仪器分析报告笔记 《原子吸收光谱法》

合集下载

原子吸收光谱法实验报告

原子吸收光谱法实验报告

原子吸收光谱法实验报告实验报告:原子吸收光谱法一、实验目的1.了解原子吸收光谱法的原理和仪器设备。

2.掌握使用原子吸收光谱法进行测定的方法和步骤。

3.学习如何分析、处理实验数据,得出准确的样品含量。

二、实验原理原子吸收光谱法是一种常用的分析方法,其基本原理是:当原子或离子吸收具有特定波长的光时,会产生吸收线,其强度与物质浓度成正比。

在实验中,使用的是原子吸收分光光度计,它由光源、光栅、光程系统、光电转换器等组成。

三、实验步骤1.仪器准备:打开仪器电源,启动仪器,预热10分钟。

2.样品制备:根据实验要求,稀释待测样品,使其浓度适合于测定。

3.设置光谱仪参数:选择合适的光谱波长,进入光谱扫描模式,设置光谱仪参数。

4.标定曲线制备:准备一系列浓度不同的标准溶液,并分别测定其吸光度,得到吸光度与浓度之间的线性关系。

5.测定样品的吸光度:依次将各个浓度样品和待测样品放入进样池中,分别测定其吸光度。

6.作图和计算:根据标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。

根据待测样品的吸光度,计算出其浓度。

四、数据处理与结果分析根据实验操作,记录下各个浓度样品和待测样品的吸光度数据。

使用标定曲线,将吸光度转化为物质浓度,并绘制出吸光度与浓度的关系图。

根据待测样品的吸光度,计算出其浓度。

根据实验结果,我们可以得出待测样品中所含物质的浓度。

如果待测样品的浓度超出了标定曲线的范围,可以通过稀释样品重新测定,以确保结果的准确性。

五、实验总结通过本次实验,我深入了解了原子吸收光谱法的原理和仪器设备,掌握了使用该方法进行测定的步骤和技巧。

实验中,需要注意的是样品的制备和标定曲线的制备,这两个步骤对于后续的测定至关重要。

实验中可能出现的误差主要包括仪器误差、操作误差和样品制备误差等。

在实验过程中,我们需要严格控制这些误差,以确保结果的准确性和可靠性。

同时,我们也要注意实验数据的处理与分析,避免统计和计算上的错误。

仪器分析 复习 重修 自学 预习5 原子吸收光谱分析法

仪器分析 复习 重修 自学 预习5 原子吸收光谱分析法
第四章
原子吸收光谱分析法
原子吸收基本原理
第一节
一、共振线 二、基态原子数与原子化温度 三、定量基础
历史
原子吸收光谱法是一种基于待测基态原子对特征谱线的 吸收而建立的一种分析方法。这一方法的发展经历了3个发 展阶段:
原子吸收现象的发现
1802年Wollaston发现太阳光谱的暗线; 1859年Kirchhoff和 Bunson解释了暗线产生的原因;
试样雾滴在火焰中,经蒸发,干燥,离解(还原)等过 程产生大量基态原子。火焰原子化的方法就是使试样变成 原子蒸汽。 火焰温度的选择: (a)保证待测元素充分离解为基态原子的前提下,尽量 采用低温火焰;因为火焰温度越高,产生的热激发态原子 越多,则基态原子数量减少;但太低温就会使盐类无法解
离,降低灵敏度。
I
Ve
I 0V e KV L dv;当发射线宽《吸收线宽时,可以认为
0 Ve
KV 是常数,相当峰值吸收系数K 0:I e K 0 L 于是A lg 1 e
K0L
I
0
0V
dv
0.4343 K 0 L
K0=?
吸收线轮廓仅取决于多普勒变宽时 1 KV dv 2 ln 2 K 0v,结合积分吸收式 KV dv的值 2 ln 2 e 2 解得:K 0 fN 0 v mc
太阳光
暗 线
第一激发态
E
热能
基态
E = h = h
C

发现钠蒸汽发出的光线通过温度比较低的钠蒸汽,会引起 钠光的吸收,并且钠发射线和暗线在光谱中位置相同,由此 判断太阳连续光谱中的暗线是太阳外层中的钠原子对太阳光 谱中钠辐射吸收的结果
原子吸收光谱基本原理:

仪器分析原子吸收光谱分析

仪器分析原子吸收光谱分析

∫ I =
e 0
I0e-KLd
∫ A = lg
e 0
I0
d
∫e 0
I0e-KLd
第14页,本讲稿共55页
对锐线光源,可以认为Kν= b×K0 为常数:
A
=
lg 1 e-bK0L
=
lg
eK0Lb
=
0.4343K0Lb
Under normal operation condition for AAS, line profile is mainly determined by Doppler broadening, hence,
这以公式表明:积分吸收值与单位原子蒸汽中吸收辐 射的基态原子数呈简单的线性关系,这是原子吸收光谱分析
法的重要理论依据。
第10页,本讲稿共55页
前面公式中: e为电子电荷;m为电子质量;c为光速;N0
为单位体积内基态原子数;f 振子强度,即能
被入射辐射激发的每个原子的平均电子数,它正 比于原子对特定波长辐射的吸收几率。
若能测定积分吸收,则可求出原子浓度。 但是,测定谱线宽度仅为10-3nm的积分吸收, 需要分辨率非常高的色散仪器,技术上很难实现。 所以,1955年瓦尔西提出采用锐线光源来解决 求积分吸收值的难题。参见下图:
第11页,本讲稿共55页
第12页,本讲稿共55页
由图可见,在使用锐线光源时,光源发射线半宽度 很小,并且发射线与吸收线的中心频率一致。这时发射 线的轮廓可看作一个很窄的矩形,即峰值吸收系数K 在
一、原子吸收线和原子发射线
A
B
A 产生吸收光谱
B 产生发射光谱
E3
E0 基态能级
E1、E2、E3、激发态能级
E2

仪器分析第十四章 原子吸收光谱法

仪器分析第十四章 原子吸收光谱法

火焰原子化法原子化器
雾化器与雾化室
作用: 作用:将试 液雾化。 液雾化。 要求:喷雾 要求: 稳定、 稳定、雾滴 细小、 细小、均匀 和雾化效率 高,约(10%) 约 %
火焰原子化法原子化器
燃烧器
作用:形成火焰, 作用:形成火焰, 使进入火焰的试 样微粒原子化。 样微粒原子化。 火焰组成影响测 定灵敏度、 定灵敏度、稳定 性和干扰, 性和干扰,对不 同元素选择不同 的火焰。乙炔的火焰。乙炔 空气焰最常用。 空气焰最常用。
原子的量子能级 描述量子能级的形式: 描述量子能级的形式:光谱项 n2S+1LJ n:主量子数,核外电子的分布层次,0,1,2… :主量子数,核外电子的分布层次, , , L:总角量子数,电子的轨道性状, 0,1,2…, :总角量子数,电子的轨道性状, , , , 相应的符号为S、 、 、 相应的符号为 、P、D、F S:总自旋量子数,价电子自旋量子数的矢量和, :总自旋量子数,价电子自旋量子数的矢量和, 0,±1/2,±1,±3/2 , , , J:内量子数,电子运动过程中,轨道磁矩与自 :内量子数,电子运动过程中, 旋磁矩耦合形成的能级分裂,取值L+ , 旋磁矩耦合形成的能级分裂,取值 +S, L+S-1, … L-S。 + - , - 。 2S+1:光谱项的多重性。 光谱项的多重性。 光谱项的多重性
一种绝对测量方法,现在的分光装置无法实现。 一种绝对测量方法,现在的分光装置无法实现。
原子吸收法的定量基础 2.峰值吸收 2.峰值吸收 钨丝灯光源和氘灯,经分光 钨丝灯光源和氘灯, 后,光谱通带0.2 nm。而原子吸 光谱通带 。 收线的半宽度为10 收线的半宽度为 -3 nm。 。 用一般光源照射时,吸收光强 用一般光源照射时, 度变化仅为0.5%。灵敏度极差 。 度变化仅为 1955年瓦尔什(Walsh) 1955年瓦尔什(Walsh)提出用测定峰值吸收系数 年瓦尔什 K0 来代替积分吸收系数 υ的测定。 来代替积分吸收系数K 的测定。 锐线光源测量谱线的峰值吸收 并采用锐线光源测量谱线的峰值吸收。 并采用锐线光源测量谱线的峰值吸收。

仪器分析笔记 《原子吸收光谱法》

仪器分析笔记 《原子吸收光谱法》

第四章 原子吸收光谱法——又称原子吸收分光光度法§ 原子吸收分光光度法(AAS )概述概述 1、定义原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。

2、特点灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。

检出限可达 10—9 g /mL (某些元素可更高 ) 几乎不受温度影响:由波兹曼分布公式0q E q q KTN g eN g -=知,激发态原子浓度与基态原子浓度的比值q N N 随T ↗而↗。

在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的1%q N N =。

也就是说,q N 随温度而强烈变化,而0N 却式中保持不变,其浓度几乎完全等于原子的总浓度。

较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。

另试样处理简单。

RSD 1~2%,相对误差~%。

选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。

分析不同元素时,选用不同元素灯,提高分析的选择性应用范围广:可测定70多种元素(各种样品中)。

缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。

3、操作①将试液喷入成雾状,挥发成蒸汽;②用镁空心阴极灯作光源,产生波长特征谱线;③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱;④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程确定待测元素。

选择该元素相应锐线光源,发射出特征谱线。

试样在原子化器中被蒸发、解离成气态基态原子。

特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。

根据吸光度与浓度间线性关系,定量分析。

5、与发射光谱异同点①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象;②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多;③原子吸收法的选择性、灵敏度和准确性都好。

仪器分析 第七章 原子吸收光谱法

仪器分析 第七章 原子吸收光谱法

第七章原子吸收光谱法1.原子吸收光谱的历史2.原子吸收光谱的特点3.原子吸收光谱与紫外可见吸收光谱的区别4.原子吸收光谱分析过程第一节概述1. 原子吸收光谱的历史◆1802年,沃拉斯顿(Wollaston)在研究太阳连续光谱时,首次发现太阳连续光谱中出现暗线。

◆1817年,夫琅和费(Fraunhofer)研究太阳连续光谱时再次发现这些暗线,但无法解释暗线产生的原因。

2/1363/1361825年,法国著名哲学家孔德在哲学讲义中说“恒星的化学组成是人类绝对不能得到的知识”◆1859年,本生、基尔霍夫研究碱金属和碱土金属火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起钠光的吸收,并且钠在光谱中位置相同。

发射线与暗线D◆太阳光谱暗线:太阳外围大气圈中钠原子对太阳光谱中钠辐射特征波长光进行吸收的结果。

4/1365/136太阳中含有94种稳定和放射性元素:氢(71%)、氮(27%)、氧、碳、氖、硅、铁等。

◆1955年,澳大利亚物理学家Walsh(沃尔什)发表了著名论文《原子吸收光谱法在分析化学中的应用》,奠定了原子吸收光谱法的基础。

◆1960年以后,原子吸收光谱法得到迅速发展,成为微量、痕量金属元素的可靠分析方法。

6/1362. 原子吸收光谱法的特点✓检出限低:10-10~10-14g。

✓准确度高:1%~5%。

✓选择性好:一般情况下共存元素无干扰。

✓应用范围广:可测定70多种元素。

✗缺点:难熔元素、非金属元素测定困难,不能实现多元素同时分析。

7/1363. 原子吸收与紫外可见吸收的区别✓相同点:利用物质对辐射的吸收进行分析。

✗不同点:◆吸收机理不同:紫外可见为溶液中分子或离子宽带吸收,带宽为几纳米至几十纳米;原子吸收为气态基态原子的窄带吸收,带宽仅为10-3nm。

◆光源不同。

◆试样处理、实验方法及对仪器的要求不同。

8/1364. 原子吸收光谱分析过程◆确定待测元素。

◆选择该元素相应锐线光源,发射出特征谱线。

仪器分析原子吸收光谱法

仪器分析原子吸收光谱法

仪器分析原子吸收光谱法原子吸收光谱法是一种常用的仪器分析技术,用于测定物质中特定金属元素的含量。

该方法基于原子在特定波长的光下吸收特定能量的现象,通过测量所吸收的光的强度,可以确定样品中目标金属元素的浓度。

原子吸收光谱法主要包括石墨炉原子吸收光谱法(Graphite Furnace Atomic Absorption Spectroscopy, GF-AAS)和火焰原子吸收光谱法(Flame Atomic Absorption Spectroscopy, FAAS)。

两种方法的原理基本相同,只是在光源和样品的处理上有所不同。

在GF-AAS中,样品首先转化为气态原子,并通过石墨炉中的加热将其浓缩。

然后,通过光源产生的特定波长的光照射样品,在特定波长的光作用下,样品中的目标金属元素发生原子态到激发态的跃迁,吸收特定的能量。

通过测量光源透射光的强度变化,可以得到样品中目标金属元素的浓度。

在FAAS中,样品通过喷射到火焰中所产生的高温环境下转化为气态原子。

然后,通过特定波长的光照射样品,样品中的目标金属元素吸收特定能量,发生原子态到激发态的跃迁。

同样,通过测量光源透射光的强度变化,可以测定样品中目标金属元素的浓度。

原子吸收光谱法具有以下优点:1. 灵敏度高:原子吸收光谱法可以测定微量金属元素的含量,其灵敏度在ppb(亿分之一)到ppm(百万分之一)的水平上。

2.选择性好:由于每种金属元素吸收特定波长的光,因此不同金属元素之间相互干扰较小。

通过选择不同的光源波长,可以测定多种金属元素的含量。

3.准确性高:原子吸收光谱法经过多年的发展,仪器的准确性和重复性得到大幅提高。

同时,该方法具有较低的标准偏差和高的精密度。

4.快速分析:原子吸收光谱法具有快速分析的特点,一个样品一般只需几分钟即可完成分析,适用于大批量样品的分析。

除了优点之外1.需要样品前处理:样品的前处理会影响到分析结果的准确性和检测灵敏度。

例如,在GF-AAS中,样品需要进行湿氧化处理,其中可能会引入外源性污染物。

《仪器分析》第十二章_原子吸收光谱法

《仪器分析》第十二章_原子吸收光谱法

当采用锐线光源时,测量是在原子吸收线附近一定频 率范围内进行,即
I 0 I d
0

I I 0e
K l
I e
0

K l
d
锐线光源的很小,可以近似用峰值吸收系数K0 来表 示原子对辐射的吸收,因此有吸光度A为:
I0 A lg lg I


质的强谱线。
空心阴极灯光的强度与灯的工作电流有很大关系。增
大灯电流,可以增加发射强度。但是,灯电流过大,会导 致一些不良现象,如阴极溅射增强,产生密度较大的电子 云,灯本身发生自蚀现象;加快内充气体的“消耗”而缩 短寿命;阴极温度过高,使阴极物质熔化;放电不正常,
灯光强度不稳定灯。灯电流太小,灯光强低,稳定性和信
(2)峰值吸收 1955年Walsh提出,在温度不太高的稳定火焰情况下,
峰值吸收系数与被测元素的原子浓度也成正比。通常情况下,
吸收轮廓决定于多普勒变宽,吸收系数为
2 ( 0 ) ln 2 D 2
K K 0e
K0 2 D
D 是多普勒 半宽度
K d mc N
于分析化学的原因。
e 2
0
f
m 是电子质量,f是振子强度,即能被入射 辐射激发的每个原子的平均电子数,正比 于原子对特定波长光的吸收概率。
若能测定积分吸收,则可以求出原子浓度。但是,测定谱 线宽度仅仅10-3nm的积分吸收,需要分辨率很高的色散仪器,
难以做到,这也是100多年前发现原子吸收现象却一直未能用
空心阴极灯工作原理:
当正、负两电极间施加适当的直流电压(300V—500V)
时,便开始放电,阴极发射的电子在电场作用下,高速射

仪器分析第6章 原子吸收光谱

仪器分析第6章 原子吸收光谱
火焰类型正确。根据燃气与助燃气比例可将火焰 分为:化学计量火焰,富燃火焰,贫燃火焰。
化学计量火焰 由于燃气与助燃气之比与化学计量 反应关系相近,又称为中性火焰,这类火焰,温 度高、稳定、干扰小背景低,适合于许多元素的 测定。
富燃火焰 指燃气大于化学元素计量的火焰。其特 点是燃烧不完全,温度略低于化学火焰,具有还 原性,适合于易形成难解离氧化物的元素测定; 干扰较多,背景高。
(3)原子吸收法的选择性高,干扰较少且易于克服
(4)原子吸收条件下,原子蒸气中基态原子比激发 态原子数目多得多,所以测定的是大部分原子,这 就使得原子吸收法具有较高的灵敏度
原子吸收光谱的特点:
优点: (1) 检出限低,10-10~10-14g; (2) 准确度高,RSD约1%~5%; (3) 选择性高,一般情况下共存元素不干扰; (4) 应用广,可测定70多个元素(各种样品中) 局限性:难熔元素、非金属元素测定困难;不能同 时多元素测定
澳大利亚物理学家瓦尔西发表了著名论文:《原 子吸收光谱法在分析化学中的应用》奠定了原子吸收 光谱法的基础,之后原子吸收光谱法迅速发展。
原子吸收光谱与原子发射光谱的比较:
(1)原子吸收光谱分析利用的是原子吸收现象,而 发射光谱分析则基于原子发射现象
(2)原子吸收线比发射线的数目少的多,这样谱线 的重叠概率小
✓ 单道双光束型:利用参比光束补偿 光源引起的基线漂移。
1. 光源
作用:辐射待测元素的特征光谱(共振线和其它 非吸收谱线),以供测量之用。
要求: A. 能辐射锐线光源 B. 辐射的光强度必须足够、稳定且背景小 C. 灯供电稳定,以确保光强度稳定 空心阴极灯、蒸气放电灯、无极放电灯
空心阴极灯结构
♫ 干燥:试液随升温脱水干燥,由液体转化为固 体。一般情况下,90~120℃,15 ~ 30 s。

原子吸收光谱法 实验报告

原子吸收光谱法 实验报告

原子吸收光谱法实验报告原子吸收光谱法实验报告引言:原子吸收光谱法是一种常用的分析技术,可以用于测定样品中的金属元素含量。

本实验旨在通过原子吸收光谱法测定未知溶液中钠离子的浓度,并探究实验条件对测定结果的影响。

实验步骤:1. 实验前准备:清洗玻璃仪器、配制标准溶液、校准光谱仪。

2. 测定吸收光谱:将标准溶液依次放入光谱仪中,记录吸收峰的波长和吸光度。

3. 绘制标准曲线:根据测定得到的吸光度数据,绘制出吸光度与浓度的曲线。

4. 测定未知溶液:将未知溶液依次放入光谱仪中,测定其吸光度。

5. 计算未知溶液中钠离子的浓度:根据标准曲线,通过吸光度值得到未知溶液中钠离子的浓度。

实验结果与讨论:通过测定吸收光谱,我们得到了标准溶液中钠离子的吸光度数据,并绘制了标准曲线。

在测定未知溶液时,我们得到了相应的吸光度值。

通过标准曲线,我们可以计算出未知溶液中钠离子的浓度。

在实验过程中,我们还探究了实验条件对测定结果的影响。

首先,我们改变了光谱仪的入射光强度,发现随着光强度的增加,吸光度也相应增加,但当光强度过高时,吸光度反而下降。

这是因为在过高的光强度下,样品中的钠原子发生饱和吸收,无法继续吸收更多的光能量。

其次,我们改变了样品的浓度,发现吸光度与浓度呈线性关系。

这是因为当样品中的钠离子浓度增加时,更多的钠原子吸收入射光,导致吸光度增加。

因此,通过测量吸光度,我们可以准确地测定样品中钠离子的浓度。

实验中还需要注意的是,样品的溶解度和光谱仪的校准。

样品的溶解度应适中,过高或过低都会影响实验结果。

而光谱仪的校准需要定期进行,以确保测量结果的准确性。

结论:通过原子吸收光谱法,我们成功测定了未知溶液中钠离子的浓度。

实验结果表明,该方法可以准确、快速地测定金属元素的含量。

在实验过程中,我们还发现实验条件对测定结果有一定的影响,因此在实际应用中需要注意控制实验条件。

总结:原子吸收光谱法是一种重要的分析技术,可以应用于环境监测、食品安全等领域。

仪器分析-原子吸收光谱法解析

仪器分析-原子吸收光谱法解析

非光谱法则是通过测量电磁波与物质作用时,电磁波的某些其他性质,
如反射、折射、散射、干涉、衍射和偏振等变化而建立。这类方法有折射 法、干涉法、散射浊度法、旋光法、圆二向色性法、X射线衍射法和电子 衍射法等。
按照电磁辐射与物质相互作用形式的不同,
可分为发射、吸收和荧光及拉曼光谱。
光谱分析法
吸收光谱法
发射光谱法 Absorption Spectroscopy Emission Spectroscopy
拉曼光谱法 荧光光谱法
Fluorescence Spectroscopy Raman Spectroscopy
吸收光谱法
当辐射光通过固体、液体或气体样品中的一个透明层时,样 品的粒子(分子、原于或离子)会选择性地吸收某种频率的辐射能, 从低能态M(基态)跃迁至高能态M*(激发态),这种现象称为辐射的 吸收。通常表示为: M十hv → M* 为了使吸收现象发生,电磁辐射的能量必须与吸收粒子的基 态与激发态的能级差相当。由于各种粒子的结构不同,造成能级 差不尽相同,根据普朗克关系式:
原子吸收光谱法
光学分析法 进入原子吸收光谱分析 原子吸收 光谱法 方法之前,先了解一下“光
学分析”的概念吧。若已经
去过,请直接进入分析方法。
仪器结构
点击按钮进行选择
光学分析法 Optical Analysis
光学分析法是根据物质发射、吸收电磁辐射或电磁辐射与 物质间相互作用而建立起来的一类分析方法。电磁辐射与物质 相互作用的方式有发射、吸收、反射、折射、散射、干涉、衍
a
c
发射光谱仪
b
吸收光谱仪
录系统。
荧光和散射光谱仪
原子吸收光谱分析 Atomic Absorption Spectrophotometry

原子吸收光谱法提纲重点笔记

原子吸收光谱法提纲重点笔记

子吸收光谱法提纲重点笔记基本原理1.原子吸收光谱(Atomic Absorption Spectroscopy, AAS),又称原子分光光度法,利用气态原子可以吸收一定波长的光辐射,利用电热能使原子中外层的电子从基态跃迁到激发态的现象而建立的。

能够进行定性、半定量、定量分析。

2.光线范围:紫外光和可见光3.测定方法:标准曲线法、标准加入法4.特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC式中K为常数;C为试样浓度;K包含了所有的常数。

此式就是原子吸收光谱法进行定量分析的理论基础5.原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。

原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。

中心波长由原子能级决定。

6.影响原子吸收谱线轮廓的两个主要因素:1、多普勒变宽。

多普勒宽度是由于原子热运动引起的。

从一个运动着的原子发出的光,如果运动方向离开观测者,则在观测者看来,其频率较静止原子所发的光的频率低,红移;反之,如原子向着观测者运动,则其频率较静止原子发出的光的频率为高,紫移。

这就是多普勒效应。

原子吸收分析中,对于火焰和石墨炉原子吸收池,气态原子处于无序热运动中,相对于检测器而言,各发光原子有着不同的运动分量,即使每个原子发出的光是频率相同的单色光,但检测器所接受的光则是频率略有不同的光,于是引起谱线的变宽。

2、碰撞变宽。

谱线宽度仅与激发态原子的平均寿命有关,平均寿命越长,则谱线宽度越窄。

原子之间相互碰撞导致激发态原子平均寿命缩短,引起谱线变宽。

碰撞变宽分为两种。

赫鲁兹马克变宽:指被测元素激发态原子与基态原子相互碰撞引起的变宽,称为共振变宽,又称压力变宽。

当蒸气压力达到0.1mmHg时,共振变宽效应则明显地表现出来。

洛伦茨变宽:指被测元素原子与其它元素的原子相互碰撞引起的变宽,称为洛伦茨变宽。

洛伦茨变宽随原子区内原子蒸气压力增大和温度升高而增大。

原子吸收光谱法实验报告

原子吸收光谱法实验报告

原子吸收光谱法实验报告原子吸收光谱法实验报告一、引言原子吸收光谱法是一种常用的分析方法,它基于原子在特定波长的光线照射下吸收能量的原理。

通过测量样品溶液中吸收光的强度,可以得到元素的浓度信息。

本实验旨在通过使用原子吸收光谱法来测定未知溶液中金属离子的浓度。

二、实验步骤1. 实验前准备在实验开始前,我们需要清洗玻璃仪器,以确保实验结果的准确性。

同时,准备不同浓度的金属离子溶液作为标准溶液,以便后续的测量和比较。

2. 样品制备将未知溶液中的金属离子转化为可测量的形式。

首先,将未知溶液与一定浓度的酸性溶液混合,使金属离子与酸反应生成金属离子络合物。

然后,通过加入还原剂,将金属离子还原成原子态。

最后,将样品溶液稀释至适当浓度。

3. 光谱测量使用原子吸收光谱仪器,选择合适的波长进行测量。

根据实验的需要,可以选择单波长或多波长测量。

在测量过程中,需要注意调整光源的强度和样品吸收池的位置,以确保测量结果的准确性。

4. 数据处理根据实验测得的吸光度数据,绘制标准曲线。

标准曲线是浓度与吸光度之间的关系曲线,可以用来计算未知溶液中金属离子的浓度。

通过线性回归分析,可以得到标准曲线的方程。

5. 测定未知样品使用标准曲线来计算未知溶液中金属离子的浓度。

根据实验测得的吸光度值,代入标准曲线的方程,即可得到未知溶液的浓度。

三、实验结果与讨论通过实验测得的数据,我们得到了标准曲线的方程。

利用该方程,我们可以计算未知溶液中金属离子的浓度。

实验结果显示,未知溶液中金属离子的浓度为X mol/L。

在实验过程中,我们注意到光源的强度对测量结果有一定的影响。

如果光源强度过弱,测量结果可能会有较大误差。

因此,在进行测量前,我们需要确保光源的强度适中,并进行必要的校准。

此外,实验中还需要注意样品溶液的稀释程度。

如果样品溶液过于稀释,可能会导致吸光度值过低,难以准确测量。

因此,在进行稀释时,需要根据样品的浓度选择合适的稀释倍数。

四、实验结论本实验利用原子吸收光谱法成功测定了未知溶液中金属离子的浓度为X mol/L。

原子吸收光谱法提纲重点笔记

原子吸收光谱法提纲重点笔记

原子吸收光谱法提纲重点笔记基本原理1.原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,利用气态原子可以吸收一定波长的光辐射,利用电热能使原子中外层的电子从基态跃迁到激发态的现象而建立的。

能够进行定性、半定量、定量分析。

2.光线范围:紫外光和可见光3.测定方法:标准曲线法、标准加入法4.特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC式中K为常数;C为试样浓度;K包含了所有的常数。

此式就是原子吸收光谱法进行定量分析的理论基础5.原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。

原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。

中心波长由原子能级决定。

6.影响原子吸收谱线轮廓的两个主要因素:1、多普勒变宽。

多普勒宽度是由于原子热运动引起的。

从一个运动着的原子发出的光,如果运动方向离开观测者,则在观测者看来,其频率较静止原子所发的光的频率低,红移;反之,如原子向着观测者运动,则其频率较静止原子发出的光的频率为高,紫移。

这就是多普勒效应。

原子吸收分析中,对于火焰和石墨炉原子吸收池,气态原子处于无序热运动中,相对于检测器而言,各发光原子有着不同的运动分量,即使每个原子发出的光是频率相同的单色光,但检测器所接受的光则是频率略有不同的光,于是引起谱线的变宽。

2、碰撞变宽。

谱线宽度仅与激发态原子的平均寿命有关,平均寿命越长,则谱线宽度越窄。

原子之间相互碰撞导致激发态原子平均寿命缩短,引起谱线变宽。

碰撞变宽分为两种。

赫鲁兹马克变宽:指被测元素激发态原子与基态原子相互碰撞引起的变宽,称为共振变宽,又称压力变宽。

当蒸气压力达到0.1mmHg时,共振变宽效应则明显地表现出来。

洛伦茨变宽:指被测元素原子与其它元素的原子相互碰撞引起的变宽,称为洛伦茨变宽。

洛伦茨变宽随原子区内原子蒸气压力增大和温度升高而增大。

仪器分析第五章 原子吸收光谱法

仪器分析第五章  原子吸收光谱法

第五章原子吸收光谱法Chapter FiveAtomic Absorption SpectrumFor Short:AAS第一节基本原理一、原子吸收光谱分析概述1、原子吸收光谱的起源18世纪初,人们便开始观察和研究原子吸收光谱-----太阳光谱中的暗线。

1955年,澳大利亚物理学家瓦尔西发表了著名论文“原子吸收光谱在化学分析中的应用”,奠定了原子吸收光谱分析法的理论基础。

1955年,原子吸收光谱作为一种分析方法开始应用。

并在60年代得到迅速发展和普及。

2、什么是原子吸收光谱?溶液中的金属离子化合物在高温下能够解离成原子蒸气,两种形态间存在定量关系。

当光源发射出的特征波长光辐射通过原子蒸气时,原子中的外层电子吸收能量,特征谱线的光强度减弱。

光强度的变化符合朗伯-比耳定律,进行定量分析。

它是基于物质所产生的原子蒸气对特征谱线的吸收作用来进行定量分析的一种方法。

❖原子与分子一样,吸收特定能量后,产生基态→激发态跃迁;产生原子吸收光谱,即共振吸收。

❖原子由基态→第一激发态的跃迁,最易发生。

❖每种原子的核外电子能级分布不同,当产生由基态→第一激发态的跃迁时,吸收特定频率的辐射能量。

二、共振线:共振吸收线——电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线(简称共振线)。

共振发射线——电子从第一激发态再跃回基态时,则发射出同样频率的辐射,对应的谱线称为共振发射线(也简称共振线)。

原子的共振线的吸收共振线称为元素的特征谱线,因为:各种元素的原子结构和外层电子排布不同。

所以不同元素的原子从基态激发成第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线各有其特征性。

共振线又称为元素的灵敏线,因为:这种从基态到第一激发态的跃迁最容易发生,因此对大多数元素来说,共振线是指元素所有谱线中最灵敏的谱线。

在原子吸收光度法中,就是利用处于基态的待测原子蒸气对从光源发射的共振发射线的吸收来进行分析的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章原子吸收光谱法——又称原子吸收分光光度法§4.1 原子吸收分光光度法(AAS)概述4.1.1 概述1、定义原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。

2、特点✓灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。

检出限可达10—9 g /mL (某些元素可更高)✓几乎不受温度影响:由波兹曼分布公式00qEq q KTN geN g-=知,激发态原子浓度与基态原子浓度的比值qNN随T↗而↗。

在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的01%qNN=。

也就是说,qN随温度而强烈变化,而N却式中保持不变,其浓度几乎完全等于原子的总浓度。

✓较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。

另试样处理简单。

RSD 1~2%,相对误差0.1~0.5%。

✓选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。

分析不同元素时,选用不同元素灯,提高分析的选择性✓应用围广:可测定70多种元素(各种样品中)。

✗缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。

3、操作①将试液喷入成雾状,挥发成蒸汽;②用镁空心阴极灯作光源,产生波长285.2nm特征谱线;③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱;④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量.4、原子吸收光谱分析过程➢确定待测元素。

➢选择该元素相应锐线光源,发射出特征谱线。

➢试样在原子化器中被蒸发、解离成气态基态原子。

➢特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。

➢根据吸光度与浓度间线性关系,定量分析。

5、与发射光谱异同点①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象;②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多;③原子吸收法的选择性、灵敏度和准确性都好。

§4.2 原子吸收分光光度法的基本原理4.2.1 原子对辐射能的吸收过程——共振线与吸收线原子吸收光谱分析是通过测定基态原子对各元素共振线(一般为主共振线)的吸收来进行定量分析的方法。

1、共枕线与吸收线a、共振发射线:电子从基态跃迁到能量最低的激发态时要吸收一定频率的光,它再跃迁回基态时,则发射出同样频率的光(谱线),这种谱线称为共振发射线。

b、共振吸收线:电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线。

c、共振线:共振发射线和共振吸收线都简称为共振线。

对大多数元素来说,共振线也是元素最灵敏的谱线。

4.2.2 原子吸收光谱的轮廓1、谱线轮廓从能级跃迁的观点看,吸收线与发射线应是一条严格的几何线,但实际上有一定宽度的,其原因将在“谱线变宽”这个标题下讨论。

以~VKν作图,得原子吸收线轮廓。

➢中心频率(峰值频率):曲线峰顶所对应的频率ν,其数值决定于原子跃迁能级间的能量差,即=Ehν∆;➢峰值吸收(中心吸收):峰顶所对应的吸收值;➢中心吸收系数:峰顶所对应的吸收系数K;➢谱线的半宽度:12峰高处的频率围ν∆。

通常以ν∆特征地表示谱线的宽度。

ν∆与谱线自然宽度Nν∆、多普勒变宽Dν∆、洛仑兹变宽Lν∆及共振变宽Rν∆的关系:()1222=D N L Rννννν⎡⎤∆∆+∆+∆+∆⎣⎦2、谱线变宽(1)谱线的自然宽度Nν∆自然宽度(无外界影响时),谱线仍有一定宽度,这种宽度称为自然宽度。

激发态原子的平均表征吸收线轮廓(峰)的参数:中心频率νO(峰值频率);最大吸收系数对应的频率或波K;中心波长:λ(nm);半宽度:ΔνO。

寿命越长,宽度越小。

以波长表示自然宽度N ν∆:22=2NN c c νλλνπτ∆∆= 式中——τ:激发态原子的平均寿命。

(2)多普勒变宽D ν∆多普勒变宽的起因是原子在空间作无规则的热运动,故又称热变宽。

当火焰中基态原子向光源方向运动时,由于 Doppler 效应而使光源辐射的波长增大,基态原子将吸收较长的波长;反之亦然。

因此,原子的无规则运动 就使该吸收谱线变宽。

当处于热力学平衡时, Doppler 变宽可用下式表示:7D 10νν-∆⨯⋅式中——D ν∆:以频率表示的多普勒变宽;0ν:谱线的中心频率;R :气体常数; T :绝对温度; c :光速;A :被测元素的相对原子质量。

由上式可知,D ν∆是决定谱线变宽程度的主要因素之一。

在2000~3000K 围,其值一般在由于吸光原子与蒸气中原子或分子相互碰撞而引起的能级稍微变化,使发射或吸收光量子频率改变而导致的谱线变宽。

根据与之碰撞的粒子不同,可分为两类:①因和其它粒子(如待测元素的原子与火焰气体粒子)碰撞而产生的变宽——洛伦兹变宽,以ν∆表示。

共振变宽只有在被测元素浓度较高时才有影响。

在通常的条件下,压力变宽起重要作用的主要是洛伦兹变宽R ν∆。

(4)自吸变宽光源空心阴极灯发射的共振线被灯同种基态原子所吸收产生自吸现象。

灯电流越大,自吸现象越严重。

(5)场致变宽4.2.3 原子吸收与原子浓度的关系在分光光度法中,测量的是分子吸收,属于宽带吸收,其峰值宽度达几十个纳米。

若由单色器得到的入射光围在1个纳米左右,那么,它相对宽带吸收,就近似于单色的了。

在原子吸收中,吸收线的宽度很窄,要求入射光的宽度在0.01纳米以,上述朗伯-比尔定律才能适用。

为此,解决的途径:①建立新的吸收理论——积分吸收原理 ②得到准单色光源——锐线光源 1、积分吸收积分吸收是指吸收线轮廓下所包围的面积d V K ν⎰。

根据经典色散理论可得:2200d =2.6510V z K fN fN mcπν-=⨯⎰式中——z 、m :电子的电荷及质量;c :光速; f :振子强度;0N :基态原子浓度,个数/cm 3。

由上式可知,若能求得积分吸收,则可求得原子浓度。

积分吸收虽然从理论上建立了原子吸收与浓度之间的正确关系,但要实现积分吸收的测量,在目前却是不可能的。

因为要测量一条0.001~0.005nm λ∆≈的谱线轮廓,以求得它的积分吸收,就要用分光装置将它分离出来,这要求单色器的分辨率应高达5×105级(现约为104级),目前还难以做到。

2、Walsh 测定原子吸收的方法——采用锐线光源测定峰值吸收 ✧ 锐线光源:①光源的发射线与吸收线的0ν一致; ②发射线的1/2ν∆小于吸收线的1/2ν∆。

✧ 空心阴极灯:可发射锐线光源(主共振线)。

图4-2-3 峰值吸收测量示意图若将锐线光源发射的不同频率的光通过原子蒸气,其入射光强度为0I ,当通过长度为L 自由原子蒸气后,其透过光强度为I ,则根据Lambert —Beer 定律有:0V K L I I e -= (a ) 式中——V K :原子蒸气对频率为ν的光吸收系数;在通常的原子吸收分析条件下,若吸收线的轮廓仅取决于多普勒变宽,则:02ln 2d V D K K ννπ=∆⎰(b )对于中心吸收,有:0lg IA I= (c )因此lg 0.4343V K L V A e K L -== (d )式中——A :吸收度;V K c ∝。

结合上述(a )~(d )得:2000.8686ln 22.6510'D A fN L K N L νπ-=⋅⨯=∆式中——N 0:待测元素的浓度;该式表明,当使用很窄的锐线光源作原子吸收测量时,测得的吸光度与原子蒸汽中待测元素的基态原子数呈线性关系,因此,适当增加火焰的宽度可以提高测定的灵敏度。

3、原子吸收的测量:吸光度与试液中待测元素的c 也成正比: A Kc =K 包含了所有的常数。

此式称为Beer 定律,他指出在一定实验条件下,吸光度与浓度呈正比的关系。

通过测定吸光度就可以求出待测元素的含量。

这就是原子吸收分光光度分析的定量基础。

§4.3 原子吸收分光光度计✧ 基本组成:光源+原子化系统+光学系统+电学系统(检测系统)图4-3-1 原子吸收分光光度计基本构造示意图(1)、(2)✧ 如果将原子化器看作是分光光度计中的比色皿,则其仪器的构造原理与一般的分光光度计是相类似的。

区别如下:1、应用锐线光源作原子吸收的光源;2、分光系统安排在火焰及检测器之间。

避免来自火焰的辐射直接照射在光电检测器上,影响检测器的正常运转或使准确度降低;3、为了区分光源(经原子吸收减弱后的光源辐射)和发射背景(火焰发射的辐射),应采用调制方式进行工作。

4.3.1 光源1、光源应满足的条件:①能辐射出半宽度比吸收线半宽度还窄的谱线(即锐线光源),并且发射线的中心频率应与吸收线的中心频率相同;②辐射的强度应足够大;③辐射光的强度要稳定,且背景小。

2、作用:提供待测元素的特征谱线——共振线。

3、类型:蒸汽放电灯、无极放电灯、空心阴极灯。

(一)空心阴极灯1、构造:硬质玻璃管、石英窗口(波长小于350nm)或光学玻璃窗口(波长大于350nm)。

✧阴极:钨棒作成圆筒形,筒熔入被测元素;✧阳极:钨棒,装有钛、锆等金属作成的阳极;✧管充气:氩或氖,称载气。

2、工作原理①当在正负电极上施加适当电压(一般为200~500V)时,在正负电极之间便开始放电,这时,电子从阴极壁射出,经电场加速后向阳极运动;②运动的电子与载气(惰性气体)原子碰撞使惰性气体电离成为阳离子,阳离子在电场加速下,以很快的速度轰击阴极表面,使阴极壁待测元素的原子溅射出来,在阴极腔形成待测元素的原子蒸气云;③蒸气云中的原子再与电子、惰性气体原子、离子发生碰撞而被激发,从而发射出所需频率的光。

阴极发射出的光谱,主要是阴极元素的光谱(待测元素的光谱,另外还杂有充惰性气体和阴极杂质的光谱)。

3、影响空心阴极灯光谱特性的主要因素(1)阴极材料的性质:它决定于共振线的波长;(2)充气体(载气)的种类及压力:载气担负着携载电流、溅射或蒸发及激发阴极原子蒸气的三项任务。

同时,载气压力太低,使灯失效;载气压力太高,引起洛仑兹变宽,且放电不稳定,因此,最好在130~670kPa围。

同时,载气的性质决定于发射线的性质。

一般用氖作充气体,只是在氖光谱对空心阴极金属共振线产生光谱干扰时,才使用氩。

(3)灯电流:灯电流i与灯辐射线强度I的关系为n=I ai式中——n:与阴极材料、充气体及选定谱线等相关的一个参数,对于氖及氩,2~3n=;a:比例常数。

由上式可见,在一定围增大灯电流,可提高激发线强度,改善稳定性。

4、多元素空心阴极灯:发射强度弱5、无极放电灯:强度高。

但制备困难,价格高。

6、空心阴极灯的优点:只有一个操作参数(即电流),发射的谱线稳定性好,强度高而宽度窄,并且容易更换。

相关文档
最新文档