第3章 MATLAB矩阵处理_习题答案
MATLAB习题答案
![MATLAB习题答案](https://img.taocdn.com/s3/m/be7be9a9ad02de80d5d8402f.png)
习题二1.如何理解“矩阵是MATLAB最基本的数据对象"?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。
因此,矩阵是MA TLAB最基本、最重要的数据对象。
2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A。
*B的值是否相等?答:不相等。
(2) A./B和B.\A的值是否相等?答:相等。
(3)A/B和B\A的值是否相等?答:不相等。
(4)A/B和B\A所代表的数学含义是什么?答:A/B等效于A的逆左乘B矩阵,即inv(A)*B,而B/A等效于A矩阵的逆右乘B矩阵,即B*inv(A).3.写出完成下列操作的命令。
(1)将矩阵A第2~5行中第1, 3, 5列元素赋给矩阵B。
答:B=A(2:5,1:2:5);(2)删除矩阵A的第7号元素.答:A(7)=[](3)将矩阵A的每个元素值加30。
答:A=A+30;(4)求矩阵A的大小和维数。
答:size(A);ndims(A);(5)将向量t的0元素用机器零来代替。
答:t(find(t==0))=eps;矩阵.(6)将含有12个元素的向量x转换成34答:reshape(x,3,4);(7)求一个字符串的ASCII码。
答:abs(‘123’); 或double(‘123');(8)求一个ASCII码所对应的字符。
答:char(49);4.下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;.。
L1=A==B;L2=A<=5;L3=A〉3&A〈7;L4=find(A〉3&A<7);答:L1的值为(0, 0,0, 0, 1,0, 0, 0, 0)L2的值为(1, 1,1, 1, 1,0, 0,0, 0)L3的值为(0, 0, 0, 1, 1, 1, 0, 0, 0) L4的值为(4, 5, 6)5.已知23100.7780414565532503269.5454 3.14A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦完成下列操作: (1)取出A 的前3行构成矩阵B ,前两列构成矩阵C,右下角32⨯子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E.答:B=A(1:3,:); C=A (:,1:2); D=A (2:4,3:4); E=B*C ;(2)分别求E<D 、E &D 、E|D 、~E |~D 和find(A 〉=10&A<25)。
第三章_matlab矩阵运算
![第三章_matlab矩阵运算](https://img.taocdn.com/s3/m/0e246cdace2f0066f533222d.png)
主讲:陈孝敬 E-mail:chenxj9@
第3章
数学运算
主要内容:
①矩阵运算; ②矩阵元素运算;
3.1 矩阵运算
3.1.1 矩阵分析
1.向量范式定义:
x x x
1
n
k 1
xk
2 k
2
k 1 n
x
n
1/ 2
k 1
xk
向量的3种常用范数及其计算函数 在MATLAB中,求向量范数的函数为: (1) norm(V)或norm(V,2):计算向量V的2—范数。 (2) norm(V,1):计算向量V的1—范数。 (3) norm(V,inf):计算向量V的∞—范数。
3.1.2 矩阵分解
矩阵分解:把矩阵分解成比较简单或对它性质比较熟悉的若干 矩阵的乘积的形式;
1.Cholesky分解: Cholesky分解是把对称正定矩阵表示成上三角矩阵的转 置与其本身的乘积,即:A=RTR,在Matlab中用函数chol 来计算Cholesky分解 例3-13 求矩阵A=pascal(4)的Cholesky分解, A=pascal(4) R=chol(A) R’*R
例3-18.求解方程组
x1 x2 3 x3 x4 1 3 x1 x2 3 x3 4 x4 4 x 5x 9 x 8x 0 2 3 4 1
解 先用Matlab函数null求出对应的齐次线性方程组的基础解 系,再利用其系数矩阵的上、下三角阵求出方程组的一个特解, 这样即可得到该方程组的通解,程序如下: >> >> >> >> >> >> A=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8]; b=[1 4 0] ′; format rat C=null(A , ′r′); %求基础解系 [L,U]=lu(A); %A=LU,L为上三角阵,U为下三角阵 X0= U\(L\b) %用LU求出一个齐次方程的特解
MATLAB课后习题集附标准答案
![MATLAB课后习题集附标准答案](https://img.taocdn.com/s3/m/10aaaf92964bcf84b8d57b74.png)
第2章MATLAB概论1、与其他计算机语言相比较,MA TLAB语言突出的特点是什么?答:起点高、人机界面适合科技人员、强大而简易的作图功能、智能化程度高、功能丰富,可扩展性强.2、MA TLAB系统由那些部分组成?答:开发环境、MATLAB数学函数库、MATLAB语言、图形功能、应用程序接口3、安装MATLAB时,在选择组件窗口中哪些部分必须勾选,没有勾选的部分以后如何补安装?答:在安装MATLAB时,安装内容由选择组件窗口中各复选框是否被勾选来决定,可以根据自己的需要选择安装内容,但基本平台(即MATLAB选项)必须安装.第一次安装没有选择的内容在补安装时只需按照安装的过程进行,只是在选择组件时只勾选要补装的组件或工具箱即可.4、MATLAB操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?答:在MATLAB操作桌面上有五个窗口,在每个窗口的右下角有两个小按钮,一个是关闭窗口的Close 按钮,一个是可以使窗口称为独立的Undock按钮,点击Undock按钮就可以使该窗口脱离桌面称为独立窗口,在独立窗口的view菜单中选择Dock,菜单项就可以将独立的窗口重新防止的桌面上.5、如何启动M文件编辑/调试器?答:在操作桌面上选择“建立新文件”或“打开文件”操作时,M文件编辑/调试器将被启动.在命令窗口中键入edit命令时也可以启动M文件编辑/调试器.6、存储在工作空间中的数组能编辑吗?如何操作?答:存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输入修改内容即可.7、命令历史窗口除了可以观察前面键入的命令外,还有什么用途?答:命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M文件中.8、如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有什么区别?答:当前目录可以在当前目录浏览器窗口左上方的输入栏中设置,搜索路径可以通过选择操作桌面的file菜单中的Set Path菜单项来完成.在没有特别说明的情况下,只有当前目录和搜索路径上的函数和文件能够被MATLAB运行和调用,如果在当前目录上有与搜索路径上相同文件名的文件时则优先执行当前目录上的文件,如果没有特别说明,数据文件将存储在当前目录上.9、在MA TLAB中有几种获得帮助的途径?答:(1)帮助浏览器:选择view菜单中的Help菜单项或选择Help菜单中的MATLAB Help菜单项可以打开帮助浏览器.(2)help命令:在命令窗口键入“help”命令可以列出帮助主题,键入“help 函数名”可以得到指定函数的在线帮助信息.(3)lookfor命令:在命令窗口键入“lookfor 关键词”可以搜索出一系列与给定关键词相关的命令和函数.(4)模糊查询:输入命令的前几个字母,然后按Tab键,就可以列出所有以这几个字母开始的命令和函数.注意:lookfor和模糊查询查到的不是详细信息,通常还需要在确定了具体函数名称后用help命令显示详细信息.第3章 MATLAB 数值运算3.1在MA TLAB 中如何建立矩阵⎥⎦⎤⎢⎣⎡194375,并将其赋予变量a ? 答:在Command Window 窗口输入操作:>> a=[5 7 3;4 9 1]3.2有几种建立矩阵的方法?各有什么优点? 答:(1)直接输入法,如a=[1 2 3 4],优点是输入方法方便简捷;(2)通过M 文件建立矩阵,该方法适用于建立尺寸较大的矩阵,并且易于修改; (3)由函数建立,如y=sin(x),可以由MATLAB 的内部函数建立一些特殊矩阵; (4)通过数据文件建立,该方法可以调用由其他软件产生数据.3.3在进行算术运算时,数组运算和矩阵运算各有什么要求?答:进行数组运算的两个数组必须有相同的尺寸.进行矩阵运算的两个矩阵必须满足矩阵运算规则,如矩阵a 与b 相乘(a*b )时必须满足a 的列数等于b 的行数.渗釤呛俨匀谔鱉调硯錦。
matlab第三章课后部分答案
![matlab第三章课后部分答案](https://img.taocdn.com/s3/m/bad9977c51e79b8969022691.png)
matlab第三章课后部分答案习题三3-2 从键盘输入一个三位整数,将它反向输出。
如输入639,输出为936程序如下:m=input('请输入一个三位整数:');m1=fix(m/100);%求m的百位整数m2=rem(fix(m/10),10);%求m的十位数字m3=rem(m,10);%求m的个位数字m=m3*100+m2*10+m1%反向输出m3-3 输入一个百分制成绩,要求输出成绩等级A,B,C,D,E。
其中90~100分为A,80~89分为B,70~79分为C,60~69分为D,60分以下为E。
要求:(1)分别用if语句和switch语句实现。
(2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。
程序如下:(1)if语句c=input('请输入成绩:');if c>=90&c<=100disp('A 成绩合理');elseif c>=80&c<=89disp('B 成绩合理');elseif c>=70&c<=79disp('C 成绩合理'); elseif c>=60&c<=69disp('D 成绩合理'); elseif c<60disp('E 成绩合理');elsedisp('成绩错误');end(2)switch语句c=input('请输入成绩:'); switch fix(c)case num2cell(90:100)disp('A 成绩合理'); case num2cell(80:89)disp('B 成绩合理'); case num2cell(70:79)disp('C 成绩合理'); case num2cell(60:69)disp('D 成绩合理'); case num2cell(0:59)disp('E 成绩合理');x=fix(rand(1,20)*89)+10;x1=fix(sum(x)/20);disp(['平均数是:',num2str(x1)])m=(rem(x,2)==0&x<x1);n=find(m);disp(['小于平均数的数是:',num2str(x(n))]); 3-6 输入20个数,求其中最大数和最小数。
第3章MATLAB矩阵分析与处理
![第3章MATLAB矩阵分析与处理](https://img.taocdn.com/s3/m/427b608509a1284ac850ad02de80d4d8d15a01bf.png)
第3章MATLAB矩阵分析与处理MATLAB是一种强大的数学计算软件,用于实现矩阵分析与处理。
在MATLAB中,矩阵是最常用的数据结构之一,通过对矩阵的分析和处理,可以实现很多有用的功能和应用。
本章将介绍MATLAB中矩阵分析与处理的基本概念和方法。
1.矩阵的基本操作在MATLAB中,我们可以使用一些基本的操作来创建、访问和修改矩阵。
例如,可以使用“[]”操作符来创建矩阵,使用“(”操作符来访问和修改矩阵中的元素。
另外,使用“+”、“-”、“*”、“/”等运算符可以对矩阵进行加减乘除等运算。
2.矩阵的运算MATLAB提供了一系列的矩阵运算函数,可以对矩阵进行常见的运算和操作,例如矩阵的转置、求逆、行列式、特征值和特征向量等。
这些函数可以帮助我们进行矩阵的分析和求解。
3.矩阵的分解与合并在MATLAB中,我们可以对矩阵进行分解或合并操作。
例如,可以将一个矩阵分解为其QR分解、LU分解或奇异值分解等。
另外,可以使用“[]”操作符来将多个矩阵合并为一个矩阵,或者使用“;”操作符来将多个矩阵连接为一个矩阵。
4.矩阵的索引与切片MATLAB提供了灵活的索引和切片功能,可以方便地访问和修改矩阵中的元素。
可以使用单个索引来访问单个元素,也可以使用多个索引来访问/修改一行或一列的元素。
此外,还可以通过切片操作来访问矩阵的一部分。
5.矩阵的应用矩阵分析与处理在MATLAB中有着广泛的应用。
例如,可以使用矩阵进行图像处理,通过对图像矩阵的操作,可以实现图像的缩放、旋转、滤波等。
另外,矩阵还可以用于线性回归、分类、聚类和模式识别等领域。
总之,MATLAB提供了丰富的功能和工具,可以方便地进行矩阵分析与处理。
无论是简单的矩阵运算,还是复杂的矩阵分解与合并,MATLAB 都提供了相应的函数和操作符。
通过熟练使用MATLAB,我们可以高效地进行矩阵分析与处理,从而实现各种有用的功能和应用。
matlab课后习题与答案
![matlab课后习题与答案](https://img.taocdn.com/s3/m/0cad0eff360cba1aa911da02.png)
习题二1.如何理解“矩阵是MATLAB最基本的数据对象”?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。
因此,矩阵是MATLAB最基本、最重要的数据对象。
2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A.*B的值是否相等?答:不相等。
(2)A./B和B.\A的值是否相等?答:相等。
(3)A/B和B\A的值是否相等?答:不相等。
(4)A/B和B\A所代表的数学含义是什么?答:A/B等效于B的逆右乘A矩阵,即A*inv(B),而B\A等效于B矩阵的逆左乘A矩阵,即inv(B)*A。
3.写出完成下列操作的命令。
(1)将矩阵A第2~5行中第1, 3, 5列元素赋给矩阵B。
答:B=A(2:5,1:2:5); 或B=A(2:5,[1 3 5])(2)删除矩阵A的第7号元素。
答:A(7)=[](3)将矩阵A的每个元素值加30。
答:A=A+30;(4)求矩阵A的大小和维数。
答:size(A);ndims(A);(5)将向量t的0元素用机器零来代替。
答:t(find(t==0))=eps;(6)将含有12个元素的向量x转换成34矩阵。
答:reshape(x,3,4);(7)求一个字符串的ASCII码。
答:abs(‘123’); 或double(‘123’);(8) 求一个ASCII 码所对应的字符。
答:char(49);4. 下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);答:L1的值为[0, 0, 0, 0, 1, 0, 0, 0, 0]L2的值为[1, 1, 1, 1, 1, 0, 0, 0, 0]L3的值为[0, 0, 0, 1, 1, 1, 0, 0, 0]L4的值为[4, 5, 6]5. 已知23100.7780414565532503269.5454 3.14A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦完成下列操作:(1) 取出A 的前3行构成矩阵B ,前两列构成矩阵C ,右下角32⨯子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 。
(完整版)第3章MATLAB矩阵处理_习题答案
![(完整版)第3章MATLAB矩阵处理_习题答案](https://img.taocdn.com/s3/m/5f133552856a561252d36fea.png)
3
B.y=cond(A) D.y=norm(A)
1.建立 3 阶幺矩阵的命令是
。ones(3)
2.设 A 为 2×3 矩阵,则用 zeros(size(A))建立的矩阵是
行
列的
矩阵。2,3,零
3.将 3 阶魔方矩阵主对角线元素加 10,命令是
。10*eye(3)+magic(3)
4.
可以用来描述矩阵的性能,它越接近于
D.B=diag(tril(A))
7.在 MATLAB 中定义 A=randn(5,4,3,2),则下列关于 A 的操作中正确的是(
)。D
A.y=eig(A)
B.y=reshape(A,[4 3 6 7])
C.y=cond(A)
D.y=sin(A)
8.在命令行窗口中分别输入下列命令,对应输出结果正确的是(
7 8 9
10 11 12
,
B
10
7
4
1
11 8 5 2
12
3
9
,
C
6
6
9
3
12
2 5 8 11
1
4
7
10
第 1 题: (1)
a=1:12;
A=reshape(a,3,4)
(2)
B=rot90(A)
(3)
C=rot90(A,-1) 3.用矩阵求逆法求线性方程组的解。
4
x1
3x1
2x2 x3 x2 2x3
)。 C
A.命令 x=[-2:2]',结果 x=[-2 -1 0 1 2]
B.命令 x=zeros(1,2);x>0,结果 ans=1
C.命令 y=diag(eye(3),1),2),结果 ans=[-5.0501 1.2311]
matlab课后习题答案
![matlab课后习题答案](https://img.taocdn.com/s3/m/2364dae9d1f34693daef3ec8.png)
习题二1.如何理解“矩阵是MATLAB最基本的数据对象”?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。
因此,矩阵是MATLAB最基本、最重要的数据对象。
2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A.*B的值是否相等?答:不相等。
(2)A./B和B.\A的值是否相等?答:相等。
(3)A/B和B\A的值是否相等?答:不相等。
(4)A/B和B\A所代表的数学含义是什么?答:A/B等效于B的逆右乘A矩阵,即A*inv(B),而B\A等效于B矩阵的逆左乘A矩阵,即inv(B)*A。
3.写出完成下列操作的命令。
(1)将矩阵A第2~5行中第1, 3, 5列元素赋给矩阵B。
答:B=A(2:5,1:2:5); 或B=A(2:5,[1 3 5])(2)删除矩阵A的第7号元素。
答:A(7)=[](3)将矩阵A的每个元素值加30。
答:A=A+30;(4)求矩阵A的大小和维数。
答:size(A);ndims(A);(5)将向量t的0元素用机器零来代替。
答:t(find(t==0))=eps;(6)将含有12个元素的向量x转换成34矩阵。
答:reshape(x,3,4);(7)求一个字符串的ASCII码。
答:abs(‘123’); 或double(‘123’);(8)求一个ASCII码所对应的字符。
答:char(49);4.下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);答:L1的值为[0, 0, 0, 0, 1, 0, 0, 0, 0]L2的值为[1, 1, 1, 1, 1, 0, 0, 0, 0]L3的值为[0, 0, 0, 1, 1, 1, 0, 0, 0]L4的值为[4, 5, 6]5.已知完成下列操作:(1)取出A的前3行构成矩阵B,前两列构成矩阵C,右下角32⨯子矩阵构成矩阵D,B与C 的乘积构成矩阵E。
matlab课后习题答案
![matlab课后习题答案](https://img.taocdn.com/s3/m/1aae7f7810a6f524ccbf85a1.png)
习题二1.如何理解“矩阵是MATLAB最基本的数据对象”?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。
因此,矩阵是MATLAB最基本、最重要的数据对象。
2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A.*B的值是否相等?答:不相等。
(2)A./B和B.\A的值是否相等?答:相等。
(3)A/B和B\A的值是否相等?答:不相等。
(4)A/B和B\A所代表的数学含义是什么?答:A/B等效于B的逆右乘A矩阵,即A*inv(B),而B\A等效于B矩阵的逆左乘A矩阵,即inv(B)*A。
3.写出完成下列操作的命令。
(1)将矩阵A第2~5行中第1, 3, 5列元素赋给矩阵B。
答:B=A(2:5,1:2:5); 或B=A(2:5,[1 3 5])(2)删除矩阵A的第7号元素。
答:A(7)=[](3)将矩阵A的每个元素值加30。
答:A=A+30;(4)求矩阵A的大小和维数。
答:size(A);ndims(A);(5)将向量t的0元素用机器零来代替。
答:t(find(t==0))=eps;(6)将含有12个元素的向量x转换成34矩阵。
答:reshape(x,3,4);(7)求一个字符串的ASCII码。
答:abs(‘123’); 或double(‘123’);(8)求一个ASCII码所对应的字符。
答:char(49);4.下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);答:L1的值为[0, 0, 0, 0, 1, 0, 0, 0, 0]L2的值为[1, 1, 1, 1, 1, 0, 0, 0, 0]L3的值为[0, 0, 0, 1, 1, 1, 0, 0, 0]L4的值为[4, 5, 6]5.已知完成下列操作:(1)取出A的前3行构成矩阵B,前两列构成矩阵C,右下角32⨯子矩阵构成矩阵D,B与C 的乘积构成矩阵E。
matlab第二版课后习题答案
![matlab第二版课后习题答案](https://img.taocdn.com/s3/m/e846cfac5ff7ba0d4a7302768e9951e79a896949.png)
matlab第二版课后习题答案
《MATLAB第二版课后习题答案》
MATLAB是一种强大的数学软件,被广泛应用于工程、科学和金融等领域。
《MATLAB第二版》是一本经典的教材,为了帮助学生更好地掌握MATLAB的使用,书中提供了大量的课后习题。
下面我们将为大家总结一些MATLAB第二版课后习题的答案,希望能对大家的学习有所帮助。
1. 第一章课后习题答案
第一章主要介绍了MATLAB的基本操作,包括变量的定义、矩阵的运算、函数的使用等。
在课后习题中,有一道题目是要求计算一个矩阵的逆矩阵。
答案是使用MATLAB中的inv函数,将原矩阵作为参数传入即可得到逆矩阵。
2. 第二章课后习题答案
第二章介绍了MATLAB中的绘图功能,包括二维和三维图形的绘制。
有一道课后习题是要求绘制一个正弦曲线和余弦曲线,并在同一张图上显示。
答案是使用MATLAB中的plot函数,分别绘制正弦曲线和余弦曲线,并使用legend函数添加图例。
3. 第三章课后习题答案
第三章介绍了MATLAB中的控制流程,包括if语句、for循环和while循环等。
有一道课后习题是要求编写一个程序,计算1到100之间所有偶数的和。
答案是使用for循环遍历1到100之间的所有数,判断是否为偶数并累加。
通过以上几个例子,我们可以看到MATLAB第二版课后习题的答案涵盖了各种基本和高级的操作,对于学习MATLAB是非常有帮助的。
希望大家在学习MATLAB的过程中能够多加练习,掌握更多的技巧和方法。
matlab课后习题答案1到6章
![matlab课后习题答案1到6章](https://img.taocdn.com/s3/m/5772f2fb51e79b8968022663.png)
习题二1.如何理解“矩阵是MATLAB最基本的数据对象”?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。
因此,矩阵是MATLAB最基本、最重要的数据对象。
2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A.*B的值是否相等?答:(2)(3)答:(4)答:即逆左乘3.(1)答:5])(2)答:(3)答:(4)答:(5)答:(6)将含有12个元素的向量x转换成34⨯矩阵。
答:reshape(x,3,4);(7)求一个字符串的ASCII码。
答:abs(‘123’); 或double(‘123’);(8)求一个ASCII码所对应的字符。
答:char(49);4.下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);答:L1的值为[0, 0, 0, 0, 1, 0, 0, 0, 0]L2的值为[1, 1, 1, 1, 1, 0, 0, 0,0]L3的值为[0, 0, 0, 1, 1, 1, 0, 0,0]L4的值为[4, 5, 6]6.当A=[34, NaN, Inf, -Inf, -pi, eps, 0]时,分析下列函数的执行结果:all(A),any(A),isnan(A),isinf(A),isfinite(A)。
答:all(A)的值为0any(A) 的值为1isnan(A) 的值为[ 0, 1, 0, 0, 0, 0, 0]isinf(A) 的值为[ 0, 0, 1, 1, 0, 0, 0]isfinite(A) 的值为[1, 0, 0, 0, 1, 1, 1]7.用结构体矩阵来存储5名学生的基本情况数据,每名学生的数据包括学号、姓名、专业和6门课程的成绩。
matlab课后习题答案
![matlab课后习题答案](https://img.taocdn.com/s3/m/e7f9876f1611cc7931b765ce0508763230127454.png)
习题二1.如何理解“矩阵是MATLAB最基本的数据对象”?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。
因此,矩阵是MATLAB最基本、最重要的数据对象。
2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A.*B的值是否相等?答:不相等。
(2)A./B和B.\A的值是否相等?答:相等。
(3)A/B和B\A的值是否相等?答:不相等。
(4)A/B和B\A所代表的数学含义是什么?答:A/B等效于B的逆右乘A矩阵,即A*inv(B),而B\A等效于B矩阵的逆左乘A矩阵,即inv(B)*A。
3.写出完成下列操作的命令。
(1)将矩阵A第2~5行中第1, 3, 5列元素赋给矩阵B。
答:B=A(2:5,1:2:5); 或B=A(2:5,[1 3 5])(2)删除矩阵A的第7号元素。
答:A(7)=[](3)将矩阵A的每个元素值加30。
答:A=A+30;(4)求矩阵A的大小和维数。
答:size(A);ndims(A);(5)将向量t的0元素用机器零来代替。
答:t(find(t==0))=eps;(6)将含有12个元素的向量x转换成矩阵。
34答:reshape(x,3,4);(7)求一个字符串的ASCII码。
答:abs(‘123’); 或double(‘123’);(8)求一个ASCII 码所对应的字符。
答:char(49);4.下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);答:L1的值为[0, 0, 0, 0, 1, 0, 0, 0, 0]L2的值为[1, 1, 1, 1, 1, 0, 0, 0, 0]L3的值为[0, 0, 0, 1, 1, 1, 0, 0, 0]L4的值为[4, 5, 6]5.已知23100.7780414565532503269.5454 3.14A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦完成下列操作:(1)取出A 的前3行构成矩阵B ,前两列构成矩阵C ,右下角子矩阵构32⨯成矩阵D ,B 与C 的乘积构成矩阵E 。
matlab课后习题答案1到6章
![matlab课后习题答案1到6章](https://img.taocdn.com/s3/m/37c93b1190c69ec3d5bb758c.png)
习题二1.如何理解“矩阵是MATLAB最基本的数据对象”?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。
因此,矩阵是MATLAB最基本、最重要的数据对象。
2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A.*B的值是否相等?答:不相等。
(2) A./B和B.\A的值是否相等?答:相等。
(3)A/B和B\A的值是否相等?答:不相等。
(4)A/B和B\A所代表的数学含义是什么?答:A/B等效于B的逆右乘A矩阵,即A*inv(B),而B\A等效于B矩阵的逆左乘A矩阵,即inv(B)*A。
3.写出完成下列操作的命令。
(1)将矩阵A第2~5行中第1, 3, 5列元素赋给矩阵B。
答:B=A(2:5,1:2:5); 或B=A(2:5,[1 3 5])(2)删除矩阵A的第7号元素。
答:A(7)=[](3)将矩阵A的每个元素值加30。
答:A=A+30;(4)求矩阵A的大小和维数。
答:size(A);ndims(A);(5)将向量t的0元素用机器零来代替。
答:t(find(t==0))=eps;(6)将含有12个元素的向量x转换成34⨯矩阵。
答:reshape(x,3,4);(7)求一个字符串的ASCII码。
答:abs(‘123’); 或double(‘123’);(8)求一个ASCII码所对应的字符。
答:char(49);4.下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);答:L1的值为[0, 0, 0, 0, 1, 0,0, 0, 0]L2的值为[1, 1, 1, 1,1, 0, 0, 0, 0]L3的值为[0, 0, 0, 1,1, 1, 0, 0, 0]L4的值为[4, 5, 6]5.已知23100.7780414565532503269.5454 3.14A-⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦完成下列操作:(1)取出A的前3行构成矩阵B,前两列构成矩阵C,右下角32⨯子矩阵构成矩阵D,B与C的乘积构成矩阵E。
matlab课后习题答案1到6章
![matlab课后习题答案1到6章](https://img.taocdn.com/s3/m/d969ce8902020740be1e9bd1.png)
习题二1.如何理解“矩阵是MATLAB最基本的数据对象”?答:因为向量可以看成是仅有一行或一列的矩阵,单个数据(标量)可以看成是仅含一个元素的矩阵,故向量和单个数据都可以作为矩阵的特例来处理。
因此,矩阵是MATLAB最基本、最重要的数据对象。
2.设A和B是两个同维同大小的矩阵,问:(1)A*B和A.*B的值是否相等?答:不相等。
(2) A./B和B.\A的值是否相等?答:相等。
(3)A/B和B\A的值是否相等?答:不相等。
(4)A/B和B\A所代表的数学含义是什么?答:A/B等效于B的逆右乘A矩阵,即A*inv(B),而B\A等效于B矩阵的逆左乘A矩阵,即inv(B)*A。
3.写出完成下列操作的命令。
(1)将矩阵A第2~5行中第1, 3, 5列元素赋给矩阵B。
答:B=A(2:5,1:2:5); 或B=A(2:5,[1 3 5])(2)删除矩阵A的第7号元素。
答:A(7)=[](3)将矩阵A的每个元素值加30。
答:A=A+30;(4)求矩阵A的大小和维数。
答:size(A);ndims(A);(5)将向量t的0元素用机器零来代替。
答:t(find(t==0))=eps;(6)将含有12个元素的向量x转换成34⨯矩阵。
答:reshape(x,3,4);(7)求一个字符串的ASCII码。
答:abs(‘123’); 或double(‘123’);(8)求一个ASCII码所对应的字符。
答:char(49);4.下列命令执行后,L1、L2、L3、L4的值分别是多少?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);答:L1的值为[0, 0, 0, 0, 1, 0,0, 0, 0]L2的值为[1, 1, 1, 1,1, 0, 0, 0, 0]L3的值为[0, 0, 0, 1,1, 1, 0, 0, 0]L4的值为[4, 5, 6]5.已知23100.7780414565532503269.5454 3.14A-⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦完成下列操作:(1)取出A的前3行构成矩阵B,前两列构成矩阵C,右下角32⨯子矩阵构成矩阵D,B与C的乘积构成矩阵E。
MATLAB习题参考答案(胡良剑,孙晓君)
![MATLAB习题参考答案(胡良剑,孙晓君)](https://img.taocdn.com/s3/m/6ac7e90c844769eae009ed10.png)
% 如图(4.31) % 如图(4.32)
图(4.31)error
4 2 2 2
图(4.32)
(4)曲面 z = x + 3 x + y − 2 x − 2 y − 2 x y + 6, x < 3,−3 < y < 13 解: >> xa=linspace(-3,3,100);ya=linspace(-3,13,100); >> [x,y]=meshgrid(xa,ya); >> z=x.^4+3*x.^2+y.^2-2*x-2*y-2*x.^2.*y+6; >> mesh(x,y,z) >> surf(x,y,z)
解:建立 M 文件 pxy 如下: xa=-2:0.05:2;ya=xa; nx=length(xa);ny=length(ya); [x,y]=meshgrid(xa,ya); z=zeros(nx,ny); [a1,b1]=find(x+y>1); %第 a1 列 b1 行对应的 x+y>1 (x 对应列;y 对应行) %第 a1 列对应的 x 值是 xa(a1);第 b1 行对应的 y 值是 ya(b1) z((a1-1)*ny+b1)=0.5457*exp(-0.75*ya(b1).^2-3.75*xa(a1).^2-1.5*xa(a1)); [a2,b2]=find(x+y<=1&x+y>-1); z((a2-1)*ny+b2)=0.7575*exp(-ya(b2).^2-6*xa(a2).^2); [a3,b3]=find(x+y<=-1); z((a3-1)*ny+b3)=0.5457*exp(-0.75*ya(b3).^2-3.75*xa(a3).^2+1.5*xa(a3)); surf(x,y,z); 命令窗口: >> pxy 运行结果如右图: 或者 M 文件如下: clear;close; xa=-2:0.1:2;ya=-2:0.1:2;[x,y]=meshgrid(xa,ya); z=zeros(size(x)); k1=find(x+y>1); z(k1)=0.5457*exp(-0.75*y(k1).^2-3.75*x(k1).^2-1.5*x(k1)); k2=find(x+y<=1&x+y>-1); z(k2)=0.7575*exp(-y(k2).^2-6*x(k2).^2); k3=find(x+y<-1); z(k3)=0.5457*exp(-0.75*y(k3).^2-3.75*x(k3).^2+1.5*x(k3)); mesh(x,y,z); 6、运行 demo 解:>>demo 7、查询 trapz 的功能、用法、目录、程序结构、相同目录下其它文件 解: >> help trapz ――功能用法 >> type trapz――程序结构,源码 >> which trapz――所在目录 >> help C:\MATLAB6p5\toolbox\matlab\datafun――该目录下其它文件
MATLAB课后习题集附标准答案
![MATLAB课后习题集附标准答案](https://img.taocdn.com/s3/m/64ba329d910ef12d2af9e799.png)
第2章MATLAB概论1、与其他计算机语言相比较,MA TLAB 语言突出的特点是什么?答:起点高、人机界面适合科技人员、强大而简易的作图功能、智能化程度高、功能丰富,可扩展性强.2、MA TLAB 系统由那些部分组成?答:开发环境、MATLAB数学函数库、MATLAB语言、图形功能、应用程序接口3、安装MATLAB 时,在选择组件窗口中哪些部分必须勾选,没有勾选的部分以后如何补安装?答:在安装MATLAB时,安装内容由选择组件窗口中各复选框是否被勾选来决定,可以根据自己的需要选择安装内容,但基本平台(即MATLAB选项)必须安装. 第一次安装没有选择的内容在补安装时只需按照安装的过程进行,只是在选择组件时只勾选要补装的组件或工具箱即可. 矚慫润厲钐瘗睞枥庑赖。
4、MATLAB 操作桌面有几个窗口?如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出去的窗口重新放置到桌面上?聞創沟燴鐺險爱氇谴净。
答:在MATLAB 操作桌面上有五个窗口,在每个窗口的右下角有两个小按钮,一个是关闭窗口的Close 按钮,一个是可以使窗口称为独立的Undock 按钮,点击Undock 按钮就可以使该窗口脱离桌面称为独立窗口,在独立窗口的view 菜单中选择Dock,菜单项就可以将独立的窗口重新防止的桌面上.残骛楼諍锩瀨濟溆塹籟。
5、如何启动M 文件编辑/调试器?答:在操作桌面上选择“建立新文件”或“打开文件”操作时,M 文件编辑/调试器将被启动.在命令窗口中键入edit 命令时也可以启动M 文件编辑/调试器.酽锕极額閉镇桧猪訣锥。
6、存储在工作空间中的数组能编辑吗?如何操作?答:存储在工作空间的数组可以通过数组编辑器进行编辑:在工作空间浏览器中双击要编辑的数组名打开数组编辑器,再选中要修改的数据单元,输入修改内容即可.彈贸摄尔霁毙攬砖卤庑。
7、命令历史窗口除了可以观察前面键入的命令外,还有什么用途?答:命令历史窗口除了用于查询以前键入的命令外,还可以直接执行命令历史窗口中选定的内容、将选定的内容拷贝到剪贴板中、将选定内容直接拷贝到M文件中. 謀荞抟箧飆鐸怼类蒋薔。
第03章_MATLAB矩阵分析与处理_参考解答
![第03章_MATLAB矩阵分析与处理_参考解答](https://img.taocdn.com/s3/m/72b3c451be23482fb4da4c73.png)
(6) a=diag(A), B=diag(a)
a= 102 185 168 130 115
B= 102 0 0 0 0 0 185 0 0 0 0 0 168 0 0 0 0 0 130 0 0 0 0 0 115
2. 使用函数,实现方阵左旋 90° 或右旋 90° 的功能。例如,原矩阵为 A ,A 左旋后得到 B , 右旋后得到 C 。
或者用
x=inv(A)*b
x= -6.0000 26.6667 27.3333
5. 求下列矩阵的主对角线元素、上三角阵、下三角阵、秩、范数、条件数和迹。
⎡ 1 −1 2 3⎤
(1)
A
=
⎢ ⎢ ⎢
5 3
1 0
−4 2⎥⎥ 5 2⎥
⎢⎣11 15 0 9⎥⎦
(2)
B
=
⎡ 0.43 ⎢⎣−8.9
43 4
2⎤ 21⎥⎦
第 3 章:MATLAB 矩阵分析与处理
C= 321 654 987 12 11 10
3. 建立一个方阵 A ,求 A 的逆矩阵和 A 的行列式的值,并验证 A 与 A−1 是互逆的。 答:程序设计:
clear all; close all; clc; A=rand(3); B=inv(A)
B= -3.1874 2.5029 2.8322
0.5 ⎤ 0.25⎥⎥
2 ⎥⎦
A= 1.0000 1.0000 0.5000
1.0000 1.0000 0.2500
0.5000 0.2500 2.0000
[V,D]=eig(A)
V= 0.7212 -0.6863 -0.0937
0.4443 0.5621 -0.6976
0.5315 0.4615 0.7103
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 MATLAB矩阵处理
习题3
一、选择题
1.产生对角线上全为1,其余为0的2行3列矩阵的命令是()。
C
A.ones(2,3) B.ones(3,2) C.eye(2,3) D.eye(3,2)
2.建立3阶单位矩阵A的命令是()。
A
A.A=eye(3) B.A=eye(3,1)C.A=eye(1,3)D.A=ones(3) 3.产生和A同样大小的幺矩阵的命令是()。
B
A.eye(size(A)) B.ones(size(A))
C.size(eye(A))D.size(ones(A))
4.建立5×6随机矩阵A,其元素为[100,200]范围内的随机整数,相应的命令是()。
D
A.A=fix(100+200*rand(5,6)) B.A=fix(200+100*rand(5,6))
C.A= fix(100+300*rand(5,6)) D.A=fix(100+101*rand(5,6))
5.产生均值为1、方差为0.2的500个正态分布的随机数,相应的命令是()。
A。
A.1+sqrt(0.2)*randn(25,20)B.1+0.2*randn(500)
C.0.2+randn(500)D.0.2+randn(25,20)
6.从矩阵A提取主对角线元素,并以这些元素构成对角阵B,相应的命令是()。
B
A.B=diag(A) B.B=diag(diag(A))
C.B=diag(triu(A)) D.B=diag(tril(A))
7.在MA TLAB中定义A=randn(5,4,3,2),则下列关于A的操作中正确的是()。
D
A.y=eig(A) B.y=reshape(A,[4 3 6 7])
C.y=cond(A) D.y=sin(A)
8.在命令行窗口中分别输入下列命令,对应输出结果正确的是()。
C
A.命令x=[-2:2]',结果x=[-2 -1 0 1 2]
B.命令x=zeros(1,2);x>0,结果ans=1
C.命令y=diag(eye(3),1)',结果y=[0 0]
D.命令5-10*rand(1,2),结果ans=[-5.0501 1.2311]
9.将矩阵A对角线元素加30的命令是()。
A
A.A+30*eye(size(A)) B.A+30*eye(A)
-
欢迎下载 2
C .A+30*ones(size(A))
D .A+30*eye(4)
10.求矩阵A 的范数的命令是( )。
D
A .y=trace(A)
B .y=cond(A)
C .y=rank(A)
D .y=norm(A)
二、填空题
1.建立3阶幺矩阵的命令是 。
ones(3)
2.设A 为2×3矩阵,则用zeros(size(A))建立的矩阵是 行 列的 矩阵。
2,3,零
3.将3阶魔方矩阵主对角线元素加10,命令是 。
10*eye(3)+magic(3)
4. 可以用来描述矩阵的性能,它越接近于 ,矩阵的性能越好。
条件数,1
5.命令A=sparse([0,1,1;0,0,1])执行后,输出结果的最后一行是 。
(2,3) 1
三、应用题
1.建立一个方阵A ,求A 的逆矩阵和A 的行列式的值。
2.先生成A 矩阵,然后将A 左旋90°后得到B ,右旋90°后得到C 。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=129631185210741A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=321654987121110B ,⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=101112789456123C 第1题:
(1)
a=1:12;
A=reshape(a,3,4)
(2)
B=rot90(A)
(3)
C=rot90(A,-1)
3.用矩阵求逆法求线性方程组的解。
⎪⎩⎪⎨⎧=+=+-=-+8312102322421
321321x x x x x x x x
第3题:
A=[4,2,-1;3,-1,2;12,3,0];
b=[2,10,8]';
x=inv(A)*b
-
欢迎下载 3 4.求下列矩阵的主对角线元素、上三角阵、下三角阵、秩、范数、条件数和迹。
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡--=901511250324153211)1(A (2)⎥⎦⎤⎢⎣⎡-=2149.824343.0B 第4题:
略。
5.求矩阵A 的特征值和相应的特征向量。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=225
.05.025.01
15.01
1A 第5题:
A=[1,1,0.5;1,1,0.25;0.5,0.25,2];
[X,D]=eig(A)。