空调自动化控制原理

合集下载

空调自动化霜原理

空调自动化霜原理

空调自动化霜原理
空调自动化霜是指空调系统能够自动识别和去除空调蒸发器上的霜结。

霜结是由于空调蒸发器表面温度过低,空气中的水分在接触蒸发器时凝结而成的。

当霜结过多时,会影响空调系统的正常工作,降低空调的制冷效果。

为了解决这个问题,空调自动化霜控制系统被引入到空调系统中。

空调自动化霜原理基于以下几个方面:
1. 温度传感器:空调系统中有安装在蒸发器表面的温度传感器,用于检测蒸发器的表面温度。

当温度低于一定阈值时,说明蒸发器可能有霜结的情况发生。

2. 翅片震动:当温度传感器检测到蒸发器表面温度过低时,系统会通过控制蒸发器的翅片震动来打破霜结。

翅片震动会产生机械振动,使霜结松动并脱落。

3. 除霜周期:除霜周期是指系统在一定时间间隔里进行霜结的去除操作。

除霜周期的频率和时间长短可以根据环境条件和空调系统的需求进行调整。

4. 除霜方式:空调系统通常有两种主要的去除霜结的方式,一种是通过停止蒸发器的制冷操作,在这段时间内蒸发器会自然解冻;另一种是通过热气流的吹扫,将热空气引入到蒸发器表面,加速霜结的解冻。

通过以上原理和控制方式,空调自动化霜系统能够自动检测和
去除空调蒸发器上的霜结,保证空调系统的正常运行。

这种自动化的操作可以提高空调系统的工作效率,减少能耗,并延长空调的使用寿命。

空调自控系统方案

空调自控系统方案

空调自控系统方案1. 简介空调自控系统是一种将现代技术与空调系统相结合的智能化管理系统。

通过使用传感器、控制器和通信网络等技术,实现空调系统的自动化控制和智能化管理,提高空调系统的能效和舒适性。

本文将介绍一个典型的空调自控系统方案,包括系统设计、硬件设备和软件实现等内容。

2. 系统设计2.1 系统架构空调自控系统的架构一般分为三层:感知层、控制层和管理层。

在感知层,通过使用各种传感器,如温湿度传感器、空气质量传感器等,对室内环境进行实时监测和数据采集。

在控制层,通过使用控制器,如PLC(可编程逻辑控制器)或微控制器,对空调设备进行控制和调节。

控制器根据感知层传来的数据,采取相应的控制策略,控制空调设备的开关、温度和风量等参数。

在管理层,通过使用上位机或云平台,对系统进行远程监控和管理。

管理层可以实时获取感知层和控制层的数据,实现对空调系统的状态监测、故障诊断和能耗分析等功能。

2.2 功能模块典型的空调自控系统包括以下功能模块:2.2.1 温度控制空调自控系统可以通过感知室内的温度信息,自动调节空调设备的工作模式和参数,使室内温度保持在设定的范围内。

2.2.2 能耗管理空调自控系统可以实时监测空调设备的能耗情况,并提供能耗分析报告,帮助用户合理使用空调,降低能耗和运营成本。

2.2.3 故障诊断空调自控系统可以对空调设备进行故障诊断,及时发现和解决设备故障,减少停机时间,提高设备的可靠性和维修效率。

2.2.4 远程控制用户可以通过上位机或手机APP等远程控制界面,实现对空调设备的遥控和监控。

用户可以随时随地调节空调的工作模式和参数,提高使用的便利性和舒适性。

3. 硬件设备3.1 传感器空调自控系统需要使用各种传感器对室内环境进行感知,常用的传感器有温湿度传感器、空气质量传感器和人体红外传感器等。

温湿度传感器用于测量室内的温度和湿度,提供温湿度数据给控制器进行决策;空气质量传感器用于检测室内空气的质量,提供空气质量数据给进行空气净化的决策;人体红外传感器用于感知室内人体的存在,当检测到无人活动时,可以自动调节空调的工作模式,实现节能和智能的控制。

(暖通空调系统自动化)第一章暖通空调系统自动化概述

(暖通空调系统自动化)第一章暖通空调系统自动化概述

按被控对象的复杂程度分
1. 简单控制系统 简单控制系统往往只有一个控制回路,控制 规律也比较简单,例如风机盘管的控制,温控器 感知室内温度低于设定值时就把冷水阀关闭,高 于设定值(中间有回差)时就把温控阀打开。 2. 复杂控制系统 复杂控制系统是相对简单控制系统而言,如 组合式空气处理机组的控制。要想得到稳定的送 风温度和湿度就要控制好进入机组的冷水量、热 水量、蒸汽量等多个变量,以及它们之间的关系, 这就要有冷水控制回路、热水控制回路、蒸汽控 制回路等几个控制回路。
2. 能够准确、全面的提出暖通空调系统需要检测和控制的运行 参数和运行设备状态参数的类别、指标、数量和控制策略。并且以任 务书的形式进行表述和提交;
3. 能够进行简单暖通空调自动控制系统的设计,包括控制方案 的确定、控制设备的选型、控制系统的组态、图纸的绘制等;
4. 能够胜任暖通空调自动化系统现场设备安装、调试、验收等 环节的监理工作;
暖通空调自动化系统的组成
分散式中央空调自动化控制系统
第四节 暖通空调自动化系统实施步骤
实施过程四个阶段
暖通空调自动化系统实施过程框图
学习本课程以后应具备的 几项技术能力
1. 熟练掌握暖通空调系统动态运行的规律。如供热管网和冷水管 网水力运行工况、热力运行工况、动态运行工况下被控参数的变化规 律等内容;
按暖通空调系统的功能分 按有没有控制功能分 按被控对象的复杂程度分 按有没有数字控制分
按暖通空调系统的功能分
供热控制系统 空调控制系统 通风及防排烟控制系统 燃气输配控制系统等
按有没有控制功能分
1. 监测系统 这类系统只是对暖通空调系统运行的参数进 行采集、测量、传送和显示,并把这些数据提供 给有关人员,并不对运行参数进行控制,也叫做 只监不控。 2. 监控系统 这类系统除了对系统运行的参数进行采集、 测量、传送和显示外,还有专门的装置和设备以 及相应的方法对运行参数进行控制,也叫做又监 又控。

冷水机组及空调循环泵控制原理

冷水机组及空调循环泵控制原理

冷水机组及空调循环泵控制原理冷水机组是一种用于空调系统的设备,它通过制冷剂的循环,将热量从室内移出,从而实现室内温度的调节。

而空调循环泵是冷水机组运行的关键部件之一,它负责将冷却水从冷水机组输送到空调末端设备,并将热量带走。

以下将对冷水机组及空调循环泵的控制原理进行详细介绍。

冷水机组的控制原理:1.制冷循环控制原理:冷水机组的制冷循环由压缩机、冷凝器、膨胀阀和蒸发器组成。

其控制原理是通过监测室内温度及设定值,调节蒸发器中的制冷剂流量来控制室内温度的稳定。

2.制热循环控制原理:在冬季,冷水机组可通过改变制冷循环的工作状态实现制热。

制热循环由压缩机、冷凝器、膨胀阀和蒸发器组成。

其控制原理是通过监测室内温度及设定值,调节蒸发器中的制冷剂流量来控制室内温度的稳定。

3.水温控制原理:冷水机组需要控制冷却水的温度,以满足空调末端设备的需求。

通常使用比例积分控制器(PID控制器)来实现。

PID控制器通过监测冷却水的出口温度及设定值,调节制冷塔的风机速度、冷却水阀门开度等参数,以控制冷却水的温度稳定。

空调循环泵的控制原理:1.水流量控制原理:空调循环泵需要控制冷却水的流量,以保证空调系统的正常运行。

通常使用变频调速的方式来控制水泵的转速,以调节水流量。

通过监测空调末端设备的需求,调节水泵的转速以满足需求。

2.压力控制原理:空调循环泵需要控制冷却水的压力,以保证水泵的正常工作及空调系统的稳定。

通常使用压力传感器来监测冷却水的压力,并通过调节水泵的转速来控制冷却水的压力。

3.自动启停控制原理:空调循环泵需要根据冷却水的需求自动启停。

当空调系统进入空闲状态或冷却水需求较小时,可以通过检测信号或预设时间来控制水泵的自动停机,以节约能源。

综上所述,冷水机组及空调循环泵的控制原理是通过监测温度、水流量和压力等参数,并通过调节冷却水的供应、制冷剂的流量以及水泵的转速等来实现空调系统的稳定运行。

这些控制原理可以通过自动化控制系统实现,提高空调系统的效率和能源利用率。

电子空调工作原理

电子空调工作原理

电子空调工作原理
电子空调工作原理是基于热泵技术。

它利用制冷剂的蒸发和凝结过程来吸热和放热,从而实现空调效果。

具体而言,电子空调通过以下步骤来工作:
1. 压缩机:电子空调中的压缩机起到压缩制冷剂的作用。

压缩机将低温低压的蒸汽制冷剂抽入内部,并将其压缩为高温高压的气体。

2. 冷凝器:在冷凝器中,高温高压的制冷剂与空气接触,通过传热将热量释放到外部环境中。

这导致制冷剂冷却并变成高压液体。

3. 膨胀阀:膨胀阀控制制冷剂的流量和压力。

此阀将压力转变为液体制冷剂流过时的低压状态,从而引起制冷剂的部分蒸发。

4. 蒸发器:在蒸发器中,低压液体制冷剂进一步蒸发为低温低压的蒸汽。

这个过程需要吸热,并从室内吸收热量。

因此,空调将环境中的热量带走,从而使室内温度降低。

5. 循环回路:上述过程循环反复进行,以不断调节室内温度。

制冷剂在压缩机的作用下再次被压缩,然后重新送入冷凝器进行冷却,再经由膨胀阀进入蒸发器吸热。

通过上述工作原理,电子空调可以将热量从室内转移到室外,从而实现室内温度的调节。

此外,空调还可以通过风扇将冷空气有效地吹送到室内,以提高降温效果。

空调系统自动化原理

空调系统自动化原理
空调系统自动化原理
3、冷冻水循环泵、冷却水循环泵
冷冻水循环泵将从空调前端设备返回的冷冻水(一般为 12℃)加压送入冷冻机,在冷冻机内进行热交换、释 放热量、降低温度后离开冷冻机(一般为7℃ ),到达 空调前端设备进行热交换,实现降温调节,再循环返回 冷冻机。
2、水汽分压力pc:大小反映了水汽的多少,是空 气湿度的一个指标。
p pg pc
3、温度t或T:反映了空气分子热运动的剧烈程度, 表示空气冷热程度的指标。 T=273+t
空调系统自动化原理
4、湿度: (1)绝对湿度x:1m3湿空气中含有的水汽量(单位为
kg),与水汽分压力的关系 xpc/(RcT)
Rc是水汽的气体常数,等于461J/(kg.K)
(2)含湿量d:1kg空气含有的水汽量(单位为g)
(3)相对湿度Ψ:表示空气湿度接近饱和绝对湿度的程度, 饱和绝对湿度指空气中的水汽超过了最大限度,多余的水 汽开始发生凝结的水汽量。
5、露点温度t1:空气由某一温度降至另一适当温度时,其 相对湿度就达到100%,空气中的水汽便凝结成水--结 露,这个降低后的温度为露点温度。
选择根据:建筑物用途、负荷大小和变化情况、 制冷机特性、电源、热源和水源情况、初次建 设投资、运行费用、维护保养、环保和安全等 因素。
空调系统自动化原理
(1)压缩式制冷机: 原理: 制冷量:是制冷剂在蒸发器中进行相变时所吸收的汽化潜热。 以电为能源
(2)吸收式制冷机 以热为能源 制冷剂——溴化锂水溶液(水为制冷剂、溴化锂为吸收剂) 制冷范围不如压缩式。
统、空气--水系统 。

其他分类:定风量空调系统、变风量空调系统。
空调系统自动化原理
3.4.2、 空调系统的组成

中央空调智能控制系统

中央空调智能控制系统

安全可靠
舒适环保
中央空调智能控制系统 是指通过智能化技术对 中央空调进行控制和管 理的系统,实现对空调 设备的高效、节能、安 全和舒适的使用。
通过传感器、控制器等 设备实现空调系统的自 动控制和调节。
根据室内外环境参数和 用户需求,智能调节空 调的运行状态,降低能 耗。
具备故障诊断和报警功 能,提高系统的安全性 和稳定性。
家庭环境案例
总结词:智能便捷
详细描述:家庭环境中,中央空调的使用越来越普遍 。通过智能控制系统,可以实现远程控制、语音控制 等功能,方便用户的使用。同时,智能控制系统还可 以根据室内外环境变化自动调节温度和湿度,提高居 住舒适度。例如,某家庭安装智能控制系统后,用户 可以通过手机随时随地控制空调运行,同时系统还能 自动检测室内空气质量,进行相应的调节。
节能控制
根据室内外环境参数和用户需 求,智能调节空调的运行状态, 降低能耗。
智能控制的优势
提高能效
智能控制系统能够根据实际需 求自动调节空调的运行状态, 减少不必要的能耗,降低运行
成本。
提高舒适度
通过智能化控制,能够更好地 满足用户对室内环境的需求, 提高居住和工作环境的舒适度 。
延长设备寿命
智能控制系统能够实时监测设 备的运行状态,及时发现并处 理故障,延长设备的使用寿命 。
提高管理效率
通过智能化管理,能够实现远 程监控和控制,方便对空调系
统的管理和维护。
02 中央空调智能控制系统的 工作原理
传感器的工作原理
01
02
03
温度传感器
温度传感器通过检测室内 外温度变化,将温度信号 转换为电信号,传输给控 制单元。
湿度传感器
湿度传感器通过检测空气 中的湿度,将湿度信号转 换为电信号,传输给控制 单元。

空调系统的智能控制与自适应调节

空调系统的智能控制与自适应调节

自适应调节技术的实现原理
基于环境参数变化进行调节 自动检测室内外温度、湿度等参数 根据检测结果自动调整空调系统运行状态 实现原理包括控制算法和传感器等
感谢您的观看
汇报人:资料超市
自适应调节技术
自适应调节技术简介
定义:自适应调节技术是一种能够自动调节空调系统运行状态以适应外部环境变化的技术。
目的:提高空调系统的能效和舒适度。
工作原理:通过传感器监测外部环境参数,如温度、湿度、空气质量等,并将这些参数反馈到控制系统,控 制系统根据预设的算法和规则自动调整空调系统的运行参数,如制冷量、风量、温度等。 应用:广泛应用于家庭、办公室、商场等场所的空调系统中,能够显著提高能源利用效率、降低能源消耗、 减少环境污染。
智能控制系统的组成
传感器:监测 空气状态,如 温度、湿度等
控制器:根据 传感器采集的 数据,控制空 调系统的运行
执行器:根据 控制器的指令, 调节空气处理
设备的参数
热交换器:实 现空气与冷热 媒之间的热交 换,达到调节 空气温度的目

智能控制的优势
节能:根据室内外温度自动调节制冷或制热功率,避免能源浪费 舒适:通过智能传感器检测室内温度和湿度,自动调节空调的运行状态,提供更舒适的室内环境 高效:智能控制系统能够优化空调的运行效率,提高设备的能源利用效率 安全:具备自动检测和报警功能,能够及时发现并处理故障,确保空调系统的安全稳定运行
空调系统的智能控制与 自适应调节
汇报人:资料超市
目录
空调系统的智能控制
ห้องสมุดไป่ตู้01
自适应调节技术
02
空调系统的智能 控制
智能控制技术
简介:智能控制技术是实现空调系统高效运行的关键技术之一 控制原理:通过传感器和执行器对空调系统的参数进行实时监测和调节 控制方式:采用模糊控制、神经网络控制等先进的控制算法 优点:提高空调系统的能效比、减少能源浪费、实现自动化控制等

暖通自动化控制

暖通自动化控制

暖通自动化控制暖通自动化控制是指利用先进的自动化技术和设备,对建造物的供暖、通风、空调系统进行智能化管理和控制的一种技术手段。

它通过采集、传输和处理相关数据,实现对室内温度、湿度、空气质量等参数的监测和调节,从而提高室内环境的舒适性和能源利用效率。

一、自动化控制的基本原理1. 传感器:使用温度传感器、湿度传感器、CO2传感器等获取室内环境参数的数据。

2. 控制器:根据传感器采集到的数据,进行数据处理和逻辑判断,并输出控制信号。

3. 执行器:接收控制信号,控制暖通设备的运行,如调节阀门、启停风机等。

二、暖通自动化控制的主要功能1. 温度控制:根据室内温度的变化,自动调节暖通设备的运行,使室内温度保持在设定的舒适范围内。

2. 湿度控制:根据室内湿度的变化,自动调节加湿器或者除湿器的运行,使室内湿度保持在适宜的水平。

3. 空气质量控制:通过CO2传感器等监测室内空气质量,自动调节新风量和排风量,保证室内空气的新鲜度和清洁度。

4. 能源管理:根据室内外温度、人员活动情况等因素,合理调节暖通设备的运行,实现能源的节约和利用效率的提高。

5. 故障报警:监测暖通设备的运行状态,一旦浮现故障或者异常情况,及时发出报警信号,提醒维修人员进行处理。

三、暖通自动化控制的优势1. 提高舒适性:自动化控制可以根据室内环境的变化,实时调节暖通设备的运行,使室内温度、湿度等参数保持在舒适的范围内。

2. 节约能源:通过合理调节暖通设备的运行,避免能源的浪费,实现能源的节约和利用效率的提高。

3. 提高管理效率:自动化控制可以实现对暖通设备的远程监控和管理,减少人工操作和管理的工作量,提高管理效率。

4. 增强安全性:自动化控制可以对暖通设备的运行状态进行实时监测,一旦浮现故障或者异常情况,及时发出报警信号,保障建造物和人员的安全。

5. 降低运维成本:自动化控制可以减少设备的维修和保养工作,降低运维成本,提高设备的可靠性和使用寿命。

自动控制原理和信号与系统

自动控制原理和信号与系统

自动控制原理和信号与系统好啦,今天我们来聊聊自动控制原理和信号与系统。

这个话题听起来有点高大上,但其实我们日常生活中用到的东西,基本上都离不开它们。

想象一下你家里有一个空调,按下开关它就开始工作,你能调节温度,它会根据你设定的温度自动停开,这不就是自动控制的一个例子吗?这个过程要是没点儿信号传递和系统控制,空调根本不可能根据你设定的温度来调节呀。

说到这里,你可能会觉得,哎呀,这不就跟我做饭时控制火候差不多吗?差不多!但是这背后涉及的原理可比你想的要复杂多了。

自动控制的基本概念其实很简单。

你就可以理解成是某个系统按照某种设定的目标去工作,就像你给自己设定的作息时间,系统会自动按照这个时间来“调整”。

比如,你早上8点钟闹钟响了,咣当一声你就从床上弹起来了。

那是因为你设定了一个固定的时间目标,闹钟系统根据这个目标来做出反应。

换个更有趣的例子,你家的自动马桶,按下按钮后水会自动流出,一切都在设定的控制之下完成。

就是这么神奇,自动控制就是让系统自己完成任务。

再说说信号与系统,这两个玩意儿说起来也是紧密相连的。

信号其实就是信息的载体,像你发的微信消息就是一种信号,收到的短信也是信号,听到的广播也是信号。

这些信号通过不同的方式传输,比如电线、无线电波什么的。

信号能帮我们传递各种各样的信息,今天看到的新闻,昨天的天气预报,甚至你吃饭时听到的歌,都是通过不同的信号形式传达给你。

而系统嘛,就是这些信号背后工作的“大脑”,没有它们,信号就只是无头苍蝇,不知道要去哪儿。

我们平时说的“系统”可不只是某种装置,它指的是一组相互作用的部件或元素,它们一起完成某个目标。

比如,电视机就是一个系统,里面有接收信号的部分,有解码部分,还有显示部分。

每一个部分都得精密协作,才能让你看到画面。

再比如你的车,它的引擎、刹车、油门等每个部件,都是一个个系统,要是其中某个部件出了问题,车子就不会按预期的方式工作。

很多时候你身边的一切都是“自动控制原理”和“信号与系统”在默默发挥作用。

暖通空调系统的自动化控制简述

暖通空调系统的自动化控制简述

暖通空调系统的自动化控制简述摘要:暖通空调系统的自动化控制,主要应用在冷热源系统、热力系统、冷却水系统、空气处理系统、新风机组控制几个方面。

在温度调节的房间设置传感器,将其与控制器相连,实现自动化启停相应设备的操作,由此达到调节温、湿度的目的。

关键词:暖通空调系统;自动化控制前言:随着经济的高速发展,空调已经走进了千家万户,不过,自动化技术在空调的领域并没有普及得很全面,普遍存在着价格偏高的现象,使人们望而却步。

此外,很多用户对于空调的使用并没有很了解,对其使用方法也没有进行彻底的研究,所以即便是购买了有着自动化功能的空调,其在生活中也不能将这个功能发挥出来,达不到研发人员期望的效果。

要想让暖通空调发展和创新,就必须对于现有的技术进行改良,并对暖通自动化技术进行普及。

1基于建筑节能采用的自动化控制算法近几年,我国加大了对暖通空调系统自动化控制的研究力度,并将相应理论应用到实践中,其中研究理念和应用主要集中在节能这一方向,在不影响空调系统冷、暖气输送的前提下,最大程度减少能源消耗。

对空调系统的自动化控制,尝试采用模糊控制的方式,通过仿真对比空间内的温度变化规律,实现自动化调节空调系统输送温度;尝试采用神经网络控制,将自适应神经网络预测控制技术应用到自动化控制中,把温度变化情况反馈给空调控制器。

2暖通空调自动化技术发展的现状虽然现在在大力发展空调以及自动化技术相结合,但我国现有的空调自动控制的水平远远达不到国际水平,从中不难看出:由于空调自动化技术是两个专业相互融合的产物,所以很多空调设计的公司只停留在对于空调设计上面不懂得如何进行自动化控制,又有很多的自动化控制的公司不懂得如何设计空调。

我国的这种现象就导致暖通空调的自动化现象越难发展,两个方面的企业最后就会放弃发展进行随意的融合研究,是暖通空调自动化技术的结合停滞不前。

3暖通空调的自动化技术出现的问题3.1设计员工的专业素质普遍较低空调的使用和地域性的气候有很大的关系,所以在进行设置空调时很多技术人员也是根据每个地方的气候差异进行设计。

建筑工程中空调的自动控制系统研究

建筑工程中空调的自动控制系统研究

建筑工程中空调的自动控制系统研究【摘要】近年来,随着智能建筑的快速发展,建筑工程中自动化系统也逐渐对建筑内的设备进行越来越科学、经济、合理的控制和管理。

其中空调自动化系统是建筑工程自动化系统的一个最重要的部分,可以提高建筑设备利用率、优化设备的运行状态和时间、延长设备寿命、降低设备的能耗等。

本文就此做一论述。

【关键词】建筑工程;自动控制系统;建筑工程自动化系统被列为智能建筑的重要组成部分,包含了对空调通风系统、给排水系统、照明系统等的管理与协调,将对整座建筑的机电设备进行信号采集和控制,实现设备管理系统自动化,起到改善系统运行品质、提高管理水平、降低运行管理劳动强度、节省运行能耗的作用。

一、建筑工程空调自动控制系统的重要性空调系统是现代建筑的重要组成部分,是建筑工程自动化系统的主要监控对象,也是建筑智能化系统主要的管理内容之一。

现代建筑中的空调及其自动控制系统的重要性体现在以下几个方面:首先,智能建筑的主要功能之一就是为人们提供一个舒适的生活和工作环境,而这一功能主要是通过空调及其控制系统来实现的;其次,空调系统又是整个建筑最主要的耗能系统之一,有资料表明,空调系统的耗能已占到建筑总耗能的60%左右,通过建筑自动化系统的节能运行,对降低费用、提高效益是非常重要的;另外,由于在空调系控制系统必须进行实时调节控制,所以空调控制系统的配置与功能相对而言是整个自动化系统要求比较高的一部分。

二、空调自动控制系统的原理空调的自动控制系统就是当室内外的空气参数(温度、湿度等)发生变化时,要求保持空调空间内空气参数不变或不超出既定的变化范围。

通常采取对空气进行加热或冷却达到温度调节的目的,通过加湿和除湿达到湿度调节的目的,通过过滤和调节新风量来达到空气质量调节的目的。

对于特殊的空调系统,其控制功能与要求己远远超出了传统意义上空调控制的范畴,而属于工业控制的范围。

这类空调控制系统的控制功能和精度要求普遍高于一般空调控制的功能和精度,常规空调控制系统中的控制器、传感器有时候不能满足控制要求,必须选用工业控制使用的传感器、控制器和相应的控制策略和算法才能满足要求。

空调知识点物理总结图

空调知识点物理总结图

空调知识点物理总结图一、空调的工作原理1. 循环制冷原理空调通过循环制冷的原理,将室内空气中的热量转移到室外,从而降低室内温度。

空调主要由压缩机、冷凝器、膨胀阀和蒸发器四个部件组成。

在制冷循环中,制冷剂(如R410A)通过压缩机被压缩成高温高压气体,然后流入冷凝器中进行散热,并变成高温高压液体。

接着,高温高压液体通过膨胀阀突然减压,变成低温低压液体,然后进入蒸发器进行蒸发,吸收室内热量,最后再通过压缩机进行循环。

2. 制热原理空调的制热原理与制冷原理相似,只是在此过程中,制冷剂的循环方向发生了改变。

通过控制制冷剂的流动方向,使得室外的热量转移到室内,从而提高室内的温度。

3. 空调的温度控制空调的温度控制通过调节压缩机的运转频率和蒸发器的散热效果来实现。

当室内温度低于设定的温度时,压缩机停止运转,蒸发器增加散热效果,从而达到降温的目的;当室内温度高于设定的温度时,压缩机开始运转,增加制冷剂的流动速度,从而提高制冷效果。

二、空调的节能原理1. 变频空调传统的空调在制冷时只有两个状态,开机和关机,而变频空调可以根据室内温度的变化,自动调节压缩机的运转频率,即使在达到设定温度后也可以低频运转以保持室内的稳定温度,从而节约能源。

2. 热回收技术在一些中央空调系统中,通过热回收技术可以回收室内热量,用于供暖或者热水,从而降低能耗。

这种技术可以有效地利用热量资源,提高能源利用率。

三、空调的维护原理1. 清洁空调滤网空调滤网可以过滤室内空气中的灰尘、细菌和异味等,保持室内空气清洁,减少空调散发有害气体的含量。

定期清洁空调滤网可以延长空调的使用寿命,减少维修成本。

2. 定期检查空调制冷剂空调制冷剂是空调中的重要组成部分,必须保持适当的充注量,定期检查和充注制冷剂可以保证空调的制冷效果,防止系统漏气。

3. 定期清洁空调散热器空调冷凝器和蒸发器的散热效果直接影响空调的制冷效果,定期清洁空调散热器可以有效地提高空调的制冷效率,降低能耗。

智能空调控制原理

智能空调控制原理

智能空调控制原理
智能空调控制的原理是通过合理的调节空调的工作模式、温度、风速、湿度等参数,以实现自动化的温度控制。

首先,智能空调控制系统利用传感器来感知室内外环境的温度、湿度等指标。

常见的传感器包括温度传感器、湿度传感器和光照传感器等。

接下来,系统通过将传感器获取的数据与预设的目标温度做比较,确定是否需要运行空调,并决定合适的工作模式。

常见的工作模式有制冷模式、制热模式、通风模式和智能模式等。

其中,智能模式会根据环境和用户需求动态调整空调参数,实现最佳的节能效果。

一旦确定空调需要工作,系统会根据目标温度和当前温度之间的差异,调节空调的运行状态,主要包括温度设定、风速调节以及风向控制等。

通过控制冷却剂的压缩机、风扇和温控阀等设备,系统能够实现精确的温度控制。

此外,智能空调控制系统还可以根据用户的习惯和需求进行学习和优化。

例如,可以学习用户常用的温度设定和运行模式,根据不同时间段的用电需求,自动调整空调的运行策略,以达到节能和舒适度的最佳平衡。

总的来说,智能空调控制的原理是通过传感器感知环境参数,与预设的目标进行比较,调整空调的运行模式、温度、风速等参数,以实现智能化、舒适化和节能化的空调控制。

PLC在制冷和空调系统中的应用

PLC在制冷和空调系统中的应用

PLC在制冷和空调系统中的应用工业自动化的发展,推动了各个领域智能化水平的提高。

在制冷和空调系统领域,可编程逻辑控制器(PLC)的应用正日益广泛。

本文将介绍PLC在制冷和空调系统中的应用,包括其原理、功能和优势。

一、PLC的原理PLC是一种专门用于工业控制的电子设备。

它通过接收输入信号,经过内部逻辑运算,输出相应的控制信号,完成对制冷和空调系统的控制。

PLC的核心部件包括中央处理器(CPU)、输入/输出模块和存储器。

二、PLC在制冷系统中的应用1. 温度控制PLC可以通过与传感器的连接,实时监测制冷系统中的温度变化,并根据设定的参数,控制压缩机、阀门等设备的运行,以达到温度调节的目的。

通过PLC的智能控制,制冷系统可以更加精准地控制温度,在不同环境条件下实现恒温或变温控制。

2. 压缩机控制制冷系统中的压缩机是运行最频繁、耗能最多的设备之一。

PLC可以根据实时监测的温度和压力等参数,对压缩机进行启停控制,以减少能源的消耗,同时保证制冷系统的正常运行。

3. 故障诊断PLC可以检测制冷系统中的故障信号,并通过显示屏或报警器提示运维人员进行处理。

故障诊断功能可以提高制冷系统的可靠性和安全性,减少由于故障造成的生产损失。

三、PLC在空调系统中的应用1. 温湿度控制通过连接温湿度传感器,PLC可以实时监测空调系统中的温度和湿度,并根据设定的参数,控制风机、阀门等设备的运行。

PLC可以根据环境需求自动调节空调系统的运行状态,提供舒适的室内环境。

2. 风速和风向控制PLC可以控制空调系统中的风机,并根据设定的要求调节风速和风向。

通过智能控制,PLC可以实现不同区域的局部控制,提供个性化的空调服务。

3. 节能控制PLC可以根据室外和室内的温度差异,自动调节空调系统的运行状态,以达到节能降耗的目的。

通过PLC的智能控制算法,可以减少能源的消耗,降低运营成本,对环境保护也有积极的影响。

四、PLC在制冷和空调系统中的优势1. 可靠性高PLC具有高度的可靠性和稳定性,能够适应严苛的工业环境。

高效中央空调节能控制系统原理

高效中央空调节能控制系统原理

高效中央空调节能控制系统原理随着社会对能源需求的日益增长,节能减排已成为当今社会发展的重要课题。

中央空调系统作为建筑能耗的主要部分,其节能控制系统的研究与应用具有重要意义。

本文将介绍高效中央空调节能控制系统的原理,主要包含控制策略原理、能源管理系统、负荷计算与预测、自动化控制系统、能效分析算法、智能化能源优化以及系统集成优化等方面。

一、控制策略原理高效中央空调节能控制系统的核心是控制策略。

通过设定合理的温度、湿度等控制参数,实现对空调系统运行状态的调节。

常用的控制策略包括PID控制、模糊控制、神经网络控制等。

这些控制策略可根据环境变化、负荷变化等情况实时调整空调的运行状态,实现高效节能。

二、能源管理系统能源管理系统是中央空调节能控制系统的关键组成部分。

该系统通过收集建筑物内各种能耗数据,进行统计和分析,为节能控制提供数据支持。

同时,能源管理系统还能根据能耗情况制定相应的节能措施,如优化运行时间、调整运行模式等,从而降低空调系统的能耗。

三、负荷计算与预测负荷计算与预测是实现中央空调节能控制的重要依据。

通过实时监测室内外温度、湿度等参数,以及建筑物的特性,可以对空调系统的负荷进行计算。

同时,利用历史数据和气象数据等,可以对未来一段时间内的负荷进行预测,为节能控制提供依据。

四、自动化控制系统自动化控制系统是实现中央空调节能控制的必要手段。

该系统通过传感器、执行器等设备,实现对空调系统运行状态的实时监测和自动调节。

当室内外温度、湿度等参数发生变化时,自动化控制系统能够自动调整空调的运行状态,确保室内环境的舒适度,同时实现节能。

五、能效分析算法能效分析算法是评估中央空调系统运行效率的重要工具。

通过建立数学模型,能效分析算法可以对空调系统的能耗进行定量分析,找出节能潜力。

在此基础上,制定相应的节能措施,提高空调系统的运行效率,降低能耗。

六、智能化能源优化智能化能源优化是中央空调节能控制系统的发展方向。

通过引入人工智能技术,如深度学习、机器学习等,可以对空调系统的运行状态进行智能分析和优化。

中央空调实现PLC自动化控制的设计要点

中央空调实现PLC自动化控制的设计要点
( 简称 P ) I 。它是 以微处理 C 器为核心 , 综合了现代汁算机技术 、 自动化控制 技术 、 通信技术 以及传统的继电器控制技术 , 是 r 新 型的工业 自 e 动化控制装置 ,并且具有 结 构简单 、 体积小 、 使用灵活 、 干扰能力强 、 抗 可靠 性 高等优点 ,在许多: 业生产领域中得到, 泛 【 的应用 ,已经成 为了现代工业 自动化的三大支
利用 M N T B软件分 析 E S 1IA S 梗颗粒添 加 比例与炯碱 的回归 曲线并进行方差分析如下 :
自变 量 常量

图 1控 制 系统 图
器和存储器来组成逻辑部分 。为用户提供 了很 多适用 于电气控制 的逻辑部件 , 如继 电器 ( 、 与 或、 非运算 ) 时器 、 、 定 计数器 、 寄存 器 、 移位 触发 器和数据寄存器等 ,同时也提供了描述这些逻 辑部件 的符号和语 言, 即编程语 言。 P C通过编程器 , P C内部 的各种 逻辑 L 将 L 部件按照工艺要求进行组合 以达到一定的逻辑 功能 。I P c将输 入信息采人 P C内部 之后 , L 执行 逻辑部件组合后所达到的逻辑功能 ,最后输出 达到控制要求。
3结 论
系 数 O 9 13 6 54
系数 标准 误


O O 6 8 17 7 00 0 09 1 3 3 0
O O 3 5 5 0 0 0 8 5 — 4 4 0 0 2 o4 0 .0 7 1 2 2
S0 0 749 -q8. = . 8 4 3 R S = 6 % R- q调 整 ) 0 7 S(
1 . 2可编 程控制器的基本结构 P C主要是模块式 的 , L 包含 C U模块 、0 P Ⅳ 模块等 , L P C一端接传感器 ,另一端接执行器 , 从传感 器得到的数据经 P C读 、 L 运算等 处理下 达给执行器 , 执行器动作。 L P C相当于继 电器的 作用 , 处是可靠 性高 , 其好 自动化程度高 、 可进 行 网络化等。 1 . 3可编程控制器的编程语言 P C提供了完整的编程语 言,以适应 P C L L 在 l业环境中的使用。 丁 利用编程语言 , 按照不同

制冷空调自动化1

制冷空调自动化1
第1章 制冷与空调装置自动控制的理论基础
1.3 自动控制系统的方案确定与运行 一个自动控制系统必须做到以下三步才能充分显示出其优秀的特点来:首先必须深入分析生产过程,了解控制对象的特性,合理地确定被控参数的基数和精度.研究外部干扰的特点;其次根据控制对象及干扰的特点,选择合适的自动控制装置:传感器、控制器和执行器,与控制对象一起组成一个合理的自动控制系统,设计出系统最佳匹配;第三在自动控制系统建成投入运行前,必须根据控制对象的特性,整定控制器参数.使控制器和控制对象达到最佳匹配。 1.3.1 自动控制系统质量指标的确定 对不同的自动控制系统,除了要求稳定性以外,其他几项指标通常都希望它们小一些,但这样需要设置较为复杂的自动控制装置。因此,要根据控制对象的特性和生产工要求,合理地确定各项质量指标。 1.3.2控制设备的选择 生产过程的自动调节和控制.是由自动控制装越来实现的。自动控制装置又称为自动化仪表。对一定的控制对豫,自动化仪表的性能决定了自动控制系统的控制质数。闪此,只有合理地选择f=l动化仪表和元件,并将它们适当地组合,才能获得较好的控制效果。 1.自动化仪表的分类 可分为检测仪表、显示仪表、控制仪表和执行器四类。按其结构不同可分为基地式仪表和单元组合式仪表两大类。在制冷、空调系统中,也可按生产过程中各种工艺参数,把自动化仪表分为温度指示控制仪表、压力指示控制仪表、液位指示控制仪表、湿度指示控制仪表和自动控制执行机构。
第1章 制冷与空调装置自动控制的理论基础
1.1.3 自动控制系统的质量指标 1.自动控制系统的过渡过程 对于任何一个处于平衡状态的自动控制系统,它的被控参数总是稳定不变的。但当系统受到干扰作用后,被控参数就要偏离给定值而产生偏差,控制器等自动控制设备将根据偏差变化状况,施加控制作用以克服干扰的影响,使被控参数又回到给定位上,系统达到新的平衡状态。这种自动控制系统在干扰和控制的共同作用下,从一个稳定状态变化刭另一个稳定状态期间被控参数随时间的变化过程称为自动控制系统的过渡过程。自动控制系统过渡过程也就是系统的动态特性,它包括静态和动态。研究过渡过程的目的就是为了研究控制系统的质量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空调自动化控制原理说明自动化系统是智能建筑的一个重要组成部分。

楼宇自动化系统的功能就是对大厦内的各种机电设施,包括中央空调、给排水、变配电、照明、电梯、消防、安全防范等进行全面的计算机监控管理。

其中中央空调的能耗占整个建筑能耗的50% 以上,是楼宇自动化系统节能的重点[1]。

由于中央空调系统十分庞大,反应速度较慢、滞后现象较为严重,现阶段中央空调监控系统几乎都采用传统的控制技术,对于工况及环境变化的适应性差,控制惯性较大,节能效果不理想。

传统控制技术存在的问题主要是难以解决各种不确定性因素对空调系统温湿度影响及控制品质不够理想。

而智能控制特别适用于对那些具有复杂性、不完全性、模糊性、不确定性、不存在已知算法和变动性大的系统的控制。

“绿色建筑”主要强调的是:环保、节能、资源和材料的有效利用,特别是对空气的温度、湿度、通风以及洁净度的要求,因此,空调系统的应用越来越广泛。

空调控制系统涉及面广,而要实现的任务比较复杂,需要有冷、热源的支持。

空调机组内有大功率的风机,但它的能耗很大。

在满足用户对空气环境要求的前提下,只有采用先进的控制策略对空调系统进行控制,才能达到节约能源和降低运行费用的目的。

以下将从控制策略角度对与监控系统相关的问题作简要讨论。

2空调系统的基本结构及工作原理空调系统结构组成一般包括以下几部分[2] [3]:(1)新风部分空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。

新风的导入口一般设在周围不受污染影响的地方。

这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。

(2)空气的净化部分空调系统根据其用途不同,对空气的净化处理方式也不同。

因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。

(3)空气的热、湿处理部分对空气进行加热、加湿和降温、去湿,将有关的处理过程组合在一起,称为空调系统的热、湿处理部分。

在对空气进行热、湿处理过程中,采用表面式空气换热器(在表面式换热器内通过热水或水蒸气的称为表面式空气加热器,简称为空气的汽水加热器)。

设置在系统的新风入口,一次回风之前的空气加热器称为空气的一次加热器;设置在降温去湿之后的空气加热器,称为空气的二次加热器;设置在空调房间送风口之前的空气加热器,称为空气的三次加热器。

三次空气加热器主要起调节空调房间内温度的作用,常用的热媒为热水或电加热。

在表面式换热器内通过低温冷水或制冷剂的称为水冷式表面冷却器或直接蒸发式表面冷却器,也有采用喷淋冷水或热水的喷水室,此外也有采用直接喷水蒸汽的处理方法来实现空气的热、湿处理过程。

(4)空气的输送和分配、控制部分空调系统中的风机和送、回风管道称为空气的输送部分。

风管中的调节风阀、蝶阀、防火阀、启动阀及风口等称为空气的分配、控制部分。

根据空调系统中空气阻力的不同,设置风机的数量也不同,如果空调系统中设置一台风机,该风机既起送风作用,又起回风作用的称为单风机系统;如果空调系统中设置两台风机,一台为送风机,另一台为回风机,则称为双风机系统。

(5)空调系统的冷、热源空调系统中所使用的冷源一般分为天然冷源和人工冷源。

天然冷源一般指地下深井水,人工冷源一般是指利用人工制冷方式来获得的,它包括蒸汽压缩式制冷、吸收式制冷以及蒸汽喷射式制冷等多种形式。

现代化的大型建筑中通常都采用集中式空调系统, 这种形式的结构示意图如图1 所示。

图1 空调系统结构示意图其工作原理是当环境温度过高时,空调系统通过循环方式把 室内的热量带走,以使室内温度维持于一定值。

当循环空气通过风机 盘管时,高温空气经过冷却盘管的铝金属先进行热交换,盘管的铝片 吸收了空气中的热量,使空气温度降低,然后再将冷冻后的循环空气 送入室内。

冷却盘管的冷冻水由冷却机提供,冷却机由压缩机、冷凝 器和蒸发器组成。

压缩机把制冷剂压缩,经压缩的制冷剂进入冷凝 器,被冷却水冷却后,变成液体,析出的热量由冷却水带走,并在冷 却塔里排入大气。

液体制冷剂由冷凝器进入蒸发器进行蒸发吸热,使 冷冻水降温,然后冷冻水进入水冷风机盘管吸收空气中的热量,如此 周而复始,循环不断,把室内热量带走。

当环境温度过低时,需要以 热水进入风机盘管,和上述原理一样,空气加热后送入室内。

空气经 过冷却后,有水分析出,空气相对湿度减少,变的干燥,所以需增加 湿度,这就要加装加湿器,进行喷水或喷蒸汽,对空气进行加湿处理, 用这样的湿空气去补充室内水汽量的不足。

3 中央空调自动控制系统3.1 中央空调自动控制的内容与被控参数 回风水i-u. .■!t压缩机*冷凝召新% 过滤器 冷盘 ft 送风 AT冷祿水泵冷却水乗中央空调系统由空气加热、冷却、加湿、去湿、空气净化、风量调节设备以及空调用冷、热源等设备组成。

这些设备的容量是设计容量,但在日常运行中的实际负荷在大部分时间里是部分负荷,不会达到设计容量。

所以,为了舒适和节能,必须对上述设备进行实时控制,使其实际输出量与实际负荷相适应。

目前,对其容量控制已实现不同程度的自动化,其内容也日渐丰富。

被控参数主要有空气的温度、湿度、压力(压差)以及空气清新度、气流方向等,在冷、热源方面主要是冷、热水温度,蒸汽压力。

有时还需要测量、控制供回水干管的压力差,测量供回水温度以及回水流量等。

在对这些参数进行控制的同时,还要对主要参数进行指示、记录、打印,并监测各机电设备的运行状态及事故状态、报警。

中央空调设备主要具有以下自控系统:风机盘管控制系统、新风机组控制系统、空调机组控制系统、冷冻站控制系统、热交换站控制系统以及有关给排水控制系统等。

3.2中央空调自动控制的功能(1) 创造舒适宜人的生活与工作环境对室内空气的温度、相对湿度、清新度等加以自动控制,保持空气的最佳品质;具有防噪音措施(采用低噪音机器设备);可以在建筑物自动化系统中开放背景轻音乐等。

通过中央空调自动控制系统,能够使人们生活、工作在这种环境中,心情舒畅,从而能大大提高工作效率。

而对工艺性空调而言,可提供生产工艺所需的空气的温度、湿度、洁净度的条件,从而保证产品的质量。

(2)节约能源在建筑物的电器设备中,中央空调的能耗是最大的,因此需要对这类电器设备进行节能控制。

中央空调采用自动控制系统后,能够大大节约能源。

(3)创造了安全可靠的生产条件自动监测与安全系统,使中央空调系统能够正常工作,在发现故障时能及时报警并进行事故处理。

3.3中央空调自动控制系统的基本组成图2[4]为一室温的自动控制系统。

它是由恒温室、热水加热器、传感器、调节器、执行器机构和(调节阀)调节机构组成。

其中恒温室和热水加热器组成调节对象(简称对象),所谓调节对象是指被调参数按照给定的规律变化的房间、设备、器械、容器等。

图2 所示的室温自动调节系统也可以用图3所示的方块图来表示。

室温就是室内要求的温度参数,在自动调节系统中称为被调参数(或被调量),用0 a表示。

在室温调节系统中,被调参数就是对象的输出信号。

被调参数规定的数值称为给定值(或设定值),用Bg表示。

室外温度的变化,室内热源的变化,加热器送风温度的变化,以及热水温度的变化等,都会使室内温度发生变化,从而室内温度的实际值与给定值之间产生偏差。

这些引起室内温度偏差的外界因素,在调节系统中称为干扰(或称为扰动),用f表示。

在该系统中,导致室温变化的另一个因素是加热器内热水流量的变化,这一变化往往是热水温度或热水流量的变化引起的,热水流量的变化是由于控制系统的执行机构一调节阀的开度变化所引起的,是自动调节系统用于补偿干扰的作用使被调量保持在给定值上的调节参数,或称调节量q。

调节量q和干扰f对对象的作用方向是相反的。

------------------ 回水1 轉水即語Hh Z 敏审元fl 3 ■节4- 机构*图2 室温自动调节系统示意图图3 室温自动调节系统的方块图4中央空调系统控制中存在的问题4.1 被控对象的特点空调系统中的控制对象多属热工对象,从控制角度分析,具有以下特点[3]:(1)多干扰性例如,通过窗户进来的太阳辐射热是时间的函数,受气象条件的影响;室外空气温度通过围护结构对室温产生影响;通过门、窗、建筑缝隙侵入的室外空气对室温产生影响;为了换气(或保持室内一定正压)所采用的新风,其温度变化对室温有直接影响。

此外,电加热器(空气加热器)电源电压的波动以及热水加热器热水压力、温度、蒸汽压力的波动等,都将影响室温。

如此多的干扰,使空调负荷在较大范围内变化,而它们进入系统的位置、形式、幅值大小和频繁程度等,均随建筑的构造(建筑热工性能)、用途的不同而异,更与空调技术本身有关。

在设计空调系统时应考虑到尽量减少干扰或采取抗干扰措施。

因此,可以说空调工程是建立在建筑热工、空调技术和自控技术基础上的一种综合工程技术。

(2)多工况性空调技术中对空气的处理过程具有很强的季节性。

一年中,至少要分为冬季、过渡季和夏季。

近年来,由于集散型系统在空调系统中的应用,为多工况的空调应用创造了良好的条件。

由于空调运行制度的多样化,使运行管理和自动控制设备趋于复杂。

因此,要求操作人员必须严格按照包括节能技术措施在内的设计要求进行操作和维护,不得随意改变运行程序和拆改系统中的设备。

(3)温、湿度相关性描述空气状态的两个主要参数为温度和湿度,它们并不是完全独立的两个变量。

当相对湿度发生变化时会引起加湿(或减湿)动作,其结果将引起室温波动;而室温变化时,使室内空气中水蒸气的饱和压力变化,在绝对含湿量不变的情况下,就直接改变了相对湿度(温度增高相对湿度减少,温度降低相对湿度增加)。

这种相对关联着的参数称为相关参数。

显然,在对温、湿度都有要求的空调系统中,组成自控系统时应充分注意这一特性。

4.2 控制中存在的主要问题目前中央空调系统主要采用的控制方式是PID 控制,即采用测温元件(温感器)+ PID温度调节器+电动二通调节阀的PID调节方式。

夏季调节表冷器冷水管上的电动调节阀,冬季调节加热器热水管上的电动调节阀,由调节阀的开度大小实现冷(热)水量的调节,达到温度控制的目的。

为方便管理,简化控制过程,把温度传感器设于空调机组的总回风管道中,由于回风温度与室温有所差别,其回风控制的温度设定值,在夏季应比要求的室温高(0.5〜1.0)C,在冬季应比要求的室温低(0.5〜1.0)C。

PID 调节的实质就是根据输入的偏差值,按比例、积分、微分的函数关系进行运算,将其运算结果用于控制输出。

相关文档
最新文档