吸收解吸流程

合集下载

2 吸收与解吸(讲稿)

2 吸收与解吸(讲稿)

第二节吸收与解吸2.1 概述吸收(absorption)是依据不同组分在溶剂中溶解度不同,让混合气体与适当的液体溶剂相接触,使气体中的一个或几个组分溶解于溶剂中形成溶液,难以溶解的组分保留在气相中,从而达到混合气体初步分离的操作。

所用液体称为吸收剂(或溶剂)。

气体中能被溶解的组分称为溶质或吸收质。

不被溶解的组分称为惰性气体或载体。

使溶质从溶液里脱除的过程称为解吸或脱吸。

它是吸收操作的逆过程,一个完整的吸收过程往往包括吸收与解吸两个部分。

为实现气体吸收过程,需要解决的问题是:①选择合适的溶剂(吸收剂);②溶剂的再生,这项费用往往占整个吸收操作费用的很大比例;③设计或选用合适的传质设备。

吸收操作根据物系气—液组分间是否发生发生化学反应分为化学吸收和物理吸收;根据吸收过程热效应是否显著分为等温吸收和非等温吸收;根据混合气体浓度高低分为低浓度吸收和高浓度吸收;根据被吸收组分数分为单组分吸收和多组分吸收。

本节主要讨论单组分、低浓度、等温、物理吸收。

2.2 气液相平衡2.2.1 气体在液体中的溶解度在恒定温度和压力下气液两相接触时将发生溶质气体向液相转移,使其在液相中的浓度增加,当充分接触,两相达到相平衡。

此时,溶质在液相中的浓度称为平衡溶解度,简称溶解度;溶解度随温度和溶质气体的分压而不同,平衡时溶质在气相中的分压称为平衡分压。

平衡分压p ﹡与溶解度间的关系曲线,这些曲线称为溶解度曲线。

加。

故加压和降温有利于吸收操作。

反之,升温和减压则有利于解吸过程。

2.2.2 亨利定律亨利定律:当总压不太高(一般约小于500kPa)时,在一定温度下,稀溶液(或理想溶液)上方气相中溶质的平衡分压与液相中溶质的摩尔分数成正比。

Ex p A =*式中——*A p 溶质A 在气相中的平衡分压,kPa ;x ——液相中溶质的摩尔分数;E ——称为亨利系数,kPa 。

采用其他的气、液相组成时,亨利定律有如下几种表达形式:(1)气相组成用溶质A 的分压*A p ,液相组成用溶质的浓度c A 表示时,亨利定律可表示为Hc p A A =*式中c A ——液相中溶质的浓度kmol/m 3;H ——溶解度系数,kmol/(m 3﹒kPa)。

CO2吸收-解吸试验资料

CO2吸收-解吸试验资料

附件6:CO 2吸收-解吸实验资料一、实验流程图本实验是在填料塔中用水吸收空气和CO 2混合气中的CO 2,和用空气解吸水中的CO 2以求取填料塔的吸收传质系数和解吸系数。

图1. 吸收与解吸实验流程图阀门:V A01—吸收液流量调节阀,V A02—吸收塔空气流量调节阀,V A03—解吸塔空气流量调节阀,V A04—解吸液流量调节阀,V A05—吸收塔CO 2流量调节阀,V A06—风机旁路调节阀,V A07—吸收泵放净阀,V A08—水箱放净阀,V A09—解吸液回流阀,V A10—吸收泵回流阀,AI01—吸收塔进气采样阀, AI02 —吸收塔排气采样阀, AI03—解吸塔进气采样阀, AI04—解吸塔排气采样阀,AI05—吸收塔塔顶液体采样阀,AI06—解吸塔塔顶液体采样阀,AI07—解吸塔塔底液体采样阀,V A11—吸收塔放净阀,V A12—解吸塔放净阀,V A13—缓冲罐放净阀风压6kPa,风量55m3/hCO2钢瓶温度:TI01—液相温度流量:FI01—吸收塔空气流量,FI02—吸收液流量,FI03—解吸塔空气流量,FI04—解吸液流量,FI05—CO2气体流量图2. CO2吸收‐解吸实验装置实物照片二、实验设备结构参数吸收塔:塔内径100 mm;填料层高550 mm;填料为陶瓷拉西环;丝网除沫解吸塔:塔内径100 mm;填料层高550 mm;填料为φ6不锈钢θ环;丝网除沫风机:旋涡气泵,6kPa,55m3/h;吸收泵:扬程12m,流量14L/min;解吸泵:扬程14m,流量3.6m3/h;饱和罐:PE,50L温度:Pt100传感器流量计:水涡轮流量计:200~1000L/h;气相质量流量计:0~1.2 m3/h;气相转子流量计:1~4 L/min;三、实验注意事项1.在实验中,两个水流量计的读数要尽量保持一致;2.测取液泛数据点时,等待时间不要过长,避免液泛过于强烈导致液体喷出塔外;3.调节解吸塔的空气流量时要求在不液泛的情况下,尽量维持在较大的气量;4.泵是机械密封,必须在泵有水时使用,若泵内无水空转,易造成机械密封件升温损坏而导致密封不严,严禁泵内无水空转;5.液相采样和滴定时,要保证规范操作,以免影响测定和数据分析;6.实验结束时,注意按顺序关闭风机、水泵和阀门等。

(完整版)二氧化碳吸收与解吸实验

(完整版)二氧化碳吸收与解吸实验

二氧化碳汲取与解吸实验一、实验目的1.认识填料汲取塔的构造、性能和特色,练习并掌握填料塔操作方法;经过实验测定数据的办理解析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料汲取塔传质能力和传质效率的测定方法,练习实验数据的办理解析。

二、实验内容1.测定填料层压强降与操作气速的关系,确立在必定液体喷淋量下的液泛气速。

2.固定液相流量和入塔混淆气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别丈量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积汲取总系数)。

3.进行纯水汲取二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体经过填料层的压强降:压强降是塔设计中的重要参数,气体经过填料层压强降的大小决定了塔的动力耗费。

压强降与气、液流量均相关,不同样样液体喷淋量下填料层的压强降 P 与气速u的关系如图一所示:L 3> L 2> L 1aPk,P32L 0 = 01u , m/s图一填料层的P ~u关系当液体喷淋量 L00 时,干填料的P ~u的关系是直线,如图中的直线0。

当有必定的喷淋量时,P ~u的关系变为折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ~u关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:汲取系数是决定汲取过程速率高低的重要参数,实验测定可获得汲取系数。

关于同样的物系及必定的设施(填料种类与尺寸),汲取系数跟着操作条件及气液接触状况的不同样样而变化。

1.二氧化碳汲取 - 解吸实验依据双膜模型的基本假定,气侧和液侧的汲取质 A 的传质速率方程可分别表达为气膜G A k g A( p A p Ai ) ( 1)液膜G A k l A(C Ai C A ) (2)式中: G A—A组分的传质速率, kmoI s 1;2A —两相接触面积, m;P A—气侧A组分的均匀分压,Pa;P Ai—相界面上A组分的均匀分压,Pa;C A—液侧A组分的均匀浓度, kmol m 3C Ai—相界面上A组分的浓度kmol m 3k g—以分压表达推进力的气侧传质膜系数,kmol m 2s 1Pa 1;k l—以物质的量浓度表达推进力的液侧传质膜系数,m s 1。

吸收与解吸实验

吸收与解吸实验

吸收与解吸实验一、实验目的及任务:1、熟悉填料塔的构造与操作。

2、观察填料塔流体力学状况,测定压降与气速的关系曲线。

3、掌握总传质系数K x a的测定方法并分析影响因素。

4、学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。

二、基本原理:本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a·V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。

本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。

1、填料塔流体力学特性:气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。

在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa线)。

当有喷淋量时,在低气速下(c点以前)压降也正比于气速的 1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。

随气速的增加,出现载点(图图1 填料层压降–空1中c点),持液量开始增大,压降气速线向上弯,斜率变陡(图中cd到液泛点(图中d点)后,在几乎不变的气速下,压降急剧上升。

2、传质实验:填料塔与板式塔气液两相接触情况不同。

在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。

本实验是对富氧水进行解吸。

由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。

整理得到相应的传质速率方式为:m p x A x V a K G ∆∙∙=m p A x x V G a K ∆∙=其中 22112211ln )()(e e e e m x x x x x x x x x -----=∆()21x x L G A -= Ω∙=Z V p相关的填料层高度的基本计算式为:OL OL x x e x N H xx dx a K L Z ∙=-Ω∙=⎰12 即 OL OL N Z H /=其中 m x x e OL x x x x x dx N ∆-=-=⎰2112 , Ω∙=a K L H x OL式中:G A —单位时间内氧的解吸量[Kmol/h] K x a —总体积传质系数[Kmol/m 3•h •Δx]V P —填料层体积[m 3]Δx m —液相对数平均浓度差x 1 —液相进塔时的摩尔分率(塔顶)x e1 —与出塔气相y 1平衡的液相摩尔分率(塔顶) x 2 —液相出塔的摩尔分率(塔底)x e2 —与进塔气相y2平衡的液相摩尔分率(塔底)Z—填料层高度[m]Ω—塔截面积[m2]L—解吸液流量[Kmol/h]H OL—以液相为推动力的传质单元高度N OL—以液相为推动力的传质单元数由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即K x=k x, 由于属液膜控制过程,所以要提高总传质系数K x a,应增大液相的湍动程度。

吸收(解吸)实验报告

吸收(解吸)实验报告

吸收(解吸)实验报告化⼯基础实验报告实验名称吸收(解吸)系数的测定班级化21 姓名张腾学号2012011864 成绩实验时间2014.5 同组成员张煜林努尔艾⼒·麦麦提⼀、实验⽬的1、了解吸收(解析)操作的基本流程和操作⽅法;2、测定氧解吸液相总体积传质系数K x a和液体流量的关系;3、测定筛板塔的板效率与液体流量和⽓体流量的关系。

⼆、实验原理吸收是⼯业上常⽤的操作。

在吸收过程中,⽓体混合物和吸收剂分别从塔底和塔顶进⼊塔内,⽓液两相在塔内实现逆流接触,使⽓体混合物中的溶质较完全地溶解在吸收剂中,于是塔顶获得较纯的惰性组分,从塔底得到溶质和吸收剂组成的溶液(通称富液)。

当溶质有回收价值或吸收剂价格较⾼时,把富液送⼊再⽣装置进⾏解吸,得到溶质或再⽣的吸收剂(通称贫液),吸收剂返回吸收塔循环使⽤。

吸收是⽓液相际传质过程,所以吸收速率可⽤⽓相内,液相内或者两相间的传质速率来表⽰。

在连续吸收操作中,这三种传质速率表达式计算结果相同。

对于低浓度吸收过程。

计算公式如下。

⽓相内传质的吸收速率:N A=k y(y?y i)F液相内传质的吸收速率:N A=k x(x i?x)F⽓、液两相相际传质的吸收速率:N A=K y F(y?y?)=K x F(x??x)式中:y,y i—分别表是⽓相主体和⽓相界⾯处的溶质摩尔分率;x,x i—分别表⽰液相主体和液相界⾯处的溶质摩尔分率;x?,y?—分别为与y和x呈平衡的液相和⽓相摩尔分率;k x,K x—分别为以液相摩尔分率差为推动⼒的液相传质分系数和传质总系数;k y,K y—分别为以⽓相摩尔分率差为推动⼒的⽓相传质分系数和传质总系数;F—传质⾯积,m2。

对于难溶溶质的吸收,常⽤液相摩尔分率差和液相传质系数表达的吸收速率式。

对于易溶⽓体的吸收,常⽤⽓相摩尔分率差和⽓相传质系数表达的吸收速率式。

本实验为⼀解析过程,是⽤空⽓与富氧⽔接触,因富氧⽔中氧的浓度⾼于同空⽓处于平衡的⽔中氧的浓度。

(完整版)二氧化碳吸收与解吸实验.doc

(完整版)二氧化碳吸收与解吸实验.doc

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。

二、实验内容1.测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2.固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3.进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降 P 与气速u的关系如图一所示:L 3> L 2> L 1aPk,P32L 0 = 01u , m/s图一填料层的P ~u关系当液体喷淋量 L00 时,干填料的P ~u的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ~u的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ~u关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收 - 解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质 A 的传质速率方程可分别表达为气膜G A k g A( p A p Ai ) ( 1)液膜G A k l A(C Ai C A ) (2)式中: G A—A组分的传质速率, kmoI s 1;2A —两相接触面积, m;P A—气侧A组分的平均分压,Pa;P Ai—相界面上A组分的平均分压,Pa;C A—液侧A组分的平均浓度, kmol m 3C Ai—相界面上A组分的浓度kmol m 3k g—以分压表达推动力的气侧传质膜系数,kmol m 2s 1Pa 1;k l—以物质的量浓度表达推动力的液侧传质膜系数,m s 1。

5吸收-解吸操作实训---装置流程及设备仪表作用的学习

5吸收-解吸操作实训---装置流程及设备仪表作用的学习

T201
P101
图6-1 CO2吸收-解吸实训装置工艺流程图
四、操作中注意事项
• (1)使用CO2钢瓶时必须连接解压阀或高 压调节阀,不经这些部件让系统直接与钢 瓶连接是十分危险; • (2)当钢瓶使用到瓶内压力为0.5MPa时, 应停止使用。压力过低会给充气带来不安 全因素,当钢瓶内压力与外界压力相同时, 会造成空气的进入。
五、操作时异常现象产生的原因及处理措施
异常现象 拦液和液泛 原因分析 操作负荷大幅波动 或溶液起泡 (1)入口混合气体 中二氧化碳含量的 增加 (2)混合气流量增 吸收塔出 口气体二 氧化碳含 量升高 大 (3)吸收剂流量减 少 (4)吸收贫液中二 氧化碳含量增加和 塔性能的变化 (填 料堵塞、气液分布 不均匀) 处理措施 操作中要严格控制参数,保持系统 的稳定,尽量减轻符合的波动 (1)检查 CO2 和的流量,如发生 变化,调回原值 (2)检查进入吸收塔的空气流量 FIC02,如发生变化,调回原值 ( 3) 检查进入吸收塔的吸收剂流量 FIC03,如发生变化,调回原值 ( 4) 打开阀门 V A115, 取样分析吸 收贫液中二氧化碳含量,如二氧化 碳含量升高,增加解吸塔空气流量 FIC01 ( 5) 如上述过程未发生异常, 在不 发生液泛的前提下,加大吸收剂流 量 FIC03,增加解吸塔空气流量 FIC01 ( 1 )检查进入解吸塔的空气流量 FIC01,如发生变化,调回原值 ( 2) 检查解吸塔塔底的液封, 如液 封被损坏要恢复 ( 3) 增加液封高度, 防止解吸空气 泄漏 ( 4) 如上述过程为发生异常, 在不 发生液泛的前提下,加大解吸空气 流量 FIC01,使吸收贫液中二氧化 碳含量回到原值
主讲:连锦花
回顾:
吸收设备类型
填料塔 湍球塔 分类 板式塔 喷淋塔 空塔吸收器

解 吸

解    吸

解吸
2. 通入惰性气体
其过程为吸收液从解吸塔顶喷淋而下,惰 性气体从解吸塔底进入,由于惰性气体中不含 溶质或含溶质量极少,因而溶质可从液相向气 相转移,最后气体溶质从塔顶带出。通常使用 的惰性气体有空气、氮气、二氧化碳等。根据 工艺要求及分离过程的特点,可选用不同的惰 性气体作
解吸又称脱吸,是使吸收液中的溶质从液相中释 放出来的操作过程。在化工生产中,解吸操作有两个 目的:获得比较纯的气体溶质;使溶剂再生返回到吸 收塔循环使用,使分离过程经济合理。
解吸
解吸是吸收的逆过程,是气体溶质从液相向气相转移的过程。 对逆流方式操作的解吸塔,吸收液从顶部送入,空气、水蒸气或 其他惰性气体从底部通入,解吸出来的溶质气体混于惰性气体中 从塔顶送出,经解吸后的溶液从塔底送出。从吸收液中解吸出来 的气体和惰性气体混合在一起,因此不能取得纯净的溶质气体。 如果用水蒸气解吸不溶于水的物质,则塔顶送出的混合气经冷凝 后分层,可以把溶质分离出来。例如,洗油从焦炉气吸收了苯与 甲苯后形成的溶液,再用水蒸气进行解吸,便可把苯与甲苯从冷 凝器中分离出来。
解吸
3. 降低压力
在加压下吸收所得到的吸收液,当 压力降低时,溶质气体将迅速地自动放 出,此方法称为闪蒸。解吸的程度取决 于解吸操作的压力,如果是常压吸收, 解吸只能在负压条件下进行。
解吸
4. 精馏法
将吸收液通过精馏的方法使 溶质和吸收剂分离,达到既回收 溶质,又得到新鲜的吸收剂循环 使用的目的。
解吸
解吸过程的推动力与吸收过程相反,解吸 时气相溶质组成小于液相中溶质的平衡组成,溶 质才能解吸出来。故解吸的推动力应该是Y*-Y 或X-X*,操作线在平衡线之下,与吸收操作相 反。解吸可用不同的方法来实现,工业常用的解 吸方法如下几种:

吸收解吸开车操作

吸收解吸开车操作

吸收解吸开车操作
3.1设定吸收剂(贫液)流量数值。

3.2确认贫液泵出口阀处于关闭状态,打开入口阀,启动贫液泵,逐渐打开出口阀。

3.3设定吸收液(富液)流量数值。

3.4待吸收液(富液)储罐液位超过1/3后,确认富液泵出口阀处于关闭状态,打开入口阀,启动富液泵,逐渐打开出口阀。

3.5设定解吸气流量数值,启动旋涡气泵。

3.6启动吸收气泵,将空气流量调节到1.5m3/h。

3.7打开二氧化碳钢瓶总阀门,缓慢调节二氧化碳减压阀到流量规定值。

吸收解吸开车操作
4.1首先关闭二氧化碳钢瓶总阀门,再关闭二氧化碳减压阀。

4.2停止吸收气泵。

4.3关闭贫液泵出口阀,停止贫液泵,关闭入口阀。

4.4停止旋涡气泵。

4.5待吸收液(富液)储罐液位低于1/3后,关闭富液泵出口阀,停止富液泵,关闭入口阀。

4.6 打开吸收液(富液)储罐泄液阀进行泄液,至罐内液位为零。

4.7打开解吸液(贫液)储罐泄液阀泄液,至罐内液位为零。

4.8关闭电源
釜式反应器开车操作
3.1备料:向原料罐和热水罐分别备料,液位超过2/3。

3.2进料:选择适宜的输送路线和进料方式,向反应器进料,液位不超过800mm。

3.3反应控制:通过仪表设定搅拌器频率,启动搅拌器;
设定热水罐温度不超过70 ,反应器温度设定低于热水罐温度。

通过热水罐热水、釜内加热器及冷凝水有效调节釜内温度达到设定值。

(完整版)二氧化碳吸收与解吸实验

(完整版)二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ;A C —液侧A 组分的平均浓度,3-⋅m kmol Ai C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ;l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

吸收-解吸实训装置操作规程

吸收-解吸实训装置操作规程

吸收-解吸实训装置操作规程1.工业背景气体的吸收与解吸装置为化工的常见装置,在气体净化中常使用溶剂来吸收有害气体,保证合格的原料气供给,在合成氨、石油化工中原料气的净化过程中均有广泛应用。

在合成氨脱硫、脱碳工段均采用溶剂吸收法脱除有害气体,吸收效率高,装置运行费用低廉。

本装置考虑学校实际需求状况,采用水-二氧化碳体系为吸收-解吸体系,进行实训装置设计。

2.流程简介(附工艺流程示意图)钢瓶内二氧化碳经减压后和风机出口空气混合后进入吸收塔下部,混合气体在塔内和吸收液体逆向接触,混合气体中的二氧化碳被水吸收由塔顶排出。

出吸收塔富液排入吸收液缓冲罐后,经富液泵进入二氧化碳解吸塔上部,和解吸塔风机来空气在塔内逆向接触,溶液中二氧化碳被解吸出来,随大量空气由塔顶排出,溶液由下部进入解吸液缓冲罐,解吸液经解吸液泵打入吸收塔上部循环使用,继续进行二氧化碳气体吸收操作。

吸收-解吸工艺流程示意图3.装置功能3.1能进行机泵、容器、塔器等设备操作。

3.2能进行二氧化碳-水体系吸收、解吸实训,吸收、解吸装置操作考核。

3.3能进行吸收塔、解吸塔效率测定。

3.4系统可实现手动控制和自动控制,实时显示过程数据,有工控柜,可接入DCS系统。

3.5装置为工程化布局、带操作平台、斜梯,反映工业吸收-解吸布局特点。

3.6能进行气相色谱分析及化学分析实训。

4.基本原理气体吸收是典型的传质过程之一。

由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。

本实验采用水吸收空气中的CO 2组分。

一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO 2气体的吸收过程属于液膜控制。

因此,本实验主要测定Kxa 和H OL 。

4.1计算公式填料层高度Z 为OL OL x x xa Z N H x x dx K L dZ z ⋅=-==⎰⎰*120式中: L 液体通过塔截面的摩尔流量,kmol / (m 2·s);K xa 以△X 为推动力的液相总体积传质系数,kmol / (m 3·s);H OL 液相总传质单元高度,m ; N OL 液相总传质单元数,无因次。

吸收解吸流程课件

吸收解吸流程课件

案例一:工业尾气处理中的吸收解吸流程
总结词
工业尾气处理中的吸收解吸流程是利用吸收 剂将尾气中的有害物质吸收,再通过解吸过 程将有害物质从吸收剂中释放出来,达到净 化尾气的目的。
详细描述
工业尾气处理中的吸收解吸流程通常包括吸 收和再生两个阶段。在吸收阶段,尾气通过 与吸收剂接触,将有害物质吸收到吸收剂中 ;在再生阶段,通过加热或减压等方式将有 害物质从吸收剂中释放出来,使吸收剂得以 循环使用。该流程广泛应用于处理工业尾气 中的有害气体,如硫氧化物、氮氧化物等。
挥发出来。
解吸塔的塔身结构和吸收塔类似 ,但操作条件不同,需根据实际 情况选择合适的操作条件和解吸
剂。
热源设备
热源设备是提供足够热量以实 现解吸过程的辅助设备。
根据解吸塔的操作条件,可以 选择不同的热源设备,如热水 加热器、蒸汽加热器、电加热 器等。

热源设备的选型需考虑能源效 率、环保要求和经济效益等因 素。
萃取解吸
利用溶剂萃取剂将吸收剂 与溶质分离,再通过精馏 或其他方法将溶剂萃取剂 回收。
03
吸收解吸流程的步骤
吸收剂的选择与准备
01
吸收剂应具备高溶解度、高选择 性和低挥发性等特点,能够有效 地吸收气体中的有害成分。
02
在进行吸收操作前,需要对吸收 剂进行适当的准备,如纯净度检 测、脱水处理和预热等,以确保 吸收剂的质量和性能。
原理
基于不同组分在气体混合物中的溶解 度、扩散系数、吸附性能等物理或化 学性质的差异,通过特定的操作条件 和设备实现组分的分离。
吸收解吸流程的重要性
提高产品质量
工业流程优化
通过吸收解吸流程,可以将气体混合 物中的杂质或有害组分去除,提高产 品的纯度和质量。

分离工程第4章气体吸收和解吸详解

分离工程第4章气体吸收和解吸详解
②非等温吸收 吸收过程温度变化明显
14
⑷按吸收量的多少 ①贫气吸收
• 吸收量不大,对吸收塔内的吸收剂和 气体量影响不大
• 恒摩尔流 • 恒温操作
②富气吸收 吸收量大的情况
15
⑸按汽液两相接触方式和采用的设备形式 ①喷淋吸收 • 填料塔或空塔:气、液两相都连续 • 淋降板塔:气相连续,液相分散 ②鼓泡吸收 • 鼓泡塔或泡罩塔:液相保持为连续相,
• 液相:吸收剂量大——稀溶液 • 在精馏过程中,由于汽化潜热与冷凝潜热相
12
②化学吸收 溶质与溶剂有显著的化学反应发生。 1)可逆反应的化学吸收过程 难点:汽液平衡,化学反应速率 2)不可逆反应的化学吸收过程 难点:连串反应、不是瞬时完成的反应
13
⑶吸收过程温度变化是否显著 ①等温吸收 气体吸收相当于由气态变液态,所以
会产生近于冷凝热的溶解热 化学吸收过程中,有溶解热+反应热 吸收过程温度变化不明显
• 选择适当的工艺和溶剂进行吸收,是废气处理中 应用较广的方法。
8
二氧化碳的吸收过程
9
三、吸收过程的分类
⑴按组分的相对溶解度的大小
①单组分吸收
只有一个组分在吸收剂中具有显著的溶 解度,其它组分的溶解度均小到可以忽 略不计。
如制氢工业中,将空气进行深冷分离前, 用碱液脱出其中的二氧化碳以净化空气, 这时CO2仅在碱液中具有显著的溶解度, 而空气中的氮、氧、氩等气体的溶解度 均可忽略。
净化或 精制气 体
分离 气体 混合物
将最终气 态产品制 成溶液或 中间产品
废气 治理
4
• ①净化或精制气体
• 为除去原料气中所含的杂质,吸收是最常用的 方法。
• 如用乙醇胺液脱出石油裂解气或天然气中的硫 化氢;乙烯直接氧化制环氧乙烷生产中原料气的 脱硫、脱卤化物;合成甲烷工业中的脱硫、脱 CO2;二氯乙烷生产过程中用水去除氯化氢等。

二氧化碳吸收与解吸实验报告

二氧化碳吸收与解吸实验报告

二氧化碳吸收与解吸实验报告一、实验目的通过实验观察二氧化碳在不同环境下的吸收和解吸情况,了解二氧化碳在自然界中的循环过程。

二、实验材料二氧化碳气体、水、氢氧化钠溶液、酚酞指示剂、容量瓶、试管、滴定管、酒精灯等。

三、实验原理二氧化碳在自然界中的循环过程包括二氧化碳的吸收和解吸,其中吸收后的二氧化碳可以被植物利用进行光合作用,解吸后的二氧化碳则会进入大气层中。

实验中,利用二氧化碳和水反应生成碳酸酸,再通过与氢氧化钠溶液反应,使碳酸酸转化为碳酸钠,观察其变化。

四、实验步骤1. 取一定量的二氧化碳气体,放入容量瓶中。

2. 加入一定量的水,使其中溶解的二氧化碳达到饱和状态。

3. 取一定量的氢氧化钠溶液,滴入试管中。

4. 加入少量的酚酞指示剂,观察其颜色变化。

5. 缓慢将第2步中的饱和二氧化碳气体通过试管中的氢氧化钠溶液中。

6. 观察指示剂的变化,记录颜色变化时间和颜色变化程度。

7. 重复实验,改变环境温度等条件,观察结果。

五、实验结果在常温下,通过饱和二氧化碳气体通入氢氧化钠溶液中,指示剂由粉红色变为无色,表明有二氧化碳吸收反应发生。

当环境温度提高时,吸收二氧化碳的速度会加快,颜色变化时间会缩短,颜色变化程度也会加深。

六、实验分析本实验通过观察酚酞指示剂颜色变化,可以判断二氧化碳气体是否被吸收。

在自然界中,植物通过光合作用吸收二氧化碳气体,并利用其进行生长等活动。

同时,二氧化碳也会通过植物的呼吸、动物的呼吸和燃烧等过程释放出来,进入大气层中。

通过本实验的观察,我们可以更加深入地了解二氧化碳在自然界中的循环过程。

七、实验结论通过本实验,我们可以得出以下结论:1. 二氧化碳气体可以被水吸收,并与水反应生成碳酸酸。

2. 碳酸酸可以与氢氧化钠溶液反应,生成碳酸钠。

3. 通过酚酞指示剂的变化,可以判断二氧化碳气体是否被吸收。

4. 环境温度的变化会影响二氧化碳的吸收速率。

八、实验注意事项1. 实验过程中要小心操作,防止产生危险。

5.6. 解吸及其计算

5.6. 解吸及其计算

解:
已知
X 1 0.0005
Y1 0
X 2 0.0255
m 33
V V =1.35 L L min
Y 33 X 2 33 0.0255 0.8419
* 2
(1)
X 2 X 1 0.0255 0.0005 V 0.0297 * 0.8415 0 Y2 Y1 L min
获得所需较纯的溶质;
使溶剂再生返回到吸收塔循环使用, 使分离过程经济合理。
5.6.1.解吸条件及传质方向
1、解吸过程的必要条件:
解吸过程的必要条件及推动力与吸收过程 的相反,解吸的必要条件为气相溶质分压pA或 浓度Y小于液相中溶质的平衡分压pA*或平衡浓 度Y*。即:

PA< PA* 或Y < Y*
pA pA
*
溶质从液相向气相转移,最后气体溶质从 塔顶带出。
解吸过程的推动力为
pA pA
*
推动力越大,解吸速率越快。 使用载气解吸是在解吸塔中引入与吸收液 不平衡的气相。 通常作为气提载气的气体有: 空气、氮气、二氧化碳、水蒸气等。 根据工艺要求及分离过程的特点,可选用 不同的载气。
2、减压解吸 将加压吸收得到的吸收液进行减压,因 总压降低后气相中溶质分压pA也相应降低, 实现了PA< PA*的条件。 解吸的程度取决于解吸操作的压力,如 果是常压吸收,解吸只能在负压条件下进行。 3、加热解吸 将吸收液加热时,减少溶质的溶解度, 吸收液中溶质的平衡分压PA*提高,满足解吸 条件PA< PA*有利于溶质从溶剂中分离出来。
V V =1.35 =1.35 0.0297=0.04 L L min
蒸汽用量
V V=1.35 L=0.04 10=0.4kmol/h L min

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验一、实验目的1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。

2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。

二、实验内容1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。

2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。

3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。

三、实验原理:气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ∆与气速u 的关系如图一所示:图一 填料层的P ∆~u 关系当液体喷淋量00=L 时,干填料的P ∆~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ∆~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将P ∆~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。

对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。

1.二氧化碳吸收-解吸实验根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-⋅s kmoI ;A —两相接触面积,m 2;A P —气侧A 组分的平均分压,Pa ;Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-⋅m kmolAi C —相界面上A 组分的浓度3-⋅m kmolg k —以分压表达推动力的气侧传质膜系数,112---⋅⋅⋅Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-⋅s m 。

吸收--解吸流程

吸收--解吸流程
知识点编号:ZYKC20112902021001
吸收-解吸流程
问题1 香槟酒(见图1)俗称泡泡酒,当香槟酒瓶或汽水罐被打开 时,我们看到在酒杯中有许多气泡,汽水罐口会有气体喷出,如图 2。为什么有气泡或者有气体喷出呢?
图1 香槟酒
图2 汽水
回答----在香槟酒和汽水中溶解了许多二氧化碳气体,由 于在封闭的香槟酒瓶或汽水罐里有比较高的气压,使得 大量的二氧化碳气体因为高压而溶解在饮料里。当香槟 酒瓶或汽水罐被打开时,气压骤减,过度饱和溶解的二 氧化碳气体就以气泡的形式被释放出来。 我们把象这种溶解的气体从液相中释放出来的操作,称 为解吸。
三、吸收--解吸流程
解吸操作不但能获得纯度较高的气体溶质,而且可使吸 收剂得以再生和循环使用。因此,工业上常采用吸收和 解吸联合操作的流程。图4为吸收--解吸的联合流程。
图4 吸收-解吸联合流程
三、吸收--解吸流程
吸收部分:焦炉煤气从吸收塔底进入,并通过吸收塔,吸收剂 是洗油,洗油从吸收塔顶部喷淋而下与焦炉煤气逆流接触,焦 炉煤气中的苯溶解在洗油中后形成富油,从塔底出来,得到净 化的煤气从塔顶排出。 解吸部分:为了回收被吸收的苯,同时使洗油能够循环使用, 必须将苯与洗油进行分离,采用解吸的方法就可以达到这个目 的。在解吸过程中,将富油加热后从解吸塔顶送入解吸塔中, 在解吸塔底送入过热蒸汽,在蒸汽和富油的逆向流动并接触中, 发生解吸过程,富油中的苯被蒸出并被水蒸汽带出,经冷凝, 苯与洗油自然分层,即可获得粗苯产品和贫油。通过解吸操作, 一方面得到了较纯的苯,真正实现了焦炉气的分离;另一方面, 解吸后得到的贫油又可以送回吸收塔作为吸收剂循环使用,节 省了吸收剂的用量。由此可以看出吸收-解吸流程才是一个完 整的气体分离过程。
一、解吸的概述

制药仿真吸收解吸工艺单元工艺流程

制药仿真吸收解吸工艺单元工艺流程

制药仿真吸收解吸工艺单元工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!制药仿真吸收解吸工艺单元工艺流程是制药生产领域中至关重要的一环。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通常,工业上很少单独使用一种方法解吸,而是结合工艺 条件和物系特点,联合使用上述解吸方法,例如将吸收液 通过换热器先加热,再送到低压塔中解吸,其解吸效果比 单独使用一种效果更佳。
二、解吸的方法与原理
问题2 判断 (1)解吸是吸收的逆过程。( √ ) (2)解吸的原理是降低气体在液体中的溶解度。( √ ) (3)解吸是气体溶质从气相向液相转移的过程。( × ) (4)气提解吸是通过引入惰性气体以降低气相中溶质的 分压,从而实现解吸的。( √ ) (5)通过加压也能实现解吸操作。( × )
〖作业布置 〗
1.单项选择 (1)不属于工业上常用的解吸方法是 。选择( ) A.加压解吸 B.加热解吸 C.在惰性气体中解吸 D.精馏解吸 2.判断 (1)解吸进行的条件是气相中吸收质的浓度低于液相中吸收质的平 衡浓度。( ) (2)升高温度,降低压力对解吸有利。( )
谢 谢!
一、解吸的概述
解吸是使溶解了的气体溶质由吸收液中释放出来的操作, 也称为脱吸。
解吸的目的有两个:一是把溶解在吸收剂中的气体吸收 质重新释放出来,获得较纯的吸收质气体;二是吸收剂 释放出吸收质后可返回吸收塔,循环使用,节省操作费 用。
气体溶质解吸进行的必要条件是气相中可吸收组分的分 压必须小于液相中吸收质的平衡分压。
知识点编号:ZYKC20112902021001
吸收-解吸流程
问题1 香槟酒(见图1)俗称泡泡酒,当香槟酒瓶或汽水罐被打开 时,我们看到在酒杯中有许多气泡,汽水罐口会有气体喷出,如图 2。为什么有气泡或者有气体喷出呢?
图1 香槟酒
图2 汽水
回答----在香槟酒和汽水中溶解了许多二氧化碳气体,由 于在封闭的香槟酒瓶或汽水罐里有比较高的气压,使得 大量的二氧化碳气体因为高压而溶解在饮料里。当香槟 酒瓶或汽水罐被打开时,气压骤减,过度饱和溶解的二 氧化碳气体就以气泡的形式被释放出来。 我们把象这种溶解的气体从液相中释放出来的操作,称 为解吸。
三、吸收--解吸流程
解吸操作不但能获得纯度较高的气体溶质,而且可使吸 收剂得以再生和循环使用。因此,工业上常采用吸收和 解吸联合操作的流程。图4为吸收--解吸的联合流程。
图4 吸收-解吸联合流程
三、吸收--解吸流程
吸收部分:焦炉煤气从吸收塔底进入,并通过吸收塔,吸收剂 是洗油,洗油从吸收塔顶部喷淋而下与焦炉煤气逆流接触,焦 炉煤气中的苯溶解在洗油中后形成富油,从塔底出来,得到净 化的煤气从塔顶排出。
〖课堂巩固 〗
练习1 下图为碳酸丙烯酯(PC)脱碳流程图,识读此工艺流程图, 并回答该工艺采用了哪些解Байду номын сангаас方法??
图5 碳酸丙烯酯(PC)脱碳流程图
〖课堂小结 〗
1.解吸的方法有气提解吸、减压闪蒸解吸、加热解吸和精馏解吸; 2.工业上通常吸收—解吸联合操作流程,这样一方面可以获得所需 较纯的气体溶质,另一方面吸收剂释放出吸收质后可返回吸收塔, 循环使用,节省操作费用。
解吸部分:为了回收被吸收的苯,同时使洗油能够循环使用, 必须将苯与洗油进行分离,采用解吸的方法就可以达到这个目 的。在解吸过程中,将富油加热后从解吸塔顶送入解吸塔中, 在解吸塔底送入过热蒸汽,在蒸汽和富油的逆向流动并接触中, 发生解吸过程,富油中的苯被蒸出并被水蒸汽带出,经冷凝, 苯与洗油自然分层,即可获得粗苯产品和贫油。通过解吸操作, 一方面得到了较纯的苯,真正实现了焦炉气的分离;另一方面, 解吸后得到的贫油又可以送回吸收塔作为吸收剂循环使用,节 省了吸收剂的用量。由此可以看出吸收-解吸流程才是一个完 整的气体分离过程。
3.加热解吸
吸收液加热时,溶质在液相中的溶解度降低,此时必然有 一部分溶质从液相中释放出来,从而有利于溶质与吸收剂 的分离。例如采用“热力脱氧”法处理锅炉用水,就是通 过加热使溶解在水中的氧溢出。
二、解吸的方法与原理
4.精馏解吸
吸收过程中得到的吸收液,也可以通过精馏的方法将溶质 与溶剂分开,达到回收溶质和吸收剂循环使用的目的。精 馏解吸的原理是利用吸收质与吸收剂挥发性不同分离的。
二、解吸的方法与原理
1.气提解吸
解吸尾气
吸收液
解 吸 塔
惰性气体
解吸液 图3 气提解吸
二、解吸的方法与原理
2.减压闪蒸解吸
将加压吸收得到的吸收液进行减压,当压强降低后,溶质 便从吸收液中释放出来。减压对解吸是有利的,特别适用 于加压之后的解吸。有时为了使溶质充分解吸,还需进一 步降压到负压。解吸的程度取决于解吸操作的压力,如果 是常压吸收,解吸只能在负压下进行。
所以要实现解吸,一方面可以降低气相中吸收质的分压, 另一方面也可以降低气体的溶解度。
二、解吸的方法与原理
1.气提解吸
工业上常用的解吸方法有以下几种:
气提解吸法,如图3,也称载气解吸法。在解吸塔中,吸收液 自塔顶喷淋而下,载气从解吸塔的底部自下而上与吸收液逆流 接触,载气中不含溶质或含溶质量极少,故溶质从液相向气相 转移,最后气体将溶质从塔顶带出,于塔底得到较为纯净的吸 收剂。使用载气解吸的目的是在解吸塔中引入与液相不平衡的 气相,气相中吸收质的浓度越低,解吸速率越快。通常,作为 气提的载气有空气、氮气、二氧化碳、水蒸气等,可根据工艺 要求及分离过程的特点来进行选择。一般来说,应用惰性气体 的解吸过程适用于溶剂的回收,还能直接得到纯净的溶质组分; 应用水蒸气的解吸过程,若原溶质组分不溶于水,则可通过冷 凝塔顶所得到的混合气体的冷凝液中分离出水的方法,得到纯 净的原溶质组分。
相关文档
最新文档