CBE=22.5∘+22.5∘=45∘.【答案】45°.例4.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图,若AC=BC,AD=BE,CD=CE,∠ACE=55∘,∠BCD=155∘,则∠BPD的度数为.【答案】130°.【举一反三】1.(1)如图1所示,已知△ABC中,∠ABC、∠ACB的平分线相交于点O,试说明∠BOC=90∘+∠A.(2)如图2所示,在△ABC中,BD、CD分别是∠ABC、∠ACB的外角平分线,试说明∠D=90∘−∠A.(3)如图3,B、C、D在一条直线上,∠PBC=∠ABC,∠PCD=∠ACD,求证∠BPC=∠BAC.【解答】(1)证明:∵在△ABC中,OB、OC分别是∠ABC、∠ACB的平分线,∠A为x∘∴∠OBC+∠OCB=12(180∘−∠A)=12×(180∘−x∘)=90∘−12∠A故∠BOC=180∘−(∠OBC+∠OCB)=180∘−(90∘−12∠A)=90∘+12∠A(2)证明:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∠A为x∘∴∠BCD=12(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180∘−∠BCD−∠DBC第6页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训[∠A+(∠A+∠ABC+∠ACB)]=180∘−12(∠A+180∘)=180∘−12=90∘−1∠A2(3)证明:∵BD为△ABC的角平分线,交AC与点ECD为△ABC外角∠ACE的平分线,两角平分线交于点D(∠A+2∠1),∠3=∠4,∴∠1=∠2,∠5=12在△ABE中,∠A=180∘−∠1−∠3∴∠1+∠3=180∘−∠A−−−−①在△CDE中,∠D=180∘−∠4−∠5=180∘−∠3−(∠A+2∠1),即2∠D=360∘−2∠3−∠A−2∠1=360∘−2(∠1+∠3)−∠A−−−−②,把①代入②得:2∠D=∠A.【答案】略.2.如图,△ABC中,∠ACB=90∘,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22∘,则∠BDC等于()A. 44°;B. 60°;C. 67°;D. 77°.【答案】C3.如图,P是等边△ABC外一点,把△ABP绕点B顺时针旋转60∘到△CBP′,已知∠AP′B=150∘,P′A:P′C=2:3,求PB:P′A.图一图二第7页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第8页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第9页 共25页 自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞 非学科培训【解答】、(1)证明:在△ABC 和△BAD 中,{AC =BD∠CAB =∠DBA AB =BA,∴△ABC ≌△BAD (SAS ),∴∠C =∠D ,在△ACE 和△BDE 中,{∠AEC =∠BED∠C =∠D AC =BD,∴△ACE ≌△BDE (AAS ),∴AE =BE ;(2)解:①四边形ACBF 为平行四边形,理由如下:由(1)得AE =BE ,∴∠EAB =∠EBA ,∵△ABF 与△ABD 关于直线AB 对称,∴∠EAB =∠BAF 且AD =AF ,∴∠EBA =∠BAF ,又∵△ABC ≌△BAD ,∴BC =AD ,∴BC =AF ,∴四边形ACBF 为平行四边形;②由题意得∠DAB =∠FAB =30∘,∴∠DAF =60∘,过E 作EG ⊥AF 于G ,∵AE =5,DE =3,∴AD =8,∴AF =8,AG =52,GE =5√32,∴GF =112, ∴EF =√EG 2+BF 2=7.【答案】(1)略;(2)平行四边形;7.例2.如图,PA⊥OA,PB⊥OB,垂足分别为A,B,AB交OP于点Q,且PA=PB,则下列结论:①OP平分∠AOB;②AB是OP的中垂线;③OP平分∠APB;④OP是AB的中垂线;⑤OQ=PQ;其中全部正确的序号是()A. ①②③;B. ①②④;C. ①③④;D. ③④⑤.【答案】C例3.在△ABC中,AB=AC,∠BAC=90∘,点D为AC上一动点.(1)如图1,点E、点F均是射线BD上的点并且满足AE=AF,∠EAF=90∘.求证:△ABE≌△ACF;(2)在(1)的条件下,求证:CF⊥BD;(3)由(1)我们知道∠AFB=45∘,如图2,当点D的位置发生变化时,过点C作CF⊥BD于F,连接AF.那么∠AFB的度数是否发生变化?请证明你的结论.【解答】(1)证明:∵∠BAC=∠BAE+∠EAD=90∘,∠EAF=∠CAF+∠EAD=90∘∴∠BAE=∠CAF在△ABE和△ACF中第10页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训{AB =AC∠BAE =∠CAF AE =AF∴△ABE ≌△ACF (SAS )(2)证明: ∵∠BAC =90∘∴∠ABE +∠BDA =90∘,由(1)得△ABE ≌△ACF∴∠ABE =∠ACF∴∠BDA +∠ACF =90∘又∵∠BDA =∠CDF∴∠CDF +∠ACF =90∘∴∠BFC =90∘∴CF ⊥BD(3)解:∠AFB =45∘不变化,理由如下:点A 作AF 的垂线交BM 于点E ,∵CF ⊥BD∴∠BAC =90∘∴∠ABD +∠BDA =90∘同理∠ACF +∠CDF =90∘∵∠CDF =∠ADB∴∠ABD =∠ACF同(1)理得∠BAE =∠CAF在△ABE 和△ACF 中{∠BAE =∠CAFAB =AC ∠ABD =ACF∴△ABE ≌△ACF (ASA )∴AE =AF∴△AEF 是等腰直角三角形∴∠AFB =45∘.【答案】(1)略;(2)略;(3)∠AFB =45∘不变化,理由:略.【举一反三】1.在△ABC 中,AB =AC ,∠BAC =90∘,点D 为AC 上一动点.(1)如图1,点E 、点F 均是射线BD 上的点并且满足AE =AF ,∠EAF =90∘.求证:△ABE ≌△ACF ;(2)在(1)的条件下,求证:CF ⊥BD ;(3)由(1)我们知道∠AFB =45∘,如图2,当点D 的位置发生变化时,过点C 作CF ⊥BD 于F ,连接AF .那么∠AFB 的度数是否发生变化?请证明你的结论.【解答】(1)证明:∵∠BAC=∠BAE+∠EAD=90∘,∠EAF=∠CAF+∠EAD=90∘,∴∠BAE=∠CAF,在△ABE和△ACF中{AB=AC∠BAE=∠CAFAE=AF∴△ABE≌△ACF(SAS);(2)证明:∵∠BAC=90∘,∴∠ABE+∠BDA=90∘,由(1)得△ABE≌△ACF,∴∠ABE=∠ACF,∴∠BDA+∠ACF=90∘,又∵∠BDA=∠CDF,∴∠CDF+∠ACF=90∘,∴∠BFC=90∘,∴CF⊥BD;(3)解:∠AFB=45∘不变化,理由如下:过点A作AF的垂线交BM于点E,∵CF⊥BD,∴∠BAC=90∘,∴∠ABD+∠BDA=90∘,同理:∠ACF+∠CDF=90∘,∵∠CDF=∠ADB,∴∠ABD=∠ACF,同(1)理得:∠BAE=∠CAF,在△ABE和△ACF中{∠BAE=∠CAF AB=AC∠ABD=∠ACF∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF是等腰直角三角形,∴∠AFB=45∘.【答案】略.2.如图,已知AC⊥BC,AD⊥BD,E为AB的中点.(1)如图1,求证:△ECD是等腰三角形;(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.【解答】(1)证明:∵AC⊥BC,AD⊥BD,∴∠ACB=90∘,∠ADB=90∘,又∵E为AB的中点,∴CE=12AB,DE=12AB,∴CE=DE,即△ECD是等腰三角形;(2)解:∵AD=BD,E为AB的中点,∴DE⊥AB,已知EF=3,DE=4,∴DF=5,过点E作EH⊥CD,∵∠FED=90∘,EH⊥DF,∴EH=EF⋅EDDF =125,∴DH=√DE2−EH2=165,∵△ECD是等腰三角形,∴CD=2DH=225.【答案】(1)略;(2)225.3.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AE=AF;(2)若AB+AC=16,S△ABC=24,∠EDF=120∘,求AD的长.【解答】(1)证明:∵DE、DF分别是△ABD和△ACD的高,∴∠AED=∠AFD=90∘,∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∵AD=AD,∴△ADE≌△ADF(AAS),∴AE=AF;(2)解:∵△ADE≌△ADF,∴DE=DF,∴S△ABC=12⋅AB⋅DE+12⋅AC⋅DF=12⋅DE(AB+AC)=24,∵AB+AC=16,∴DE=3,∵∠ADE=∠ADF=60∘,∴∠DAE=30∘,∴AD=2DE=6.【答案】(1)略;(2)6.4.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90∘,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.【解答】(1)证明:∵∠BAC=∠DAE=90∘,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC∠BAD=∠CAEAD=AE,∴△BAD≌△CAE(SAS);(2)解:BD=CE,BD⊥CE,理由如下:由(1)知:△BAD≌△CAE,∴BD=CE,∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45∘,∴∠ACE+∠DBC=45∘,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90∘,则BD⊥CE.【答案】(1)略;(2)BD=CE,BD⊥CE.5.如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.(1)在图1中,你发现线段AC,BD的数量关系是,直线AC,BD相交成度角.(2)将图1中的△OAB绕点O顺时针旋转90∘角,这时(1)中的两个结论是否成立?请做出判断并说明理由.(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.【解答】(1)解:在图1中,线段AC,BD的数量关系是相等,直线AC,BD相交成90度角;(2)解:(1)中结论仍成立;证明如下:如图延长CA交BD于点E,∵等腰直角三角形OAB和OCD,∴OA=OB,OC=OD.∵AC2=AO2+CO2,BD2=OD2+OB2,∴AC=BD.∴△DOB≌△COA(SSS).∴∠CAO=∠DBO,∠ACO=∠BDO.∵∠ACO+∠CAO=90∘,∴∠ACO+∠DBO=90∘,则∠AEB=90∘,即直线AC,BD相交成90∘角.(3)解:结论仍成立;如图延长CA交OD于E,交BD于F,∵∠COD=∠AOB=90∘,∴∠COA+∠AOD=∠AOD+∠DOB,即:∠COA=∠DOB.∵CO=OD,OA=OB,∴△COA≌△DOB(SAS).∴AC=BD,∠ACO=∠ODB.∵∠CEO=∠DEF,∴∠COE=∠EFD=90∘.∴AC⊥BD,即直线AC,BD相交成90∘角.【答案】见解答.四、全等三角形综合复习【错题精练】例1.如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.【解答】解:BM=BN,BM⊥BN.理由:在△ABE和△DBC中,{AB=DB∠ABD=∠DBCEB=CB,∴△ABE≌△DBC(SAS).∴∠BAE=∠BDC.∴AE=CD.∵M,N分别是AE,CD的中点,∴AM=DN.在△ABM和△DBN中,{AB=DB∠BAM=∠BDNAM=BN,∴△ABM≌△DBN(SAS).∴BM=BN,∠ABM=∠DBN.∵∠ABD=∠DBC,∠ABD+∠DBC=180∘,∴∠ABD=∠ABM+∠MBE=90∘.∴∠MBE+∠DBN=90∘.即BM⊥BN.∴BM=BN,BM⊥BN.【答案】BM=BN,BM⊥BN.例2.如图,在Rt△ABC中,∠B=90∘,AC=10,∠C=30∘,点D从点C出发沿CA方向以每秒2个单位长度的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长度的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)DF=;(用含t的代数式表示)(2)求证:△AED≌△FDE;(3)当t为何值时,△DEF是等边三角形?说明理由;(4)当t为何值时,△DEF为直角三角形?(请直接写出t的值)【解答】(1)解:∵DF⊥BC,∴∠CFD=90∘,在Rt△CDF中,∠CFD=90∘,∠C=30∘,CD=2t,∴DF=12CD=t.(2)证明:∵∠CFD=90∘,∠B=90∘,∴DF∥AB.∴∠AED=∠FDE.在△AED和△FDE中,{AE=FD=t∠AED=∠FDEED=DE,∴△AED≌△FDE(SAS).(3)解:∵△AED≌△FDE,∴当△DEF是等边三角形时,△EDA是等边三角形.∵∠A=90∘−∠C=60∘,∴AD=AE.∵AE=t,AD=AC−CD=10−2t,∴t =10−2t .∴t =103. ∴当t 为103时,△DEF 是等边三角形.(4)解:∵△AED ≌△FDE ,∴当△DEF 为直角三角形时,△EDA 是直角三角形.当∠AED =90∘时,AD =2AE ,即10−2t =2t .解得:t =52;当∠ADE =90∘时,AE =2AD ,即t =2(10−2t ).解得:t =4.综上所述:当t 为52或4时,△DEF 为直角三角形.【答案】(1)t ;(2)略;(3)103;(4)52或4.【举一反三】1.如图,△ABC 中,∠ABC =45∘,AD ⊥BC 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与AD 相交于点G ,DF ⊥AB 于F ,交BE 于H .下列结论:①AD =BD ;②CE =BH ;③AE =12BG ;④CD +AG =BD .其中正确的序号是_________.【答案】①③④2.数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF =90∘,且EF 交正方形外角∠DCG 的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证△AME ≌△ECF ,所以AE =EF .在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【答案】解:(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.∵BM=BE.∴∠BME=45∘,∴∠AME=135∘.∵CF是外角平分线,∴∠DCF=45∘,∴∠ECF=135∘.∴∠AME=∠ECF.∵∠AEB+∠BAE=90∘,∠AEB+∠CEF=90∘,∴∠BAE=∠CEF∴△AME≌△BCF(ASA).∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE.∴∠N=∠PCE=45∘.四边形ABCD是正方形,∴AD∥BE.∴∠DAE=∠BEA.∴∠NAE=∠CEF.∴△ANE≌△ECF(ASA).∴AE=EF.3.如图,等边△ABC的边长为6,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.【解答】(1)解:如图,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB=60∘,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD≌△QCD,且△PBF是等边三角形CF,BF=PB∴DF=CD=12∵P是AB的中点,即PB=1AB=3,2∴BF=3∴;(2)解:分两种情况讨论,得ED为定值,是不变的线段如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,由(1)证得△PFD≌△QCD,且△PBF是等边三角形∴FD=12FC,EF=12BF∴ED=FD+EF=12FC+12BF=12BC=3∴ED为定值同理,如图,若P在BA的延长线上,作PM∥AC的延长线于M,∴∠PMC=∠ACB,又∵AB=AC,∴∠B=∠ACB=60∘,∴∠B=∠PMC=60∘,∴PM=PB,且PE⊥BC∴BE=EM=12BM,△PBM是等边三角形∴PM=PB=CQ∵PM∥AC∴∠PMB=∠QCM,∠MPD=∠CQD且PM=CQ ∴△PMD≌△QCD(ASA),∴CD=DM=12CM,∴DE=EM−DM=12BM−12CM=12(BM−CM)=12BC=3综上所述,线段ED的长度保持不变.【答案】(1);(2)线段ED的长度保持不变.1.已知(a-)<0,若b=2-a,则b的取值范围是__________.【解答】根据被开方数大于等于0以及不等式的基本性质求出a的取值范围,然后再求出2-a的范围即可得解.2.有八个球编号是①至⑧,其中有六个球一样重,另外两个球都轻1克,为了找出这两个轻球,用天平称了三次,结果如下:第一次①+②比③+④重,第二次⑤+⑥比⑦+⑧轻,第三次①+③+⑤和②+④+⑧一样重.那么,两个轻球的编号是__________.【解答】由①+②比③+④重可知③与④中至少有一个轻球,由⑤+⑥比⑦+⑧轻可知⑤与⑥至少有一个轻球,①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤.3.若a,b均为整数,a+b=﹣2,且a≥2b,则有最大值是__________ .【解答】【答案】14.如图,在△ABC中,∠ACB=90∘,分别以点A,B为圆心,大于12AB长为半径作弧,两弧交于点M,N,作直线MN分别交AB,AC于点D,E,连结CD,BE,下列结论错误的是()A. AD=CD;B. BE>CD;C. ∠BEC=∠BDC;D. BE平分∠CBD.【答案】D.5.如图,Rt△ABC中,∠ACB=90∘,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为();A. 35;B. 45;C. 23.D. √32【答案】B.6.如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B运动运动至点C,△B′C′D 面积的大小变化情况是()A. 一直减小;B. 一直不变;C. 先减小后增大;D. 先增大后减小.【答案】D7.如图,△ABC中,点D在AC的延长线上,E、F分别在边AC和AB上,∠BFE和∠BCD的平分线相交于点P,若∠B=80∘,∠FEC=70∘,则∠1−∠2=°;∠P=°.【答案】15,95.。
初一下不等式经典题易错题偏难题---极为重要
初一不等式与不等式组经典题易错题偏难题15题1. 若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2(B)k ≥2 (C)k <1 (D)1≤k <2 2.如果不等式33131++>+x mx 的解集为x >5,则m 值为___________。
3.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥14.的取值范围是则x x x ,6556-=-( )A 65>x B 65<x C 65≤x D 65≥x 5.若关于x 、y 的方程组的解满足x +y >0,则m 的取值范围是____。
6.解下列不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x7.已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.8.已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.9.若方程组的解满足x <1且y >1,求k 的整数解。
10.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.11.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.12.(类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?13.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?14.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?15.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?。
(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含解析(1)
(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含解析(1)一、选择题1.如果230x y z +-=,且20x y z -+=,那么xy的值为( ) A .15B .15-C .13D .13-【答案】D 【解析】 【分析】将题目中的两个方程相加,即可求得3x +y =0的值,根据x 与y 的关系代入即可求出x y的值. 【详解】解:2x +3y −z =0 ① ,x −2y +z =0 ② , ①+②,得 3x +y =0, 解得,1=-3x y , 故选D . 【点睛】本题主要考查解三元一次方程组,解答本题的关键是明确题意,求出所求式子的值.2.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .()72161328x y x y ⎧+-=⎨+=⎩C .()71613228x y x y +=⎧⎨+-=⎩D .()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩【答案】D 【解析】 【分析】根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组. 【详解】设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩,【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.3.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( )A .4243y x x y +=⎧⎨=⎩B .4243x y x y +=⎧⎨=⎩C .421134x yx y -=⎧⎪⎨=⎪⎩D .4234x y x y +=⎧⎨=⎩【答案】D 【解析】 【分析】按照题干关系分别列出二元一次方程,再组合行成二元一次方程组即可. 【详解】解:由甲、乙两数之和是42可得,42x y +=;由甲数的3倍等于乙数的4倍可得,34x y =,故由题意得方程组为:4234x y x y +=⎧⎨=⎩, 故选择D. 【点睛】本题考查了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.4.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m 为( ) A .8 B .232C .-232D .-192【答案】B 【解析】 【分析】把x 与y 的值代入方程计算即可求出m 的值. 【详解】解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2,解得:m=232,故选:B .此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.甲乙两人同解方程 2{78ax by cx y +=-= 时,甲正确解得 3{2x y ==- ,乙因为抄错c 而得2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10【答案】A 【解析】 【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决. 【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2 ∴c=-2,a=4,b=5 ∴a+b+c=7. 故答案为:A. 【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.6.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x 文,乙原有钱y 文,可得方程组( )A .14822483x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .14822483y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .14822483x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .14822483y x x y ⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A 【解析】 【分析】根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解. 【详解】设甲原有x文钱,乙原有y文钱,根据题意,得:14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.7.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7 a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组 ( )A .1204010x y y x +=⎧⎨=⎩B .1201040x y y x +=⎧⎨=⎩C .1204020x y y x +=⎧⎨=⎩D .1202040x y y x +=⎧⎨=⎩【答案】C 【解析】 【分析】首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可. 【详解】∵一共有120张白铁皮,其中x 张制作盒身,y 张制作盒底, ∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =,∴可列方程组为:1204020x y y x +=⎧⎨=⎩,故选:C. 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.9.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( ) A .329557230x y x y +=⎧⎨+=⎩ B .239557230x y x y +=⎧⎨+=⎩ C .329575230x y x y +=⎧⎨+=⎩ D .239575230x y x y +=⎧⎨+=⎩【答案】B 【解析】分析:根据题意,确定等量关系为:若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,根据所设未知数列方程,构成方程组即可. 详解:设每个排球x 元,每个实心球y 元, 则根据题意列二元一次方程组得:239557230x y x y +=⎧⎨+=⎩ ,故选B .点睛:此题主要考查了二元一次方程组的应用,关键是确定问题中的等量关系,列方程组.10.下列4组数值,哪个是二元一次方程2x+3y =5的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩【答案】B 【解析】 【分析】二元一次方程2x+3y =5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解. 【详解】A 、把x =0,y =35代入方程,左边=0+95=95≠右边,所以不是方程的解; B 、把x =1,y =1代入方程,左边=右边=5,所以是方程的解;C 、把x =2,y =﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D 、把x =4,y =1代入方程,左边=11≠右边,所以不是方程的解. 故选B . 【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.11.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .设普通公路长、高速公路长分别为km km x y 、,则可列方程组为( )A .2 2.210060x y x y =⎧⎪⎨+=⎪⎩B .2 2.260100x y x y =⎧⎪⎨+=⎪⎩C .2 2.260100x y x y =⎧⎪⎨+=⎪⎩D .2 2.210060x y x y=⎧⎪⎨+=⎪⎩ 【答案】C 【解析】 【分析】设普通公路长、高速公路长分别为xkm 、ykm ,由普通公路占总路程的13,结合汽车从A 地到B 地一共行驶了2.2h ,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】设普通公路长、高速公路长分别为xkm 、ykm ,依题意,得:2 2.260100x y xy =⎧⎪⎨+=⎪⎩ 故答案为:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( )A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩D .302100200x y x y +=⎧⎨⨯=⎩【答案】C 【解析】 【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】 由题意可得,{x y 302200x 100y+=⨯=,故答案为C 【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.13.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩,给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是() A .①② B .①③C .②③D .①②③【答案】D 【解析】 【分析】①将5k =代入方程组可得3563510x y x y +=⎧⎨+=⎩,解方程组即可作出判断;②将10k =代入方程组可得35631010x y x y +=⎧⎨+=⎩求得方程组的解后,再将解代入61516x y +=即可作出判断;③解356310x yx ky+=⎧⎨+=⎩得20231545xkyk⎧=-⎪⎪-⎨⎪=⎪-⎩,根据k为整数即可作出判断.【详解】解:①当5k=时,关于x、y的二元一次方程组为:3563510x yx y+=⎧⎨+=⎩,此时方程组无解,故本说法正确;②当10k=时,关于x、y的二元一次方程组为:35631010x yx y+=⎧⎨+=⎩,解得2345xy⎧=⎪⎪⎨⎪=⎪⎩,将其代入61516x y+=,能使其左右两边相等,故本说法正确;③解356310x yx ky+=⎧⎨+=⎩得20231545xkyk⎧=-⎪⎪-⎨⎪=⎪-⎩,因为k为整数而x、y不能都为整数,故本说法正确.故选:D【点睛】此题考查了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中两方程同时成立的未知数的值.14.如图,在长方形ABCD中,放入六个形状、大小相同的小长方形(即空白的长方形),若16AB cm=,4EF cm=,则一个小长方形的面积为()A.216cm B.22lcm C.224cm D.32 2cm【答案】B【解析】【分析】设长方形的长和宽为未数,根据图示可得两个量关系:①小长方形的1个长3+个宽16cm=,②小长方形的1个长1-个宽4cm=,进而可得到关于x、y的两个方程,可求得解,从而可得到小长方形的面积.【详解】设小长方形的长为x ,宽为y ,如图可知,3164x y x y +=⎧-=⎨⎩, 解得:{73x y ==.所以小长方形的面积()23721.cm =⨯= 故选B . 【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.15.如图,将长方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大18°.设∠BAE 和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的一个方程组是( )A .1890y x y x -=⎧⎨+=⎩B .18290y x y x -=⎧⎨+=⎩C .182y x y x -=⎧⎨=⎩D .18290x y y x -=⎧⎨+=⎩【答案】B 【解析】 【分析】首先根据题意可得等量关系:①∠BAD-∠BAE 大18°;②∠BAD+2∠BAE=90°,根据等量关系列出方程组即可. 【详解】解:设∠BAE 和∠BAD 的度数分别为x°和y°, 依题意可列方程组:18290y x y x -=⎧⎨+=⎩故选:B . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.16.若2334a b x y +与634a bx y -的和是单项式,则a b +=( ) A .3- B .0C .3D .6【答案】C 【解析】【分析】根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得a 、b 的值,即可求得a+b的值. 【详解】 ∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩,解得30a b =⎧⎨=⎩,∴a+b=3. 故选C. 【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.17.已知关于x ,y 的二元一次方程组57345x y ax y a -=⎧⎨-+=⎩,且x ,y 满足x –2y =0,则a 的值为( ) A .2 B .–4 C .0 D .5【答案】C 【解析】 【分析】将二元一次方程组中的两个方程相加,化简整理得x –2y =4a,进而求出4a =0即可解题. 【详解】 方程组57345x y ax y a -=⎧⎨-+=⎩,两个方程相加可得:x –2y =4a ,∵x –2y =0, ∴4a =0,解得a =0, 故选C . 【点睛】本题考查了加减消元的实际应用,属于简单题,熟悉加减消元的步骤,建立新的等量关系是解题关键.18.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A .3201036x y x y -=⎧⎨+=⎩B .3201036x y x y +=⎧⎨+=⎩C .3201036y x x y -=⎧⎨+=⎩D .3102036x y x y +=⎧⎨+=⎩【答案】B【解析】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x 元,水笔每支为y 元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3201036x y x y +⎧⎨+⎩==, 故选:B .点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.19.关于x ,y 的方程组2647x ay x y -=⎧⎨+=⎩的解是整数,则整数a 的个数为() A .4个B .3个C .2个D .1个 【答案】C【解析】【分析】先解方程组求出x y 、的值,根据y 和a 都是整数求出121a +=-或125a +=或121a +=或125a +=-,求出a 的值,再代入x 求出x ,再逐个判断即可;【详解】 2647x ay x y -=⎧⎨+=⎩①② 2⨯①-②得:()215a y --= 解得:521y a =-- 把521y a =--代入②得:54721x a -=+ 解得:7624a x a +=+ Q 方程组的解为整数∴ ,x y 均为整数∴ 121a +=-或125a +=或121a +=或125a +=-解得:1,2,0,3a =--,当1a =-时,12x =,不是整数,舍去; 当2a =时,2x =,是整数,符合; 当0a =时,3x =,是整数,符合;当3a =-时,32x =,不是整数,舍去; 故选:C.【点睛】本题主要考查二元一次方程组的含参问题,准确的解出方程组并且列出整数解的情况是求解本题的关键.20.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( ) A .-2B .2C .-1D .1 【答案】D【解析】【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可.【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②, ∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-,将其代入②可得:25x m -+=,∴3x m =+∵3x y +=,∴323m m ++-=,∴1m =,故选:D.【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.。
(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)
(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)一、选择题1.a 的一半与b 的差是负数,用不等式表示为( )A .102a b -< B .102a b -≤ C .()102a b -< D .102a b -< 【答案】D【解析】【分析】列代数式表示a 的一半与b 的差,是负数即小于0. 【详解】解:根据题意得102a b -< 故选D .【点睛】 本题考查了列不等式,首先要列出表示题中数量关系的代数式,再由不等关系列不等式.2.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.3.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.4.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有五个整数解,那么m 的取值范围为( ) A .21m -≤<-B .21m -<<C .1m <-D .2m ≥-【答案】A【解析】【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出m 的取值范围.【详解】 解:()02332x m x x ->⎧⎨-≥-⎩解不等式①,得:x m >,解不等式②,得:3x ≤,∴不等式组的解集为:3m x <≤,∵不等式组恰有五个整数解,∴整数解分别为:3、2、1、0、1-;∴m 的取值范围为21m -≤<-;【点睛】本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求出不等式组的解集,从而求出m 的取值范围.5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a 的取值范围是a <1.【详解】 解:0122x a x x -≥⎧⎨->-⎩①②, 由①得:x≥a ,由②得:x <1,∵不等式组有解,∴a <1,故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.6.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 【答案】A【解析】【分析】 根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立;D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.8.不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可. 详解:解不等式①,得:x 1<;解不等式②,得:x 3≥-;∴原不等式组的解集为:3x 1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.9.若a b <,则下列变形错误的是( )A .22a b <B .22a b +<+C .1122a b <D .22a b -<- 【答案】D【解析】【分析】根据不等式的性质解答.【详解】∵a b <,∴22a b <,故A 正确;∵a b <,∴22a b +<+,故B 正确;∵a b <,∴1122a b <,故C 正确; ∵a b <,∴2-a>2-b ,故D 错误,故选:D.【点睛】此题考查不等式的性质,熟记性质定理并运用解题是关键.10.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x >11,所以,x 的取值范围是11<x≤23.故选:C .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.若关于x 的不等式组0521x a x -⎧⎨-<⎩…的整数解只有3个,则a 的取值范围是( ) A .6≤a <7B .5≤a <6C .4<a ≤5D .5<a ≤6【答案】B【解析】【分析】根据解不等式可得,2<x ≤a ,然后根据题意只有3个整数解,可得a 的范围.【详解】解不等式x ﹣a ≤0,得:x ≤a ,解不等式5﹣2x <1,得:x >2,则不等式组的解集为2<x ≤a .∵不等式组的整数解只有3个,∴5≤a <6.故选:B .【点睛】本题主要考查不等式的解法,根据题意得出a 的取值范围是解题的关键.13.若不等式组236x x x m -<-⎧⎨<⎩无解,那么m 的取值范围是( ) A .m >2B .m <2C .m ≥2D .m ≤2 【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】解:236x x x m -<-⎧⎨<⎩②①由①得,x >2,由②得,x <m ,又因为不等式组无解,所以根据“大大小小解不了”原则,m ≤2.故选:D .【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.14.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4, 因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.15.已知关于x 的不等式4x a 3+>1的解都是不等式2x 13+>0的解,则a 的范围是( ) A .a 5=B .a 5≥C .a 5≤D .a 5< 【答案】C【解析】【分析】先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】 由413x a +>得,34a x ->, 由210,3x +> 得,1,2x >- ∵关于x 的不等式413x a +>的解都是不等式2103x +>的解, ∴3142a -≥-, 解得 5.a ≤即a 的取值范围是: 5.a ≤故选:C.【点睛】考查不等式的解析,掌握一元一次不等式的求法是解题的关键.16.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B .m ≥4C .m ≤4D .无法确定 【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可.【详解】解不等式﹣x+2<x ﹣6得:x >4,由不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,得到m≤4, 故选:C .【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误. 故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.18.如图,不等式组315215x x --⎧⎨-<⎩…的解集在数轴上表示为( ) A . B .C .D .【答案】C【解析】【分析】根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上表示出两个解集找公共部分即可.【详解】由题意可知:不等式组315215xx①②--⎧⎨-<⎩…,不等式①的解集为2x≥-,不等式②的解集为3x<,不等式组的解集为23x-≤<,在数轴上表示应为.故选C.【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.下列命题中逆命题是真命题的是()A.若a > 0,b > 0,则a·b > 0 B.对顶角相等C.内错角相等,两直线平行D.所有的直角都相等【答案】C【解析】【分析】先写出各命题的逆命题,再分别根据不等式的性质、对顶角、平行线的性质、角的概念逐项判断即可.【详解】A 、逆命题:若0a b ->,则0,0a b >>反例:2,1a b ==-时,2(1)0a b -=-->即此逆命题是假命题,此项不符题意B 、逆命题:如果两个角相等,那么这两个角是对顶角相等的角不一定是对顶角即此逆命题是假命题,此项不符题意C 、逆命题:两直线平行,内错角相等此逆命题是真命题,此项符合题意D 、逆命题:相等的角都是直角此逆命题是假命题,此项不符题意故选:C .【点睛】本题考查了不等式的性质、对顶角、平行线的性质、角的概念,熟记各性质与定义是解题关键.。
(易错题精选)初中数学方程与不等式之不等式与不等式组经典测试题含答案
(易错题精选)初中数学方程与不等式之不等式与不等式组经典测试题含答案一、选择题1.关于x的不等式组x15x322x2x a3><+⎧-⎪⎪⎨+⎪+⎪⎩只有4个整数解,则a的取值范围是()A.145a3-≤≤-B.145a3-≤<-C.145a3-<≤-D.145a3-<<-【答案】C【解析】【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:不等式组的解集是2-3a<x<21,因为不等式组只有4个整数解,则这4个解是20,19,18,17.所以可以得到16≤2-3a<17,解得-5<a≤-143.故选:C.【点睛】此题考查解不等式组,正确解出不等式组的解集,正确确定2-3a的范围,是解决本题的关键.2.关于 x 的不等式组21231xx a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为()A.-2≤a<-1 B.-2<a≤-1 C.-3≤a<-2 D.-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:21231xx a-⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72, 解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72, 因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a <−1.故选A .【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.若不等式24x <的解都能使关于x 的一次不等式2(1)x x a ++<成立,则a 的取值范围是( )A .8a ≥B .8a ≤C .8a >D .8a < 【答案】A【解析】【分析】先求出不等式24x <的解集,再求出不等式2(1)x x a ++<的解集,即可得出关于a 的不等式并求解即可.【详解】解:由24x <可得:x <2;由2(1)x x a ++<可得:x <23a -; 由题意得:23a -≥2,解得:a≥8; 故答案为A .【点睛】本题主要对解一元一次不等式组、不等式的解集等知识,根据题意得到关于a 的不等式是解答本题的关键.4.已知方程组31331x y m x y m+=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( ) A .m >1B .m <-1C .m >-1D .m <1【答案】C【解析】【分析】直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】 解:31331x y m x y m +=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+,∴12m x y ++=, ∵0x y +>,∴102m +>, ∴1m >-;故选:C.【点睛】本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12m x y ++=,然后进行解题.5.若m n >,则下列不等式中成立的是( )A .m+a<n+bB .ma>nbC .ma 2>na 2D .a-m<a-n【答案】D【解析】【分析】根据不等式的性质判断.【详解】A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a =0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a ,不等号的方向不变,正确; 故选D.点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.6.已知关于x 的不等式组的解集在数轴上表示如图,则b a 的值为( )A .﹣16B .C .﹣8D .【答案】B【解析】【分析】 求出x 的取值范围,再求出a 、b 的值,即可求出答案.【详解】 由不等式组, 解得.故原不等式组的解集为1-b x -a , 由图形可知-3x 2, 故, 解得,则b a =. 故答案选B .【点睛】本题考查的知识点是在数轴上表示不等式的解集,解题的关键是熟练的掌握在数轴上表示不等式的解集.7.下列不等式的变形正确的是( )A .若,am bm >则a b >B .若22am bm >,则a b >C .若,a b >则22am bm >D .若a b >且0,ab >则11a b > 【答案】B【解析】【分析】根据不等式的性质,对每个选项进行判断,即可得到答案.【详解】解:当0m <时,若am bm >,则a b <,故A 错误;若22am bm >,则a b >,故B 正确;当=0m 时,22=am bm ,故C 错误;若0a b >>,则11a b<,故D 错误; 故选:B .【点睛】本题考查了不等式的性质,解题的关键是熟练掌握不等式的性质进行判断.8.若关于x 的不等式0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是( ) A .3m 4<<B .3m 4<≤C .3m 4≤≤D .3m 4≤<【答案】B【解析】【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】 解:0521x m x -<⎧⎨-≤⎩L L ①②, 解①得x m <,解②得2x ≥.则不等式组的解集是2x m ≤<.Q 不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.如果不等式(2)25a x a ->-的解集是4x <,则不等式251a y ->的解集是( ).A .52y < B .25y < C .52y > D .25y > 【答案】B【解析】【分析】 根据不等式的性质得出20a -<,2542a a -=-,解得32a =,则2a=3,再解不等式251a y ->即可.【详解】解:∵不等式(a-2)x >2a-5的解集是x <4,∴20a -<, ∴2542a a -=-, 解得32a =,∴不等式2a-5y >1整理为351y ->, 解得:25y <. 故选:B .【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.10.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x 的取值范围为( )A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.不等式组354x x ≤⎧⎨+>⎩的最小整数解为( ) A .-1B .0C .1D .2 【答案】B【解析】【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解求最小值.【详解】解:354x x ≤⎧⎨+>⎩①② 解①得x≤3,解②得x >-1.则不等式组的解集是-1<x≤3.∴不等式组整数解是0,1,2,3,最小值是0.故选:B.【点睛】本题考查一元一次不等式组的整数解,确定x 的范围是本题的关键.13.不等式组0321x a x -<⎧⎨-≤-⎩的整数解共有3个,则a 的取值范围是( ) A .45a <<B .45a <≤C .45a ≤<D .45a ≤≤【答案】B【解析】【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到a 的范围.【详解】0321x a x -<⎧⎨-≤-⎩①②, 由①解得:x <a ,由②解得:x≥2,故不等式组的解集为2≤x <a ,由不等式组的整数解有3个,得到整数解为2,3,4,则a 的范围为4<a≤5.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.14.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4, 因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.15.已知4<m<5,则关于x的不等式组420x mx-<⎧⎨-<⎩的整数解共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.16.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.17.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B .C .D .【答案】A【解析】【分析】 先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.18.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.19.不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( ) A . B .C .D .【答案】C【解析】【分析】先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235xx+≤⎧⎨+<⎩的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.20.解不等式组3422133xx x-≥⎧⎪⎨+>-⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是( )A.B.C.D.【答案】D【解析】【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解不等式①得:1x≤-,解不等式②得:5x<,将两不等式解集表示在数轴上如下:故选:D.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.。
七年级数学试卷一元一次不等式易错压轴解答题训练经典题目(及答案)
七年级数学试卷一元一次不等式易错压轴解答题训练经典题目(及答案)一、一元一次不等式易错压轴解答题1.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:;等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:若,,则;若,,则;若,,则;若,,则 .(1)反之:若,则或;若,则________或________.(2)根据上述规律,求不等式的解集.(3)直接写出分式不等式的解集________.2.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)3.光华机械厂为英洁公司生产 A、B 两种产品,该机械厂由甲车间生产 A 种产品,乙车间生产 B 种产品,两车间同时生产.甲车间每天生产的 A 种产品比乙车间每天生产的 B 种产品多 2 件,甲车间 3 天生产的 A 种产品与乙车间 4 天生产的 B 种产品数量相同.(1)求甲车间每天生产多少件 A 种产品?乙车间每天生产多少件 B 种产品?(2)光华机械厂生产的A 种产品的出厂价为每件200 元,B 种产品的出厂价为每件180 元.现英洁公司需一次性购买A、B 两种产品共80 件且按出厂价购买A、B 两种产品的费用不超过 15080 元.问英洁公司购进 B 种产品至少多少件?4.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m nx张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= ________,n= ________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q 最小,此时按三种裁法各裁标准板材多少张?5.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.6.有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.7.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?8.为了响应“绿水青山就是金山银山”的环保建设,提高企业的治污能力某大型企业准备购买A,B两种型号的污水处理设备共8台,若购买A型设备2台,B型设备3台需34万元;购买A型设备4台,B型设备2台需44万元.(1)求A,B两种型号的污水处理设备的单价各是多少?(2)已知一台A型设备一个月可处理污水220吨,B型设备一个月可处理污水190吨,若该企业每月处理的污水不低于1700吨,请你为该企业设计一种最省钱的购买方案.9.有一个边长为m+3的正方形,先将这个正方形两邻边长分别增加1和减少1,得到的长方形①的面积为S1.(1)试探究该正方形的面积S与S1的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由;(2)再将这个正方形两邻边长分别增加4和减少2,得到的长方形②的面积为S2.①试比较S1, S2的大小;②当m为正整数时,若某个图形的面积介于S1, S2之间(不包括S1, S2)且面积为整数,这样的整数值有且只有16个,求m的值.10.今年入夏以来,由于持续暴雨,某县遭受严重洪涝灾害,群众顿失家园。
初中不等式经典例题
初中不等式经典例题一、例题11. 若不等式3x - a ≤ 0的正整数解是1、2、3,求a的取值范围。
这题啊,可有点小绕呢。
首先我们来解这个不等式3x - a ≤ 0,把它变形一下就得到x ≤ a/3。
正整数解是1、2、3,那就是说3肯定是满足这个不等式的,所以3 ≤ a/3,这就得出a ≥ 9。
但是呢,4就不满足这个不等式了,要是4满足的话正整数解就不止1、2、3了,所以4 > a/3,也就是a < 12。
所以啊,a的取值范围就是9 ≤ a < 12。
2. 已知关于x的不等式组{x - a > 0,1 - x > 0}的整数解共有3个,求a的取值范围。
先看这个不等式组,x - a > 0,那就是x > a;1 - x > 0,变形一下就是x < 1。
这个不等式组的解集就是a < x < 1。
它的整数解共有3个,那这三个整数解肯定是 - 2, - 1,0啊。
所以 - 3 ≤ a < - 2。
为什么呢?要是a < - 3的话,整数解就不止3个了,要是a ≥ - 2的话,整数解就没3个了,是不是很有趣呢?二、例题21. 解不等式2(x - 1) + 5 < 3x。
这题看着简单,可也有不少同学会犯错哦。
我们先把括号展开,2x - 2 + 5 < 3x,然后把含有x的项移到一边,常数项移到另一边,就得到2x - 3x < 2 - 5,也就是 - x < - 3。
两边同时除以 - 1,注意哦,除以一个负数的时候,不等式要变号,所以x > 3。
2. 若不等式组{x + 8 < 4x - 1,x > m}的解集是x > 3,求m 的取值范围。
先解x + 8 < 4x - 1,移项得到x - 4x < - 1 - 8, - 3x < - 9,x > 3。
这个不等式组的解集是x > 3,还有个x > m,那m肯定是小于等于3的。
初一数学-不等式易错题、难题集合--不等式性质应用
学生姓名 陈 年级 初一 授课时间 2012.6.2 教师姓名 刘 课时 2不等式易错题、难题集合(注意:运用不等式的性质是解题的关键!!!!!!不等式的性质切记!!!!!!!!)一,选择题1.下列不等式一定成立的是( )A.5a >4aB.x+2<x+3C.-a >-2aD.a a 24>2.若-a >a ,则a 必为( )A .正整数B .负整数C .正数D .负数3.若a >b ,则下列不等式一定成立的是( )a.<1 B.>1 C.-a>-b D.a-b>0b bA a4.若a -b <0,则下列各式中一定正确的是( )A .a >bB .ab>0C .a b <0D .-a >-b5.如果0>>a b ,那么 ( ).A .b a 11->- B .b a 11< C .b a 11-<- D .a b ->-6.若果x-y>x,x+y>y ,那么( )A.0<x<yB.x<y<0C.x>0,y<0D.x<0,y>07.若a 、b 、c 是三角形的三边,则代数式2222a b c ab +--的值是( )A .正数B .负数C .等于零 D.不能确定8.若三个连续正奇数的和不大于27,则这样的奇数组有( ).A .3组B .4组C .5组D .6组9.如果10<<x ,则下列不等式成立的( )A 、x x x 12<< B 、x x x 12<<C 、21x x x <<D 、x x x <<2110.不等式ax <b 的解集是x <b a ,那么a 的取值范围是( )A 、a ≤0B 、a <0C 、a ≥0D 、a >011.若不等式组⎩⎨⎧><n x x 8有解,那么n 的取值范围是( )A.8>nB.8≤nC. 8<nD.8≤n12.不等式组⎩⎨⎧>-<+-mx x x 62的解集是4>x ,那么m 的取值范围是 ( ).A .4≥mB .4≤mC .4<mD .4=m13.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则ab 的值为 。
(易错题精选)初中数学方程与不等式之二元二次方程组经典测试题附答案解析(1)
(易错题精选)初中数学方程与不等式之二元二次方程组经典测试题附答案解析(1)一、选择题1.解方程:22310x y x y ⎧-=-⎨++=⎩【答案】12x y =⎧⎨=-⎩ 【解析】【分析】本题可用代入消元法进行求解,即把方程2写成x=-1-y ,代入方程1,得到一个关于y 的一元二次方程,求出y 值,进而求x .【详解】解:()()2231102x y x y ⎧-=-⎪⎨++=⎪⎩ 由(2)得:1x y =--(3)把(3)代入(1):22(1)3y y ---=-∴2y =-∴1x =原方程组的解是12x y =⎧⎨=-⎩【点睛】本题中考查了由一个二元一次方程和一个二元二次方程组成的方程组的解法,可用代入法求解.2.解方程组:2222295x xy y x y ⎧-+=⎨+=⎩. 【答案】1121x y =⎧⎨=-⎩,2212x y =⎧⎨=-⎩,3321x y =-⎧⎨=⎩,4412x y =-⎧⎨=⎩ 【解析】试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解方程组即可.试题解析:解:2222295x xy y x y ⎧-+=⎨+=⎩①② 由①得:(x ﹣y )2=9所以x ﹣y =3③,x ﹣y =﹣3④③②与④②联立得:22223355x y x y x y x y -=-=-⎧⎧⎨⎨+=+=⎩⎩, 解方程组2235x y x y -=⎧⎨+=⎩,得:12122112x x y y ==⎧⎧⎨⎨=-=-⎩⎩,; 解方程组2235x y x y -=-⎧⎨+=⎩,得:34342112x x y y =-=-⎧⎧⎨⎨==⎩⎩,. 所以原方程组的解为:3124312422111122x x x x y y y y =-===-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,,,. 点睛:本题考查了二元二次方程组的解法,由两个二元二次方程组成的方程组,通常采用变形组中的一个二次方程为两个一元一次方程用代入法求解.3.解方程组:222023x xy y x y ⎧--=⎨+=⎩. 【答案】原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】分析:由①得出(x+y )(x-2y )=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:222023x xy y x y ⎧--⎨+⎩=①=② 由①得:(x+y )(x-2y )=0,x+y=0,x-2y=0,即原方程组化为023x y x y +⎧⎨+⎩==,2023x y x y -⎧⎨+⎩==, 解得:1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩, 即原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.4.已知1132x y =⎧⎨=-⎩是方程组22x y m x y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解. 【答案】22-23x y =⎧⎨=⎩ 【解析】【分析】先将1132x y =⎧⎨=-⎩代入方程组22x y m x y n ⎧+=⎨+=⎩中求出m 、n 的值,然后再求方程组的另一组解.【详解】解:将1132x y =⎧⎨=-⎩代入方程组22x y m x y n⎧+=⎨+=⎩中得:131m n =⎧⎨=⎩ , 则方程组变形为:22131x y x y ⎧+=⎨+=⎩, 由x+y=1得:x=1-y ,将x=1-y 代入方程x 2+y 2=13中可得:y 2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-23x y =⎧⎨=⎩ . 【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m 和n 的值是解题的关键.5.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩ 【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.6.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩【答案】114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.7.如图,在平面直角坐标系中,直线l :沿x 轴翻折后,与x 轴交于点A ,与y 轴交于点B ,抛物线与y 轴交于点D ,与直线AB 交于点E 、点F (点F 在点E 的右侧).(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线的解析式;(3)如图,在(2)的条件下,过F作FH⊥x轴于点G,与直线l交于点H,在抛物线上是否存在P、Q两点(点P在点Q的上方),PQ与AF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出P、Q的坐标,若不存在,请说明理由.【答案】(1);(2);(3)(1,),(3,0).【解析】【分析】(1)设直线AB的解析式为y=kx+b,先求出直线与x轴、y轴交点坐标,根据沿x轴翻折,得到A、B的坐标,把A、B的坐标代入直线AB的解析式y=kx+b,即可求出直线AB的解析式;(2)设抛物线的顶点为P(h,0),得出抛物线解析式为:,根据DF∥x轴,得出F的坐标,把F的坐标代入直线AB 的解析式即可求出h的值,即可得到答案;(3)过M作MT⊥FH于T,得到Rt△MTF∽Rt△AGF,得到FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,求出FN的值,根据三角形的面积公式求出△MNF和△AFH的面积,根据之间的等量关系即可求出k的值,设直线MN的解析式为:y=kx+b,把M、N(6,-4),代入得到方程组,求出方程组的解即可得到直线MN的解析式,解由方程和的解即可得出P、Q的坐标.【详解】(1)解:设直线AB的解析式为y=kx+b直线与x轴、y轴交点分别为(-2,0),(0,),沿x轴翻折,∵直线,直线AB与x轴交于同一点(-2,0)∴A(-2,0).与y轴的交点(0,)与点B关于x轴对称∴B(0,),∴解得k=,b=,∴直线AB的解析式为.(2)解:设抛物线的顶点为Q(h,0),抛物线解析式为:∴D(0,).∵DF∥x轴,∴点F(2h,),又点F在直线AB上,∴,解得 h1=3,h2=(舍去),∴抛物线的解析式为.(3)解:过M作MT⊥FH于T,∴Rt△MTF∽Rt△AGF.∴FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,则FN=AH+HF+AF)-FM=16-5k,∴S△MNF=(AH+HF+AF)-FM=16-5k,又∵S△MNF=S△AFH.∴=24,解得k==或k=2 (舍去),∴FM=6,FT=,MT=,GN=4,TG=,∴M(,))、N(6,-4),代入得:=k+b且-4=6k+b,解得:k=,b=4,∴y=x+4,联立y=x+4与y=,求得P(1,),Q(3,0).答:存在P的坐标是(1,),Q的坐标是(3,0).【点睛】本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组、解二元二次方程组,三角形相似的性质和判定,图形的旋转等知识点,综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.8.解方程组:2223,44 1.x y x xy y +=⎧⎨-+=⎩【答案】111,1;x y =⎧⎨=⎩221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】分析:对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组,解方程即可.详解:2223441x y x xy y ①②+=⎧⎨-+=⎩由②得:()221x y -=即:21x y -=或21x y -=-所以原方程组可化为两个二元一次方程组: 23,21;x y x y +=⎧⎨-=⎩ 23,21;x y x y +=⎧⎨-=-⎩分别解这两个方程组,得原方程组的解是111,1;x y =⎧⎨=⎩ 221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:考查二元二次方程,对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组是解题的关键,需要学生掌握加减消元法.9.解方程组:2225210x y x y xy +=⎧⎨+--=⎩. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =,故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.10.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?【答案】甲每天做60个零件,乙每天做80个零件.【解析】试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.试题解析:设甲每天做x 个零件,乙每天做y 个零件.根据题意,得解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.11.解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩【答案】121214,12x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】先由②得x +y =0或x−2y =0,再把原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩,然后解这两个方程组即可.【详解】 222(1)20(2)x y x xy y -=⎧⎨--=⎩, 由②得:(x +y )(x−2y )=0,x +y =0或x−2y =0, 原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩, 解得:12121412x x y y ==⎧⎧⎨⎨=-=⎩⎩,. 【点睛】此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.12.解方程组:222449{0x xy y x xy ++=+=. 【答案】0{1.5x y ==,3{3x y =-=,0{ 1.5x y ==-,3{3x y ==-. 【解析】【分析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.【详解】 2224490x xy y x xy ⎧++=⎨+=⎩①②由①得:(x+2y )2=9,x +2y =±3,由②得:x (x+y )=0,x =0,x +y =0,即原方程组化为:230x y x +=⎧⎨=⎩,230x y x y +=⎧⎨+=⎩,230x y x +=-⎧⎨=⎩,230x y x y +=-⎧⎨+=⎩, 解得:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩,所以原方程组的解为:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.13.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩ 【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩ 【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y )(x−2y )=0.∴x −y =0或x−2y =0,原方程组可化为2120x y x y +=⎧⎨-=⎩,21220x y x y +=⎧⎨-=⎩, 解这两个方程组,得原方程组的解为:1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩. 【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.14.解方程组:223403x xy y x y ⎧--=⎨-=⎩ 【答案】1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【解析】【分析】由代入消元法,消去一个未知数x ,得到关于y 的一元二次方程,然后用公式法解出y 的值,然后计算出x ,即可得到方程组的解.【详解】解:223403x xy y x y ⎧--=⎨-=⎩①②, 由②得:3x y =+③,把③代入①,得22(3)3(3)40y y y y +-+-=,整理得:26390y y +-=,∵2494692250b ac ∆=-=+⨯⨯=>,∴用求根公式法,得y =, 解得:1=1y ,232y =-; ∴14x =,232x =; ∴方程组的解为:1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元二次方程组,利用代入消元法把解方程组转变为解一元二次方程,掌握公式法解一元二次方程是解题的关键.15.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①②由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --=解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.16.解方程组:2226691x y x xy y +=⎧⎨-+=⎩. 【答案】1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先由②得(x-3y)2=1,x-3y=1或x-3y=-1,再把原方程组分解为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩最后分别解这两个方程组即可. 【详解】解:2226691,x y x xy y +=⎧⎨-+=⎩①② 由②得:(x-3y)2=1,x-3y=1或x-3y=-1,所以原方程组变为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩解这两个方程组得:41x y =⎧⎨=⎩,16575xy ⎧=⎪⎪⎨⎪=⎪⎩所以原方程组的解为1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题考查了解高次方程,解答此类题目一般是先把高次方程分解为低次方程,再分别解低次方程.17.温州三垟湿地的瓯柑名气很大,但今年经济不景气,某经销商为了打开销路,对1220斤瓯柑进行包装优惠出售.包装方式及售价如下图.假设用这两种包装方式恰好装完全部瓯柑.(1)若销售2箱纸盒装和3筐萝筐装瓯柑的收入共 元(请直接写出答案).(2)假如预计这批瓯柑全部售完,总销售额为3210元时.请问纸盒装包装了多少箱,箩筐装包装了多少筐?(3)但由于天气原因,瓯柑腐烂了a 斤(不能出售),在售价不变的情况下,为了保证总.销售额为....3210元,剩余瓯柑必须用以上两种方式重新包装,且恰好装完,那么纸盒装 箱, 箩筐装 箱.(请直接写出答案)【答案】(1)495;(2)纸盒装包装了16箱,箩筐装包装了18筐;(3)41,6【解析】(1)根据题意可得出方程解出即可;(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据等量关系列出方程组,解出即可; (3)根据(3)问的条件直接写出答案即可.解:(1)495元(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据题意得:20501220601253210x y x y +=⎧⎨+=⎩1618x y =⎧⎨=⎩解得 答:纸盒装包装了16箱,箩筐装包装了18筐.(3)41箱,6箱.“点睛”本题考查了二元一次方程组的应用,解题关键是仔细审题,理解题目所给条件,转化为方程思想求解.18.△ABC 中,BC >AC ,CD 平分∠ACB 交于AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交于CD 于H ,(1)如图1,若∠EFC=∠A ,求证:CE•CD=CH •BC ;(2)如图2,若BH 平分∠ABC ,CE=CF ,BF=3,AE=2,求EF 的长;(3)如图3,若CE≠CF ,∠CEF=∠B ,∠ACB=60°,CH=5,CE=43,求AC BC的值.【答案】(1)见解析;(2)6 ; (3)57. 【解析】【分析】 (1)只要证明△ECH ∽△BCD ,可得EC BC =CH CD,即可推出CE•CD=CH•BC ; (2)如图2中,连接AH .只要证明△AEH ∽△HFB ,可得AE HF =EH FB ,推出FH 2=6,推出6,即可解决问题.(3)只要证明△ECF ∽△BCA ,求出CF 即可解决问题.【详解】(1)证明:如图1中,∵∠EFC+∠FEC+∠ECF=180°,∠A+∠B+∠ACB=180°,又∵∠EFC=∠A,∠ECF=∠ACB,∴∠CEF=∠B,∵∠ECH=∠DCB,∴△ECH∽△BCD,∴EC CH BC CD=,∴CE•CD=CH•BC.(2)解:如图2中,连接AH.∵BH、CH都是△ABC的角平分线,∴AH是△ABC的角平分线,∴∠BHC=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣∠BAC)=90°+12BAC=90°+∠HAE,∵CE=CF,∠HCE=∠HCF,∴CH⊥EF,HF=HE,∴∠CHF=90°,∵∠BHC=∠BHF+∠CHF=∠BHF+90°,∴∠HAE=∠BHF,∵∠CFE=∠CEF,∴∠AEH=∠BFH,∴△AEH∽△HFB,∴AE EH HF FB=,∴FH2=6,∴HE=HF=6,∴EF=26.(3)解:如图3中,作HM⊥AC于M,HN⊥BC于N.设HF=x,FN=y.∵∠HCM=∠HCN=30°,HC=5,∴HM=HN=52,53,∵∴∵S △HCF :S △HCE =FH :EH=FC :EC , ∴x():, 又∵x 2=y 2+(52)2, 解得∴CF=7, ∵∠CEF=∠B ,∠ECF=∠ACB ,∴△ECF ∽△BCA , ∴EC CF BC AC=,∴AC CF BC EC ===57. 【点睛】本题考查三角形综合题、相似三角形的判定和性质、角平分线的性质、二元二次方程组等知识,解题的关键是正确寻找相似三角形解决问题,学会构建方程组解决问题,属于中考压轴题.19.一个三位数的中间数字是0,其余的两个数字的和为9,且这两个数字颠倒后的三位数比这两个数字之积的33倍还多9,求此三位数.【答案】306【解析】【分析】设百位数字是x ,个位数字是y .则依据“两个数字的和为9;这两个数字颠倒后的三位数比这两个数字之积的33倍还多9”列出方程组.【详解】设百位数字是x ,个位数字是y .则9100339x y y x xy +⎧⎨++⎩==, 解得36x y ⎧⎨⎩==,90x y ⎧⎨⎩==(不符合题意,舍去). 答:这个三位数是306.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.20.解方程组:22222303x xy y x xy y ⎧--=⎨-+=⎩【答案】111,1.x y =⎧⎨=-⎩ 【解析】【分析】首先将由22230x xy y --=得30x y -=或0x y +=,分别与223x xy y -+=求解即可.【详解】解: 22222303x xy y x xy y ⎧--=⎨-+=⎩①② 由①得30x y -=或0x y +=,原方程组可化为22303x y x xy y -=⎧⎨-+=⎩;2203x y x xy y +=⎧⎨-+=⎩解这两个方程组得原方程组的解为11,7,7x y ⎧=⎪⎪⎨⎪=⎪⎩227x y ⎧=-⎪⎪⎨⎪=⎪⎩331,1,x y =-⎧⎨=⎩441,1.x y =⎧⎨=-⎩ 【点睛】此题考查二元二次方程,解题关键在于掌握运算法则.。
新初中数学方程与不等式之一元一次方程易错题汇编含答案(1)
新初中数学方程与不等式之一元一次方程易错题汇编含答案(1) 一、选择题1.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.2.关于x的方程1514()2323mx x-=-有负整数解,则所有符合条件的整数m的和为()A.5 B.4 C.1 D.-1【解析】【分析】先解方程,再利用关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,求整数m即可.【详解】解方程1514 2323 mx x⎛⎫-=-⎪⎝⎭去括号得,1512 2323 mx x-=-移项得,1152 2233 mx x-=-,合并同类项得111 22m x⎛⎫-=⎪⎝⎭,系数化为1,2(1)1x mm=≠-,∵关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,∴整数m为0,-1.∴它们的和为:0+(-1)=-1.故选:D.【点睛】本题主要考查了一元一次方程的解,解题的关键是用m表示出x的值.3.如图所示是边长分别为60cm和80cm的两种正方形地砖,这两种地砖每平方厘米的造价相同,若边长为60cm的地砖的造价为90元,则边长为80cm的正方形地砖的造价为()A.120元B.160元C.180元D.270元【答案】B【解析】【分析】设边长为80cm的正方形地砖的造价为x,根据每平方厘米的造价相同列方程求出x的值即可得答案.设边长为80cm 的正方形地砖的造价为x 元,∵两种地砖每平方厘米的造价相同, ∴9060608080x =⨯⨯, 解得:x=160,故选:B .【点睛】 本题考查一元一次方程的应用,正确得出等量关系列出方程是解题关键.4.一个书包的标价为a 元,按八折出售仍可获利20%,该书包的进价为( ) A .23a B .34a C .45a D .56a 【答案】A【解析】【分析】设进价为x 元,根据题意可得820%10=-x a x ,解得23x a =,即为所求. 【详解】设进价为x 元 根据题意得:820%10=-x a x ∴41.25=x a ∴23x a = 故选:A【点睛】本题考查了一元一次方程的应用,理解题意,分清已知量和未知量,根据题目中的等量关系列出需要的代数式,进而列出方程,解所列的方程,求出未知数的值,检验所得的解是否符合实际问题的意义.5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A .3229x x -=+ B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 【答案】B【分析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.6.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元【答案】C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.7.有一下式子:①0x =;②325+=;③14x=;④29x =;⑤23=x x ;⑥34x -;⑦2(1)2x +=;⑧20x y +=.其中是一元一次方程的个数是( ) A .2B .3C .4D .5 【答案】B【解析】【分析】我们将只含有一个未知数,且未知数的最高次数为1的整式方程称之为一元一次方程,据此进一步判断即可.①0x =,满足定义,是一元一次方程;②325+=,未含有未知数,故不是一元一次方程; ③14x=,分母含有未知数,不是整式方程,故不是一元一次方程; ④29x =,未知数次数为2,故不是一元一次方程;⑤23=x x ,满足定义,故是一元一次方程;⑥34x -,不是等式,故不是一元一次方程;⑦2(1)2x +=,满足定义,故是一元一次方程;⑧20x y +=,含有两个未知数,故不是一元一次方程;综上所述,一共有3个一元一次方程,故选:B.【点睛】本题主要考查了一元一次方程的判断,熟练掌握相关概念是解题关键.8.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( )A .20岁B .16岁C .15岁D .12岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.数轴上表示数a 和数b 的两点之间的距离为6,若a 的相反数为2,则b 为( ) A .4B .4-C .8-D .4或8-【答案】D【解析】根据相反数的性质求出a 的值,再根据两点距离公式求出b 的值即可.【详解】∵a 的相反数为2∴20a +=解得2a =-∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -= 解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.10.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .179x x -= B .179x x += C .7x+9x=1 D .9x-7x=1 【答案】B【解析】【分析】 直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】 解:野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11179x ⎛⎫+= ⎪⎝⎭,即179x x +=, 故选B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.11.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3【答案】D【分析】【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 1-,解得.故选D.12.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B .【点睛】本题考查解一元一次方程,题目简单.13.将方程247236x x ---= 去分母得 ( ) A .2﹣2(2x-4)= - (x-7) B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣4x ﹣8= - (x-7)D .12﹣2(2x ﹣4)= x ﹣7 【答案】D【解析】【分析】根据原方程可知将其两边同时乘以各分母的最小公倍数6即可求得相应的答案.【详解】∵原方程分母的最小公倍数为6,∴原方程两边同时乘以6可得:()122247x x --=-,故选:D.【点睛】本题主要考查了一元一次方程中去分母的运算,熟练掌握相关方法是解题关键14.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里【答案】C【解析】【分析】【详解】 试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里.故选C15.下列方程变形正确的是( )A .由25x +=,得52x =+B .由23x =,得32x =C .由104x =,得4x = D .由45x =-,得54x =--【答案】B【解析】【分析】根据等式的性质依次进行判断即可得到答案.【详解】A. 由25x +=,得x=5-2,故错误;B. 由23x =,得32x =,故正确;C. 由104x =,得x=0,故错误;D. 由45x =-,得x=4+5,故错误,故选:B.【点睛】此题考查等式的性质,熟记性质定理是解题的关键.16.若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程1ax y +=的解,则a 的值等于( )A .3B .1C .1-D .3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a 的一元一次方程即可.【详解】解:将12x y =⎧⎨=-⎩代入1ax y +=得,21a -=, 解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.17.某项工程甲单独完成需要 45 天,乙单独成需要 30 天,若乙先单独干 20 天,剩余的由甲单独完成,问甲、乙一共用几天全部工作.设甲、乙一共用 x 天可以完成全部工作,则符合题意的方程是( )A .202013045x ++= B .202014530x -+= C .202013045x -+= D .202014530x ++= 【答案】B【解析】【分析】根据题意列出符合题意的方程即可.【详解】根据题意可得 202014530x -+= 故答案为:B .【点睛】本题考查了一元一次方程的工程问题,掌握解一元一次方程的方法是解题的关键.18.为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度.每年水费的计算方法为:年交水费=第一阶梯水价×第一阶梯用水量+第二阶梯水价×第二阶梯用水量+第三阶梯水价×第三阶梯用水量.该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,则该同学家这一年的用水量为( )某市居民用水阶梯水价表A .250m 3B .270m 3C .290m 3D .310m 3【答案】C【解析】【分析】利用表格中数据得出水费超过1460元时包括第三阶梯水价费用,进而得出等量系求出即可.【详解】解:设该同学这一年的用水量为x,根据表格知,180×5+80×7=1460<1730,则该同学家的用水量包括第三阶梯水价费用,依题意得:180×5+80×7+(x−260)×9=1730,解得x=290.故选C.【点睛】本题考查了一元一次方程的应用.19.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于()A.10分 B.15分 C.20分 D.30分【答案】C【解析】解:根据题意列方程得:260t+800=300t,解得:t=20,故选C.点睛:此题要把握再相遇时甲比已多跑了800米,这是一个追及问题,别把它混为相遇问题就能解决.20.某商店把一件商品按标价的九折出售,仍可获利20%,若该商品的进价为每件21元,则该商品的标价为()A.27元B.27.8元C.28元D.28.4元【答案】C【解析】【分析】设该商品的标价是x元,根据按标价的九折出售,仍可获利20%列方程求解即可.【详解】解:设该商品的标价是x元,由题意得:0.9x-21=21×20%,解得:x=28,即该商品的标价为28元,故选:C.【点睛】本题考查一元一次方程的应用,要注意寻找等量关系,列出方程.。
七年级数学不等式组 易错题练习
一元一次不等式易错题
一.选择题(共3小题)
1.当m取何值时,关于x的方程3x+m﹣2(m+2)=3m+x的解在﹣5和5之间?()
A.B.C.D.
2.已知关于x的不等式<6的解也是不等式>﹣1的解,则a的取值范围是()
A.a≥﹣B.a>﹣C.﹣≤a<0D.以上都不正确
3.如果不等式3x﹣m≤0的正整数解是1,2,3,4,那么m的取值范围是()A.12≤m<15B.12<m≤15C.m<15D.m≥12
二.填空题(共5小题)
4.已知关于x的不等式x+1﹣a≤0的正整数解为1,2,3,则a的取值范围是.
5.关于x的不等式x﹣k≤0的正整数解是1、2、3,那么k的取值范围是.6.如果关于x的不等式2x﹣m<0的正整数解恰有2个,则m的取值范围是.
7.如果不等式3x﹣m≤0的正整数解是1,2,那么m的取值范围是.
三.解答题(共12小题)
13.已知关于x的方程(m﹣2)x+3=11﹣m(3﹣x),当m取何值时,方程的解满足下列条件:
(1)有正数解;(2)有负数解;(3)有不小于3的解.
14.m取何值时,关于x的方程的解大于1?
15.解答下列各题:
(1)x取何值时,代数式3x+2的值不大于代数式4x+3的值?
(2)当m为何值时,关于x的方程x﹣1=m的解不小于3?
(3)已知不等式2(x+3)﹣4<0,化简:|4x+1|﹣|2﹣4x|
16.当m取何值时,关于x的方程x﹣(2m+1)x=m(x﹣3)+7的解是负数?17.m取何值时,关于x的方程﹣1=6m+5(x﹣m)的解是非负数.。
(易错题精选)初中数学方程与不等式之一元二次方程基础测试题含答案解析(1)
(易错题精选)初中数学方程与不等式之一元二次方程基础测试题含答案解析(1)一、选择题1.用配方法解方程:x 2﹣2x ﹣3=0时,原方程变形为( )A .(x+1)2=4B .(x ﹣1)2=4C .(x+2)2=2D .(x ﹣2)2=3【答案】B【解析】试题分析:将原方程的常数项﹣3变号后移项到方程右边,然后方程两边都加上1,方程左边利用完全平方公式变形后,即可得到结果.解:x 2﹣2x ﹣3=0,移项得:x 2﹣2x=3,两边加上1得:x 2﹣2x+1=4,变形得:(x ﹣1)2=4,则原方程利用配方法变形为(x ﹣1)2=4.故选B .2.若代数式226(3)1x x m x ++=+-,则m =( )A .-8B .9C .8D .-9【答案】C【解析】【分析】已知等式右边利用完全平方公式化简,利用多项式相等的条件求出m 的值即可.【详解】 226(3)1x x m x ++=+-=x 2+6x+8,可得m=8,故选:C.【点睛】此题考查配方法的应用,解题关键在于掌握计算公式.3.某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x ,那么x 应满足的方程是( )A .x =40%10%2+ B .100(1+40%)(1+10%)=(1+x)2C .(1+40%)(1+10%)=(1+x)2D .(100+40%)(100+10%)=100(1+x)2【答案】C【解析】设平均每次增长的百分数为x ,根据“某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%”,得到商品现在的价格,根据“某商品原价为100元,经过两次涨价,平均每次增长的百分数为x ”,得到商品现在关于x 的价格,整理后即可得到答案.【详解】设平均每次增长的百分数为x .∵某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,∴商品现在的价格为:100(1+40%)(1+10%).∵某商品原价为100元,经过两次涨价,平均每次增长的百分数为x ,∴商品现在的价格为:100(1+x )2,∴100(1+40%)(1+10%)=100(1+x )2,整理得:(1+40%)(1+10%)=(1+x )2.故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,正确找出等量关系,列出一元二次方程是解题的关键.4.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【解析】【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.5.已知x=1是一元二次方程的解,则b 的值为( ) A .0B .1C .D .2【答案】C【解析】【分析】根据一元二次方程解的定义,把x=1代入x 2+bx+1=0得关于b 的一次方程,然后解一次方程即可.【详解】解:把x=1代入x 2+bx+1=0得1+b+1=0,解得b=-2.故选:C .本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.若关于x 的一元二次方程240x x k -+=有两个不相等的实数根,那么k 的取值范围是( )A .k ≠0B .k >4C .k <4D .k <4且k ≠0【答案】C【解析】【分析】根据判别式的意义得到△=(-4)2-4k >0,然后解不等式即可.【详解】∵关于x 的一元二次方程2x 4x k 0-+=有两个不相等的实数根,∴2=(-4)40k ∆->解得:k <4.故答案为:C .【点睛】本题考查的知识点是一元二次方程根的情况与判别式△的关系,解题关键是熟记一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.7.用配方法解方程2640x x ++=时,原方程变形为( )A .2(3)9x +=B .2(3)13x +=C .2(3)5x +=D .2(3)4x +=【答案】C【解析】【分析】方程整理后,配方得到结果,即可做出判断.【详解】解:方程配方得:x 2+6x+5+4-5=0,即(x+3)2=5.故选:C .【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.8.下列方程中,属于一元二次方程的是( )A .21130x x +-=B .ax 2+bx +c =0C.x2+5x=x2﹣3 D.x2﹣3x+2=0【答案】D【解析】【分析】根据一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为0,可得答案.【详解】解:A、是分式方程,故A错误;B、a=0时是一元一次方程,故B错误;C、是一元一次方程,故C错误;D、是一元二次方程,故D正确.故选:D.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.9.下列方程中,有实数根的是()A0+==B1C10=D x-【答案】D【解析】【分析】根据二次根式的性质逐项分析即可.【详解】A.∵x2+2≥2,0≥≠,故不正确;B.∵x-2≥0且2-x≥0,∴x=20=,故不正确;C0≥≠,故不正确;≥110D.∵x+1≥0,-x≥0,∴-1≤x≤0.x-,∴x+1=x2,∴x2-x-1=0,∵∆=1+4=5>0,∴x1,x2(舍去),-有实数根,符合题意.x【点睛】本题考查了二次根式的性质,无理方程的解法,以及一元二次方程的解法,熟练掌握各知识点是解答本题的关键.10.某厂四月份生产零件100万个,第二季度共生产零件282万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .100(1+x )2=282B .100+100(1+x )+100(1+x )2=282C .100(1+2x )=282D .100+100(1+x )+100(1+2x )=282【答案】B【解析】【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【详解】五月份的产量=100(1+x ),六月份的产量=1002(1)x +, 根据题意可得:100+100(1+x )+1002(1)x +=282.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量.11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x ,则下面所列方程中正确的是( )A .22251196x (﹣)=B .21961225x (﹣)=C .22251196x (﹣)= D .21961225x (﹣)=【答案】A【解析】【分析】 可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.第一次降价后的价格为225×(1﹣x ),第二次降价后的价格为225×(1﹣x )×(1﹣x ),则225(1﹣x )2=196.故选A .【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .12.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】A【解析】【分析】利用一次函数性质得出k >0,b≤0,再判断出△=k 2-4b >0,即可求解.【详解】解:Q 一次函数y kx b =+的图象不经过第二象限, 0k ∴>,0b ≤,240k b ∴∆=->,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.13.设x 1,x 2是方程220160x x --=的两实数根,则31220172016x x +-的值是( ) A .2015B .2016C .2017D .2018 【答案】C【解析】【分析】采用“降次”思想,将31x 转化为120172016+x ,再利用根与系数的关系可得答案.【详解】∵x 1,x 2是方程220160x x --=的两实数根∴x 1+x 2=1,21120160--=x x∴211=2016+x x 32111111=2016=20162016=20172016++++x x x x x x∴31220172016x x +-=122017201620172016++-x x=()122017+x x=2017故选C .【点睛】 本题考查一元二次方程根与系数的关系,熟记公式12=b x x a+-,以及采用降次思想进行转化是解题的关键.14.如图,过点()1,2C 分别作x 轴、y 轴的平行线,交直线5y x =-+于A 、B 两点,若反比例函数(0)k y x x=>的图象与ABC V 有公共点,则k 的取值范围是( )A .2524k ≤≤B .26k ≤≤C .24k ≤≤D .46k ≤≤【答案】A【解析】【分析】 由点C 的坐标结合直线AB 的解析式可得出点A 、B 的坐标,求出反比例函数图象过点C 时的k 值,将直线AB 的解析式代入反比例函数解析式中,令其根的判别式△≥0可求出k 的取值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段AB 上,综上即可得出结论.【详解】解:令y =−x +5中x =1,则y =4,∴B (1,4);令y =−x +5中y =2,则x =3,∴A (3,2),当反比例函数k y x =(x >0)的图象过点C 时,有2=1k , 解得:k =2,将y =−x +5代入k y x=中,整理得:x 2−5x +k =0,∵△=(−5)2−4k≥0,∴k ≤254, 当k =254时,解得:x =52, ∵1<52<3, ∴若反比例函数k y x=(x >0)的图象与△ABC 有公共点,则k 的取值范围是2≤k≤254, 故选:A .【点睛】 本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A 、C 时的k 值以及直线与双曲线有一个交点时k 的值.15.已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定【答案】B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.16.关于x 的一元二次方程x 2+ax ﹣1=0的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【答案】D【解析】∵△=24a +>0,∴方程有两个不相等的实数根.故选D .17.某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .()2100181x +=B .()2811100x +=C .()2811100x -=D .()2100181x -=【答案】D【解析】【分析】此题利用基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【详解】由题意可列方程是:()2100181x -=.故选:D.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于列出方程18.方程x 2﹣9x +14=0的两个根分别是等腰三角形的底和腰,则这个三角形的周长为( )A .11B .16C .11或16D .不能确定 【答案】B【解析】【分析】先利用因式分解法解方程求出x 的值,再分情况讨论求解可得.【详解】∵x 2﹣9x +14=0,∴(x ﹣2)(x ﹣7)=0,则x ﹣2=0或x ﹣7=0,解得x =2或x =7,当等腰三角形的腰长为2,底边长为7,此时2+2<7,不能构成三角形,舍去; 当等腰三角形的腰长为7,底边长为2,此时周长为7+7+2=16,故选:B .【点睛】此题考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.若关于x 的一元二次方程2304kx x --=有实数根,则实数k 的取值范围是( ) A .0k =B .13k ≥-C .13k ≥-且0k ≠D .13k >- 【答案】C【解析】【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k 的不等式,解得即可,同时还应注意二次项系数不能为0.【详解】∵关于x 的一元二次方程2304kx x --=有实数根, ∴△=b 2-4ac≥0,即:1+3k≥0, 解得:13k ≥-, ∵关于x 的一元二次方程kx 2-2x+1=0中k≠0,故选:C .【点睛】本题考查了一元二次方程根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.20.方程22310x x +-=的两根之和为( )A .32-B .23-C .3-D .12【答案】A【解析】【分析】据一元二次方程的根与系数的关系即可判断.【详解】 根据一元二次方程的根与系数的关系可得:两个根的和是:32-. 故选:A .【点睛】此题考查根与系数的关系,解题关键在于掌握若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-12b c x x a a =,. .。
不等式经典题型专题练习(含答案)-
26.解:(1)原不等式组的解集是x<2;(2)a=1.
27.(1)答案见解析;(2) 型住房 套, 型住房 套获得利润最大;(3)答案见解析.
19.6
20.(1)参赛学生人数在155≤x<200范围内;
(2)参赛学生人数是180人.
21.(1)40,50(2)当m=15时,总费用最低
22.(1)共有8种购买方案,
方案1:购买康乃馨1支,购买兰花6支;
方案2:购买康乃馨1支,购买兰花7支;
方案3:购买康乃馨1支,购买兰花8支;
方案4:购买康乃馨2支,购买兰花5支;
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
25.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,求a的取值范围.
16.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?
17.3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。每个小组原先每天生产多少件产品?
方案5:购买康乃馨2支,购买兰花6支;
方案6:购买康乃馨3支,购买兰花4支;
初中不等式综合练习(经典题--易错题)
不等式 一、选择题 1.如果不等式ax ≤2的解集是x ≥-4,则a 的值为 ( ).(A )a =21- (B )a ≤21- (C )a >21- (D )a <21 2.不等式组⎩⎨⎧≥->+424,532x x 的解集为 ( ). (A )x >1 (B )x >32 (C )x ≥1 (D )x ≥32 3.如果10<<x ,则下列不等式成立的( )A 、x x x 12<<B 、x x x 12<<C 、21x x x <<D 、x x x<<21 4.对于x +1和x ,下列结论正确的是 ( ).(A )x +1≥x (B )x +1≤x (C )x +1>x (D )x +1<x5.不等式组⎩⎨⎧≤->+03,02x x 的最大整数解是 ( ). (A )x =-2 (B )x =2 (C )x =3 (D )x =46.下列不等式解法正确的是( )A .如果221>-x ,那么1-<x . B .如果x x 3223->,那么0<x . C .如果33-<x ,那么1->x . D .如果0311<-x ,那么0>x . 7.三个连续自然数的和小于11,这样的自然数组共有( )组A .1B .2C .3D .48.不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ,那么m 的取值范围是( ) A .4≥m B .4≤m C .4<m D .4=m9.如果不等式ax+4<0的解集在数轴上表示如图,那么a 的值是( )A .a>0B .a<0C .a=-2D .a=210.如果不等式 ⎩⎨⎧><m x x 8 无解,那么m 的取值范围是( ) A .m>8 B .m ≥8 C .m<8 D .m ≤811.如果不等式组320x x m -≥⎧⎨≥⎩有解,则m 的取值范围是( ) A .m<32 B .m ≤32 C .m>32 D .m ≥3212.关于x 的不等式组1532223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a 的取值范围是:( ) A .-5≤a ≤-143 B .-5≤a<-≤-143 C .-5<a ≤-143 D .-5<a<-143 二、填空题1.关于x 的方程2x+3k=1的解是负数,则x 的取值范围是_______.2.若不等式(m-2)x>2的解集是x<22-m ,则x 的取值范围是_______. 3.不等式组⎩⎨⎧-<+<212m x m x 的解集是x <m -2,则m 的取值应为________4.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x 页,所列不等式为___________.5.(2009恩施市)若不等式组⎩⎨⎧>->-0x 2b 2a x 的解集是1x 1<<-,则=+2006)b a (___________。
(易错题精选)初中数学方程与不等式之不等式与不等式组综合练习(1)
(易错题精选)初中数学方程与不等式之不等式与不等式组综合练习(1)一、选择题1.下列命题中逆命题是真命题的是( )A .若a > 0,b > 0,则a·b > 0B .对顶角相等C .内错角相等,两直线平行D .所有的直角都相等 【答案】C【解析】【分析】先写出各命题的逆命题,再分别根据不等式的性质、对顶角、平行线的性质、角的概念逐项判断即可.【详解】A 、逆命题:若0a b ->,则0,0a b >>反例:2,1a b ==-时,2(1)0a b -=-->即此逆命题是假命题,此项不符题意B 、逆命题:如果两个角相等,那么这两个角是对顶角相等的角不一定是对顶角即此逆命题是假命题,此项不符题意C 、逆命题:两直线平行,内错角相等此逆命题是真命题,此项符合题意D 、逆命题:相等的角都是直角此逆命题是假命题,此项不符题意故选:C .【点睛】本题考查了不等式的性质、对顶角、平行线的性质、角的概念,熟记各性质与定义是解题关键.2.关于 x 的不等式组21231x x a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为( )A .-2≤a <-1B .-2<a≤-1C .-3≤a <-2D .-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:21231x x a -⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72, 解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72, 因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a <−1.故选A .【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A .21090(18)2100x x +-≥B .90210(18)2100x x +-≤C .21090(18) 2.1x x +-≤D .21090(18) 2.1x x +->【答案】A【解析】设至少要跑x 分钟,根据“18分钟走的路程≥2100米”可得不等式:210x+90(18–x )≥2100,故选A .4.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( ) A .B .C .D .【答案】B【解析】【分析】分别解不等式组中的每一个不等式,再求解集的公共部分.【详解】由-x≤1,得x≥-1,则不等式组的解集为-1≤x <3.故选:B .【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1 【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a 的取值范围是a <1.【详解】解:0122x a x x -≥⎧⎨->-⎩①②, 由①得:x≥a ,由②得:x <1,∵不等式组有解,∴a <1,故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.6.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x 的取值范围为( )A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.7.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是( ) A .a <2B .a >2C .a≥2D .a≤2 【答案】D【解析】【分析】由不等式组无解,利用不等式组取解集的方法确定出a 的范围即可.【详解】 ∵不等式组232x a x a +⎧⎨-⎩><无解,∴a +2≥3a ﹣2,解得:a ≤2. 故选D .【点睛】本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解答本题的关键.8.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为( ) A .1k > B .1k < C .1k ³ D .1k ≤【答案】C【解析】【分析】首先将不等式组中的不等式的解集分别求出,根据题意得出关于k 的不等式,求出该不等式的解集即可.【详解】解不等式组29611x x x k +>+⎧⎨-<⎩可得:21x x k <⎧⎨<+⎩, ∵该不等式组的解集为:2x <,∴12k +≥,∴1k ≥,故选:C.【点睛】本题主要考查了解一元一次不等式组的运用,熟练掌握相关方法是解题关键.9.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ). A .17B .18C .22D .25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:32212203y y y a --⎧+>⎪⎪⎨-⎪⎪⎩…, 不等式组整理得:1y y a >-⎧⎨⎩…, 由不等式组至少有四个整数解,得到-1<y ≤a ,解得:a ≥3,即整数a =3,4,5,6,…,2-322a x x=--, 去分母得:2(x -2)-3=-a ,解得:x =72a -, ∵72a -≥0,且72a -≠2, ∴a ≤7,且a ≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为4,5,6,7,之和为22. 故选:C .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.不等式组32110x x -<⎧⎨+≥⎩的解集在数轴上表示正确的是( )A .B .C .D .【答案】D【解析】【分析】 分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】32110 x x -<⎧⎨+≥⎩①② 解不等式①得,1x <,解不等式②得,1x ≥-所以,不等式组的解集为:-11x ≤<,在数轴上表示为:故选D.【点睛】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.已知不等式组122x a x b +>⎧⎨+<⎩的解集为23x -<<,则2019()a b +的值为( ) A .-1B .2019C .1D .-2019 【答案】A【解析】【分析】根据不等式组的解集即可得出关于a 、b 的方程组,解方程组即可得出a 、b 值,将其代入计算可得.【详解】解不等式x +a >1,得:x >1﹣a ,解不等式2x +b <2,得:x <22b -, 所以不等式组的解集为1﹣a <x <22b -. ∵不等式组的解集为﹣2<x <3, ∴1﹣a =﹣2,22b -=3, 解得:a =3,b =﹣4, ∴201920192019()(34)(1)a b +=-=-=﹣1.故选:A .【点睛】本题考查了解一元一次不等式组,解题的关键是求出a 、b 值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.13.若关于x 的不等式组0521x a x -⎧⎨-<⎩…的整数解只有3个,则a 的取值范围是( ) A .6≤a <7B .5≤a <6C .4<a ≤5D .5<a ≤6【答案】B【解析】【分析】根据解不等式可得,2<x ≤a ,然后根据题意只有3个整数解,可得a 的范围.【详解】解不等式x ﹣a ≤0,得:x ≤a ,解不等式5﹣2x <1,得:x >2,则不等式组的解集为2<x ≤a .∵不等式组的整数解只有3个,∴5≤a <6.故选:B .【点睛】本题主要考查不等式的解法,根据题意得出a 的取值范围是解题的关键.14.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4, 因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.15.不等式组26020x x +>⎧⎨-≥⎩的解集在数轴上表示为( )A .B .C .D .【答案】C【解析】【分析】 分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:26020x x +>⎧⎨-≥⎩①②, 由①得:3x >-;由②得:2x ≤,∴不等式组的解集为32x -<≤,表示在数轴上,如图所示:故选:C .【点睛】考核知识点:解不等式组.解不等式是关键.16.2222(2)(3)(5)(7)9x x x x ----≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】 ()()()()222223579x x x x ----, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.17.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个【答案】B【解析】【分析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解.【详解】不等式组0420x m x -<⎧⎨-<⎩①②由①得x <m ;由②得x >2;∵m 的取值范围是4<m <5,∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个. 故选B .【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.18.若关于x 的不等式x <a 恰有2个正整数解,则a 的取值范围为( )A .2<a ≤3B .2≤a <3C .0<a <3D .0<a ≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a 的取值范围【详解】由于x<a 恰有2个正整数解,即为1和2,故2<a ≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a 的不等式是解题的关键19.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.20.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ 【答案】D【解析】【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a ≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.。
(易错题精选)初中数学方程与不等式之分式方程专项训练解析附答案(1)
(易错题精选)初中数学方程与不等式之分式方程专项训练解析附答案(1) 一、选择题1.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣34【答案】B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.2.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.【答案】B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.3.已知关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3B .m <4C .m ≤4且m ≠3D .m >5且m ≠6 【答案】A【解析】【详解】 方程两边同时乘以x -1得,1-m -(x -1)+2=0,解得x =4-m .∵x 为正数,∴4-m >0,解得m <4.∵x ≠1,∴4-m ≠1,即m ≠3.∴m 的取值范围是m <4且m ≠3.故选A .4.把分式方程11122x x x --=--,的两边同时乘以x-2,约去分母,得( ) A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-2 【答案】D【解析】【分析】本题需要注意的有两个方面:①、第二个分式的分母为2-x ,首先要化成x -2;②、等式右边的常数项不要漏乘.【详解】解: 11122x x x--=-- 11+122x x x -=-- 两边同时乘以x-2,约去分母,得1+(1-x)=x-2故选:D【点睛】本题考查解分式方程.5.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5【答案】A【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .6.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .10x -102x=20 B .102x -10x =20 C .10x -102x =13 D .102x -10x =13【答案】C【解析】【分析】 根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10x -102x =13, 故选:C .【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.7.如果关于x 的方程2430ax x +-=有两个实数根,且关于x 的分式方程233x a a x x-+=--有整数解,则 符合条件的整数a 有( )个. A .2 B .3 C .4D .5 【答案】B【解析】【分析】由一元二次方程根的判别式求得a 的取值范围,再解分式方程,利用解为整数分析得出答案.【详解】解:因为:关于x 的方程2430ax x +-=有两个实数根,所以:244(3)0a -⨯-≥,且0a ≠, 解得:43a ≥-且0a ≠, 因为:233x a a x x-+=--,所以:23x a ax a -+=-,所以:(1)22a x a -=+,当1a =时,方程无解,当1a ≠时,方程的解为224211a x a a +==+--, 因为x 为整数且3x ≠,所以1a -是4的约数,所以11,12,14,a a a -=±-=±-=±所以a 的值为:3,1,0,2,3,5--, 又因为:43a ≥-且0a ≠,1,a ≠ 3x ≠, 所以3,0,5a a a =-==不合题意舍掉,所以a 的值为:1,2,3,-.故选B .【点睛】本题考查的是一元二次方程根的判别式,分式方程的解的情况,掌握知识点并能注意到分式方程的增根是解题关键.8.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.9.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .2【答案】D【解析】【分析】 由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2B .2C .4D .-4【答案】D【解析】【详解】 2122m x x x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2.当x =2时,m +4=2﹣2,m =﹣4,故选D .11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 【答案】D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.12.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.13.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a 的范围为﹣6<a <1,且a ≠﹣2,即整数a 的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a 的和是﹣13,故选C .点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( ) A .900900213x x ⨯=+- B .900900213x x =⨯+- C .900900213x x ⨯=-+ D .900900213x x =⨯-+ 【答案】A【解析】【分析】设规定时间为x 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x 天,则慢马需要的时间为(x +1)天,快马的时间为(x -3)天, ∵快马的速度是慢马的2倍 ∴900900213x x ⨯=+- 故选A .【点睛】 本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.15.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( ) A .12B .14C .16D .18【答案】C【解析】【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论.【详解】解分式方程26344axx x-+=---得:x=43a-,因为分式方程的解为正数,所以43a->0且43a-≠4,解得:a<3且a≠2,解不等式1722xa xx>⎧⎪⎨+≥-⎪⎩,得:x≤a+7,∵不等式组有解,∴a+7>1,解得:a>-6,综上,-6<a<3,且a≠2,则满足上述要求的所有整数a的绝对值的和为:|-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16,故选:C.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a<3且a≠2是解题的关键.16.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.480x+480+20x=4 B.480x-480+4x=20 C.480x-480+20x=4 D.4804x--480x=20【答案】C【解析】【分析】根据题意列出方程即可.【详解】由题意得480 x -480+20x=4故答案为:C.【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.17.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a,若数a使关于x的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.18.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+ D .302510180(%)x x -=+ 【答案】A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .19.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x 个月,则根据题意可列方程中错误的是( )A .3212x x +=- B .32212x x x ++=- C .3+2212x x +=-D .3112()12x x x ++=- 【答案】A【解析】【分析】设甲队单独完成全部工程需x 个月,则乙队单独完成全部工程需要(x -2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x 个月,则乙队单独完成全部工程需要(x -2)个月,根据题意,得:5212x x +=-; A 、3212x x +=-,与上述方程不符,所以本选项符合题意; B 、32212x x x ++=-可变形为5212x x +=-,所以本选项不符合题意; C 、3+2212x x +=-可变形为5212x x +=-,所以本选项不符合题意;D、3112()12x x x++=-的左边化简得5212x x+=-,所以本选项不符合题意.故选:A.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.20.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.405012x x=-B.405012x x=-C.405012x x=+D.405012x x=+【答案】B【解析】试题解析:设乙车的速度为x千米/小时,则甲车的速度为(x-12)千米/小时,由题意得,405012x x=-.故选B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不
等式
一、选择题 1.如果不等式ax ≤2的解集是x ≥-4,则a 的值为 ( ).
(A )a =21-
(B )a ≤21- (C )a >21- (D )a <21 2.不等式组⎩⎨⎧≥->+4
24,532x x 的解集为 ( ). (A )x >1 (B )x >
32 (C )x ≥1 (D )x ≥32 3.如果10<<x ,则下列不等式成立的( )
A 、x x x 12<<
B 、x x x 12<<
C 、21x x x <<
D 、x x x
<<21 4.对于x +1和x ,下列结论正确的是 ( ).
(A )x +1≥x (B )x +1≤x (C )x +1>x (D )x +1<x
5.不等式组⎩
⎨⎧≤->+03,02x x 的最大整数解是 ( ). (A )x =-2 (B )x =2 (C )x =3 (D )x =4
6.下列不等式解法正确的是( )
A .如果221>-
x ,那么1-<x . B .如果x x 3
223->,那么0<x . C .如果33-<x ,那么1->x . D .如果0311<-x ,那么0>x . 7.三个连续自然数的和小于11,这样的自然数组共有( )组
A .1
B .2
C .3
D .4
8.不等式组⎩⎨⎧>-<+-m
x x x 62的解集是4>x ,那么m 的取值范围是( ) A .4≥m B .4≤m C .4<m D .4=m
9.如果不等式ax+4<0的解集在数轴上表示如图,那么a 的值是( )
A .a>0
B .a<0
C .a=-2
D .a=2
10.如果不等式 ⎩⎨⎧><m
x x 8 无解,那么m 的取值范围是( ) A .m>8 B .m ≥8 C .m<8 D .m ≤8
11.如果不等式组320x x m -≥⎧⎨≥⎩
有解,则m 的取值范围是( ) A .m<32 B .m ≤32 C .m>32 D .m ≥32
12.关于x 的不等式组1532223
x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a 的取值范围是:( ) A .-5≤a ≤-
143 B .-5≤a<-≤-143 C .-5<a ≤-143 D .-5<a<-143 二、填空题
1.关于x 的方程2x+3k=1的解是负数,则x 的取值范围是_______.
2.若不等式(m-2)x>2的解集是x<
22-m ,则x 的取值范围是_______. 3.不等式组⎩
⎨⎧-<+<212m x m x 的解集是x <m -2,则m 的取值应为________ 4.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x 页,所列不等式为___________.
5.(2009恩施市)若不等式组⎩⎨⎧>->-0
x 2b 2a x 的解集是1x 1<<-,则=+2006)b a (___________。
6.已知关于x 的不等式组0521x a x -≥⎧⎨
->⎩
只有四个整数解,则实数a 的取值范围是 . 三、解答题
1.解下列不等式组: (1)⎪⎩⎪⎨⎧->-+<-;215123),12(334x x x x (2)⎪⎩⎪⎨⎧<++-<-;13
12),2(34x x x x (3)⎩⎨⎧-<-+>-;
421211,1582x x x x (4)⎩⎨⎧->--<+;31052,932x x x x
2.在△ABC 中,AB =AC ,BC =10 cm .如果这个三角形的周长必须大于34 cm ,小于44 cm ,求AB 的可能范围.
3.已知方程组⎩
⎨⎧=+-=+2212y x m y x 的解x 、y 满足x +y >0,求m 的取值范围. 4、已知)1(645)25(3+-<++x x x ,化简:x x 3113--+
5、.若不等式组⎩⎨⎧-+n
m x n m x 的解是53 x -,求不等式0 n mx -的解集。
四、 应用题
1.有个两位数的十位数字与个位数字的和大于11,如果这个两位数减去18后所得到的两位数是原两位数的十位数字与个位数字互换的两位数,求原来的两位数
2、 一群猴子,一天结伴去偷桃子,在分桃子时,如果每个猴子分了3个,那么还剩59个;如果每一个猴子分
5个,就都能分得桃子,但剩下一个猴子分得的桃子不够5个,你能求出有几只猴子,几个桃子吗?
3.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.
(1)该校初三年级共有多少人参加春游?
(2)请你帮该校设计一种最省钱...
的租车方案. 1.关于x 的方程3(x+1)=k+3的解是正数,则k 的取值范围是 。
2. a 为何值时,方程2x –a=10a –9+7x 的解为负数?
3.已知适合不等式2
13a 2x x -≥+的x 的值是正数,请确定实数a 的取值范围。
4. 已知不等式x+8>4x+m (m 是实数)的解集是x<3,求m 。
5.关于x 的不等式223-≤-a x 的解集如图所示,求a 的值。
6.如果关于x 的不等式5)1(+<-a x a 和2x<4的解集相同,则a=__________.
7. 若方程组⎩
⎨⎧3x+2y=m+14x+3y=m –1的解满足x>y,试求m 的取值范围. 8. 关于x ,y 的方程组3214x y m x y m
+=+⎧⎨+=⎩的解满足x ,y 均小于2,请根据条件求出m 的取值范围。
9.已知方程组⎩⎨⎧--=++=-a
y x a y x 731的解x 为非正数,y 为负数. (1)求a 的取值范围;
(2)在a 的取值范围中,当a 为何整数时,不等式2ax +x>2a+1的解为x <1
10. 已知│2x-24│+(3x-y-m)2
=0中,0<y<1,则m 的取值范围是什么?。