七年级数学下册探索轴对称的性质习题
七年级下数学《探索轴对称的性质》典型例题
![七年级下数学《探索轴对称的性质》典型例题](https://img.taocdn.com/s3/m/0d6f8b9f8e9951e79a892700.png)
(4)垂直线段相等
解:因为
所以
≌
所以 AD 垂直平分 BC
点 P 在 DA 的延长线上
所以 PA、PB 关于 PD 对称
所以
本题的其他解法略
例 4 分析:在图 1 中给出对称轴,可以根据对称轴的性质,对应点连线被
对称轴垂直平分画出另一部分,在图 2 中,根据轴对称的性质,很容易画出对称
图1
图2
图3
5.2 探索轴对称的性质 一、选择题 1.下列图形中,哪一幅成轴对称( )
2.下列说法正确的是( ) A.两个全等的三角形合在一起是轴对称图形 B.两个轴对称的三角形一定是全等的 C.线段不是轴对称图形
D.三角形的一条高线就是它的对称轴 3.如果三角形的某一边的中点到其他两边的距离相等,则这个三角形一定 是( ) A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形 4.下列图形中不是轴对称图形的是( ) A.互相垂直的两条直线构成的图形 B.一条直线和直线外一点 C.有一个内角是 60 度的三角形 D.扇形 二、填空题 1.等腰三角形是轴对称图形,它的底边被对称轴_____________. 2.等边三角形的对称轴有__________条,是_________. 3.轴对称的基本性质是:________________________________________. 三、解答题 1.完成下列作图. (1)如图是轴对称图形的一部分,其中 是对称轴,请把它补充完整.
(2)如图是轴对称图形的一部分,其中 是对称轴,请把它补充完整.
(3)如图请画出该图以 为对称轴的另一图形.
2.把一张纸折叠然后用针尖扎一个如图所示的图案,这样你就会得到轴对 称的两个图案,请你分别找出两组对应点,对应线段、对应角.
2020版七年级数学下册第五章生活中的轴对称试题(新版)北师大版及参考答案
![2020版七年级数学下册第五章生活中的轴对称试题(新版)北师大版及参考答案](https://img.taocdn.com/s3/m/9cf9d86059eef8c75ebfb312.png)
第五章生活中的轴对称1.判断是否为轴对称图形的方法(1)折叠法:把图形沿着某一条直线折叠,直线两旁的部分互相重合,只要找到该直线,那么此图形就是轴对称图形,否则,为非轴对称图形.(2)观察、想象法:通过观察、目测,能够找到对称轴,则此图形就是轴对称图形.【例】下列交通标志是轴对称图形的是( )【标准解答】选D.图中的A,B,C均不能画出一条直线,使图形两边的部分完全重合,只有D可以.下列四个图案中,轴对称图形的个数是( )A.1B.2C.3D.42.作轴对称图形的两种方法(1)应用性质:根据轴对称图形的性质,分别作出这个图形上的一些特殊点关于对称轴的对称点,再顺次连接这些对称点,就可以得到原图形的轴对称图形.【例1】如图是2002年在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就,又像一只转动着的风车,欢迎世界各地的数学家们.请将“弦图”中的四个直角三角形通过你所学过的图形变化,在以下方格纸中设计另外两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠;(2)所设计的图案(不含方格纸)必须是轴对称图形.【标准解答】(2)借助坐标系:利用平面直角坐标系中点关于x,y轴的对称点的特点,分别描出这个图形关于这个坐标轴的对称点,再顺次连接这些对称点就可以得到原图形关于这个坐标轴的轴对称图形.【例2】每个小方格是边长为1个单位长度的小正方形,四边形ABCD在图中的位置如图所示,且AD∥BC,在图中画出四边形ABCD关于直线AD的轴对称图形AB1C1D.【标准解答】作图如下:1.下列四个图形分别是“节能”“节水”“低碳”和“绿色食品”标志,其中轴对称图形是( )2.以下图形中对称轴的数量小于3条的是( )3.下列“慢行通过”“注意危险”“禁止行人通行”“禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作轴对称图形的是( )5.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使其成为轴对称图形,这样的白色小方格有个.6.如图,有一个英语单词,四个字母都关于直线l对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品.跟踪训练答案解析1.判断是否为轴对称图形的方法【跟踪训练】【解析】选C.要判别一个图形是否是轴对称图形,只需能找到一条直线,使整个图形沿着这条直线折叠后两边能完全重合,其中图①,②,④均可以找到这样的直线,但图③不能找到这样的直线,所以图③不是轴对称图形.2.作轴对称图形的两种方法【跟踪训练】1.【解析】选D.由轴对称图形的定义和特征:存在对称轴,并沿对称轴对折的两部分能完全重合,只有选项D符合轴对称图形的特征.2.【解析】选D.A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选D.3.【解析】选B.A、不是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.4.【解析】选A.轴对称图形沿某条直线折叠后,直线两侧的部分能完全重合,只有“吉”符合轴对称图形的特点.5.【解析】如图所示,满足条件的小正方形共有3个.答案:36.【解析】如图,这个单词所指的物品是书.答案:书。
七年级数学下册 5.2探索轴对称的性质 检测(含答案)
![七年级数学下册 5.2探索轴对称的性质 检测(含答案)](https://img.taocdn.com/s3/m/bba961e558fafab068dc0247.png)
【解答】解:根据轴对称的性质得:∠B′OG=∠BOG 又∠AOB′=70°,可得∠B′OG+∠BOG=110°
∴∠B′OG= ×110°=55°. 14.如图所示:点 P 为∠AOB 内一点,分别作出 P 点关于 OA、OB 的对称点 P1,P2,连接 P1P2 交 OA 于
M,交 OB 于 N,△PMN 的周长为 15cm,P1P2= 15cm . 【解答】解:∵P 点关于 OA、OB 的对称点 P1、P2, ∴PM=P1M,PN=P2N, ∴△PMN 的周长=PM+MN+PN=P1M+MN+P2N=P1P2, ∵△PMN 的周长是 15, ∴P1P2=15. 故答案为:15cm.
4.下列语句:①两个图形关于某直线对称,对应点一定在该直线的两旁;②平面上完全相同的两个图形一
定关于某条直线对称;③如果线段 AB 和 A′B′关于某条直线对称,则 AB=A′B′;④如果 M,N 两
点到直线 L 的距离相等,那么 M,N 两点关于直线 L 对称.其中正确的有( )
A.1 个
B.2 个
定关于某条直线对称;③如果线段 AB 和 A′B′关于某条直线对称,则 AB=A′B′;④如果 M,N 两
点到直线 L 的距离相等,那么 M,N 两点关于直线 L 对称.其中正确的有( )
A.1 个
5.2 探索轴对称的性质 北师大版数学七年级下册同步练习(含解析)
![5.2 探索轴对称的性质 北师大版数学七年级下册同步练习(含解析)](https://img.taocdn.com/s3/m/ab7f87b0b8d528ea81c758f5f61fb7360b4c2b39.png)
第五章 生活中的轴对称2 探索轴对称的性质基础过关全练知识点 轴对称的性质1.如图,直线MN是四边形AMBN的对称轴,P是直线MN上的点,连接AP,BP.下列判断不一定正确的是( )A.AM=BMB.∠ANM=∠BNMC.∠MAP=∠MBPD.AP=BN2.【教材变式·P119做一做变式】将一张圆形纸片对折再对折,得到如图所示的图形,然后沿着虚线剪开,得到两部分.其中一部分展开后的平面图形是( )A B C D3.【新独家原创】如图,△ABC与△DEF关于直线l对称.(1)点D的对应点为 ;(2)若∠C=33°,则∠F= ;(3)若BC=9,则EF= ;(4)若AB=5,AC=6,求EF的取值范围.能力提升全练4.【新考法】(2022河北中考改编,2,)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的( )A.中线B.既是中线,又是角平分线C.高线D.角平分线5.(2022河北保定十七中期末,16,)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是( )A.0B.5C.6D.76.【分类讨论思想】(2022河北张家口一模,15,)如图,平行线m,n间的距离为5,直线l与m,n分别交于点A,B,α=45°,在m上取点P(不与点A重合),作点P关于l的对称点Q.若PA=3,则点Q到n的距离为( )A.2B.3C.2或8D.3或87.【跨学科·物理】(2022山东济南高新期末,10,)如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时入射角等于反射角(即∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……,第2 022次碰到长方形边上的点为图中的( )A.P点B.B点C.C点D.D点8.(2022浙江杭州余杭期中,10,)将一张细长的长方形纸条按如图所示的方式折叠,始终使得边AB∥CD,则下列关于∠1与∠2的判断正确的是( )A.∠1=∠2B.∠1=2∠2C.无论怎么折叠,∠1与∠2不可能相等D.若∠1=50°,则∠2=40°素养探究全练9.【抽象能力】如图,要在公路MN旁修建一个货物中转站,分别向A,B两个开发区运货,若要货物中转站到A,B 两个开发区的距离和最小,那么货物中转站应修建在何处?说明理由.10.【抽象能力】如图,将长方形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕.(1)试说明:△FGC≌△EBC;(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.答案全解全析基础过关全练1.D ∵直线MN是四边形AMBN的对称轴,∴AM=BM,∠MAP=∠MBP,∠ANM=∠BNM.由于AP和BN不是对应线段,故AP不一定等于BN.故选D.2.C 根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直平分.故选C.3.解析 (1)点A.(2)∠C的对应角为∠F,∴∠F=∠C=33°.(3)9.(4)∵AB=5,AC=6,∴1<BC<11,∵EF=BC,∴1<EF<11.能力提升全练4.D 如图,由折叠的性质可知∠CAD=∠BAD,∴AD是△ABC的角平分线,故选D.5.B 如图,连接OP1,OP2,P1P2,∵点P关于直线l,m的对称点分别是点P1,P2,∴OP1=OP=2.8,OP2=OP=2.8,∵OP1+OP2>P1P2,∴0<P1P2<5.6,故选B.6.C 如图①,当点P在点A左侧时,作点P关于l的对称点Q,连接AQ.由轴对称,得QA=PA=3,∠PAQ=2α=90°,故点Q到n的距离为5-3=2;图①图②如图②,当点P在点A右侧时,同理,点Q到n的距离为5+3=8.综上所述,点Q到n的距离为2或8.故选C.7.A 如图所示,小球第6次碰到长方形边时,回到出发点P,∵2 022÷6=337,∴第2 022次碰到长方形的边时的点为图中的点P,故选A.8.D 如图,由折叠知∠1=∠BAE,∠2=∠DCF,∴∠BAB'=2∠1,∠DCD'=2∠2,∵AB∥CD,∴∠BAC=∠DCD',∴180°-2∠1=2∠2,∴2∠1+2∠2=180°,∴∠1+∠2=90°,当∠1=∠2=45°时,∠1=∠2,故选项C错误,选项A错误;当∠1=60°,∠2=30°时,才有∠1=2∠2,故选项B错误;∵∠1+∠2=90°,∠1=50°,∴∠2=90°-∠1=40°,故选项D 正确.故选D.素养探究全练9.解析 ①作点A关于直线MN的对称点A';②连接BA'交MN 于点P ,则点P 就是货物中转站的位置.理由:在直线MN 上取一点P'(不与点P 重合),连接AP ,A'P',AP',BP'.因为点A ,A'关于直线MN 对称,点P ,P'在直线MN 上,所以PA =PA',P'A =P'A'.所以PA +PB =PA'+PB =A'B.在△A'P'B 中,因为A'B <P'A'+P'B =P'A +P'B ,所以PA +PB <P'A +P'B ,故点P 就是货物中转站的位置.10.解析 (1)由题意知∠B =∠G =∠BCF =∠ECG =90°,GC =BC ,所以∠GCF +∠FCE =90°,∠FCE +∠BCE =90°,所以∠GCF =∠BCE.所以△FGC ≌△EBC.(2)由题意及(1)知四边形ECGF 的面积=四边形AEFD 的面积=四边形EBCF 的面积=12四边形ABCD 的面积=12×8×4=16.。
北师大七级下《探索轴对称的性质》练习含答案
![北师大七级下《探索轴对称的性质》练习含答案](https://img.taocdn.com/s3/m/49279d5add3383c4ba4cd23f.png)
《探索轴对称的性质》练习一、选择——基础知识运用1.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变2.如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′,下列判断错误的是()A.AB=A′B′B.BC∥B′C′C.直线l⊥BB′D.∠A′=120°3.下列语句中,正确的个数有()①两个关于某直线对称的图形是全等的②两个图形关于某直线对称,对称点一定在该直线的两旁③两个成轴对称的图形的对应点连线的垂直平分线,就是它们的对称轴④平面内两个全等的图形一定关于某直线对称.A.1个B.2个C.3个D.4个4.如图,△ABC和△A′B′C′关于直线对称,下列结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有()A.4个B.3个C.2个D.1个5.已知△ABC关于直线MN对称,则下列说法错误的是()A.△ABC中必有一个顶点在直线MN上B.△ABC中必有两个角相等C.△ABC中,必有两条边相等D.△ABC中必有有一个角等于60°二、解答——知识提高运用6.如图,△ABC和△A′B′C′关于直线l对称,求证:△ABC≌△A′B′C′.若△ABC≌△A′B′C′,那么△ABC和△A′B′C′一定关于某条直线l对称吗?若一定请给出证明,若不一定请画出反例图。
7.如图,△ABC和△A′B′C′关于直线m对称。
(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其它对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流。
8.如图所示,已知O是∠APB内的一点,点M、N分别是O点关于PA、PB的对称点,MN与PA、PB分别相交于点E、F,已知MN=5cm,求△OEF的周长。
1.3探索轴对称的性质——1.1认识三角形
![1.3探索轴对称的性质——1.1认识三角形](https://img.taocdn.com/s3/m/6c789257cf84b9d528ea7a79.png)
知新篇一.轴对称的性质及其应用(1)轴对称的性质:①对应点所连的线段被对称轴 。
②对应 相等,对应 相等。
(2)如图是一个轴对称图形,直线AO 是对称轴, 则相等的线段有: = , = 。
线段CD 被直线AO 。
量得30B∠,则∠E= 。
(3)设A 、B 两点关于直线MN 对称,则_____垂直平分______。
(4)等腰三角形是轴对称图形,它的底边被对称轴_________。
提醒:(1)对称轴上的点即是对应点所连线段的垂直平分线. (2)找准对应线段和对应角。
二.轴对称在实际中的应用 1.按边分类:图(1)是 三角形,图(2)是 三角形,图(3)是 三角形. 2.按角分类:图(1)是 三角形,图(2)是 三角形,图(3)是 三角形. 三.三角形的三边关系1.AB+AC BC, AB-AC BC.2.结论:三角形两边的和______第三边.三角形两边的差____第三边.【典例】【思路分析】判断三条线段能否组成三角形可根据三角形三边关系:“两边之和大于第三边,两边之差小于第三边”进行判断.最简单方法是:看较短两边的和是否大于最长边. 【解析】【点睛】在判断已知三条线段是否能够组成三角形,必须满足下列两个条件之一:(1)如果选最长边作第三边,则需判断其余两边之和大于第三边,(2)如果选最短边作第三边,则需判断其余两边之差小于第三边.三角形三边关系靓题拾贝三角形的三边关系:(1)三角形任意两边之和大于第三边.(2)三角形任意两边之差小于第三边.注意:这里的“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般地取“差”的绝对值. 一、 判断三条已知线段能否组成三角形【例1】已知四组线段的长分别如下,以各组线段为边,能组成三角形的是 ( ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,10解:选C .对于A ,1+2=3,所以A 不能,对于B ,2+5<8,所以B 不能,对于D ,4+5<10,所以D 不能. 二、已知三角形的周长,判断三边能否组成等腰三角形【例2】将长度为12m 的一根铁丝,截成三段,能围成等腰三角形的是 ( ) A.8m ,2m ,2m B.7m ,2.5m ,2.5m C.6m ,3m ,3m D.1m ,5.5m ,5.5m 解:选D .根据三边关系,三个选项A 、B 、C 均有两边之和小于或等于第三边. 三、已知三角形的两边长,求第三边取值的个数【例3】已知三角形的三边长分别是3、8、x ,若x 的值为偶数,则x 的值有 ( ) A.6个 B.5个 C.4个 D.3个解:选D .根据三角形三边关系有:8-3<x <8+3即5<x <11,若x 为偶数,则x=6,8,10.1.探新知 预习乐园提素能 自测自评A B ECD O214版北师七上学案教用P12左上T22.如图,ABC △与A B C '''△关于直线l 对称,则B ∠的度数为( ) A .30B .50C .90D 100.3.下列图形中,哪一幅成轴对称( )4.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( )A.6个B.5个C.4个D.3个5.为估计池塘两岸A 、B 间的距离,杨阳在池塘一侧选取 了一点P ,测得PA=16m ,PB=12m ,那么AB 间的距离不可能是( )A.5mB.15mC.20mD.28m6.一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为______.7.如图,三角形纸片ABC ,10cm 7cm 6cm AB BC AC ===,,,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED △的周长为 cm .8.两根木棒的长分别是8cm ,10cm ,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x 的取值范围是________.9.如图所示,在△ABC 中,D ,E 是BC ,AC 上的两点,连结BE ,AD 交于F ,(1)图中有几个三角形?并表示出来;(2)△BDF 的三个顶点是什么?三条边是什么? (3)AB 边是哪些三角形的边? (4)F 点是哪些三角形的顶点?10.一个等腰三角形的周长是36 cm .(1)已知腰长是底边长的2倍,求各边的长; (2)已知其中一边长8cm ,求另外两边的长.11.已知三角形的两边长分别是4cm 和9cm .(1)求第三边的取值范围; (2)已知第三边长是偶数,求第三边长;(3)求周长的取值范围.12.(全家总动员)一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式",很长时间没有人答出,小兰仅仅拿出了一面镜子,就很快解决了这道题目,你知道她是怎样做的吗?答案探新知,预习乐园:一、1.互相重合 对称轴2.(1)(2)(4)(5)是轴对称图形,都有2条对称轴,(3)是轴对称图形,有无数条对称轴。
数学七年级北师大版 5.2 探索轴对称的性质将军饮马模型
![数学七年级北师大版 5.2 探索轴对称的性质将军饮马模型](https://img.taocdn.com/s3/m/d4d681ab4693daef5ef73dd1.png)
【涉及知识】两点之间线段最短,垂线段最短;
三角形两边三边关系;轴对称;平移;
【解题思路】找对称点,实现折转直
二、将军饮马问题常见模型
1.两定一动型:两定点到一动点的距离和最小
例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.
作法:连接AB,与直线l的交点Q,
作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.
原理:两点之间,线段最短
3.两定两动型最值
例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.
将军饮马模型
一、背景知识:
【传说】
早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.
将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.
在直角△BHE中,BE = = = 2
即PA+PB的和最小.
关键:找对称点
作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.
原理:两点之间,线段最短
证明:连接AC,与直线l的交点Q,P为直线l上任意一点,
在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)
初一数学探索轴对称的性质试题
![初一数学探索轴对称的性质试题](https://img.taocdn.com/s3/m/84245cd8aaea998fcd220ef7.png)
初一数学探索轴对称的性质试题1.下列图形中,哪一幅成轴对称()【答案】B【解析】根据轴对称图形的定义依次分析各个图形即可判断.只有B符合轴对称图形的定义,故选B.【考点】本题考查的是轴对称图形点评:解答本题的关键是熟练掌握轴对称图形的定义:如果把一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形.2.下列说法正确的是()A.两个全等的三角形合在一起是轴对称图形B.两个轴对称的三角形一定是全等的C.线段不是轴对称图形D.三角形的一条高线就是它的对称轴【答案】B【解析】根据轴对称图形的定义依次分析各项即可判断.A.两个全等的三角形合在一起不一定是轴对称图形,故本选项错误;B.两个轴对称的三角形一定是全等的,本选项正确;C.线段是轴对称图形,故本选项错误;D.三角形不一定是轴对称图形,故本选项错误;故选B.【考点】本题考查的是轴对称图形点评:解答本题的关键是熟练掌握轴对称图形的定义:如果把一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形.3.如果三角形的某一边的中点到其他两边的距离相等,则这个三角形一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】三角形的一条边上的中点到其他两边的距离相等,利用全等证明三角形全等,得到两角相等,从而证明两边相等,所以是等腰三角形.∵DE⊥AB,DF⊥AC,∴∠BED=∠DFC=90°,∵在△BDE和△CDF,BD=CD,DE=DF,∴△DBE≌△DFC(HL),∴∠B=∠C,∴AB=AC,∴这个三角形一定是等腰三角形.故选B.【考点】本题考查的是等腰三角形的判定点评:解答本题的关键是熟练掌握全等三角形的判定与性质,同时熟记等角对等边的性质.4.下列图形中不是轴对称图形的是()A.互相垂直的两条直线构成的图形B.一条直线和直线外一点C.有一个内角是60度的三角形D.扇形【答案】C【解析】根据轴对称图形的定义依次分析各项即可判断.A、B、D均是轴对称图形,不符合题意;D.有一个内角是60度的三角形不一定是轴对称图形,符合题意.【考点】本题考查的是轴对称图形点评:解答本题的关键是熟练掌握轴对称图形的定义:如果把一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形.5.等腰三角形是轴对称图形,它的底边被对称轴_____________.【答案】垂直平分【解析】根据等腰三角形的轴对称性即可得到结果.等腰三角形是轴对称图形,它的底边被对称轴垂直平分.【考点】本题考查的是等腰三角形的轴对称性点评:解答本题的关键是熟练掌握等腰三角形是轴对称图形,它的底边被对称轴垂直平分.6.等边三角形的对称轴有__________条,是_________.【答案】3条,底边中线所在直线【解析】根据等边三角形的轴对称性即可得到结果.等边三角形的对称轴有3条,是底边中线所在的直线.【考点】本题考查的是等边三角形的轴对称性点评:解答本题的关键是熟练掌握等边三角形的对称轴有3条,是底边中线所在的直线.7.轴对称的基本性质是:________________________________________.【答案】对应点连线被对称轴垂直平分对应线段相等,对应角相等【解析】直接根据轴对称的基本性质填空即可.轴对称的基本性质是:对应点连线被对称轴垂直平分对应线段相等,对应角相等.【考点】本题考查的是轴对称的基本性质点评:解答本题的关键是熟练掌握轴对称的基本性质是:对应点连线被对称轴垂直平分对应线段相等,对应角相等.8.下面图形中哪些是轴对称图形,请找出来.【答案】(1)(2)(3)(4)是轴对称图形【解析】根据轴对称图形的定义依次分析各个图形即可判断.(1)(2)(3)(4)符合轴对称图形的定义,是轴对称图形.【考点】本题考查的是轴对称图形点评:解答本题的关键是熟练掌握轴对称图形的定义:如果把一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形.9.如图,已知牧马营地在M处,每天牧马人要赶着马群先到河边饮水,再到草地吃草,然后回到营地,试设计出最短的放牧路线.【答案】如图所示:【解析】以河为对称轴作M的对称点,过作草地的垂线,垂线和河的交点H就是所求的点.如图所示:【考点】本题主要考查了轴对称图形在实际生活中的应用点评:解答本题的关键是熟练掌握利用两点之间线段最短的方法,来找最近路线.10.如图(1),(2)分别为6×6正方形网络上的两个轴对称图形(阴影部分)其面积分别为(网格中最小的正方形面积为一个平方单位).请你观察图形并解答下列问题.(1)的值为多少?(2)请在图(3)网络上画一个面积为10个平方单位的轴对称图形.【答案】(1)9:11.(2)如图.【解析】(1)从网格中数小正方形的个数,进行比较,从图可知,A图中有14个小正方形和8个正方形的一半,即有18个正方形.B图中有16个小正方形,和12个正方形的一半,即共有22个正方形.由此得出面积比;(2)根据轴对称图形的性质作图.(1)从图可知,A图中有14个小正方形和8个正方形的一半,即有22个正方形.B图中有16个小正方形,和12个正方形的一半,即共有22个正方形.由此得出面积比SA :SB=18:22=9:11;(2)如图:【考点】本题主要考查轴对称图形点评:解答本题的关键是熟练掌握轴对称图形的定义:如果把一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形;同时注意网格的特征,会利用网格计算面积.。
北师大七年级数学下册--第五章《生活中的轴对称》综合练习(含答案)
![北师大七年级数学下册--第五章《生活中的轴对称》综合练习(含答案)](https://img.taocdn.com/s3/m/3867314a7cd184254b3535b1.png)
第五章生活中的轴对称-----综合练习一、轴对称图形和轴对称:二、轴对称的性质1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。
2、关于某条直线对称的两个图形是全等图形。
3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等;对应点所连的线段被对称轴垂直平分。
4、类似地,轴对称图形的性质有:(1)轴对称图形对应点所连的线段被对称轴垂直平分。
(2)轴对称图形的对应线段、对应角相等。
(3)根据轴对称图形的性质可求作轴对称图形的对应点、对应线段或对应角,并由此能补全轴对称图形。
三、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
五、镜面对称1、镜面对称的有关性质:(1)一个轴对称图形在镜子中的像仍是轴对称图形。
(2)若一个平面图形正对镜面,则其左(右)侧在镜中的像是其右(左)侧;(3)若一个平面图形(物体)垂直于镜面摆放,则靠近镜面的部分,其像也靠近镜面;2、关于数字0、1、3、8在镜面中像的两个结论:(1)如果写数字的纸条垂直于镜面摆放,则纸条上写的0、1、3、8所成的像与原来的数字完全一样。
(2)如果纸条正对镜面摆放,则纸条上写的0、1、8这三个数字在镜中的像和原来的数字完全一样。
3、像与物体到镜面的距离相等。
像与物体的对应点连线被镜面垂直平分。
同步练习:1.下列说法中,不正确的是 ( )A.等腰三角形底边上的中线就是它的顶角平分线B.等腰三角形底边上的高就是底边的垂直平分线的一部分C.一条线段可看作以它的垂直平分线为对称轴的轴对称图形D.两个三角形能够重合,它们一定是轴对称的2.下列推理中,错误的是 ( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形3.下列图形中,不是轴对称图形的是()A.等腰三角形 B.线段 C.钝角 D.直角三角形4.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为 ( )4a C.1.5a D.aA.2a B.35.观察下图中的汽车商标,其中是轴对称图形的个数为 ( )A.2B.3C.4D.56.下列图案中,有且只有三条对称轴的是()7.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 ( )A.0 B.1 C.2 D.38.将写有字母F的纸条正对镜面,则镜中出现的会是()9.正五角星形共有_______条对称轴。
北师大版七年级数学下册 5.2探索轴对称的性质
![北师大版七年级数学下册 5.2探索轴对称的性质](https://img.taocdn.com/s3/m/6bbf6c1610a6f524ccbf8566.png)
E
课后反思:
2
1
七年级数学导学案第 43 课时 主备人:曹晓磊
审核人:
施晓海
审批人: 王文锦
ห้องสมุดไป่ตู้
C.两个成轴对称的图形一定全等 D.两个成轴对称的图形一定不全等 2.下列说法中正确的有( ) . ①角的两边关于角平分线对称; ②两点关于连接它的线段的中垂线为对称; ③成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成 轴对称. ④到直线 L 距离相等的点关于 L 对称 A.1 个 B.2 个 C.3 个 D.4 个 3.下列说法错误的是( ) . A.等边三角形是轴对称图形; B.轴对称图形的对应边相等,对应角相等; C.成轴对称的两条线段必在对称轴一侧; D.成轴对称的两个图形对应点的连线被对称轴垂直平分. 4. 下图是在方格纸上画出的树的一半,以树干为对称轴画出另一半。
七年级数学导学案第 43 课时 主备人:曹晓磊
审核人:
施晓海
审批人: 王文锦
课题:5.2
探索轴对称的性质
学习目标:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直 平分、对应线段相等、对应角相等的性质。 一、自主预习: (1)预习书 118~119 页 思考:轴对称有哪些性质? (2)预习作业: 在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称 轴 ,对应线段_______,对应角_______。 二、合作探究: 例 1.已知 Rt△ABC 中,斜边 AB=2BC,以直线 AC 为对称轴,点 B 的对称点 是 B′,如图所示,则与线段 BC 相等的线段是______,与线段 AB 相等 的线段是_______和_______.•与∠B 相等的角是_______和_______, 因此,∠B=________.
北师大版七年级数学下册培优练习附答案:5.2 探索轴对称的性质
![北师大版七年级数学下册培优练习附答案:5.2 探索轴对称的性质](https://img.taocdn.com/s3/m/b7bbaabf71fe910ef02df815.png)
5.2 探索轴对称的性质一、选择题(共15小题)1. 如图是把一张长方形的纸沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,外面部分展开后的图形是A. B.C. D.2. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是A. B. C. D.3. 下图中序号()()()()对应的四个三角形,都是这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是A. ()B. ()C. ()D. ()4. 下列说法正确的是A. 如果图形甲和图形乙关于直线对称,则图形甲是轴对称图形B. 任何一个图形都有对称轴,有的图形不止一条对称轴C. 平面上两个大小、形状完全一样的图形一定关于某直线对称D. 如果和成轴对称,那么它们的面积一定相等5. 分别以直线为对称轴,所作轴对称图形错误的是A. B.C. D.6. 现有全等的两个三角形、两个四边形和两个圆,其中一定能组成一个轴对称图形的是A. 两个三角形B. 两个四边形C. 两个圆D. 以上都不对7. 下面是四位同学作关于直线对称的,其中正确的是A. B.C. D.8. 钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是A. B.C. D.9. 下列四个图形中,对称轴最多的图形是A. B.C. D.10. 如图,将平行四边形沿对角线折叠,使点落在点处.若,则为A. B. C. D.11. 如图是一个经过改造的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是A. 一号袋B. 二号袋C. 三号袋D. 四号袋12. 我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化.如图2,窗框的一部分所展现的图形是一个轴对称图形,其对称轴有A. 条B. 条C. 条D. 条13. 如图,由四个小正方形组成的田字格中,的顶点都是小正方形的顶点.在田字格上画与成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含本身)共有A. 个B. 个C. 个D. 个14. 下列电视台的台标中,是轴对称图形的是A. B.C. D.15. 下面四个图形分别是节能、绿色食品、节水和低碳标志,在这四个标志中,是轴对称图形的是A. B.C. D.二、填空题(共8小题)16. 下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④若两个图形关于某条直线对称,则其对称点一定在对称轴的两侧.其中正确的是(填序号).17. 在上学的路上,小刚从电瓶车的后视镜里看到一辆汽车,车顶字牌上的字在平面镜中的像是IXAT,则这辆车车顶字牌上的字实际是.18. 如图,把一张长方形纸片沿折叠,点,分别落在点的位置上,交于点,已知,那么.19. 如图,在由四个小正方形组成的田字格中,的顶点都是小正方形的顶点.在田字格上画与成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形共有个.20. 如图,在的正方形网格中,已有个小方格涂成了灰色,现在要从其余白色小方格中选出一个也涂成灰色,使整个灰色部分的图形构成轴对称图形,这样的白色小方格有个.21. 如图,将一张纸条折叠,若,则的度数为.22. 如图,将放在每个小正方形的边长为的网格中,点,点,点均落在格点上.(I)的面积等于;(II)请在如图所示的网格中,用无刻度的直尺,以所在直线为对称轴,作出关于直线对称的图形,并简要说明画图方法(不要求证明).23. 如图,,,与关于直线对称,则.三、解答题(共6小题)24. 画出关于直线的对称图形.25. 我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图所示,将长方形笔记本活页纸片的一角折过去,使角的顶点落在处,为折痕.若,求的度数.(2)在()条件下,如果又将它的另一个角也斜折过去,并使边与重合,折痕为,如图所示,求和的度数.(3)如果在图中改变的大小,则的位置也随之改变,那么()中的大小会不会改变?请说明.26. (1)图(8)是边长为的小正方形组成的网格,观察①④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:;;(2)借助图中⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与图①④的图案不能重合).27. 如图所示,与关于直线对称,与的交点在直线上.(1)指出此两个三角形中三个顶点的对称点.(2)在不另加字母和线段的情况下,图中还有成轴对称的三角形吗?28. 把图中的图形补成轴对称图形,其中,为各图形的对称轴.29. 资料:小球沿直线撞击水平格档反弹时(不考虑垂直撞击),撞击路线与水平格档所成的锐角等于反弹路线与水平格档所成的锐角.以图(1)为例,如果黑球沿从到方向在点处撞击边后将沿从到方向反弹,根据反弹原则可知,即.如图(2)和(3),是一个长方形的弹子球台面,有黑白两球和,小球沿直线撞击各边反弹时遵循资料中的反弹原则.(回答以下问题时将黑白两球均看作几何图形中的点,不考虑其半径大小)(1)探究(1):黑球沿直线撞击台边哪一点时,可以使黑球经台边反弹一次后撞击到白球?请在图(2)中画出黑球的路线图,标出撞击点,并简单证明所作路线是否符合反弹原则,(2)探究(2):黑球沿直线撞击台边哪一点时,可以使黑球先撞击台边反弹一次后,再撞击台边反弹一次撞击到白球?请在图(3)中画出黑球的路线图,标出黑球撞击边的撞击点,简单说明作法,不用证明.答案1. D2. D3. A4. D5. C6. C7. B8. A9. B10. C【解析】因为,,由于折叠,,在中,.11. B12. B13. C14. A15. B16. ①③17. TAXI18.19.20.21.22. ,如图,取格点,,连接.取格点,作直线与相交,得点,.则即为所求23.【解析】与关于直线对称,,,,.24. 如图所示,即为所求.25. (1),,;(2)由()的结论可得,由折叠的性质可得,,;(3)不变,由折叠的性质可得,,,所以,不变,永远是平角的一半.26. (1)都是轴对称图形;面积都是(2)(答案不唯一)27. (1)点的对称点是点,点的对称点是点,点的对称点是点.(2)在不另加字母和线段的情况下,与,与也都关于直线成轴对称.28. 如图所示:29. (1)作法:如图以直线为对称轴作点的对称点,连接交于点,连接,则点为撞击点,和为黑球的路线.证明:因为和关于直线对称,点在上,所以和也关于对称,因为和是对应角,所以,又(对顶角相等),所以,即符合反弹原则,(2)以直线为对称轴作点的对称点为对称轴作点的对称点,连接交于点,连接交于点,连接.则点为边的撞击点,,,为球的路线.第11页(共11 页)。
北师大数学七年级下《5.2探索轴对称的性质》课时练习含答案
![北师大数学七年级下《5.2探索轴对称的性质》课时练习含答案](https://img.taocdn.com/s3/m/5ace2fc714791711cd7917a8.png)
七年级下册第五单元5.2探索轴对称的性质课时练习一、选择题(共15题)1.下列说法正确的是( )A.两个全等的三角形一定关于某条直线对称B.关于某条直线的对称的两个三角形一定全等C.直角三角形是轴对称图形D.锐角三角形都是轴对称图形答案:B解析:解答:根据轴对称的性质,A全等三角形不一定关于某直线对称,故错;C直角三角形中,等腰直角三角形是轴对称图形,其他一般的直角三角形不是,故错;D锐角三角形不一定是轴对称图形,如三个角分别是50°、60°、70°的三角形就不是轴对称图形.故选B.分析:本题考察轴对称的性质,关键是把握住对称一定全等,但反过来不成立.2.下列说法中正确的有( )①角的两边关于角平分线对称; ②两点关于连结它的线段的中垂线对称③成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称④到直线l距离相等的点关于l对称A.1个B.2个C.3个D.4个答案:B解析:解答:根据轴对称的性质,①应该为角的两边关于“角平分线所在直线”对称; ②“两点关于连结它的线段的中垂线对称”正确;③“成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称”正确;④“到直线l距离相等的点关于l对称”不正确;故选B.分析:本题容易出错的是最后一个,可以通过下图来说明:AB3.下列说法错误的是( )A.等边三角形是轴对称图形;B.轴对称图形的对应边相等,对应角相等C.成轴对称的两条线段必在对称轴一侧D.成轴对称的两个图形对应点的连线被对称轴垂直平分答案:C解析:解答:根据轴对称的性质可知,A 、B 、D 都成立,故选C.分析:本题思路的关键是考虑线段与对称轴的相对位置,可以通过下图来说明:4.观察下列平面图形:其中属于轴对称图形的有()A.1个B.2个C.3个D.4个 答案:C 解析:解答:根据轴对称的性质可知,前三个图形分别有5条、5条、3条对称轴,最后一个图形三角形内的图案没有对称轴,故选C.分析:本题思路的关键是利用轴对称的性质,不但要看图形的外部图案,还要考虑到图形的内部图案,必须沿某条直线折叠后都能够重合,才能判断是轴对称图形.5.如图所示,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜中共可得到小凳的像( )A.2个B.4个C.16个D.无数个答案:D解析:解答:∵两块镜面相对∴在每一块镜面中,都能有对方镜面的图像∴小凳在每一个镜面中都有图像∵第一镜面中的小凳都在对面镜子中有图像∴循环往复,图像无数故选D分析:本题思路的关键是利用轴对称的性质,得到镜面在对方镜子中的图像无数,相应得到小凳的图像无数,还可以通过实际操作来解决思维上的困惑. l6.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( )A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形答案:A解析:解答:∵这个三角形是轴对称图形∴一定有两个角相等∴这是一个等腰三角形∵有一个内角是60°∴根据有一个角是60°的等腰三角形是等边三角形得这是一个等边三角形分析:本题思路的关键是利用轴对称的性质,得到两个锐角相等,从而得到等腰三角形,再根据等边三角形的判定方法得到结论.7.以下结论正确的是( ).A.两个全等的图形一定成轴对称B.两个全等的图形一定是轴对称图形C.两个成轴对称的图形一定全等D.两个成轴对称的图形一定不全等答案:C解析:解答:根据轴对称的性质,可以判断A中说法错误,应该是轴对称的两个图形一定全等,反过来不对;B中前后矛盾,两个全等的图形,是指两个图形,而后面的轴对称图形是指一个图形;D中根据轴对称的性质可以知道,成轴对称的两个图形,一定全等,所以D错;故选C.分析:此题解决的关键是正确理解成轴对称的两个图形的关系,以及轴对称图形的意义. 8.两个图形关于某直线对称,对称点一定( )A.这直线的两旁B.这直线的同旁C.这直线上D.这直线两旁或这直线上答案:D解析:解答:这是考察对成轴对称的两个图形的位置的理解,成轴对称的两个图形的对称点,或者在对称轴上,或者在对称轴两旁.故选D.分析:此题解决的关键是正确理解成轴对称的两个图形的位置关系,思维含量低.9.轴对称图形沿对称轴对折后,对称轴两旁的部分( )A.完全重合B.不完全重合C.两者都有 D.不确定答案:A解析:解答:这是直接考察轴对称图形的意义,故选A.分析:此题解决的关键是正确理解轴对称图形的意义,思维含量低.10.下面说法中正确的是( )A.设A、B关于直线MN对称,则AB垂直平分MN.B.如果△ABC≌△DNF,则一定存在一条直线MN,使△ABC与△DNF关于MN对称.C.如果一个三角形是轴对称图形,且对称轴不止一条,则它是等边三角形.D.两个图形关于MN对称,则这两个图形分别在MN的两侧.答案:C解析:解答:A中应该是直线MN垂直平分线段AB;B中错在全等,不一定对称;D中错在这两个图形不一定要在直线两侧,可以直线两侧都有.故选C.分析:此题中最不好理解的是对于D的判断,可以用下图去理解.11.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个答案:D解析:解答:此题根据轴对称的性质容易得到结果,特别是对于②③④,可以通过画图来确定一下.分析:此题需要注意一下题干中的“互不平行”这个词语.否则对于②的判断就会出错. 12.下列推理中,错误的是( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形答案:B解析:解答:A正确;B重复且条件不足;C可以得到三个角都是60°,正确;D根据有一个角是60°的等腰三角形是等边三角形可以得到.故选B.分析:本题容易出错的是看到B选项中,既有边相等,又有角相等,就判断正确.此题不难,但是容易出错.A.0 B.1 C.2 D.3答案:B解析:解答: 根据轴对称的性质知①正确;②对称轴是直线,但顶角的平分线不是直线,故错;经过该线段中点的直线还需要垂直于这条线段才正确;④全等三角形不一定关于某直线对称,故错.综上,只有①是正确的,故选B分析:本题容易出错的是对②③的判断.需要明确的是,对称轴是直线;经过线段中点的直线可以有无数条,因此必须是垂直于这条线段的才是对称轴.14.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为( )A .BD >CDB .BD =CDC .BD <CD D .BD 与CD 大小关系无法确定 答案:D解析:解答: 根据图示,很明显可以看到有三种情况:(1) BD >CD (2) BD =CD (3) BD <CD故选D 分析:本题关键是考虑到,把点D 放在线段AD 的垂直平分线上,通过运动来研究BD 与CD 的大小关系,这样就不会出错了.15.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为( )A .平行B .垂直且平分C .斜交D .垂直不平分答案:B解析:解答:∵等腰△ABC 中,AB =AC∴将等腰△ABC 中折叠,使B 与C 重合,则点A 在折痕上AAA∴点A在线段BC的对称轴上∵OB=OC∴点O在折痕上∴点O在线段BC的对称轴上∴直线AO就是线段BC的对称轴∴直线AO与底边BC垂直且平分故选B分析:本题关键是利用折叠来引入,从而利用轴对称的性质解决问题.二、填空题(共5题)16.设A、B两点关于直线MN轴对称,则_______垂直平分________.答案:直线MN|线段AB解析:解答:∵A、B两点关于直线MN轴对称∴由轴对称的性质可得直线MN垂直平分线段AB分析:本题易错处是漏掉直线与线段这些表达线的类型的词语.17.若直角三角形是轴对称图形,则其三个内角的度数分别为________.答案:90°|45°|45°解析:解答:∵直角三角形是轴对称图形∴一定有两个角相等又直角三角形一定有一个角为90°∴相等的是两个锐角∵直角三角形的两个锐角互余∴每一个锐角为45°分析:本题思路的关键是利用轴对称的性质,得到两个锐角相等,再根据直角三角形的两个锐角互余,进而求出各角度数.18.已知在Rt△ABC中,斜边AB=2BC,以直线AC为对称轴,点B的对称轴是B',如图所示,则与线段BC相等的线段是____,与线段AB相等的线段是_______和_______, 与∠B相等的角是________和_______,因此可得到∠B=________.答案:B ’C |AB ′|B B ’|∠B ’|∠BAB ’|60°解析:解答:∵以直线AC 为对称轴,点B 的对称轴是B '∴B ’C =BC ∠B ’CA =∠BCA =90° AB ’=AB =2BC∴AB ’=AB =BB ’∴∠B ’ =∠B =∠B ’AB =60°分析:本题思路的关键是利用轴对称的性质,得到对应线段相等,再根据AB =2BC ,得到一个等边三角形,进而求出各角度数.19.如图,已知点A 、B 直线MN 同侧两点, 点A ’、A 关于直线MN 对称.连接A ’B 交直线MN 于点P ,连接AP .若A ’B =5cm ,则AP +BP 的长为答案:5cm解析:解答:∵点A ’、A 关于直线MN 对称点P 在对称轴MN 上,∴A ’P 、AP 关于直线MN 对称∴A ’P =AP∴AP +BP = A ’P +PB =A ’B =5cm分析:本题思路的关键是利用轴对称的性质,得到对应线段相等,进而求出AP +BP 的长.20.如图,∠AOB 内一点P ,分别画出P 关于OA 、OB 的对称点P 1、P 2连P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,则△PMN 的周长为 . B 'C B A答案:5cm解析:解答:∵P、P1,P、P2关于OA、OB对称∴PM=P1M,PN=P2N∴△PMN的周长=P1P2∴△PMN的周长是5 cm分析:本题思路的关键是利用轴对称的性质,得到对应线段相等,进而求出△PMN的周长.三、解答题( 共5题)21.找出图中是轴对称图形的图形,并找出两对对应点、两对对应线段、两对对应角.(1)(2) (3)答案:第一个图形是轴对称图形,如图,若以NF为对称轴,则点A与点B、点M与点N、点C与点D等是对称点.线段AG与BH、CM与DN、PG与PH等是对应线段,∠A与∠B、∠C与∠D、∠AMC与∠BND等是对应角.解析:解答:如上图所示,第一个图形是轴对称图形,若以NF 为对称轴,则点A 与点B 、点M 与点N 、点C 与点D 等是对称点.线段AG 与BH 、CM 与DN 、PG 与PH 等是对应线段,∠A 与∠B 、∠C 与∠D 、∠AMC 与∠BND 等是对应角.本题解答只是回答了其中一种情况,而原来的图形,还可以以直线MN 为对称轴来进行回答.分析:本题易错点是被忽视了阴影部分.如果没有阴影,那么可以有六种不同情况;因为有了阴影部分,所以原题的解答只能有两种情况,这是需要注意的.22. 如图,△ABC 关于直线L 的轴对称图形是△DNF , 如果△ABC 的面积为6CM 2,且DN =3CM , 求△ABC 中AB 边上的高h .答案:h=4cm解析:解答:∵△ABC 关于直线L 的轴对称图形是△DNF∴△DNF 的面积等于△ABC 的面积= 6cm 2AB =DN =3cmDN 上的高等于AB 上的高∴h=6×2÷3=4cm分析:本题思路的关键是利用轴对称图形的性质,得到面积相等,对应边相等以及对应线段相等.23.小红想在卧室放一穿衣镜,能看到自己的全身像,那么她至少应买多高(宽度适当)的穿衣镜? A B C DA B ''答案:镜高至少为身高的一半解析:解答:如下图所示,设小红用线段AB 表示,则A 头部,通过镜子下沿D 处可以看到自己的脚的映像,而根据轴对称的性质,可以通过镜子顶端C 处看到自己的头部映像,因此,镜子调试至少需要自己身体的一半高度.分析:本题思路的关键是既要考虑到关于点的对称,又要考虑到关于线的对称.L24.下列各图都是一个汉字的一半,你能想像出它的另一半并能确定它是什么字吗?(有几个字的笔划在对称轴上)(1)答案:中(2)答案:林(3)答案:南(4)答案:京(5)答案:米解析:解答:根据汉字的对称结构来确定是哪个汉字,对于第(1)个图,思考可能是口或中,但是口没有那么扁平;故为中;第二个图左边应该也是一个木,这样原来的汉字应该是林;第三个图形,根据轴对称可以容易得到是一个南字;第四个从对称上来研究,应该左边下方也有一个点,再考虑对称轴上可能有笔画,容易得到是京字;第五个图,从对称可以得到右边有点、横、捺,可是不是我们所学过的汉字,再考虑对称轴上的笔画,可以有个竖,因此得到最后一个字是米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册探索轴对称的性质习题
文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
《探索轴对称的性质》一、选择题
1.下列说法中错误的是( )
A.两个对称的图形对应点连线的垂直平分线就是它们的对称轴
B.关于某直线对称的两个图形全等
C.面积相等的两个四边形对称
D.轴对称指的是两个图形沿着某一条直线对折后能完全重合2.如图,若△ABC与△A′B′C′关于直线MN对称,BB′交MN
于点O,则下列说法中不一定正确的是( )
A.AC=A′C′
B.AB∥B′C′
C.AA′⊥MN
D.BO=B′O
3.下列说法中,正确的是( )
A.到直线l的距离相等的两点关于直线l对称
B.角的两边关于角的平分线对称
C.圆是轴对称图形,有无数条对称轴
D.有一个内角为60°的三角形是轴对称图形
4.下列语句中正确的有( )句
①关于一条直线对称的两个图形一定能重合;
②两个能重合的图形一定关于某条直线对称;
③一个轴对称图形不一定只有一条对称轴;
④两个轴对称图形的对应点一定在对称轴的两侧.
A.1
B.2
C.3
D.4
5.如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是( )
A.AB∥DF
B.∠B=∠E
C.AB=DE
D.AD的连线被MN 垂直平分
6.等边三角形的对称轴有( )条.
A.1
B.2
C.3
D.4
7.如图所示,是一种成左右对称的机器零件,直线EF恰好是其对称轴,其中∠EAB=120°,∠C=45°,∠AEF=60°,则∠BFC的度数是( )
A.90°
B.85°
C.80°
D.75°
二、填空题
8.如果两个图形关于某一条直线对称,那么,对应线段_____,_____相等,对应点所连的线段被对称轴_____.等边三角形的各角都相等,每一个角都等于_____.
9.如图,在∠AOB的内部有一点P,点M、N分别是点P关于OA,OB的对称点,MN分别交OA,OB于C,D点,若△PCD的周长为30cm,则线段MN的长为_____cm.
10.我们把左右排列对称的自然数叫做回文数,请你写出下列回文数是由哪个数的平方得到的:(1)121=_____2;
(2)14641=_____2;(3)40804=_____2;(4)44944=_____2.
11.如图所示,在△AB C中,BC=8cm,△ACE是轴对称图形,直线ED是它的对称轴.若△BCE的周长为18cm,那么
AB=_____cm.
三、解答题
12.找出下列图形的所有的对称轴,并一一画出来.
13.如图,点P在∠AOB内,点M,N分别是点P关于AO,BO的对称点,若△PEF的周长是30cm,求MN的长.
14.如图:已知,P为∠AOB内一点,分别作出点P关于OA,OB 的对称点P1,P2,连P1P2交OA于M,交OB于N,若P1P2=5cm,求△PMN的周长.
15.两个完全相同的矩形铁尺随意放在桌面上(不构成轴对称图形),你能通过轴对称变换使得两把铁尺互相重合吗?如果能,需要变换几次?画图举例说明对称变换的过程;如果不能,简述其理由.
参考答案
一、选择题
1.答案:C
解析:【解答】A、B、D都正确;
C、面积相等的两个四边形不一定全等,故不一定轴对称,错误.
故选C.
【分析】认真阅读各选项提供的已知条件,根据轴对称图形的定义与性质进行逐一验证,答案可得.
2.答案:B
解析:【解答】∵△ABC与△A′B′C′关于直线MN对称,
∴AC=A′C′,AA′⊥MN,BO=B′O,故A、C、D选项正确,
AB∥B′C′不一定成立,故B选项错误,
所以,不一定正确的是B.
故选B.
【分析】根据轴对称的性质对各选项分析判断后利用排除法求解.
3.答案:C
解析:【解答】A、到直线l的距离相等的两点不一定关于直线l 对称,故本选项错误;
B、角的两边关于角平分线所在的直线对称,故本选项错误;
C、圆是轴对称图形,有无数条对称轴,故本选项正确;
D、有一个内角为60°的等腰三角形是轴对称图形,故本选项错误.
故选C.
【分析】分别根据轴对称的性质、角平分线及圆的性质对各选项进行逐一判断即可.
4.答案:B
解析:【解答】①关于一条直线对称的两个图形一定能重合,正确;
②两个能重合的图形全等,但不一定关于某条直线对称,错误;
③一个轴对称图形不一定只有一条对称轴,正确;
④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.
故选B.
【分析】阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.
5.答案:A
解析:【解答】A、AB与DF不是对应线段,不一定平行,故错误;
B、△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,∠B=∠E,正确;
C、△ABC与△DEF关于直线MN轴对称,则△ABC≌△DEF,
AB=DE,正确;
D、△ABC与△DEF关于直线MN轴对称,A与D的对应点,AD的连线被MN垂直平分,正确.
【分析】根据轴对称的性质作答.
6.答案:C
解析:【解答】由等边三角形的定义可知,三个角边相等,三条边的长度也相等,所以对称轴就是经过三角形高的直线,
因为三角形有三条高,所以共有3条对称轴.
故选:C.
【分析】根据等边三角形的定义可知,三个角相等,三条边的长度也相等,所以对称轴就是经过三角形高的直线,由此可以判断对称轴的条数.
7.答案:A
解析:【解答】∵直线EF恰好是其对称轴,
∴关于直线EF的角相等,
∴∠B=∠C=45°,
∵∠EAB=120°,∠AEF=60°,
∴∠BFE=135°,
∴∠BFC=90°.
故选A.
【分析】根据轴对称图形的性质求解.
二、填空题
8.答案:相等??对应角??垂直平分??60°
解析:【解答】两个图形关于某直线对称,对应线段相等,对应角相等.对应点所连的线段被对称轴垂直平分.
等边三角形的各角都相等,每一个角都等于60°.
【分析】根据轴对称图形的性质直接填空得出即可,再利用等边三角形的性质得出即可.
9.答案:30
解析:【解答】∵点P关于OA、OB的对称点分别为C、D,
∴MC=PC,ND=PD,
∴MN=CM+CD+ND=PC+CD+PD=30cm.
【分析】利用对称性得到CM=PC,DN=PD,把求MN的长转化成
△PCD的周长,问题得解.
10.答案:±11 ±121 ±202 ±212
解析:【解答】(1)121=(±11)2;
(2)14641=(±121)2;
(3)40804=(±202)2;
(4)44944=(±212)2.
【分析】根据回文数的概念和开方的运算求得结果.
11.答案:10
解析:【解答】∵△ACE是轴对称图形,直线ED是它的对称轴,∴AE=CE
∴AE+BE=CE+BE,
∵△BCE的周长等于18cm,BC=8cm,
∴AE+BE=CE+BE=10(cm),
∴AB=10cm.
【分析】由已知条件,利用轴对称图形的性质得AE+BE=CE+BE,再利用给出的周长即可求出AB的长.
三、解答题
12.答案:见解答过程.
解析:【解答】所画对称轴如下所示:
【分析】找到并连接关键点,作出关键点的连线的垂直平分线.13.答案:30cm.
解析:【解答】
连接MP,PN,
∵点M是点P关于AO,的对称点,
∴AO垂直平分MP,
∴EP=EM.
同理PF=FN.
∵MN=ME+EF+FN,
∴MN=EP+EF+PF,
∵△PEF的周长为30cm,
∴MN=EP+EF+PF=30cm.
【分析】根据轴对称的性质可知EP=EM,PF=FN,结合△PEF的周长为15,利用等量代换可知MN=EP+EF+PF=15.
14.答案:5cm
解析:【解答】∵P点关于OA的对称是点P1,P点关于OB的对称点P2,
∴PM=P1M,PN=P2N,
∴△PMN的周长=PM+PN+MN=MN+P1M+P2N=P1P2=5cm.
【分析】根据题意:借助轴对称的性质,得到PM=P1M,PN=P2N,进而可得PM+PN+MN=MN+P1M+P2N=P1P2,故△PMN的周长为5cm.15.答案:见解答过程.?
解析:【解答】能.
至少变换两次,为叙述方便,把两尺缩为两相等线段AB,CD (1)连BD,以BD的中垂线l1为轴将CD对称变换至C′B
(2)以∠ABC′的平分线l2为轴将C′B对称边变换至AB即重合.
示意图如下:
【分析】把两矩形简化为两线段,根据轴对称的性质,可把两尺子重合.。