新七年级下册数学第七章平面直角坐标系单元测试卷(含答案)
最新人教版七年级下册数学第七章平面直角坐标系单元测试卷及答案
人教版七年级数学下册第7 章平面直角坐标系能力提高卷一.选择题(共10 小题)1.如图,小手遮住的点的坐标可能为()A. (5,2)B.(-7,9)C. (-6,-8)D. (7,-1)2.若线段 AB∥ x 轴且 AB=3,点 A 的坐标为 (2,1), 则点 B 的坐标为()A. (5,1)B.(-1,1)C. (5,1)或 (-1,1)D. (2,4)或 (2,-2)3.若点 A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到 x 轴的距离为()A.5B. -5C. 4D.-45.已知点 A(2x-4,x+2)在座标轴上,则x 的值等于()A.2 或 -2B. -2C. 2D.非上述答案6.依据以下表述,能确立一个点地点的是()A.北偏东 40°B.某地江滨路C.光明电影院 6 排D.东经 116 °,北纬 42°7.如图是某动物园的平面表示图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为 y 轴正方向成立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点 A 的坐标为(2,1),现将线段AB 先向左平移 1 个单位,再向下平移两个单位,则平移后 B 点的坐标为()A. (1,2)B.(1,-4)C. (-1,-1)或 (5,-1)D. (1,2)或 (1,-4)9.课间操时,小明、小丽、小亮的地点如下图,小明对小亮说:假如我的地点用(0,0) 表示,小丽的地点用(2,1)表示,那么你的地点能够表示成()A. (5,4)B. (4,5) C. (3,4) D. (4,3)10.已知点A(-1,2)和点 B(3,m-1),假如直线AB∥ x 轴,那么m 的值为()A.1B. -4C. -1D.3二.填空题(共 6 小题)11.若 P(a-2,a+1)在 x 轴上,则 a 的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移 4 个单位,获得点 A′,则点 A′的坐标为.13.在平面直角坐标系中,关于点P(x,y),若点 Q 的坐标为 (ax+y,x+ay),此中 a 为常数,则称点Q 是点 P 的“ a 级关系点”,比如,点P(1,4)的 3 级关系点”为 Q(3 × 1+4,1+3×即4)Q(7,13),若点 B 的“ 2 级关系点”是 B'(3,3),则点 B 的坐标为;已知点 M(m-1,2m) 的“ -3 级关系点” M′位于 y 轴上,则 M ′的坐标为.14.已知点 A(m-1,-5) 和点 B(2,m+1),若直线 AB∥ x 轴,则线段 AB 的长为.15.小刚家位于某住所楼 A 座 16层,记为:A16,按这类方法,小红家住 B 座 10 层,可记为.16.如图,矩形BCDE的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作围绕运动,物体甲按逆时针方向以 1 个单位 / 秒匀速运动,物体乙按顺时针方向以 2 个单位 / 秒匀速运动,则两个物体运动后的第2012 次相遇地址的坐标是.三.解答题(共7 小题)17.如图,在平面直角坐标系中,三角形ABC 的极点 A、 B、 C 的坐标分别为(0,3)、 (-2,1)、(-1,1),假如将三角形ABC先向右平移 2 个单位长度,再向下平移 2 个单位长度,会获得三角形 A′ B′C′ ,点 A'、 B′、 C′分别为点 A、 B、 C 挪动后的对应点.(1)请直接写出点 A′、 B'、 C′的坐标;(2)请在图中画出三角形 A′ B′ C′ ,并直接写出三角形 A′ B′ C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当 m 为什么值时,点 M 到 x 轴的距离为 1?(2)当 m 为什么值时,点 M 到 y 轴的距离为 2 ?19.如图是某个海岛的平面表示图,假如哨所 1 的坐标是 (1,3),哨所 2 的坐标是 (-2,0),请你先成立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的地点.20.已知:点P(2m+4,m-1) .试分别依据以下条件,求出P 点的坐标.(1)点 P 在 y 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过 A(2,-4)点且与 x 轴平行的直线上.21.阅读资料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点 A 位于点 (-4,4),点 B 位于点 (3,1),则“帅”所在点的坐标为;" 马”所在点的坐标为 ;" 兵”所在点的坐标为.(2)若“马”的地点在点 A,为了抵达点 B,请按“马”走的规则,在图上画出一种你以为合理的行走路线,并用坐标表示出来.1m a,1, 此中a、b为常数.f运算22.对有序数对 (m,n) 定义“ f 运算”: f(m,n) =n b22的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的随意一点A(x,y)规定“ F 变换”:点 A(x,y)在 F 变换下的对应点即为坐标为f(x,y) 的点 A′.(1)当 a=0, b=0 时 ,f(-2,4)= ;(2)若点 P(4,-4)在 F 变换下的对应点是它自己,则a=,b =.答案:1-5CCBCA6-10DDDCD11.-112.(-10, 5)13.( 1, 1)( 0, -16)14.915.B1016.( -1, -1)17.解:( 1)依据题意知,点 A′的坐标为( 2,1)、 B' 的坐标为( 0,-1 )、 C′的坐标为(1, -1 );(2)如下图,△A′ B′ C′即为所求,S= × 1×2=1.△A ′B′C′18.解:( 1)∵ |2m+3|=12m+3=1 或 2m+3=-1∴m=-1 或 m=-2;(2)∵ |m-1|=2m-1=2 或 m-1=-2∴m=3 或 m=-1.19.解:成立如下图的平面直角坐标系:小广场( 0, 0)、雷达( 4,0)、营房( 2, -3 )、码头( -1 , -2 ).20.解:( 1)∵点 P( 2m+4, m-1),点 P 在 y 轴上,∴2m+4=0 ,解得: m=-2,则 m-1=-3,故 P( 0, -3);21.解:( 1)由点 A 位于点( -4 , 4人教版七年级下册第七章平面直角坐标系单元综合检测卷一、选择题(每题 3 分,共 30 分)1、课间操时,小华、小军、小刚的地点如图,小华对小刚说:“假如我的地点用(0,0)表示,小军的地点用(2, 1)表示,那么你的地点能够表示成()小刚小军小华A. (5, 4)B.( 4, 5)C.( 3, 4)D.( 4, 3)2、点 C 在x 轴上方,y 轴左边,距离x 轴2 个单位长度,距离y 轴3 个单位长度,则点 C 的坐标为()A.(2,3)B.(- 2,- 3)C.( 3,- 2)D.(- 3,2)3、若点A(m,n) 在第二象限,那么点B(- m,│ n│)在()A. 第一象限B.第二象限C.第三象限D.第四象限4、在平面直角坐标系xoy 中,线段 AB 的两个端点坐标分别为A(-1 , -1), B(1,2) ,平移线段 AB ,获得线段///的坐标为 (3,-1) ,则点/的坐标为 () A B ,,已知A BA.(4,2)B.(5,2)C.(6,2)D.(5,3)5、如下图,一方队正沿箭头所指的方向行进, A 的地点为三列四行,表示为(3, 4),那么 B 的地点是()一二三四五六列列列列列列一行二行三行C D四行A五行B六行A.(4, 5)(1)B.( 5, 4)C.(4, 2)D.(4, 3)6、点 E( a,b)到 x 轴的距离是4,到 y 轴距离是 3,则这样的点有()A.1 个B.2 个C.3 个D.4 个7、在平面直角坐标系中,一个三角形的三个极点的坐标,纵坐标保持不变,横坐标增加 4 个单位,则所得的图形与本来图形对比()A.形状不变,大小扩大 4 倍B.形状不变,向右平移了 4 个单位C.形状不变,向上平移了 4 个单位D.三角形被横向拉伸为本来的 4 倍8、一个长方形在平面直角坐标系中,三个极点的坐标分别是(-1,-1)、(-1,2) 、(3,-1) ,则第四个极点的坐标是()A.(2 , 2)B.(3 , 2)C.(3 ,3)D.(2 , 3)9、在平面直角坐标系中,线段BC ∥ x 轴,则()A. 点B 与C 的横坐标相等B.点B 与C 的纵坐标相等C.点 B与C 的横坐标与纵坐标分别相等D.点 B与C 的横坐标、纵坐标都不相等10、小米同学乘坐一艘游船出海游乐,游船上的雷达扫描探测获得的结果如下图,每相邻两个圆之间距离是1km( 小圆半径是1km) .若小艇 C 相关于游船的地点可表示为(270 °,-1.5),则描绘图中此外两个小艇A, B 的地点,正确的选项是()A .小艇A(60°,3) ,小艇B(- 30°, 2) B.小艇A(60°, 3),小艇B(60°, 2) C.小艇A(60°, 3),小艇B(150°,2) D.小艇 A(60 °,3) ,小艇 B(- 60°, 2)二、填空题(每题 4 分,共 24 分)11、点 M( -1, 5)向下平移 4 个单位长度得N 点坐标是12、已知点 P 在第二象限,点P 到 x 轴的距离是2,到.y 轴的距离是3,那么点P 的坐标是。
人教版七年级下册数学第七章《平面直角坐标系》单元试题(含答案)
七年级下册数学第七章平面直角坐标系章节复习检测卷一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为()A.1 B.2 C.3 D.1 或32.已知点P(3a,a+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(﹣6,0)D.(6,2)3.如果a﹣b<0,且ab<0,那么点(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为( )A.(5,﹣3) B.(﹣5,3) C.(3,﹣5) D.(﹣3,5)6.在平面直角坐标系中,线段CF是由线段AB平移得到的;点A(-1,4)的对应点为C(4,1);则点B(a,b)的对应点F的坐标为()A .(a+3,b+5)B .(a+5,b+3)C .(a-5,b+3)D .(a+5,b-3)7.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为( )A .(﹣3,3)B .(3,2)C .(1,3)D .(0,3)8.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB 得到线段A’B’(点A 与A’对应),已知A’的坐标为(3,-1),则点B’的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)9.将点A (-2,-3)向左平移3个单位长度得到点B ,则点B 的坐标是( )A .(1,-3)B .(-2,0)C .(-5,-3)D .(-2,-6)10.点()'2,1A -可以由点()2,1A -通过两次平移得到,正确的移法是( )A .先向左平移4个单位长度,再向上平移2个单位长度B .先向右平移4个单位长度,再向上平移2个单位长度C .先向左平移4个单位长度,再向下平移2个单位长度D .先向右平移4个单位长度,再向下平移2个单位长度二、填空题(每小题3分,共24分)11.已知点M(a+3,4-a)在y轴上,则点M的坐标为.12.如图3,观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红方“马”走完“马3进4”后到达点B,则表示点B位置的数对是.图313.如图4,把笑脸放在平面直角坐标系中,已知眼睛A的坐标是(-2,3),嘴唇C的坐标是(-1,1),则将此笑脸向右平移3个单位长度后,眼睛B的坐标是.图414.若点B的坐标为(2,1),AB∥y轴,且AB=4,则点A的坐标为.15.在平面直角坐标系中,正方形ABCD的顶点A,B,C的坐标分别为(-1,1),(-1,-1),(1,-1),则顶点D的坐标为________.16.在平面直角坐标系中,点A(1,2a+3)在第一象限,且到x轴的距离与到y轴的距离相等,则a=________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在平面直角坐标系中,点A1(1,2),A2(2,0),A3(3,-2),A4(4,0)……根据这个规律,探究可得点A2017的坐标是________.第14题图第18题图三、解答题(共66分)19.(7分)如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标.20.(7分)如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB,CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点O重合?21.(8分)若点P(1-a,2a+7)到两坐标轴的距离相等,求6-5a的平方根.22.(10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10米),现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF 是由三角形ABC经过怎样的变换得到的;(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b的值.24.(12分)已知A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出三角形ABC;(2)求三角形ABC的面积;(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.25.(12分)如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P从点A出发,沿A→B→C路线运动到点C停止;动点Q从点O出发,沿O→E→D路线运动到点D停止.若P,Q两点同时出发,且点P的运动速度为1cm/s,点Q的运动速度为2cm/s.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发112s时,试求三角形PQC的面积;(3)设两点运动的时间为t s,用含t的式子表示运动过程中三角形OPQ的面积S(单位:cm2).参考答案与解析1.C 2.C 3.B 4.D 5.D6.D 7.C 8.B 9.C10.D11. (0,7)12. (4,7)13. (3,3)14. (2,-3)或(2,5)15.(1,1) 16.-1 17.±418.(2017,2)19.解:(1)三角形A′B′C′如图所示.(3分)(2)建立的平面直角坐标系如图所示.(5分)点B的坐标为(1,2),点B′的坐标为(3,5).(7分)20.解:(1)∵A(2,1),AB=4,AD=2,∴BC到y轴的距离为4+2,(1分)CD到x轴的距离2+1=3,(2分)∴点B的坐标为(4+2,1),点C的坐标为(4+2,3),点D的坐标为(2,3).(5分)(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度).(7分)21.解:由题意,得1-a=2a+7或1-a+2a+7=0,解得a=-2或-8,(4分)故6-5a=16或46,(6分)∴6-5a的平方根为±4或±46.(8分) 22.解:(1)过B作BF⊥x轴于F,过A作AG⊥x轴于G,如图所示.(2分)∴S四边形ABCO =S三角形BCF+S梯形ABFG+S三角形AGO=⎣⎢⎡⎦⎥⎤12×2×4+12×(4+6)×3+12×2×6×102=2500(平方米).(6分)(2)把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,(8分)故所得到的四边形的面积与原四边形的面积相等,为2500平方米.(10分)23.解:(1)A(2,4),D(-1,1),B(1,2),E(-2,-1),C(4,1),F(1,-2).(3分)三角形DEF是由三角形ABC先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(5分)(2)由题意得2a-3=a+3,2b-3-3=4-b,(7分)解得a=6,b=103,(9分)∴a-b=83.(10分)24.解:(1)三角形ABC如图所示.(3分)(2)如图,过点C 向x 轴、y 轴作垂线,垂足为D ,E .(4分)∴S 长方形DOEC =3×4=12,S 三角形BCD =12×2×3=3,S 三角形ACE =12×2×4=4,S 三角形AOB =12×2×1=1.(6分)∴S 三角形ABC =S 长方形DOEC -S 三角形ACE -S 三角形BCD -S 三角形AOB =12-4-3-1=4.(7分)(3)当点P 在x 轴上时,S 三角形ABP =12AO ·BP =4,即12×1×BP =4,解得BP =8.∵点B 的坐标为(2,0).∴点P 的坐标为(10,0)或(-6,0);(9分)当点P 在y 轴上时,S 三角形ABP =12BO ·AP =4,即12×2·AP =4,解得AP =4.∵点A 的坐标为(0,1),∴点P 的坐标为(0,5)或(0,-3).(11分)综上所述,点P 的坐标为(10,0)或(-6,0)或(0,5)或(0,-3).(12分)25.解:(1)B (4,5),C (4,2),D (8,2).(3分)(2)当t =112s 时,点P 运动的路程为112cm ,点Q 运动到点D 处停止,由已知条件可得BC =OA -DE =5-2=3(cm).∵AB +BC =7cm >112cm ,AB =4cm <112cm ,∴当t =112s 时,点P 运动到BC 上,且CP =AB +BC -112=4+3-112=32cm.∴S 三角形CPQ =12CP ·CD =12×32×4=3(cm 2).(6分) (3)①当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图①所示,OA =5cm ,OQ =2t cm ,∴S 三角形OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);(8分)②当4≤t ≤5时,点P 在BC 上,点Q 在ED 上,如图②所示,过P 作PM ∥x 轴交ED 延长线于M ,则OE =8cm ,EM =(9-t )cm ,PM =4cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,∴S 三角形OPQ=S 梯形OPME -S 三角形PMQ -S 三角形OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);(10分)③当5<t ≤7时,点P 在BC 上,点Q 停在D 点,如图③所示,过P 作PM ∥x 轴交ED 的延长线于M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,∴S 三角形OPQ =S 梯形OPME -S 三角形PDM -S 三角形DOE =12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2). 综上所述,S =⎩⎨⎧5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).(12分)。
新人教版数学七年级下册单元测试题1-第7章-平面直角坐标系(含答案解析)
单元测试平面直角坐标系(时间:45分钟满分:100分)一、选择题(每小题3分,共24分)1.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0B.y>0C.y≤0D.y≥02.小敏的家在学校正南方向150 m,正东方向200 m处,如果以学校位置为原点,以正北、正东为正方向,那么小敏家的位置用有序数对表示为( )A.(-200,-150)B.(200,150)C.(200,-150)D.(-200,150)3.在直角坐标系中,第四象限的点M到横轴的距离为28,到纵轴的距离为6,则点M的坐标为( )A.(6,-28)B.(-6,28)C.(28,-6)D.(-28,-6)4.将点A(3,2)沿x轴先向左平移4个单位长度,再沿y轴向下平移2个单位长度得到点A′,则点A′的坐标是( )A.(-3,2)B.(-1,0)C.(-1,2)D.(1,-2)5.如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上6.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-1,0),B(-2,3),C(-3,1).将△ABC向下平移5个单位,得到△AB′C′,则点B′的坐标为( )A.(-7,0)B.(-2,-2)C.(4,1)D.(-5,-2)8.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是( )A.2B.1C.4D.3二、填空题(每小题4分,共16分)9.如图,在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图中左,右眼睛的坐标分别是(-4,2),(-2,2),右图中左眼的坐标是(3,4),则右图中右眼的坐标是__________.10.在平面直角坐标系中,将点P(-1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为__________.11.如图所示,把图1中的⊙A经过平移得到⊙O(如图2),如果图1中⊙A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为__________.12.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为__________.三、解答题(共60分)13.(8分)如图所示,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?请至少给出3种不同的路径.14.(8分)如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.写出下一步“马”可能到达的点的坐标.15.(10分)(1)写出如图1所示的平面直角坐标系中A,B,C,D点的坐标,并分别指出它们所在的象限;(2)如图2,是小明家(图中点O)和学校所在地的简单地图,已知OA=2 cm,OB=2.5 cm,OP=4 cm,C为OP的中点.①请用距离和方位角表示图中商场、学校、公园、停车场分别相对小明家的位置;②若学校距离小明家400 m,那么商场和停车场分别距离小明家多少米?16.(10分)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形;(2)写出A,B,C三点平移后的对应点A′,B′,C′的坐标.17.(12分)小明给右图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?18.(12分)如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.参考答案1.A2.C3.A4.B5.C6.C7.B8.C9.(5,4) 10.(1,1) 11.(m+2,n-1) 12.4913.答案不唯一,如:(1)(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(2)(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3)(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(4)(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(5)(3,5)→(3,4)→(3,3)→(4,3)→(5,3)等.14.(0,0),(0,2),(1,3),(3,3),(4,2),(4,0).15.(1)A(2,2),在第一象限内;B(0,-4),在y轴上;C(-4,3),在第二象限内;D(-3,-4),在第三象限内. (2)①商场:北偏西30°,2.5 cm;学校:北偏东45°,2 cm;公园:南偏东60°,2 cm;停车场:南偏东60°,4 cm.②商场距小明家500米,停车场距小明家800米.16.(1)图略.(2)A′(5,2),B′(0,6),C′(1,0).17.(1)体育场的坐标为(-2,5),文化宫的坐标为(-1,3),超市的坐标为(4,-1),宾馆的坐标为(4,4),市场的坐标为(6,5);(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限;(3)不是,因为对于同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.18.(1)A(2,3)与D(-2,-3);B(1,2)与E(-1,-2);C(3,1)与F(-3,-1);对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数;(2)由(1)可得a+3=-2a,4-b=-(2b-3).解得a=-1,b=-1.。
人教版七年级数学下册第七章 平面直角坐标系 单元测试卷(含答案)
人教版七年级数学下册第七章平面直角坐标系单元测试卷(含答案)一、选择题(毎小题3分,共30分)1.在平面直角坐标系中,下列各点在第二象限的是()A.(1,2)B.(-1,-2)C.(-1, 2)D.(1,-2)2.在平面直角坐标系中,点P(-3.,4)到x轴的距离为()A.3B.-3C.4D.-43.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置.如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A的坐标为(1,-1),表示点B的坐标为(3,2),则表示其他位置的点的坐标正确的是()A.C(-1,0)B.D(-3,1)C.E(-2,-5) D,F(5,2)4.点E(m,n)在平面直角坐标系中的位置如图所示,则坐标(m+1,n-1)对应的点可能是()A.点AB.点BC.点CD.点D第3题图第4题图第7题图第8题图5.在平面直角坐标系的四个象限中,有一点A(m,m2+1),已知m为任意实数,则点A一定不在()A.第一、二象限B.第二、三象限C.第一、四象限D.第三、四象限6.点P(m+3,m+1)在平面直角坐标系的x轴上,则点P的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)7.如图,AD∥BC∥x轴,下列说法正确的是()A,A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同D.B与D的纵坐标相同8.如图,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+3,y0-1),将三角形ABC作同样的平移得到三角形A1B1C1,则点A1的坐标是()A.(-4,3)B.(-4,5)C.(2,3)D.(2,5)9.已知A(a,0)和B点(0,10)两点,且线段AB与坐标轴围成的三角形的面积等于20,则a的值为( )A.2B.4C.0或4D.4或-410.如图是8×8的“密码”图,若“今天考试”解密为“祝你成功”,则用此“钥匙”解密“遇水架桥”的意思是()A.一带一路B.中国崛起C.逢山开路D.中国声音二、填空题(毎小题3分,共24分)11.如图是小兰观看马戏表演的门票若小敏的座位是3排4座,简记为(3,4),则小兰的座位可简记为.12.点P(x,y)在第二象限,且x2=4,y=3.则点P的坐标为.13.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x轴正方向,向上的方向为y轴正方向建立平面直角坐标系,则驼峰所在的象限是.14.如图,在平面直角坐标系中,点P的坐标为(1,1).如果将x轴向上平移2个单位长度,y轴不变,得到新坐标系,那么点P在新坐标系中的坐标是.第13题图第14题图第16题图第18题图15.若第一象限的点P(m+1,3m-5)到x轴的距离与到y轴的距离相等,则m的值为.16.如图,将长为3的长方形ABCD放在平面直角坐标系中,若BC∥x轴,点D(6,3),则点A的坐标为.17.下列说法:①如果点P(a+b,ab)在第一象限,那么点Q(-a,b)在第二象限;②若点M(a-3,a+4)在x轴上,则点M的坐标是(-7,0);③过A(4,-2)和B(-2,-2)两点的直线与y轴相交但不平行于x轴;④将点P(1,-m)向右平移2个单位,再向上平移1个单位得到点Q(n,3),则mn=-6.其中正确结论的序号是.18.如图,将汉字“凸”放在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y 轴,点D、C、P、H在x轴上,A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2).把一条长为2020个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D-E-F-G-H-P-A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是.三、解答题(共66分)19.(8分)下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(-3,2)(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标: .(2)若中国人民大学的坐标为(-3,-4),请在坐标系中标出中国人民大学的位置.20.(8分)如图,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(-4,-1),B(-5,-4),C(-1,-3).已知三角形A’B’C’是三角形ABC经过平移得到的,且三角形ABC中任意一点P(x1,y1)经过平移后的对应点为P’(x1+6,y1+4).(1)画出三角形A’B’C’.(2)写出点A’,C’的坐标.21.(8分)在平面直角坐标系中,点B ,D 的位置如图所示.已知A(3,-5),C(3,5).(1)写出点B ,D 的坐标:B(2,0),D(3,-5)(2)在坐标系中描出点A ,C.点A 在第四象限,将点A 向左平移6个单位长度,它与点D 重合;(3)连接AC ,则直线AC 与y 轴是什么关系?AB C PBD22.(10分)在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线1与直线垂直,且交直线于点C,求交点C的坐标.23.(10分)如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A(0.1),B(5,1),C(7,3),D(2,5).(1)四边形ABCD内(边界点除外)一共有个整点(即横坐标和纵坐标都是整数的点)(2)求四边形ABCD的面积.24.(10分)在平面直角坐标系中.已知点A(1,2),B(4,1),O(0,0)(1)将点A,B分别水平向左移动2个单位长度到达点M,N处,求三角形MON 的面积;(2)过点B作y轴的垂线,垂足为E,若点F在y轴上,且S三角形AEF=1,求点F的坐标;(3)点Q为线段AB上ー动点(不含端点),连接QM,QN,试猜想∠AMQ,∠MQN 和∠BNQ之间的数量关系,并说明理由.25.(12分)如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足()0+a.-b-12=3(1)填空:a=,b= .(2)如果在第三象限内有一点M(-2,m),请用含m的式子表示三角形ABM的面积;3时,在y轴上有一点P,使得三角形BMP的面积与三角(3)在(2)的条件下,当m=-2形ABM的面积相等,请求出点P的坐标.参考答案一. 1.C 2.C 3.B 4.C 5.D 6.B 7.C 8.C 9.D 10.B二、11.(5,37)12.(-2,3)13.第四象限14.(1,-1)15.3 16.(3,3)17.①②④18.(1,2)三、19.(1)(3,1)(2)20.解:(1)如图所示(2)点A'的坐标为(2,3),点C’的坐标为(5,1) 21.解:(1)(2,0)(2)(-3,-5)(2)描点如图所示四 D(3)直线AC与y轴平行.22.解:(1)∵直线l∥x轴,点A,B都在l上,∴m+1=-4, ∴m=-5∴m+3=-2,即A(2,-4),B(-2,-4)∵2-(-2)=4,∴A,B两点间的距离为4. (2)∵l∥x轴,PC⊥l,∴PC⊥x轴.点C的横坐标为-1.又∵点C在l上,∴点C的纵坐标为-4,∴C(-1,-4)23.解:作如图所示的辅助线S 四边形ABCD =S 三角形ADE +S 三角形DFC +S 四边形BEFG =S 三角形BCG, S 三角形ADE =21×2×4=4, S 三角形DFC =21×2×5=5, S 四边形BEFG =2×3=6,S 三角形BCG =21×2×2=2∴S 四边形ABCD =4+5+6+2=17即四边形ABCD 的面积为1724.解:(1)∵A(1,2),B(4,1),将点A ,B 分别水平向左移动2个单位长度到达点M ,N 处,∴M(-1,2),N(2,1)∴S 三角形MON =21×(1+2)×(2+1)-21×2×1-21×1×2=25(2)由题意知点E(0,1),三角形AEF 的边EF 上的高为1.设点F 坐标为(0,y)则EF=1-y ,S △AEF =211-y =1,1-y =2,即,y-1=-2,或y-1=2 ∴y =-1,或y=3∴点F 的坐标为(0,-1)或(0,3)(3)∠AMQ+∠BNQ =∠MQN ,理由如下:如图,过点Q 向左作QH ∥AM由题意知AM ∥NB ∥x 轴,∴AM ∥QH ∥NB. ∴∠AMQ =∠MQH ,∠BNQ =∠NQH. ∴∠AMQ+∠BNQ =∠MQH+∠NQH =∠MQN. 25.(1)-1 3解:(2)如图a ,过点M 作MN ⊥x 轴于点N∵A(-1,0),B(3,0), ∴AB =3-(-1)=4. 又∵点M(-2,m)在第三象限, ∴MN =m =-m. ∴S 三角形AEM =21AB ・MN =21×4×(-m)=-2m (3)当m =-23时,点M 的坐标为(-2,-23) ∴S 三角形AEM =-2×(-23)=3点P 有两种情况:①如图b ,当点P 在y 轴正半轴上时,作如图所示的辅助线,设点P 的坐标为(0,k),则S 三角形BMP =5(23+k)-21×2(23+k)-21×5×23-21×3k=25k+49. ∵S 三角形BMP =S 三角形ABM ,∴25k+49=3 解得k =103,即点P 的坐标为(0,103). ②如图c ,当点P 在y 轴负半轴上时,作如图所示的辅助线,设点P 的坐标为(0,n),则S 三角形BMP =-5n-21×2(-n-23)-21×5×23-21×3×(-n)=-25n-49.∵S 三角形BMP =S 三角形ABM ,∴-25n-49=3解得n=-1021,即点P 的坐标为(0,-1021) 综上所述点P 的坐标为(0,103)或(0,-1021).。
2022年最新人教版初中数学七年级下册第七章平面直角坐标系单元测试试题(含答案解析)
初中数学七年级下册第七章平面直角坐标系单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图所示,已知棋子“车”的坐标为(2-,1-),棋子“马”的坐标为(1,1-),则棋子“炮”的坐标为( )A .(3,2)B .(3-,2)C .(3,2-)D .(3-,2-)2、根据下列表述,能确定位置的是( )A .红星电影院2排B .北京市四环路C .北偏东30D .东经118︒,北纬40︒3、根据下列表述,不能确定具体位置的是( )A .电影院一层的3排4座B .太原市解放路85号C .南偏西30D .东经108︒,北纬53︒4、若点M 在第四象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为( )A .(1,-2)B .(2,1)C .(-2,1)D .(2,-1)5、点()2021,2022A --在( )A .第一象限B .第二象限C .第三象限D .第四象限6、如图,将一把直尺斜放在平面直角坐标系中,下列四点中,一定不会被直尺盖住的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-7、点P (3+a ,a +1)在x 轴上,则点P 坐标为( )A .(2,0)B .(0,﹣2)C .(0,2)D .(﹣2,0)8、点P (−2,−3)向上平移3个单位,再向左平移1个单位,则所得到的点的坐标为( )A .()1,0-B .()1,6-C .()3,6--D .()3,0-9、若点(),5A a a +在x 轴上,则点A 到原点的距离为( )A .5B .C .0D .5-10、将点()4,3-先向右平移7个单位,再向下平移5个单位,得到的点的坐标是( )A .()3,2-B .()3,2-C .()10,2--D .()3,8二、填空题(5小题,每小题4分,共计20分)1、已知线段 AB =4,AB ∥x 轴,若点A 坐标为(-1,2),且点B 在第一象限,则B 点坐标为______.2、已知点()2,1P m m -在第二、四象限的角平分线上,则m 的值为______.3、已知点A 在x 轴上,且3OA =,则点A 的坐标为______.4、如图,动点P 从()0,3出发,沿所示方向运动,每当碰到长方形OABC 的边时反弹,反弹时反射角等于入射角,当点P 第2020次碰到长方形OABC 的边时,点P 的坐标为________.5、在平面直角坐标系中,将点P (-3,4)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为__________.三、解答题(5小题,每小题10分,共计50分)1、在直角坐标系中描出各组点,并将各组内的点用线段依次连接起来.①()2,5,()0,3,()4,3,()2,5;②()1,3,()2,0-,()6,0,()3,3;③()1,0,()1,6-,()3,6-,()3,0.(1)观察得到的图形,你觉得它像什么?(2)找出图象上位于坐标轴上的点,与同伴进行交流;(3)上面三组点分别位于哪个象限,你是如何判断的?(4)图形上一些点之间具有特殊的位置关系,找出几对,它们的坐标有何特点?说说你的发现.2、已知点A (3a +2,2a ﹣4),试分别根据下列条件,求出a 的值.(1)点A 在y 轴上;(2)经过点A (3a +2,2a ﹣4),B (3,4)的直线,与x 轴平行;(3)点A 到两坐标轴的距离相等.3、在平面直角坐标系中,点A 的坐标是(2x -,1y +)2(2)0y -=.求点A 的坐标.4、如图,把△ABC 向上平移4个单位,再向右平移2个单位长度得△A 1B 1C 1,解答下列各题:(1)在图上画出△A 1B 1C 1;(2)写出点A 1、B 1、C 1的坐标;(3)△A 1B 1C 1的面积是______.5、如图所示,在平面直角坐标系中,△ABC 的三个顶点分别为A (-1,-1),B (-3,3),C (-4,1).画出△ABC 关于y 轴对称的△A 1B 1C 1, 并写出点B 的对应点B 1的坐标.---------参考答案-----------一、单选题1、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,−2).故选:C.本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2、D【分析】根据位置的确定需要两个条件对各选项分析判断即可.【详解】解:A、红星电影院2排,具体位置不能确定,不符合题意;B、北京市四环路,具体位置不能确定,不符合题意;C、北偏东30,具体位置不能确定,不符合题意;D、东经118︒,北纬40︒,很明确能确定具体位置,符合题意;故选:D.【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.3、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西30,不能确定具体位置,故该选项符合题意;D. 东经108︒,北纬53︒,能确定具体位置,故该选项不符合题意;【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键.4、D【分析】先判断出点M 的横、纵坐标的符号,再根据点M 到x 轴、y 轴的距离即可得.【详解】 解:点M 在第四象限,∴点M 的横坐标为正数,纵坐标为负数,点M 到x 轴的距离为1,到y 轴的距离为2,∴点M 的纵坐标为1-,横坐标为2,即(2,1)M -,故选:D .【点睛】本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.5、C【分析】根据各象限内点的坐标特征解答.【详解】解:点()2021,2022A --的横坐标小于0,纵坐标小于0,点()2021,2022A --所在的象限是第三象限. 故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).6、D【分析】根据点的坐标,判断出点所在的象限,进而即可求解.【详解】解:∵直尺没有经过第四象限,而()2,1-在第四象限,∴一定不会被直尺盖住的点的坐标是()2,1-,故选D .【点睛】本题主要考查点的坐标特征,掌握点所在象限和点的坐标特征,是解题的关键.7、A【分析】根据x 轴上点的纵坐标为0列式计算求出a 的值,然后求解即可.【详解】解:∵点P (3+a ,a +1)在x 轴上,∴a +1=0,∴a =-1,3+a =3-1=2,∴点P 的坐标为(2,0).故选:A .【点睛】本题考查了点的坐标,主要利用了x轴上点的纵坐标为0的特点.8、D【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:将点P(-2,-3)向上平移3个单位,再向左平移1个单位,所得到的点的坐标为(-2-1,-3+3),即(-3,0),故选:D.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9、A【分析】根据x轴上点的纵坐标为0列式求出a,从而得到点A的坐标,然后解答即可.【详解】解:∵点A(a,a+5)在x轴上,∴a+5=0,解得a=-5,所以,点A的坐标为(-5,0),所以,点A到原点的距离为5.故选:A.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.10、A【分析】让点A 的横坐标加7,纵坐标减5即可得到平移后点的坐标.【详解】解:点()4,3A -先向右平移7个单位,再向下平移5个单位,得到的点坐标是(47,35)-+-,即(3,2)-, 故选A .【点睛】本题考查了坐标与图形变化-平移,解题的关键是掌握点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.二、填空题1、(3,2)【解析】【分析】线段AB ∥x 轴,A 、B 两点纵坐标相等,又AB =4,B 点可能在A 点左边或者右边,根据距离确定B 点坐标.【详解】解:∵AB ∥x 轴,∴A 、B 两点纵坐标都为2,又∵AB =4,∴当B 点在A 点左边时,B (-5,2),B (-5,2)在第二象限,与点B 在第一象限,不相符,舍去;当B 点在A 点右边时,B (3,2);故答案为:(3,2).【点睛】本题考查了平行于x 轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.2、-1【解析】【分析】根据第二、四象限的角平分线上点的特点即可得到关于a 的方程,进行求解即可.【详解】解:点()2,1P m m -在第二、四象限的角平分线上,∴210m m +-=,解得:1m =-,故答案为:1-.【点睛】题目主要考查了二、四象限角平分线上点的特点,掌握象限角平分线上点的特点是解题的关键.3、(3,0)或(-3,0)##(-3,0)或(3,0)【解析】【分析】根据题意可得点A 在x 轴上,且到原点的距离为3,这样的点有两个,分别在x 轴的正半轴和负半轴,即可得出答案.【详解】解:根据题意可得:点A 在x 轴上,且到原点的距离为3,这样的点有两个,分别在x 轴的正半轴和负半轴,∴点A 的坐标为(3,0)或(-3,0),故答案为:(3,0)或(-3,0).【点睛】题目主要考查点在坐标系中的位置,理解点在坐标系中的距离分两种情况是解题关键.5,04、()【解析】【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图,根据题意得:P0(0,3),P1(3,0),P2(7,4),P3(8,3),P4(5,0),P5(1,4),P6(0,3),P7(3,0),…,∴点P n的坐标6次一循环.经过6次反弹后动点回到出发点(0,3),∵2020÷6=336…4,∴当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(5,0).【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.5、()2,2-【解析】【分析】根据向右平移横坐标加,向下平移纵坐标减,计算即可得解.【详解】解:将点P (-3,4)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为()2,2-. 故答案为:()2,2-【点睛】本题考查了坐标与图形的变化—平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.三、解答题1、(1)像一棵树;(2)x 轴上的点有:()2,0-,()1,0,()3,0,()6,0;y 轴上的点有:()0,3;(3)点()2,5,()4,3,()1,3,()3,3在第一象限内,因为它们的横坐标与纵坐标都是正实数;点()1,6-,()3,6-在第四象限内,因为它们的横坐标是正实数,纵坐标是负实数;(4)点()0,3与()3,3的纵坐标相同,它们的连线段与x 轴平行;点()1,3,()1,0,()1,6-的横坐标相同,它们的连线段与y 轴平行.【解析】【分析】(1)依此描出各组点的坐标,然后依此连接,由图象可进行求解;(2)根据图象可直接进行求解;(3)根据平面直角坐标系中象限的符号特点可直接进行求解;(4)根据图象可直接进行求解.解:(1)描出各组点的坐标并依此连接,如图所示:由图象可知:像一棵树;(2)x 轴上的点有:()2,0-,()1,0,()3,0,()6,0;y 轴上的点有:()0,3;(3)点()2,5,()4,3,()1,3,()3,3在第一象限内,因为它们的横坐标与纵坐标都是正实数;点()1,6-,()3,6-在第四象限内,因为它们的横坐标是正实数,纵坐标是负实数;(4)学生的发现可以多样.例如,点()0,3与()3,3的纵坐标相同,它们的连线段与x 轴平行;点()1,3,()1,0,()1,6-的横坐标相同,它们的连线段与y 轴平行.【点睛】本题主要考查平面直角坐标系,解题的关键是在平面直角坐标系中描出各点的坐标.2、(1)(0,163-)(2)(14,4)(3)(−16,−16)或(3.2,−3.2) 【解析】(1)根据y轴上的点的纵坐标等于零,可得方程,解方程可得答案;(2)根据平行于x轴直线上的点纵坐标相等,可得方程,解方程可得答案;(3)根据点A到两坐标轴的距离相等,可得关于a的方程,解方程可得答案.【详解】解:(1)依题意有3a+2=0,解得a=23 -,2a﹣4=2×(23-)﹣4=163-.故点A的坐标为(0,163 -);(2)依题意有2a−4=4,解得a=4,3a+2=3×4+2=14,故点A的坐标为(14,4);(3)依题意有|3a+2|=|2a−4|,则3a+2=2a−4或3a+2+2a−4=0,解得a=−6或a=0.4,当a=−6时,3a+2=3×(−6)+2=−16,当a=0.4时,3a+2=3×0.4+2=3.2,2a−4=−3.2.故点A的坐标为(−16,−16)或(3.2,−3.2).【点睛】本题考查了点的坐标,x轴上的点的纵坐标等于零;平行于x轴直线上的点纵坐标相等.【解析】【分析】2(2)0y -=得出30x +=,20y -=,解出x ,y 即可得出点A 的坐标.【详解】30x +≥,2(2)0y -≥2(2)0y -=,30x ∴+=,20y -=,解得:3x =-,2y =,2325x ∴-=--=-,1213y +=+=,(5,3)A ∴-.【点睛】本题考查非负数的性质,几个非负数之和等于零,则每一个非负数都为0.4、(1)见解析;(2)A 1、B 1、C 1的坐标分别为(0,6),(-1,2),(5,2);(3)12.【解析】【分析】(1)把△ABC 的各顶点向上平移4个单位,再向右平移2个单位,顺次连接各顶点即为△A 1B 1C 1;(2)利用各象限点的坐标特征写出点A 1、B 1、C 1的坐标;(3)根据三角形面积公式求解.【详解】解:(1)如图,△A 1B 1C 1为所作;(2)点A 1、B 1、C 1的坐标分别为(0,6),(-1,2),(5,2);×6×4=12,(3)△A1B1C1的面积=12故答案为:12.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.5、见解析,点B的对应点B1的坐标为(3,3)【解析】【分析】根据轴对称的性质画出图形并写出坐标即可.【详解】如图所示,B1的坐标为(3,3).【点睛】本题考查了作图−轴对称,属于基础题.关键是确定对称点的位置.。
第七章 平面直角坐标系单元测试卷(含答案)
第七章平面直角坐标系单元测试卷一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,4)到x轴的距离为()A.3B.-3C.4D.-42.设点A(m,n)在x轴上,且位于原点的左侧,则下列结论正确的是()A.m=0,n为任意实数;B.m=0,n<0C.m为任意实数,n=0;D.m<0,n=03.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,-2)4.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位长度得到点Q,则点Q的坐标是()A.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)5.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(2,2),(3,4),(1,7)B.(2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7)D.(2,-2),(4,3),(1,7)6.如图,将长为3的长方形ABCD放在平面直角坐标系中,若点D(6,3),则A点的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)7.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()8.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a -10)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 017次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2 015,2)B.(-2 015,-2)C.(-2 016,-2)D.(-2 016,2)二、填空题(每题3分,共30分)11.七年级三班座位按7排8列排列,王东的座位是3排4列,简记为(3,4),张三的座位是5排2列,可简记为_________.12.在平面直角坐标系中,将点A(4,1)向左平移_________个单位长度得到点B(-1,1).13.如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O'A',则点A的对应点A'的坐标为_________.14.在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.已知点A的坐标(x,y)满足+(y+3)2=0,则点A的坐标是________.17.已知点A(a,0)和点B(0,5),且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的格点上,在第四象限内坐标为________.19.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B'处,则点B'的坐标为________.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为(用n表示).三、解答题(21题6分,22题8分,25题12分,26题14分,其余每题10分,共60分)21.如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50米记作50,图中点A记作(30°,50);北偏西45°记作-45°,从O点出发沿着该方向的反方向走20米记作-20,图中点B 记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).22.如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标.23.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l'与直线l垂直,求垂足C点的坐标.24.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.25.如图,长阳公园有四棵古树A,B,C,D(单位:米).(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来,划为保护区,请你计算保护区的面积.参考答案一、1.【答案】C2.【答案】D解:因为点A(m,n)在x轴上,所以纵坐标是0,即n=0.因为点A位于原点的左侧,所以横坐标小于0,即m<0.所以m<0,n=0,故选D.3.【答案】C解:由“帅”与“马”的位置可以确定平面直角坐标系,进而可知“兵”位于点(-4,1),故选C.4.【答案】D解:点P(-2,3)沿x轴方向向右平移3个单位长度,即横坐标加上3,纵坐标不变,则Q点的坐标为(1,3),选D.5.【答案】C解:三角形向右平移2个单位长度,再向上平移3个单位长度,即(-4,-1),(1,1),(-1,4)的横坐标分别加上2,纵坐标分别加上3,得(-2,2),(3,4),(1,7).故选C.6.【答案】D解:由长为3,可知A点的横坐标为6-3=3,纵坐标与D点相同,即坐标为(3,3).故选D.7.【答案】D解:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO,然后运用转化思想将点的坐标转化为线段的长度,底BO=2,高为3,所以三角形ABO的面积=×2×3=3.8.【答案】D解:由P,Q在图中的位置可知a<7,b<5,所以6-b>0,a-10<0,故点(6-b,a-10)在第四象限.9.【答案】D解:因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以a=-1或a=-4,当a=-1时,P点坐标为(3,3),当a=-4时,P点坐标为(6,-6).10.【答案】B二、11.【答案】(5,2)12.【答案】513.【答案】(-1,3)14.【答案】(2,-2)解:将点A(-1,2)向右平移3个单位长度得到点B的坐标为(-1+3,2),即(2,2),则点B关于x轴15.【答案】二16.【答案】(2,-3)17.【答案】4或-4解:由三角形的面积=底×高×得,5|a|·=10,解得|a|=4,所以a=4或a=-4.此处学生容易只考虑一种情况.18.【答案】3;(1,-1)(答案不唯一)19.【答案】(2,1)解:由题意知四边形BEB'D是正方形,∴点B'的横坐标与点E的横坐标相同,点B'的纵坐标与点D的纵坐标相同,∴点B'的坐标为(2,1).20.【答案】(2n,1)解:由图可知n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),…,所以点A4n+1(2n,1).三、21.解:(1)(-75°,-15)表示南偏东75°距O点15米处,(10°,-25)表示南偏西10°距O点25米处.(2)如图.22.解:(1)如图.(2)体育场、市场、超市的坐标分别为(-2,4),(6,4),(4,-2).23.解:(1)∵l∥x轴,点A,B都在l上,∴m+1=-4,∴m=-5,∴A(2,-4),B(-2,-4),∴A,B两点间的距离为4.(2)∵l∥x轴,PC⊥l,x轴⊥y轴,∴PC∥y轴,∴C点横坐标为-1.又点C在l上,∴C(-1,-4).24.解:(1)C1(4,-2).(2)△A1B1C1如图所示.(3)如图,△AOA1的面积=6×3-×3×3-×3×1-×6×2=18---6=6.25.解:(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)如图,E(0,10),F(0,30),G(50,50),H(60,0),另外令M(0,50),N(60,50),则S=S-S△OEH-S△FMG-S△HGN=50×60-×10×60-×20×50-×10×50=1 950(平方米),所以保护OMNH区的面积为1 950平方米.。
七年级数学下册第第七章《平面直角坐标系》单元测试题(含答案)
七年级数学下册第第七章《平面直角坐标系》单元测试题(含答案)一、选择题(本大题共6小题,每小题3分,共18分)1.下列坐标中,在第三象限的是( )A .(4,5)--B .(4,5)-C .(4,5)D .(4,5)- 2.已知点(3,2)P a a +在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(6,0)-D .(6,2) 3.在平面直角坐标系中,将点(,)A x y 向左平移5个单位长度,再向上平移3个单位长度后与点(3,2)B -重合,则点A 的坐标是( )A .(2,5)B .(8,5)-C .(2,1)-D .(8,1)--4.如图,用方向和距离描述少年宫相对于小明家的位置,正确的是( )A .北偏东55°,2kmB .东北方向C .东偏北35°,2kmD .北偏东35°,2km5.若点P (m ,n )在第三象限,则点Q (﹣m ,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)…,那么点A 2022的坐标为( )A .(1011,0)B .(1011,1)C .(2022,0)D .(2022,1) 二、填空题(本大题共6小题,每小题3分,共18分)7.点A (1,﹣2)到x 轴的距离是 .8.在平面直角坐标系中,若对于平面内任一点(,)a b 有如下变换:(f a ,)(b a =-,)b ,如 (1f ,3)(1=-,3),则(5,3)f -= .9.在平面直角坐标系中,点(a 2+1,﹣1)一定在第 象限.10.线段AB 平移后得到线段CD ,已知(2,3)A 的对应点为(1,4)C -,则(3,2)B 的对应 点D 的坐标为 .11.已知点P (a ,b )在第三象限,且点P 到x 轴的距离为3,到y 轴的距为5,到点P 的坐标为 .12.在平面直角坐标系中,已知点(2,3)P -,//PA y 轴,3PA =,则点A 的坐标为 .三、(本大题共4小题,每小题6分,共24分)13.建立平面直角坐标系,使点C 的坐标为(4,0),写出点A 、B 、D 、E 、F 、G 的坐标.14.点(2,36)P a a -+到两条坐标轴的距离相等,求点P 的坐标.15.点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点”.(1)在点A (﹣2,2),B (,﹣),C (﹣1,5)中,“垂距点”是 ;(2)若D (m ,m )是“垂距点”,求m 的值.16.如图,△ABC 的顶点A (﹣1,4),B (﹣4,﹣1),C (1,1).若△ABC 向右平移4个单位长度,再向下平移3个单位长度得到△A 'B 'C ',且点C的对应点坐标是C '.(1)画出△A 'B 'C ',并直接写出点C '的坐标;(2)若△ABC 内有一点P (a ,b )经过以上平移后的对应点为P ',直接写出点P '的坐标;(3)求△ABC 的面积.四、(本大题共2小题,每小题9分,共18分)17.在平面直角坐标系中,已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.求:(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣5)点,且与x轴平行的直线上.18.三角形ABC与三角形A B C'''在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;(2)三角形ABC由三角形A B C'''经过怎样的平移得到?答:.(3)若点(,)P x y是三角形ABC内部一点,则三角形A B C'''内部的对应点P'的坐标为;(4)求三角形ABC的面积.五、(本大题2小题,第19题10分,第20题12分,共22分)19.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O →C→B→A→O的路线移动(移动一周).(1)写出点B的坐标;(2)当点P移动了4秒时,求出点P的坐标;(3)在移动过程中,当△OBP的面积是10时,直接写出点P的坐标20.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标(用含t的式子表示,写出过程);③当三角形P AB的面积为3.2时,求此时P点的坐标;④P点在运动过程中,三角形P AB面积的最大值是.参考答案一、选择题1-6.ACCDAB二、填空题7.28.(﹣5,﹣3)9.四10.(0,3)11.(﹣5,﹣3)12.(﹣2,6)或(﹣2,0)三.解答题13.解:如图所示,以B为坐标原点,BC所在直线为x轴,过点B且垂直于x轴的直线为y 轴建立平面直角坐标系,则A(﹣2,3),B(0,0),D(6,1),E(5,3),F(3,2),G(1,5).14.解:∵点P(a﹣2,3a+6)到两条坐标轴的距离相等,∴a﹣2=3a+6或a﹣2+3a+6=0得a=﹣4或a=﹣1∴(﹣6,﹣6)或(﹣3,3).15.解:(1)根据题意,对于点A而言,|﹣2|+|2|=4,所以A是“垂距点”,对于点B而言,||+|﹣|=3,所以B不是“垂距点”,对于点C而言,|﹣1|+|5|=6≠4,所以C不是“垂距点”,故答案为:A.(2)由题意可知:,①当m>0时,则4m=4,解得m=1;②当m<0时,则﹣4m=4,解得m=﹣1;∴m=±1.16.解:(1)如图所示:∴点C(5,﹣2);(2)∵△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',∴点P'(a+4,b﹣3);(3)S△ABC=5×5﹣×3×5﹣×2×3﹣×5×2=25﹣7.5﹣3﹣5=9.5.17.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1﹣(2m+4)=3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(3)令m﹣1=﹣5,解得m=﹣4.所以P点的坐标为(﹣4,﹣5).18.解:(1)A(1,3),B(2,0),C(3,1),故答案为:(1,3),(2,0),(3,1).(2)三角形A'B'C'向右平移4个单位,再向上平移2个单位得到三角形ABC.故答案为:三角形A'B'C'向右平移4个单位,再向上平移2个单位得到三角形ABC.(3)P′(x﹣4,y﹣2),故答案为:(x﹣4,y﹣2),(4)S三角形ABC=2×3﹣×1×3﹣×1×1﹣×2×2=2.19.解:(1)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4,OC=6,∴点B(4,6);(2)∵点P移动了4秒时的距离是2×4=8,∴点P的坐标为(2,6);(3)如图,①当点P在OC上时,S△OBP=×OP1×4=10,∴OP1=5,∴点P(0,5);②当点P在BC上,S△OBP=×BP2×6=10,∴BP2=,∴CP2=4﹣=,∴点P(,6);③当点P在AB上,S△OBP=×BP3×4=10,∴BP3=5,∴AP3=6﹣5=1,∴点P(4,1);④当点P在AO上,S△OBP=×OP4×6=10,∴OP4=,∴点P(,0).综上,点P的坐标为(0,5)或(,6)或(4,1)或(,0).20解:(1)∵C(﹣3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE﹣AO=2,∴E(﹣2,0),故答案为:(﹣2,0).(2)①由题意当P(﹣2,2)时,满足条件,此时t=2.故答案为:2.②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t).③当点P在线段BC上时,三角形P AB的面积最大为×BC×OB=×3×2=3,所以三角形P AB的面积为3.2时,P点只能在线段CD上.如图,设此时PD的长为m.∵△P AB的面积=四边形ABCD的面积﹣△PBC的面积﹣△P AD的面积=(3+4)×2﹣×(2﹣m)×3﹣m×4=7﹣3+m﹣2m=4﹣m,∴4﹣m=3.2,m=1.6此时P点的坐标是(﹣3,1.6).④当点P与D重合时,△P AB的面积最大,最大值为×4×2=4,故答案为:4。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
七年级下册数学第七章《平面直角坐标系》单元检测题(含答案)
七年级下册数学第七章单元检测题姓名:班级:时限:60分钟总分:120分分数:一、选择题(每小题3分,共36分)1.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,长方形ABCD中,A(-4,1),B(0,1),C(0,3),则点D的坐标是()A.(-3,3)B.(-2,3)C.(-4,3)D.(4,3)3.如图,用手盖住的点的坐标可能是()A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)4.如图是小明画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示为()A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)5.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)6.已知点M(3,0),在x轴上有一点与M的距离为5,则该点的坐标为()A.(8,0)B.(0,-2)C.(0,-8)或(0,-2)D.(8,0)或(-2,0)7.将六边形ABCDEF的各个顶点的横坐标分别减去3,纵坐标保持不变,所得到的六边形与原六边形比较()A.向上平移三个单位,形状不变B.向下平移三个单位,形状不变C.向右平移三个单位,形状不变D.向左平移三个单位,形状不变8.已知点A(2,2),B(2,4),C(2,0),O(0,0),那么∠BOC和∠COA的大小关系是()A.∠BOC>∠COAB.∠BOA=∠COAC.∠BOC<∠COAD.以上三种情况都有可能9.如图是某中学的平面示意图,每个正方形格子的边长为1,如果校门所在的位置的坐标为(2,4),小明所在的位置的坐标为(-6,-1),那么坐标(3,-2)在示意图中表示的是()A.图书馆B.教学楼C.实验室D.食堂A B,则a+b的值10.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至11为()A.2B.3C.4D.511.如图为A,B,C三点在坐标平面上的位置图,若A,B,C的横坐标的数字总和为a,纵坐标的数字总和为b,则a-b的值为()A.5B.3C.-3D.-512.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2017次碰到长方形的边时,点P的坐标是()A.(1,4)B.(3,0)C.(6,4)D.(8,3)二、填空题(每小题3分,共15分)13.如果用(7,8)表示七年级八班,那么八年级七班可表示为________.14.若点M(a+3,a-2)在y轴上,则点M的坐标是_______.15.若点A(x,0)和B(2,0)的距离是5,则x=_______.16.如图,在平面直角坐标系中,三角形ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标是_______.17.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-8,-5),白棋④的坐标为(-7,-9),那么黑棋的坐标应该是_______.三、解答题(本大题共7小题,共69分)18.(8分)请写出点A,B,C,D的坐标.19.(9分)将三角形ABC向右平移4个单位长度,再向下平移5个单位长度,作'''.出平移后的三角形A B C20.(10分)(1)在坐标平面内画出点P (2,3);(必须自画坐标!)(2)将点P 向下平移6个单位长度得到点1P ,将点P 向左平移4个单位长度得到点2P ,分别画出点1P ,2P ,并写出1P ,2P 的坐标.21.(10分)在我国沿海地区,几乎每年夏秋两季都会或多或少的遭受台风的侵袭,加强台风的监测和预防,是减轻台风灾害的重要措施,下表是中央气象台发布的第13号台风的有关信息:请在下面的经纬度地图上找到台风中心在16日23时和17日23时所在的位置.22.(10分)如图,三角形A B C '''是由三角形ABC 平移得到的,已知三角形ABC中任意一点P (00,x y )经平移后的对应点为点P ′(005,2x y +-).(1)已知点A (-1,2),B (-4,5),C (-3,0),请写出点,,A B C '''的坐标;(2)试说明三角形A B C '''是如何由三角形ABC 平移得到的?23.(10分)在平面直角坐标系中,点A 的坐标是(3a -5,a +1).(不画图扣一分)(1)若点A 在y 轴上,求a 的值及点A 的坐标;(2)若点A 到x 轴的距离与到y 轴的距离相等,求a 的值及点A 的坐标.24.(12分)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动一个单位,其行走路线如图所示.(1)分别写出点4812,A A A 和的坐标;(2)求出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点100A 到点101A 的移动方向.七年级下册数学第七章单元检测题(答案版)姓名:班级:时限:60分钟总分:120分分数:一、选择题(每小题3分,共36分)1.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案:D2.如图,长方形ABCD中,A(-4,1),B(0,1),C(0,3),则点D的坐标是()A.(-3,3)B.(-2,3)C.(-4,3)D.(4,3)答案:C3.如图,用手盖住的点的坐标可能是()A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)答案:D4.如图是小明画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示为()A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)答案:A5.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)答案:D6.已知点M(3,0),在x轴上有一点与M的距离为5,则该点的坐标为()A.(8,0)B.(0,-2)C.(0,-8)或(0,-2)D.(8,0)或(-2,0)答案:D7.将六边形ABCDEF的各个顶点的横坐标分别减去3,纵坐标保持不变,所得到的六边形与原六边形比较()A.向上平移三个单位,形状不变B.向下平移三个单位,形状不变C.向右平移三个单位,形状不变D.向左平移三个单位,形状不变答案:D8.已知点A(2,2),B(2,4),C(2,0),O(0,0),那么∠BOC和∠COA的大小关系是()A.∠BOC>∠COAB.∠BOA=∠COAC.∠BOC<∠COAD.以上三种情况都有可能答案:A9.如图是某中学的平面示意图,每个正方形格子的边长为1,如果校门所在的位置的坐标为(2,4),小明所在的位置的坐标为(-6,-1),那么坐标(3,-2)在示意图中表示的是()A.图书馆B.教学楼C.实验室D.食堂答案:AA B,则a+b10.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至11的值为()A.2B.3C.4D.5答案:A11.如图为A,B,C三点在坐标平面上的位置图,若A,B,C的横坐标的数字总和为a,纵坐标的数字总和为b,则a-b的值为()A.5B.3C.-3D.-5答案:A12.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2017次碰到长方形的边时,点P的坐标是()A.(1,4)B.(3,0)C.(6,4)D.(8,3)答案:B二、填空题(每小题3分,共15分)13.如果用(7,8)表示七年级八班,那么八年级七班可表示为________.答案:(8,7)14.若点M(a+3,a-2)在y轴上,则点M的坐标是_______.答案:(0,-5)15.若点A(x,0)和B(2,0)的距离是5,则x=_______.答案:-3或716.如图,在平面直角坐标系中,三角形ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标是_______.答案:(-2,1)17.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-8,-5),白棋④的坐标为(-7,-9),那么黑棋的坐标应该是_______.答案:(-4,-8)三、解答题(本大题共7小题,共69分)18.(8分)请写出点A,B,C,D的坐标.答案:A(3,2),B(-3,4),C(-4,-3),D(3,-3).19.(9分)将三角形ABC向右平移4个单位长度,再向下平移5个单位长度,作'''.出平移后的三角形A B C答案:20.(10分)(1)在坐标平面内画出点P (2,3);(2)将点P 向下平移6个单位长度得到点1P ,将点P 向左平移4个单位长度得到点2P ,分别画出点1P ,2P ,并写出1P ,2P 的坐标.答案:(1)如图所示(2)如图所示,1P 的坐标为1P (2,-3),2P 的坐标为2P (-2,3).21.(10分)在我国沿海地区,几乎每年夏秋两季都会或多或少的遭受台风的侵袭,加强台风的监测和预防,是减轻台风灾害的重要措施,下表是中央气象台发布的第13号台风的有关信息:请在下面的经纬度地图上找到台风中心在16日23时和17日23时所在的位置. 答案:如图所示22.(10分)如图,三角形A B C '''是由三角形ABC 平移得到的,已知三角形ABC 中任意一点P (00,x y )经平移后的对应点为点P ′(005,2x y +-).(1)已知点A (-1,2),B (-4,5),C (-3,0),请写出点,,A B C '''的坐标;(2)试说明三角形A B C '''是如何由三角形ABC 平移得到的?答案:(1)A ′(4,0),B ′(1,3),C ′(2,-2).(2)三角形A B C '''是由三角形ABC 向右平移5个单位,再向下平移2个单位得到的.23.(10分)在平面直角坐标系中,点A 的坐标是(3a -5,a +1).(1)若点A 在y 轴上,求a 的值及点A 的坐标;(2)若点A 到x 轴的距离与到y 轴的距离相等,求a 的值及点A 的坐标. 答案:(1)由题意得3a -5=0,∴a =53,∴A(0,83). (2)由题意得3a -5=a +1或3a -5=-(a +1),解得a =3或a =1,∴A(4,4)或(-2,2).24.(12分)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动一个单位,其行走路线如图所示.(1)分别写出点4812,A A A 和的坐标;(2)求出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点100A 到点101A 的移动方向.答案:(1)4A (2,0),8A (4,0),12A (6,0).(2)当n=1时,4A (2,0);当n=2时,8A (4,0);当n=3时,12A (6,0);∴4n A (2n,0).(3)点100A 中的n 正好是4的倍数,所以点100A 和101A 的坐标分别是点100A (50,0),点101A (50,1),所以蚂蚁从点100A 到点101A 的移动方向是从上向下.。
人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析
人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
第七章平面直角坐标系检测卷题号一二三总分21 22 23 24 25 26 27 28分数一、单选题(每题3分,共30分)1.若点P(a,b)在第二象限,则点Q(b+5,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限2.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)3.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)4.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为()A.(﹣2,0)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣1,0)5. 如图,△PQR是△ABC向左平移2个单位长度,再向上平移3个单位长度得到的,若P、Q、R分别对应A、B、C,则点C的坐标是()A. (-1,4) B.(-3,1) C. (2,-3) D. (3,-2)6.如图1,在5×4的方格纸中,每个小正方形的边长均为1,点O,A,B在方格线的交点(格点)上.在第四象限内的格点上找一点C,使三角形ABC 的面积为3,则这样的点C 共有( )图1A.2个B.3个C.4个D.5个 7.到x 轴的距离等于2的点组成的图形是 ( )A.过点(0,2)且与x 轴平行的直线B.过点(2,0)且与y 轴平行的直线C.过点(0,-2)且与x 轴平行的直线D.分别过点(0,2)和点(0,-2)且与x 轴平行的两条直线8.在平面直角坐标系中,将点(),9A m m +向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( ) A .114m -<<- B .74m -<<-C .7m <-D .4m >-9.点P()在平面直角坐标系的轴上,则点P 的坐标为( ) A .(0,2)B .(2,0)C .(0,-2)D .(0,-4)10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n .则△OA 6A 2020的面积是( )A .5052mB .504.52mC .505.52mD .10102m二、填空题(每题3分,共30分)11.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为___________.12.如图,长方形ABCD 中AB=3,BC=4,且点A 在坐标原点,(4,0)表示D 点,那么C 点的坐标为______.13.将点(2,3)P -先向右平移2个单位,再向下平移3个单位,得到点P ',则点P '的坐标为__________.14.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果“士”所在位置的坐标为()1,2--,“相”所在位置的坐标为()2,2-,那么棋子“炮”的位置的坐标为________________________。
人教版七年级数学下册第七章《平面直角坐标系》单元测试卷附答案
第七章《平面直角坐标系》单元测试卷(共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.(跨学科融合)如图,气象台为了预报台风,首先要确定台风中心的位置,则下列能确定台风中心位置的是()A.西太平洋B.北纬128°,东经36°C.距珠海500海里D.湛江附近第1题图第3题图第4题图2.在平面直角坐标系中,点P(-3,-8)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限3.(跨学科融合)如图是象棋棋盘的一部分,若位于点(1,-2)上,位于点(3,-2)上,则位于点 ()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(北偏东40°,35海里)B.(北偏西40°,35海里)C.(南偏西50°,35海里)D.(北偏东50°,35海里)5.已知x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(0,3)C.(0,3)或(0,-3)D.(3,0)或(-3,0)6.若点P(5,y)在第四象限,则y的取值范围是()A.y<0B.y>0C.y≤0D.y≥07.在平面直角坐标系中,一个三角形的三个顶点的横坐标保持不变,纵坐标都增加3个单位长度,则所得的图形与原图形相比()A.形状不变,大小扩大为原来的3倍B.形状不变,向右平移了3个单位长度C.形状不变,向上平移了3个单位长度D.三角形被纵向拉伸为原来的3倍8.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)9.一个长方形在平面直角坐标系中,其中三个顶点的坐标分别为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)10.(创新题)如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB 平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)二、填空题(本大题共5小题,每小题3分,共15分)11.把点A(-4,6)先向左平移2个单位长度,再向下平移4个单位长度,此时的位置是.12.在坐标平面内,已知点M(1,2)和点N(1,-4),那么线段MN的长为个单位长度.13.如图,表示北偏西50°方向的是射线.14.观察下图,与图1中的鱼相比,图2中的鱼发生了一些变化.若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标为(图中的方格是1×1).图1图215.(创新题)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).一只蚂蚁从点A处出发,并按A-B-C-D-A-B…的规律在四边形ABCD的边上以每秒1个单位长度的速度运动,运动时间为t秒.若t=2 023,则这只蚂蚁所在位置的点的坐标是.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.如图,写出点A,B,C,D,E,F的坐标.17.如图,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?18.如图,在平面直角坐标系中,O是原点,四边形ABCD是长方形,A,B,C的坐标分别是A(-3,1),B(-3,3),C(2,3).(1)直接写出点D的坐标;(2)画出将长方形ABCD先向右平移3个单位长度,再向下平移5个单位长度后所得的长方形A1B1C1D1,直接写出点D1的坐标.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位长度,再向右平移5个单位长度得到△A'B'C',画出△A'B'C'并写出C'的坐标.20.如图是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(-3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(-1,-1),在图中标出行政楼的位置.21.在如图所示的平面直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(-4,-2),B(4,-2),C(2,2),D(-2,3),求这个四边形的面积.五、解答题(三)(本大题共2小题,每小题12分,共24分))为“开心点”.22.(创新题)已知当m,n都是实数,且满足2m=8+n时,称P(m−1,n+22(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a-1)是“开心点”,请判断点M在第几象限?并说明理由.23.如图,A(-1,0),C(1,4),点B在x轴上,且AB=2.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为7?若存在,请求出点P的坐标;若不存在,请说明理由.第七章《平面直角坐标系》单元测试卷1.B 2.C 3.C 4.A 5.D 6.A7.C8.C9.B10.D11.(-6,2)12.613.OC14.(4,2.2)15.(-1,0)16.解:A(-3,-2),B(-5,4),C(5,-4),D(0,-3),E(2,5),F(-3,0).17.解:(1)MN=x2-x1.(2)PQ=y2-y1.18.解:(1)D(2,1).(2)图略,D1(5,-4).×3×5=7.5.19.解:(1)△ABC的面积是12(2)作图如下:所以点C'的坐标为(1,1).20.解:(1)如图.(2)由平面直角坐标系知,教学楼的位置为(1,0),体育馆的位置为(-4,3).(3)行政楼的位置如图所示.21.解:如图,过D作DE⊥AB,过C作CF⊥AB,垂足分别为E,F.S四边形ABCD=S△ADE+S梯形DEFC+S△BCF=1 2×2×5+12×(4+5)×4+12×2×4=5+18+4=27.22.解:(1)点A(5,3)为“开心点”,理由如下:当A(5,3)时,m-1=5,n+22=3,得m=6,n=4,则2m=12,8+n=12,∴2m=8+n,∴A(5,3)是“开心点”.点B(4,10)不是“开心点”,理由如下:当B(4,10)时,m-1=4,n+22=10,解得m=5,n=18, 则2m=10,8+18=26,∴2m≠8+n,∴点B(4,10)不是“开心点”.(2)点M在第三象限,理由如下:∵点M(a,2a-1)是“开心点”,∴m-1=a,n+22=2a-1,∴m=a+1,n=4a-4,代入2m=8+n有2a+2=8+4a-4,∴a=-1,∴2a-1=-3,∴M(-1,-3),故点M在第三象限.23.解:(1)如图:△AB'C或△AB″C是所求作的三角形.由图形可知:点B的坐标为(-3,0)或(1,0).(2)S△ABC=12AB·CB'=12×2×4=4,即△ABC的面积为4.(3)存在.设点P(0,y),因为以A,B,P三点为顶点的三角形的面积为7,所以S△ABP=12AB·|y|=7,即12×2×|y|=7,解得y=±7,故点P的坐标为(0,7)或(0,-7).。
新七年级下册数学第七章平面直角坐标系测试题(含答案解析)
人教版七年级下册数学第七章平面直角坐标系单元达标练习题一、选择题(每小题只有一个正确答案)1.如果7年2班记作,那么表示()A. 7年4班B. 4年7班C. 4年8班D. 8年4班2.在下列所给出的坐标中,在第二象限的是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)3.在平面直角坐标系中,点M(-1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A. (-3,-1)B. (-3,7)C. (1,-1)D. (1,7)4.如图,已知点A,B的坐标分别为(4,0)、(0,3),将线段AB平移到CD,若点C的坐标为(6,3),则点D的坐标为()A. (2,6)B. (2,5)C. (6,2)D. (3,6)5.如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号暗堡的坐标为(4,2),四号暗堡的坐标为(-2,4),由原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大概()A. A处B. B处C. C处D. D处6.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A. (4,2)B. (5,2)C. (6,2)D. (5,3)7.观察下列数对:(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1), (1,5), (2,4)...那么第32个数对是()A. (4,4)B. (4,5)C. (4,6)D. (5,4)8.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A. 原点上B. x轴上C. y轴上D. x轴上或y轴上(除原点)9.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A. (-4,3)B. (4,-3)C. (-3,4)D. (3,-4)10.P点横坐标是-3,且到x轴的距离为5,则P点的坐标是( )A. (-3,5)或(-3,-5)B. (5,-3)或(-5,-3)C. (-3,5)D. (-3,-5)11.若点P(a﹣2,a)在第二象限,则a的取值范围是()A. 0<a<2B. ﹣2<a<0C. a>2D. a<012.在如图的方格纸上,若用(-1,1)表示A点,(0,3)表示B点,那么C点的位置可表示为()A. (1,2)B. (2,3)C. (3,2)D. (2,1)二、填空题13.点P(m−1,m+3)在平面直角坐标系的y轴上,则P点坐标为________.14.如果点P在第二象限内,点P到轴的距离是4,到轴的距离是3,那么点P的坐标为________.15.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是,嘴唇C点的坐标为、,则此“QQ”笑脸右眼B的坐标________.16.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2018的坐标为________.17.三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合,则B、C两点的坐标分别为________,________.18.如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(-4,2)、(-`2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是________.19.如下图,五间亭的位置是________,飞虹桥的位置是________,下棋亭的位置是________,碑亭的位置是________.20.如图所示,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是________21.已知线段MN平行于x轴,且MN的长度为5,若M的坐标为(2,-2),那么点N的坐标是________;22.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P(,)在第四象限,则m的值为________;三、解答题23.如下图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?24.如下图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?25.王林同学利用暑假参观了幸福村果树种植基地如图,他出发沿的路线进行了参观,请你按他参观的顺序写出他路上经过的地方,并用线段依次连接他经过的地点.26.如图,已知火车站的坐标为,文化宫的坐标为.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市、医院的坐标.27.如图,这是某市部分简图,为了确定各建筑物的位置请完成以下步骤.(1)请你以火车站为原点建立平面直角坐标系;(2)写出市场的坐标是________;超市的坐标为________;(3)请将体育场为A、宾馆为C和火车站为B看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.参考答案一、选择题D D C A B B B D C A A A二、填空题13. (0,4) 14.(﹣3,4)15. 16. (-505,-505)17.(-3,-6);(-4,-1)18. (5,4)19.(0,0);(-2,0);(-3,-1);(-2,-2)20.(-1,2)21.(7,-2)或(-3,-2)22.0三、解答题23.解:有6种走法分别为:①(2,4)→(3,4)→(4,4)→(4,3)→(4,2);②(2,4)→(3,4)→(3,3)→(4,3)→(4,2);③(2,4)→(3,4)→(3,3)→(3,2)→(4,2);④(2,4)→(2,3)→(3,3)→(4,3)→(4,2);⑤(2,4)→(2,3)→(3,3)→(3,2)→(4,2);⑥(2,4)→(2,3)→(2,2)→(3,2)→(4,2)24.解:如下图所示,可知小明与小刚相距3个格.25.解:由各点的坐标可知他路上经过的地方:葡萄园杏林桃林梅林山楂林枣林梨园苹果园.如图所示:26.(1)解:如图所示(2)解:体育场、市场、超市、医院.27.(1)解:如图所示:(2)(4,3);(2,﹣3)(3)解:如图所示:△A1B1C1的面积=3×6﹣×2×2﹣×4×3﹣×6×1=7.人教版七年级数学下册单元综合卷:第七章平面直角坐标系一、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1.如图是小刚画的一张脸,他对妹妹说,如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成__________.2.如图,△ABC向右平移4个单位后得到△A′B′C′,则A′点的坐标是__________.3. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出下一步它可能走到的位置的坐标________.4.点P(-3,-5)到x轴距离为______,到y轴距离为_______.5.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),平行于X轴,则点C的坐标为___.6.已知点(a+1,a-1)在x轴上,则a的值是。
最新人教版七年级下册数学第七章平面直角坐标系单元测试卷(含答案)
人教七年级上册数学第7章《平面直角坐标系》练习题 (A B 卷)人教版七年级数学下册第七章平面直角坐标系 单元测试题班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定 6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限A-1-1点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。
人教版数学七年级下册第7章《平面直角坐标系 》单元质量测试卷(含答案)
人教版数学七年级下册第7章《平面直角坐标系》单元质量测试卷一.选择题(共10小题,满分30分)1.在平面直角坐标系中,点P(﹣2020,2019)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)3.点P在第二象限内,那么点P的坐标可能是()A.(4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)4.如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(﹣3,4)且与y轴平行,则L也会通过的点为()A.点A B.点B C.点C D.点D5.在平面直角坐标系中,下列各点位于x轴上的是()A.(1,﹣2)B.(3,0)C.(﹣1,3)D.(0,﹣4)6.已知a是整数,点A(2a﹣1,a﹣2)在第四象限,则a的值是()A.﹣1B.0C.1D.27.平行于x轴的直线上的任意两点的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等8.在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是()A.﹣2B.8C.2或8D.﹣2或89.点(﹣2,﹣3)向左平移3个单位后所得点的坐标为()A.(﹣2,0)B.(﹣2,﹣6)C.(﹣5,﹣3)D.(1,﹣3)10.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)二.填空题(共6小题,满分18分)11.点A(3,﹣4)在第象限.12.点M(3,﹣1)到x轴距离是.13.在平面直角坐标系中,O为坐标原点,已知点A的坐标是(﹣2,0),点B在y轴上,若OA=2OB,则点B的坐标是.14.将点A(2,5)先向上平移3个单位,再向左平移2个单位,得到点B,则点B的坐标为.15.已知直角坐标平面内两点A(﹣3,1)和B(3,﹣1),则A、B两点间的距离等于.16.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3,……每个正方形四条边上的整点的个数.按此规律推算出正方形A2019B2019C2019D2019四条边上的整点共有.三.解答题(共8小题,满分52分)17.指出下列各点的横坐标和纵坐标,并指出各点所在的象限.A(2,3)、B(﹣2,3)、C(﹣2,﹣3)、D(2,﹣3)18.在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.19.如图是天安门广场周围的主要景点分布示意图.在此图中建立平面直角坐标系,表示故宫的点坐标为(0,﹣1),表示美术馆的点的坐标为(2,2),并写出其余各景点的坐标.20.已知点P(2m﹣6,m+2),(1)若点P在y轴上,P点坐标为;(2)若点P和Q都在过点A(2,3)且与x轴平行的直线上,且PQ=3,求Q点坐标.21.(1)在平面直角坐标系中描出下列各点.A(1,2),B(﹣3,3),C(1,3)D(﹣1,3),E(1,﹣4),F(3,3)(小方格的边长为1).由描出的点你发现了什么规律?答:.(2)应用:已知P(m,﹣2),Q(3,m﹣1)且PQ∥x轴,求线段PQ的长.22.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.23.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.24.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4(,)A8(,)、A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A101到点A102的移动方向.参考答案一.选择题(共10小题)1.【解答】解:点P(﹣2020,2019)所在的象限是第二象限.故选:B.2.【解答】解:∵将“卒”的位置记作(3,1),∴“相”的位置可记作(8,2).故选:C.3.【解答】解:A、(4,3)在第一象限,故此选项不合题意;B、(﹣3,﹣4)在第三象限,故此选项不合题意;C、(﹣3,4)在第二象限,故此选项符合题意;D、(3,﹣4)在第四象限,故此选项不合题意;故选:C.4.【解答】解:如图所示:有一直线L通过点(﹣3,4)且与y轴平行,故L也会通过A 点.故选:A.5.【解答】解:∵在x轴上的点的纵坐标是0,∴在x轴上的点为:(3,0).故选:B.6.【解答】解:点A(2a﹣1,a﹣2)在第四象限,则,解得:<a<2,a是整数,则符合条件的为C,故选:C.7.【解答】解:平行于x轴的直线上的任意两点的坐标之间的关系是纵坐标相等.故选:B.8.【解答】解:∵点M(﹣2,3)与点N(﹣2,y)之间的距离是5,∴|y﹣3|=5,解得:y=8或y=﹣2.故选:D.9.【解答】解:点(﹣2,﹣3)向左平移3个单位后所得点的坐标为(﹣2﹣3,﹣3),即(﹣5,﹣3),故选:C.10.【解答】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D.二.填空题(共6小题)11.【解答】解:∵点(3,﹣4)横坐标为正,纵坐标为负,∴应在第四象限.故答案为:四.12.【解答】解:M(3,﹣1)到x轴距离是1.故答案为:113.【解答】解:∵点A的坐标是(﹣2,0),∴OA=2,又∵OA=2OB,∴OB=1,∵点B在y轴上,∴点B的坐标为(0,1)或(0,﹣1),故答案为:(0,1)或(0,﹣1).14.【解答】解:将点A(2,5)先向上平移3个单位,再向左平移2个单位,得到点B的坐标为(2﹣2,5+3),即:(0,8).故答案为:(0,8).15.【解答】解:∵直角坐标平面内两点A(3,﹣1)和B(﹣1,2),∴A、B两点间的距离等于=2,故答案为2.16.【解答】解:∵A1B1C1D1每条边上的整点共有:2×1+1=3个,A2B2C2D2每条边上的整点共有;2×2+1=5个,正方形A3B3C3D3每条边上的整点的个数有:2×3=1=7个,…∵A1B1C1D1四条边上的整点共有8个,即4+4×1=8,A2B2C2D2四条边上的整点共有16个,即4+4×3=16,正方形A3B3C3D3四条边上的整点的个数有4+4×5=24,…∴第n个正方形上的整点个数是:4+4(2n﹣1)=8n,∴正方形A2019B2019C2019D2019四条边上的整点的个数=2019×8=16152,故答案为:16152.三.解答题(共8小题)17.【解答】解:A(2,3)横坐标是2,纵坐标是3,在第一象限;B(﹣2,3)横坐标是﹣2,纵坐标是3,在第二象限;C(﹣2,﹣3)横坐标是﹣2,纵坐标是﹣3,在第三象限;D(2,﹣3)横坐标是2,纵坐标是﹣3,在第四象限.18.【解答】解:(1)由题意得:m﹣1=0,解得:m=1;(2)由题意得:m﹣1=2m+3,解得:m=﹣4.19.【解答】解:如图所示:景山(0,1.5),王府井(3,﹣1),天安门(0,﹣2),中国国家博物馆(1,﹣3),前门(0,﹣5.5),人民大会堂(﹣1,﹣3),电报大楼(﹣4,﹣2).20.【解答】解:(1)∵点P在y轴上,∴2m﹣6=0,解得m=3,∴P点的坐标为(0,5);故答案为(0,5);(2)∵点P和点Q都在过A(2,3)点且与x轴平行的直线上,∴点P和点Q的纵坐标都为3,∴P(﹣4,3)而PQ=3,∴Q点的横坐标为﹣1或﹣7,∴Q点的坐标为(﹣1,3)或(﹣7,3).21.【解答】解:(1)如图所示,发现的规律:纵坐标相同的点在平行于x轴的直线上,横坐标相同的点在平行于y轴的直线上.(2)∵PQ∥x轴,∴m﹣1=﹣2,∴m=﹣1,∴P(﹣1,﹣2),Q(3,﹣2)∴PQ=|﹣1﹣3|=4.答:线段PQ的长为4.22.【解答】解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).23.【解答】解:(1)△ABC的面积是:×3×5=7.5;(2)作图如下:∴点C′的坐标为:(1,1).24.【解答】解:(1)由图可知,A4,A8,A12都在x轴上,∵蚂蚁每次移动1个单位,∴OA4=2,OA8=4,OA12=6,∴A4(2,0),A8(4,0),A12(6,0);故答案为:2,0;4,0;6,0;(2)根据(1)OA4n=4n÷2=2n,∴点A4n的坐标(2n,0);(3)∵101÷4=25...1,102÷4=25 (2)∴A101与A102的移动方向与从点A1到A2的方向一致,为从左向右.。
人教版七年级下《第七章平面直角坐标系》单元检测题含答案
人教版七年级下《第七章平面直角坐标系》单元检测题含答案一、选择题1. 在平面直角坐标系中,点4(3,2)在( )A 、第一象限B 、第二彖限C 、第三象限D 、第四象限2.点M (3, - 1)经过平移到达点NJV 的坐标为(乙1),那么平移方式是()A 、 先向左平移1个单位,再向下平移2个单位B 、 先向右平移1个单位,再向下平移2个单位C 、 先向左平移1个单位•再向上平移2个单位D 、 (6,6)已知点P 关于y 轴的对称点3的坐标是(2,3),则点P 坐标是(如图,点P 是平而直角坐标系中的一点,其坐标可能是()第七章《平面直角坐标系》单元检测4.已知点4(0皿)到x 轴的距离是5,则“为A 、 5B 、 -5C 、 ±5D 、 ± 105.A 、 (-3,-2)B 、 (-2,3)C 、 (2,-3)D 、6. D 、先向右平移1个单位,再向上平移2个单位C. (5,5)A 、 (1,2)B 、 (1,-2)C 、 (-1,2)D 、 (-1,-2)7. 横坐标与纵坐标符号相同的点在()8.点在第二彖限,则点Q(a - l f b + 1)在()9. 点P(2, - 3)先向上平移2个单位长度,再向左平移3个单位长度,得到点P'的坐标是10. 如图,若在象棋棋盘上建立平而直角坐标系,使“帅”位于点(-1,-2), “马”位于点(2,-2),则“兵”位于点()A 、(-1,1)B 、(-2,-1)C 、(-3,1)D 、(1, - 2)二、填空题已知点若m<l f n>2,则点P 在第 _________________________ 象限;A 、第二象限内 C 、第二或第四象限内B 、第一或第三彖限内 D 、第四象限A 、第一象限B 、第二象限C 、第三象限D 、第四象限A 、(-1,-5)B 、(5,5)C 、(5,-1)D 、(-1,-1)12.已知点P的坐标是(2,3),则点P到x轴的距离是________ ・13.在平面直角坐标系中,线段AB的端点八的坐标为(-3,2),将英先向右平移4个单位,再向下平移3个单位,得到线段47T,则点A对应点A的坐标为 __________ C_______________________ :2■i■■14.如图,把“QQ"笑脸放在直角坐标系中,已知左眼A的!■■坐标是(-2,3),右眼B的坐标为(0,3),则将此“00”:笑脸向右平移3个单位后,嘴唇C的坐标是______ 。
新人教版七年级下册数学第七章平面直角坐标系检测试题及答案
人教版七年级下册第七课平面直角坐标系单元综合测试卷一.选择题(共10 小题)1.在直角坐标系中,点A(-6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,点A(-1,2),则点 B 的坐标为()A. .(-2,2)B. .(-2,-3)C. .(-3,-2)D. (-2,-2)3.已知点 A(-3,0),则 A 点在()A. x 轴的正半轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上4.在平面直角坐标系的第四象限内有一点M,点 M 到 x 轴的距离为3,到 y 轴的距离为4,则点 M 的坐标是()A. (3,-4)B.(-4,3)C. (4,-3)D.(-3,4)5.在平面直角坐标系中,将点P(3,2)向右平移 2 个单位长度,再向下平移 2 个单位长度所获得的点坐标为()A. (1,0)B. (1,2)C. (5,4)D. (5,0)6.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.123° ~124° 34′C.福建的正方向D. 123° ~124° 34′ ,北 25° 40′~26° 8.已知点 M(a,1),N(3,1), 且 MN=2 , a 的(A.1 B. 5)C.1 或5D.不可以确立9.如所示是一个棋棋(局部)①的坐是 (-2,-1),白棋③的坐是A. (0,-2) B. (1,-2),把个棋棋搁置在一个平面直角坐系中,白棋(-1,-3),黑棋②的坐是()C. (2,-1)D. (1,2)10.如,在直角坐系中,已知点 A(-3,0)、B(0,4),△ OAB作旋,挨次获得△1、△2、△3、△4、⋯ ,△16的直角点的坐()19 1 9 A. (60,0)B. (72,0)C. 675,5D. 79 5,5二.填空(共 6 小)11.若 4 排3 列用有序数(4,3)表示,那么表示 2 排5 列的有序数.12.在平面直角坐系中,已知点A(2,3),点 B 与点A 对于x 称,点 B 坐是.13.若点P(m+5,m-2)在x 上,m=;若点P(m+5,m-2) 在y 上,m=.14A(-2,3)和B(2,1),那么炸机 C 的平面坐是.15.将点P(x,4)向右平移 3 个单位获得点(5,4),则P 点的坐标是.16.把自然数按如图的序次在直角坐标系中,每个点坐标就对应着一个自然数,比如点(0,0)对应的自然数是1,点 (1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n) 对应的自然数是三.解答题(共 6 小题)17.在平面直角坐标系中,点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,试求m+n 的值.18.已知点P(2m+4,m-1), 请分别依据以下条件,求出点P 的坐标.(1)点 P 在 x 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过点 A(2,-4)且与 y 轴平行的直线上.19.小王到公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如下图,但是她忘掉了在图中标出原点和x 轴、 y 轴,只知道游玩园 D 的坐标为 (2,-2),且一格表示一个单位长度.(1)在原图中成立直角坐标系,求出其余各景点的坐标;(2)在( 1)的基础上,记原点为 0,分别表示出线段 AO 和线段 DO 上随意一点的坐标.20.已知 A(1,0)、 B(4,1)、 C(2,4),△ABC经过平移获得△A′ B′ C′ ,若 A′的坐标为 (-5,-2).(1)求 B′、 C′的坐标;(2)求△ A′B′ C′的面积.21.如图,在平面直角坐标系中,第一次将△OAB 变换成△ OA B,第二次将△ OA B 变换成1111△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0) .( 1 )察看每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则 A4的坐标为 ,B4的坐标为.(2)按以上规律将△ OAB 进行 n 次变换获得△ OA n B n,则 A n的坐标为 ,B n的坐标为 ;(3)△ OA n B n的面积为.22.( 1)在如图直角坐标系中,描出点(9,1)(11,6)(16,8)(11,10)(9,15)(7,10)(2,8)(7,6)(9,1), 并将各点用线段按序连结起来.(2)给图形起一个好听的名字,求所得图形的面积.(3)假如将原图形上各点的横坐标加2、纵坐标减 5,猜一猜,图形会发生如何的变化?(4)假如想让变化后的图形与原图形对于原点对称,原图形各点的坐标应当如何变化?答案:1-10 BDBCD DDCAA11.(2,5)12.(2,-3)13.-514.( -2, -1)15.(2,4)16.604n2 -2n+117.解:∵点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,∴2m-7=1,n-6=-3 ,解得 m=4, n=3,因此 ,m+n=4+3=7.18.解:( 1)∵点 P(2m+4,m-1) 在 x 轴上,∴m-1=0 ,解得 m=1,∴2m+4=2×1+4=6,m-1=0,因此,点P 的坐标为 (6,0);(2)∵点 P(2m+4,m-1)的纵坐标比横坐标大 3,∴m-1-(2m+4)=3 ,解得 m=-8,∴人教版七年级数学下册第七章平面直角坐标系培优稳固检测一.选择题(共10 小题)1.平面直角坐标系内有一点P(-2019,-2019),则点 P 在()A.第一象限B.第二象限C.第三象限D.第四象限2.若点 A(a,b)在第四象限,则点 B(0,a)在()A. x 轴的正平轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上3.已知点 P 的坐标为 (1,-2),则点 P 到 x 轴的距离是()A.1B. 2C. -1D.-24.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)5.已知点 P 位于第二象限,则点P 的坐标可能是()A. (-3,0)B. (0,3)C. (-3,2)D. (-3,-3)6.在直角坐标系中,点 M(-3,-4) 先右移 3 个单位,再下移 2 个单位,则点 M 的坐标变成()A. (-6,-6)B. (0,-6)C. (0,-2,)D.(-6,-2)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.东经 123° ~124° 34′C.福建的正东方向D.东经 123° ~124° 34′ ,北纬 25° 40′~26°8.如图,已知在△AOB 中 A(0,4),B(-2,0),点 M 从点(4,1)出发向左平移,当点M 平移到AB 边上时,平移距离为()A.4.5B. 5C.5.5D. 5.759.已知点M(a,1),N(3,1), 且MN=2 ,则a 的值为()A.1B. 5C.1 或5D.不可以确立10.在平面直角坐标系中,给出三点A,B,C,记此中随意两点的横坐标的差的最大值为a,任意两点的纵坐标差的最大值为h,定义“矩面积”S=ah,比如:给出A(1,2),B(-3,1),C(2,-2),则a=5, h=4, S=ah=20.若 D(1,2),E(-2,1). F(0,t)三点的“矩面积”为18,则 t=()A.-3 或 7B.-4 或 6C.-4 或 7D.-3 或 6二.填空(共 6 小)11.若影票上座位是“ 4 排 5号” 作 (4,5), (8,13)的座位是12.若 P(a-2,a+1)在 x 上, a 的是.13.若 4 排 3 列用有序数(4,3)表示,那么表示 2 排 5列的有序数.14.在平面直角坐系中,将点A(-1,3)向左平移 a 个位后,获得点A′ (-3,3), a 的是15.在平面直角坐系中,点M 在 x 的上方, y 的左面,且点 M 到 x 的距离 4,到y 的距离 7,点 M 的坐是.16.如,在平面直角坐系中,每个最小方格的均1,P2 ,P3,⋯1 个位度, P均在格点上,其序按中“→”方向摆列,如:P1(0, 0), P2 (0, 1), P3(1, 1), P4(1,- 1),P5(- 1,- 1), P6(- 1,2),⋯,依据个律,点P2019的坐三.解答(共 5 小)17.已知平面直角坐系中有一点M(2m-3,m+1) .(1)点 M 到 y 的距离 l , M 的坐?(2)点 N(5,-1)且 MN ∥x , M 的坐?18.六形六个点的坐A(-4,0),B(-2,-2),C(1,-2),D(4,1),E(1,4),F(-2,4).(1)在所坐系中画出个六形;(2)写出各拥有的平行或垂直关系.(不原因.)19.如图,三架飞机 P、 Q、 R 保持编队飞翔, 30 秒后飞机 P 飞到P1的地点,飞机Q、R飞到了新地点 Q1、 R1.在直角坐标系中标出 Q1、 R1,并写出坐标.20.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如下图.但是她忘掉了在图中标出原点和x 轴、y 轴.知道马场的坐标为(-3,-3)、南门的坐标为 (0,0), 你能帮她成立平面直角坐标系并求出其余各景点的坐标?21.如图是由边长为 1 个单位长度的小正方形构成的网格,线段AB 的端点在格点上.(1)请成立适合的平面直角坐标系xOy,使得 A 点的坐标为(-3,-1),在此坐标系下,写出 B 点的坐标;(2)在( 1)的坐标系下将线段B A 向右平移 3 个单位,再向上平移 2 个单位得线段CD,使得 C 点与点 B 对应,点 D 与点 A 对应.写出点C, D 的坐标,并直接判断线段AB 与 CD 之间关系?答案:1-5CCBDC6-10BDCCC11.8排13号12.-113.(2,5)14.215.( -7, 4)16.(505, 505)17.解:( 1)∵点 M ( 2m-3, m+1),点 M 到 y 轴的距离为 1,∴|2m-3|=1 ,解得 m=1 或 m=2,当 m=1 时,点 M 的坐标为( -1, 2),当m=2 时,点 M 的坐标为( 1, 3);综上所述,点 M 的坐标为( -1, 2)或( 1, 3);(2)∵点 M ( 2m-3, m+1 ),点 N ( 5, -1)且 MN ∥ x 轴,∴m+1=-1 ,解得 m=-2,故点 M 的坐标为( -7, -1).18.解:( 1)如下图:(2)由图可得, AB ∥DE, CD ⊥ DE , BC∥EF, CD⊥ AB .19.解:由题意可知:P 的坐标( -1, 1), Q( -3, 1), R(-1, -1)经过 30 秒后 P1的坐标为( 4, 3),∴Q1的坐标( 2,3), R1的坐标为( 4, 1)20.人教版七年级数学下册第7 章平面直角坐标系能力提高卷一.选择题(共10 小题)1.如图,小手遮住的点的坐标可能为()A. (5,2)B.(-7,9)C. (-6,-8)D. (7,-1)2.若线段 AB∥ x 轴且 AB=3,点 A 的坐标为 (2,1), 则点 B 的坐标为()A. (5,1)B.(-1,1)C. (5,1)或 (-1,1)D. (2,4)或 (2,-2)3.若点 A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到 x 轴的距离为()A.5B. -5C. 4D.-45.已知点 A(2x-4,x+2)在座标轴上,则x 的值等于()A.2 或 -2B. -2C. 2D.非上述答案6.依据以下表述,能确立一个点地点的是()A.北偏东 40°B.某地江滨路C.光明电影院 6 排D.东经 116 °,北纬 42°7.如图是某动物园的平面表示图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为 y 轴正方向成立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点 A 的坐标为(2,1),现将线段AB 先向左平移 1 个单位,再向下平移两个单位,则平移后 B 点的坐标为()A. (1,2)B.(1,-4)C. (-1,-1)或 (5,-1)D. (1,2)或 (1,-4)9.课间操时,小明、小丽、小亮的地点如下图,小明对小亮说:假如我的地点用(0,0) 表示,小丽的地点用(2,1)表示,那么你的地点能够表示成()A. (5,4)B. (4,5) C. (3,4) D. (4,3)10.已知点A(-1,2)和点 B(3,m-1),假如直线AB∥ x 轴,那么m 的值为()A.1B. -4C. -1D.3二.填空题(共 6 小题)11.若P(a-2,a+1)在x 轴上,则 a 的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移 4 个单位,获得点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点 Q 的坐标为 (ax+y,x+ay),此中 a 为常数,则称点Q 是点 P 的“ a 级关系点”,比如,点P(1,4)的 3 级关系点”为 Q(3 × 1+4,1+3×即4)Q(7,13),若点 B 的“ 2 级关系点”是 B'(3,3),则点 B 的坐标为;已知点 M(m-1,2m) 的“ -3 级关系点” M′位于 y 轴上,则 M ′的坐标为.14.已知点 A(m-1,-5) 和点 B(2,m+1),若直线 AB∥ x 轴,则线段 AB 的长为.15.小刚家位于某住所楼 A 座 16 层,记为:A16,按这类方法,小红家住 B 座 10层,可记为.16.如图,矩形 BCDE的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作围绕运动,物体甲按逆时针方向以乙按顺时针方向以 2 个单位 / 秒匀速运动,则两个物体运动后的第是.1 个单位2012/ 秒匀速运动,物体次相遇地址的坐标三.解答题(共7 小题)17.如图,在平面直角坐标系中,三角形ABC 的极点 A、 B、 C 的坐标分别为(0,3)、 (-2,1)、(-1,1),假如将三角形ABC先向右平移 2 个单位长度,再向下平移 2 个单位长度,会获得三角形 A′ B′C′ ,点 A'、 B′、 C′分别为点 A、 B、 C 挪动后的对应点.(1)请直接写出点 A′、 B'、 C′的坐标;(2)请在图中画出三角形 A′ B′ C′ ,并直接写出三角形 A′ B′ C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当 m 为什么值时,点 M 到 x 轴的距离为 1?(2)当 m 为什么值时,点 M 到 y 轴的距离为 2 ?19.如图是某个海岛的平面表示图,假如哨所 1 的坐标是 (1,3),哨所 2 的坐标是 (-2,0),请你先成立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的地点.20.已知:点P(2m+4,m-1) .试分别依据以下条件,求出P 点的坐标.(1)点 P 在 y 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过 A(2,-4)点且与 x 轴平行的直线上.21.阅读资料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点 A 位于点 (-4,4),点 B 位于点 (3,1),则“帅”所在点的坐标为;" 马”所在点的坐标为 ;" 兵”所在点的坐标为.(2)若“马”的地点在点 A,为了抵达点 B,请按“马”走的规则,在图上画出一种你以为合理的行走路线,并用坐标表示出来.1m a,1, 此中a、b为常数.f运算22.对有序数对 (m,n) 定义“ f 运算”: f(m,n) =n b22的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的随意一点A(x,y)规定“ F 变换”:点 A(x,y)在 F 变换下的对应点即为坐标为f(x,y) 的点 A′.(1)当 a=0, b=0 时 ,f(-2,4)= ;(2)若点 P(4,-4)在 F 变换下的对应点是它自己,则a=,b =.答案:1-5CCBCA6-10DDDCD11.-112.(-10, 5)13.( 1, 1)( 0, -16)14.915.B1016.( -1, -1)17.解:( 1)依据题意知,点 A′的坐标为( 2,1)、 B' 的坐标为( 0,-1 )、 C′的坐标为(1, -1 );(2)如下图,△A′ B′ C′即为所求,S= × 1×2=1.△A ′B′C′18.解:( 1)∵ |2m+3|=12m+3=1 或 2m+3=-1∴m=-1 或 m=-2;(2)∵ |m-1|=2m-1=2 或 m-1=-2∴m=3 或 m=-1.19.解:成立如下图的平面直角坐标系:小广场( 0, 0)、雷达( 4,0)、营房( 2, -3 )、码头( -1 , -2 ).20.解:( 1)∵点 P( 2m+4, m-1),点 P 在 y 轴上,∴2m+4=0 ,解得: m=-2,则 m-1=-3,故 P( 0, -3);21. 解:( 1)由点 A 位于点( -4 , 4。
人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)
第七章平面直角坐标系单元测试一、单项选择题(共7 题;共 28 分)1.以下是甲、乙、丙三人看地图时对四个坐标的描绘:甲:从学校向北直走500 米,再向东直走100 米可到图书室.乙:从学校向西直走300 米,再向北直走200 米可到邮局.丙:邮局在火车站西200 米处.依据三人的描绘,若从图书室出发,判断以下哪一种走法,其终点是火车站()A. 向南直走300 米,再向西直走200 米B. 向南直走300 米,再向西直走100 米C. 向南直走700 米,再向西直走200 米D. 向南直走700 米,再向西直走600 米2.平面直角坐标系中,以下各点中,在y 轴上的点是 ()A.(2,0)B. ( -2,3 )C.(0,3)D.(1,-3)3.若 y 轴上的点P 到 x 轴的距离为 3,则点 P 的坐标是()A. (3, 0)B. ( 0,3)C. ( 3, 0)或(﹣ 3, 0)D. (0, 3)或( 0,﹣ 3)4.已知 M(1,﹣ 2), N(﹣ 3,﹣2),则直线 MN 与 x 轴, y 轴的地点关系分别为()A. 订交,订交B. 平行,平行C. 垂直订交,平行D. 平行,垂直订交5.点 P(a,b)在第四象限 ,则点 P 到 x 轴的距离是 ()A. a-B. b-C. -aD. -b6.如图是某校的平面表示图的一部分,若用“(0,0)”表示校门的地点,“(0,3)”表示图书室的地点,则教课楼的地点可表示为()A. (0, 5)B(.5, 3)C(. 3, 5)D(.﹣ 5, 3)7.已知点 P 的坐标( 2a, 6﹣ a),且点 P 到两坐标轴的距离相等,则点P 的坐标是()A. (12,﹣ 12)或( 4,﹣ 4)B. (﹣ 12, 12)或( 4, 4)C.(﹣ 12, 12)D.(4,4)二、填空题(共 6 题;共 30 分)8.假如“2街 5 号”用坐标( 2,5)表示,那么(3 ,1)表示 ________9.将点 A( 1,﹣ 3)沿 x 轴向左平移 3 个单位长度,再沿 y 轴向上平移 5 个单位长度后获得的点A′的坐标为 ________.10.以下图的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是________.111.电影院里 5 排 2 号能够用( 5, 2)表示,则( 7, 4)表示 ________12.( 2015?广安)假如点 M ( 3, x)在第一象限,则 x 的取值范围是 ________ .13.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A( 0,4),点 B 是 x 轴正半轴上的整点,记△ AOB 内部(不包含界限)的整点个数为m.如当点 B 的横坐标为 4 时, m=3;那么当点的横坐标为 4n( n 为正整数)时, m= ________ .(用含 n 的代数式表示)三、解答题(共 4 题;共 42 分)14.在平面直角坐标系中,点 A 在 y 轴正半轴上,点 B 与点 C 都在 x轴上,且点 B在点 C的左边,知足BC=OA.若﹣ 3a m﹣1b2与 a n b2n﹣2是同类项且 OA=m, OB=n,求出 m 和 n 的值以及点 C的坐标.15.某水库的景区表示图以下图(网格中每个小正方形的边长为1).若景点 A 的坐标为( 3 ,3),请在图中画出相应的平面直角坐标系,并写出景点B、 C、 D 的坐标.16.在平面直角坐标系中,已知 A(0, 0)、 B( 4, 0),点 C 在 y 轴上,且△ ABC的面积是 12.求点 C 的坐标.17.在雷达探测地区,能够成立平面直角坐标系表示地点.在某次行动中,当我两架飞机在A(- 1, 2)与B( 3, 2)地点时,可疑飞机在(-1,- 3)地点,你能找到这个直角坐标系的横、纵坐标的地点吗?把它们表示出来并确立可疑飞机的地点,谈谈你的做法.2答案一、单项选择题1-7.ACDDDBB二、填空题8.3街1号9.(﹣ 2, 2)10.(﹣ 3, 0)11.7排 4号12.x> 013.6n﹣ 3三、解答题14.解:∵﹣3a m﹣1b2与 a n b2n﹣2是同类项,∴,m = 3解得:{,∵OA=m=3, OB=n=2,∴B( 2,0)或(﹣ 2, 0),∵点 B 在点 C 的左边, BC=OA,∴C( 5,0)或( 1, 0)15.解:以下图:B(﹣ 2,﹣ 2), C( 0, 4), D( 6,5).16.解:∵ A( 0,0)、 B( 4, 0),∴AB=4,且 AB 在 x 轴上,设点 C 坐标是( 0, y),则依据题意得,112AB× AC=12,即2× 4× |y|=12,解得 y=±6.3∴点 C 坐标是:( 0, 6)或( 0, -6)17.解:能.以以下图,先把 AB 四平分,而后过凑近 A 点的分点 M 作 AB 的垂线即为 y 轴,以 AM 为单位长度沿 y 轴向下 2 个单位即为 O 点,过点 O 作 x 轴垂直于 y 轴,而后描出敌机地点为点 N.4。
七年级数学(下)第七章《平面直角坐标系》测试卷含答案
七年级数学(下)第七章《平面直角坐标系》测试卷(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.下面的有序数对的写法正确的是()A. (1、3)B. (1,3)C. 1,3D. 以上表达都正确2.我们用以下表格来表示某超市的平面示意图.如果用(C,3)表示“体育用品”的位置,那么表示“儿童服装”的位置应记作()A B C D1 收银台收银台收银台收银台2 酒水糖果小食品熟食3 儿童服装化妆品体育用品蔬菜4 入口服装家电日用杂品A. (A,3)B. (B,4)C. (C,2)D. (D,1)3.如图所示,网格中画有一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A. (1,0)B. (-1,0)C. (-1,1)D. (1,-1)4.电影票上的“2排5号”如果用(2,5)表示,那么“5排2号”应该表示为( )A. (2,5)B. (5,2)C. (-5,-2)D. (-2,-5)5.已知点P(x,y)在第二象限,且点P到x轴、y轴的距离分别为3,5,则点P的坐标()A. (﹣5,3)B. (5,﹣3)C. (﹣3,5)D. (3,﹣5)6.体育课上,七年级某班49名同学在操场上练习正方形方队,他们站成7×7方队,每横队7人,每纵队7人,小敏在第2纵队的排头,记为(1,2),小娟在第5纵队的队尾,则小娟的位置应记为()A. (6,5)B. (5,6)C. (5,7)D. (7,5)7.下列点中,位于直角坐标系第二象限的点是()A. (2,1)B. (-2,-1)C. (-2,1)D. (2,-1)8.在平面直角坐标系中,点A(2,-3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.在平面直角坐标系中,一个三角形的三个顶点的坐标,纵坐标保持不变,横坐标增加4个单位,则所得的图形与原来图形相比()A. 形状不变,大小扩大4倍B. 形状不变,向右平移了4个单位C. 形状不变,向上平移了4个单位D. 三角形被横向拉伸为原来的4倍10.如图所示,小亮从学校到家所走最短路线是( )A. (2,2)→(2,1)→(2,0)→(0,0)B. (2,2)→(2,1)→(1,1)→(0,1)C. (2,2)→(2,3)→(0,3)→(0,1)D. (2,2)→(2,0)→(0,0)→(0,1)二、填空题(共10小题,每题3分,共30分)11.如果用(7,3)表示七年级三班,则(9,6)表示________.12.点P (-2,-3)把坐标系向左平移1个单位长度,再向上平移3个单位长度,则点P的坐标变为________.13.有序数对(2,5)和(5,2)表示的含义_________.(填“相同”或“不同”)14.已知点P在第二象限,且横坐标与纵坐标的和为4,试写出一个符合条件的点P__.15.如图,长方形ABOC在直角坐标系中,点A的坐标为(–2,1),则长方形的面积等于﹒16.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母顺序对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是__________.17.如图,一所学校的平面示意图中,如果图书馆的位置记作(3,2),实验楼的位置记作(1,﹣1),则校门的位置记作________.18.点P (a ﹣1,a 2﹣9)在x 轴负半轴上,则P 点坐标是________.19.如图,小东在____排____列;小强在____排___列,如果先表示列数,后表示排数,则用有序数对表示小东和小强的位置为:________,________.20.第三象限内的点P(x ,y),满足5x =, 29y =,则点P 的坐标是_________. 三、解答题(共60分)21.(8分)如图,A (—1,0),C (1,4),点B 在x 轴上,且AB=3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级下册第7章平面直角坐标系水平测试卷一.选择题(共10小题)1.在平面直角坐标系中,点()23,2P x -+所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列各点中,位于第四象限的点是( ) A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4)3.已知点P(-4,3),则点P 到y 轴的距离为( ) A .4B .-4C .3D .-34.已知m 为任意实数,则点()2,1A m m +不在( ) A .第一、二象限 B .第一、三象限 C .第二、四象限D .第三、四象限5.已知点P 在第二象限,并且到x 轴的距离为1,到y 轴的距离为2.则点P 的坐标是( ) A .(1、2)B .(-1,2)C .(2,1)D .(-2,1)6.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( ) A .(0,9)B .(9,0)C .(0,8)D .( 8,0)7.已知点A(-3,0),则A 点在( ) A .x 轴的正半轴上 B .x 轴的负半轴上 C .y 轴的正半轴上D .y 轴的负半轴上8.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为( ) A .(1,0)B .(1,2)C .(5,4)D .(5,0)9.将以A(-2,7),B(-2,2)为端点的线段AB 向右平移2个单位得线段11,A B 以下点在线段11A B 上的是( ) A .(0,3)B .(-2,1)C .(0,8)D .(-2,0)10.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成( ) A .(5,4)B .(4,5)C .(3,4)D .(4,3)二.填空题(共6小题)11.若P(a-2,a+1)在x 轴上,则a 的值是 . 12.在平面直角坐标系中,点A(-5,4)在第 象限. 13.点P(3,-2)到y 轴的距离为 个单位.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成 .15.已知点A(m-1,-5)和点B(2,m+1),若直线AB ∥x 轴,则线段AB 的长为 .16.在平面直角坐标系中,已知点(A B 点C 在x 轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 三.解答题(共7小题)17.如图,在平面直角坐标系中,点A 、B 、C 、D 都在坐标格点上,点D 的坐标是(-3,1),点A 的坐标是(4,3).(1)将三角形ABC 平移后使点C 与点D 重合,点A ,B 分别与点E ,F 重合,画出三角形EFD .并直接写出E ,F 的坐标;(2)若AB 上的点M 坐标为(x,y),则平移后的对应点M 的坐标为.18.如图,在正方形网格中建立平面直角坐标系,已知点A(3,2),(4,-3),C(1,-2),请按下列要求操作: (1)请在图中画出△ABC;(2)将△ABC 向左平移5个单位长度,再向上平移4个单位长度,得到111,A B C 在图中画出111,A B C 并直接写出点1A 、1B 、1C 的坐标.19.已知平面直角坐标系中有一点M(m-1,2m+3). (1)当点M 到x 轴的距离为1时,求点M 的坐标; (2)当点M 到y 轴的距离为2时,求点M 的坐标.20.已知平面直角坐标系中有一点M(2m-3,m+1). (1)点M 到y 轴的距离为l 时,M 的坐标? (2)点N(5,-1)且MN ∥x 轴时,M 的坐标?21.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3 【解决问题】(1)求点(2,4),A B -+的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.22.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.23.对有序数对(m,n)定义“f运算”:f(m,n)=11,,22m a n b⎛⎫+-⎪⎝⎭其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(-2,4)= ;(2)若点P(4,-4)在F变换下的对应点是它本身,则a= ,b= .答案:1-5 BAADD6-10 CBDAC11.-112.二13.314. (3,4)15.916.. (3,0)或(-3,0)17. 解:(1)如图所示,△EFD即为所求,其中E(0,2)、F(-1,0).(2)由图形知将△ABC向左平移4个单位、再向下平移1个单位可得△EFD,∴平移后点M的坐标为(x-4,y-1),18. 解:(1)如图所示:(2)如图所示:结合图形可得:A1(-2,6),B1(-1,1),C1(-4,2).19. 解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得:m=-1或m=-2,∴点M的坐标是(-2,1)或(-3,-1);(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得:m=3或m=-1,∴点M的坐标是:(2,9)或(-2,1).20. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点人教版七年级下册数学单元同步练习卷:第七章平面直角坐标系一、填空题1.如图,在平面直角坐标系中:A(1,1),B(-1,1),C(-1,-2),D(1,-2),现把一条长为 2 018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(1,-1).2.平面直角坐标系内有一点P(x,y),若点P在横轴上,则y=0;若点P在纵轴上,则x=0;若点P为坐标原点,则x=0且y=0.3.如图是某学校的示意图,若综合楼在点(-2,-1),食堂在点(1,2),则教学楼在点(-4,1).4.如图,小刚在小明的北偏东60°方向的500 m处,则小明在小刚的南偏西60°方向的500 m 处.(请用方向和距离描述小明相对于小刚的位置)5.将点A(1,1)先向左平移2个单位长度,再向下平移3个单位长度得到点B,则点B的坐标是(-1,-2).6.如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2 019次运动后,动点P的坐标为(2__019,2).二、选择题7.用7和8组成一个有序数对,可以写成( D )A.(7,8) B.(8,7) C.7,8或8,7 D.(7,8)或(8,7)8.如图,一个方队正沿着箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C 的位置是( D )A.(4,5) B.(5,4) C.(4,2) D.(4,3)9.平面直角坐标系中,点(1,-2)在( D )A.第一象限B.第二象限C.第三象限D.第四象限10.如图是某游乐城的平面示意图,用(8,2)表示入口处的位置,用(6,-1)表示球幕电影的位置,那么坐标原点表示的位置是( D )A.太空秋千B.梦幻艺馆C.海底世界D.激光战车11.在平面直角坐标系中,将点P(3,-2)向下平移4个单位长度,得到点P的坐标为( B )A.(-1,-2) B.(3,-6) C.(7,-2) D.(3,-2)12.点N(-1,3)可以看作由点M(-1,-1)( A )A.向上平移4个单位长度所得到的B.向左平移4个单位长度所得到的C.向下平移4个单位长度所得到的D.向右平移4个单位长度所得到的13.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 018个点的坐标为( C )A.(45,9) B.(45,11) C.(45,7) D.(46,0)14.王宁在班里的座位号为(2,3),那么该同学所坐的位置是( D )A.第2排第3列B.第3排第2列C.第5排第5列D.不好确定15.在平面直角坐标系中,点(0,-10)在( D )A.x轴的正半轴上B.x轴的负半轴上C.y轴的正半轴上D.y轴的负半轴上三、解答题16.五子连珠棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:在15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙的对弈图(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记作(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?解:甲必须在(1,7)或(5,3)处落子.因为若甲不首先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.17.在如图所示的平面直角坐标系中,描出下列各点,并将各点用线段依次连接起来. (0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4). 解:如图.18.如图,A(-1,0),C(1,4),点B 在x 轴上,且AB =3. (1)求点B 的坐标; (2)求三角形ABC 的面积;(3)在y 轴上是否存在点P ,使以A ,B ,P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)当点B 在点A 的右边时,点B 的坐标为(2,0); 当点B 在点A 的左边时,点B 的坐标为(-4,0). 所以点B 的坐标为(2,0)或(-4,0). (2)三角形ABC 的面积为12×3×4=6.(3)设点P 到x 轴的距离为h ,则 12×3h=10,解得h =203. ①当点P 在y 轴正半轴时,点P 的坐标为(0,203);②当点P 在y 轴负半轴时,点P 的坐标为(0,-203).综上所述,点P 的坐标为(0,203)或(0,-203).19.如图是某动物园平面示意图的一部分(图中小正方形的边长代表100米),请问: (1)在大门东南方向有哪些景点?(2)从大门向东走300米,再向北走200米,到达哪个景点?(3)以大门为坐标原点,向东方向为x 轴正方向,向北方向为y 轴正方向建立平面直角坐标系,写出蛇山、水族馆及大象馆的坐标.解:(1)猴山,大象馆. (2)蛇山.(3)如图,蛇山的坐标为(300,200),水族馆的坐标为(500,0),大象馆的坐标为(300,-300).20.如图,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),试求a 2-2b 的值.解:∵A(1,0),A 1(2,a),B(0,2),B 1(b ,3),∴平移方法为向右平移1个单位长度,向上平移1个单位长度. ∴a=0+1=1,b =0+1=1. ∴a 2-2b =12-2×1=1-2=-1.21.如图,三角形ABC 的三个顶点的坐标分别是A(4,0),B(-2,0),C(2,4),求三角形ABC 的面积.第七章平面直角坐标系单元测试题 (Word 含答案)一、选择题(每小题 3 分,共 30 分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表 示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是()A、P(2,5)表示这个点在平面内的位置B、点P的纵坐标是5C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C 、向上平移了 3 个单位D 、向下平移了 3 个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点 先向右平移 2 个单位长度,再向上平移 3 个单位长度,则平移后三个顶点的坐标是( )A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及 x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然 后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第 2008 秒时质点所在位置的 坐标是( ) A.(16,16) B.(44,44) C.(44,16)D.(16,44)二、填空题(每小题 3 分,共 24 分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成 .12.点(-2,3)先向右平移 2 个单位,再向下平移 3 个单位,此时的位置的坐标是 .13.在平面直角坐标系中,点 P (m ,m-2)在第一象限内,则 m 的取值范围是 .14.已知点 P 在第二象限,且横坐标与纵坐标的和为 1,试写出一个符合条件的点 P ;15.点 P 到 x 轴的距离是 2,到 y 轴16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面, 那么应该在字母 的下面寻找. 第 16 题 第 17 题17.如图所示,A 的位置为(2,6),小明从 A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。