三角形的证明(垂直平分线,角平分线)(北师版)(含答案)

合集下载

北师大版八年级数学下册第一章三角形的证明第8课 线段垂直平分线的性质与判定课件

北师大版八年级数学下册第一章三角形的证明第8课 线段垂直平分线的性质与判定课件
解:(1)∵MN垂直平分AB,∴AN=BN. ∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,
几何语言:∵CD是AB的垂直平分线, 线段垂直平分线上的点到这条线段两端点的距离________. P点在AB的垂直平分线上
∴∠ABN=∠A. 如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线分别交AB、AC于点D、E.
中正确的是( D ) ∴∠ABC-∠MBC=∠ACB-∠MCB,
∴∠BAF=∠B=30°. 即直线AO垂直平分BC ∴∠BAP=∠B,∠CAQ=∠C
A.AO=BO 如图,AB=AD,则添加一个条件_________,即可得到AC是BD的垂直平分线.
(1)若BC=15,求△APQ的周长; (1)AD=________,∠ADC=________°,AC=________; 求证:直线AO垂直平分线段BC.
4.(例2)如图,在△ABC中,AB=AC,∠BAC=120°, AB的垂直平分线交AB于点E,交BC于点F,连接AF, 求∠AFC的度数. 解:∵AB=AC,∠BAC=120°, ∴∠B=∠C=(180°-120°)÷2=30°. ∵EF垂直平分AB,∴BF=AF. ∴∠BAF=∠B=30°. ∵∠AFC为△ABF的外角, ∴∠AFC=∠BAF+∠B=30°+30°=60°.
=BP+PQ+C80° ∴∠B+∠C=180°-∠BAC=180°-105°=75° ∵MP,NQ分别垂直平分AB和AC ∴AP=BP,AQ=CQ ∴∠BAP=∠B,∠CAQ=∠C ∴∠BAP+∠CAQ=∠B+∠C=75° ∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=105°-75°=30°
∵∠BNC是△ABN的外角, ∴∠ABC-∠MBC=∠ACB-∠MCB,

北师大版八年级数学下册1.3线段垂直平分线 线段垂直平分线的性质与判定-讲练课件-(共30张PPT)

北师大版八年级数学下册1.3线段垂直平分线 线段垂直平分线的性质与判定-讲练课件-(共30张PPT)

4.判定:到一条线段两个端点距离相等的点,在这条线段的 垂直平分
线 上.
几何语言:
∵ AP=BP ,

∴点P在AB的垂直平分线上.

5.如图,直线PO与AB交于点O,PA=PB,则下列结论中正确的是
(D)
A.AO=BO
B.PO⊥AB
C.PO是AB的垂直平分线
D.点P在AB的垂直平分线上
例2
如图,在△ABC中,AB=AC,点O是△ABC内一点,且OB=
∠ = ∠,
证明:在△ABM和△ABN中, = ,
∠ = ∠,
∴△ABM≌△ABN( ASA ).
∴AM=AN,BM=BN.
∴点A,B都落在MN的垂直平分线上.
∴AB垂直平分MN.
7.如图,在△ABC中,AB=BC,∠ABC=120°,AB的垂直平分
线DE交AC于点D,连接BD,若AC=12.
点.已知PA=4,则线段PB的长为 4 .

2.如图,若AC=AD,BC=BD,则( B )
A.CD垂直平分AB
B.AB垂直平分CD
C.CD平分∠ACB
D.以上均不对
3.如图,AD⊥BC于点D,BD=DC,点C在AE的垂直平分线上,
则AB,AC,CE的长度关系为( D )
A.AB>AC=CE
B.AB=AC>CE
数学(RS版)
八年级下册
第一章 三角形的证明
第7课
线段垂直平分线的性质与判定
新课学习
线段垂直平分线的性质
1.性质:线段垂直平分线上的点到这条线段两个端点的距离 相等 .

几何语言:
∵CD是AB的垂直平分线,
∴ AC=BC .

北师大版八下数学1.3《线段的垂直平分线》知识点精讲

北师大版八下数学1.3《线段的垂直平分线》知识点精讲

注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。

垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。

巧记方法:点到线段两端距离相等。

可以通过全等三角形证明。

垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。

2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。

得到两个交点(两交点交与线段的同侧)。

3、连接这两个交点。

原理:等腰三角形的高垂直平分底边。

方法之二:1、连接这两个交点。

原理:两点成一线。

等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。

)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。

)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。

)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。

八年级数学下册第一章三角形的证明3线段的垂直平分线第2课时三角形三边垂直平分线的性质教案新版北师大版

八年级数学下册第一章三角形的证明3线段的垂直平分线第2课时三角形三边垂直平分线的性质教案新版北师大版

八年级数学下册教案:第2课时三角形三边垂直平分线的性质1.能够证明三角形三边垂直平分线的相关结论.2.能够利用尺规作已经底边及底边上的高的等腰三角形.重点掌握三角形三边垂直平分线的性质.难点会用所学知识按要求作图.一、复习导入活动一:尺规作图作三角形三条边的垂直平分线.师:利用尺规作三角形三条边的垂直平分线,你发现了什么?(教师可用多媒体演示作图过程)引导学生得出:三角形三边的垂直平分线交于一点,这一点到三角形三个顶点的距离相等.活动二:下面请同学们剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流.师:这只是用我们的眼睛观察到的,看到的一定是真的吗?我们还需运用公理和已学过的定理进行推理证明,这样的发现才更有意义.这节课我们来学习探索和线段垂直平分线有关的结论.二、探究新知1.三角形三边垂直平分线的性质(1)教师引导学生分析,寻找证明方法.师:我们要从理论上证明这个结论,也就是证明“三线共点”,但这是我们没有遇到过的.我们不妨再来看一下作图过程,或许你能从中受到启示.通过回顾作图过程,引导学生认同:两直线必交于一点,那么要想证明“三线共点”,只要证第三条直线过这个交点或者说这个点在第三条直线上即可.(2)师生共同分析,完成证明.处理方式:讨论结束后,学生书写证明过程.教师点评,注意几何符号语言的规范性.已知:在△ABC中,设AB,BC的垂直平分线交于点P,连接AP,BP,CP.求证:点P在AC的垂直平分线上.证明:∵点P在线段AB的垂直平分线上,∴PA=PB(线段垂直平分线上的点到线段两个端点的距离相等).同理PB=PC.∴PA=PC.∴点P在AC的垂直平分线上(到线段两个端点距离相等的点,在这条线段的垂直平分线上).∴AB,BC,AC的垂直平分线相交于点P.师:从证明三角形三边的垂直平分线交于一点,你还能得出什么结论? (交点P到三角形三个顶点的距离相等)(3)多媒体演示我们得出的结论:定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.2.按要求作图(1)已知三角形的一条边及这条边上的高,你能作出满足条件的三角形吗?如果能,能作几个?所作出的三角形都全等吗?(2)已知等腰三角形的底边,你能用尺规作出满足条件的等腰三角形吗?如果能,能作几个?所作出的三角形都全等吗?(3)已知等腰三角形的底边及底边上的高,你能用尺规作出满足条件的等腰三角形吗?能作几个?处理方式:学生通过小组讨论得出结论,并尝试作出草图,验证自己的结论.解:(1)已知三角形的一条边及这条边上的高,能作出三角形,并且能作出无数多个.已知:三角形的一条边a和这边上的高h,求作:△ABC,使BC=a,BC边上的高为h.从上图我们会发现,先作已知线段BC=a;然后再作BC边上的高h,但垂足不确定,我们可将垂足取在线段BC上或其所在直线上的任意一点D,过此点作BC边的垂线,最后以D为端点在垂线上截取AD(或A1D),使AD=A1D=h,连接AB,AC(或A1B,A1C),所得△ABC(或△A1BC)都满足条件,所以这样的三角形有无数多个.观察还可以发现这些三角形不都全等.(2)如果已知等腰三角形的底边,用尺规作出等腰三角形,这样的等腰三角形也有无数多个.根据线段垂直平分线的性质定理可知,线段垂直平分线上的点到线段两个端点的距离相等,因此只要作已知等腰三角形底边的垂直平分线,取它上面的任意一点,和底边的两个端点相连接,都可以得到一个等腰三角形.说明:不是底边垂直平分线上的任意一点都满足条件,如底边的中点在底边上,不能构成三角形,应将这一点从底边的垂直平分线上排除.(3)如果底边和底边上的高都一定,这样的等腰三角形只有两个,并且它们是全等的,分别位于已知底边的两侧.已知:线段a,h.求作:△ABC,使AB=AC,BC=a,高AD=h.作法:①作BC=a;②作线段BC的垂直平分线MN交BC于点D;③以点D为圆心,h长为半径作弧交MN于点A;④连接AB,AC.∴△ABC就是所求作的三角形(如图所示).三、练习巩固1.在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是( ) A.三角形三条角平分线的交点B.三角形三条垂直平分线的交点C.三角形三条中线的交点D.三角形三条高的交点2.已知△ABC的三边的垂直平分线的交点在△ABC的边上,则△ABC的形状为( ) A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.等腰Rt△ABC中,AB=AC,BC=a,其斜边上的中线与一腰的垂直平分线交于点O,则点O到三角形三个顶点的距离是________.4.如图,有A,B,C三个工厂,现要建一个供水站,使它到这三个工厂的距离相等,求供水站的位置.(要求尺规作图,只保留作图痕迹,不写作法)四、课堂小结通过本节课的学习,你有什么收获?五、课外作业1.教材第26页“随堂练习”.2.教材第26~27页习题1.8第1~4题.本节课主要学习“三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等”和“已知等腰三角形的底边和高作出符合条件的等腰三角形”,在讲解的过程中从尺规作图、逻辑推理等多层次地理解并证明了定理,学生思维活跃,能够积极参与到学习中来,教学效果较好.。

北师大版三角形的证明(全章节复习题)

北师大版三角形的证明(全章节复习题)

北师⼤版三⾓形的证明(全章节复习题)等腰三⾓形(基础)知识讲解【学习⽬标】1. 了解等腰三⾓形、等边三⾓形的有关概念, 掌握等腰三⾓形的轴对称性;2. 掌握等腰三⾓形、等边三⾓形的性质,会利⽤这些性质进⾏简单的推理、证明、计算和作图.3. 理解并掌握等腰三⾓形、等边三⾓形的判定⽅法及其证明过程. 通过定理的证明和应⽤,初步了解转化思想,并培养学⽣逻辑思维能⼒、分析问题和解决问题的能⼒.4. 理解反证法并能⽤反证法推理证明简单⼏何题.【要点梳理】要点⼀、等腰三⾓形的定义1.等腰三⾓形有两条边相等的三⾓形,叫做等腰三⾓形,其中相等的两条边叫做腰,另⼀边叫做底,两腰所夹的⾓叫做顶⾓,底边与腰的夹⾓叫做底⾓.如图所⽰,在△ABC中,AB=AC,△ABC是等腰三⾓形,其中AB、AC为腰,BC为底边,∠A是顶⾓,∠B、∠C是底⾓.2.等腰三⾓形的作法已知线段a,b(如图).⽤直尺和圆规作等腰三⾓形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆⼼,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三⾓形3.等腰三⾓形的对称性(1)等腰三⾓形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的⾼线.结论:等腰三⾓形是轴对称图形,顶⾓平分线(底边上的⾼线或中线)所在的直线是它的对称轴.4.等边三⾓形三条边都相等的三⾓形叫做等边三⾓形.也称为正三⾓形.等边三⾓形是⼀类特殊的等腰三⾓形,有三条对称轴,每个⾓的平分线(底边上的⾼线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三⾓形的底⾓只能为锐⾓,不能为钝⾓(或直⾓),但顶⾓可为钝⾓(或直⾓).∠A=180°-2∠B,∠B=∠C=1802A-∠.(2)等边三⾓形与等腰三⾓形的关系:等边三⾓形是特殊的等腰三⾓形,等腰三⾓形不⼀定是等边三⾓形.要点⼆、等腰三⾓形的性质1.等腰三⾓形的性质性质1:等腰三⾓形的两个底⾓相等,简称“在同⼀个三⾓形中,等边对等⾓”.推论:等边三⾓形的三个内⾓都相等,并且每个内⾓都等于60°.性质2:等腰三⾓形的顶⾓平分线、底边上中线和⾼线互相重合.简称“等腰三⾓形三线合⼀”.2.等腰三⾓形中重要线段的性质等腰三⾓形的两底⾓的平分线(两腰上的⾼、两腰上的中线)相等.要点诠释:这条性质,还可以推⼴到⼀下结论:(1)等腰三⾓形底边上的⾼上任⼀点到两腰的距离相等。

北师大版 八年级数学 线段的垂直平分线,角平分线

北师大版 八年级数学 线段的垂直平分线,角平分线

线段的垂直平分线,角平分线课前测试【题目】课前测试如图,在△ABC中,∠B=70°,DE是AC的垂直平分线,且∠BAD:∠BAC=1:3,则∠C的度数是度.【答案】44【解析】由DE垂直平分AC可得∠DAC=∠DCA;∠ADB是△ACD的外角,故∠DAC+∠DCA=∠ADB又因为∠B=70°⇒∠BAD=180°﹣∠B﹣∠BAD,由此可求得角度数.解:设∠BAD为x,则∠BAC=3x,∵DE是AC的垂直平分线,∴∠C=∠DAC=3x﹣x=2x,根据题意得:180°﹣(x+70°)=2x+2x,解得x=22°,∴∠C=∠DAC=22°×2=44°.故填44°.本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.考生需要注意的是角的比例关系的设法,应用列方程求解是正确解答本题的关键.【难度】3【题目】课前测试如图,在△ABC中,∠C=90°,AM是∠CAB的平分线,CM=20cm,那么M到AB的距离为.【答案】20cm.【解析】过点D作DM⊥AB于D,根据角平分线上的点到角的两边距离相等可得DM=CM.解:如图,过点D作DM⊥AB于D,∵∠C=90°,AM是∠CAB的平分线,∴DM=CM=20cm,即M到AB的距离为20cm.故答案为:20cm.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.【难度】2知识定位适用范围:北师大版,八年级知识点概述:本章重点部分是线段的垂直平分线和角平分线。

了解,掌握线段的垂直平分线的做法和性质以及角平分线的定义,性质。

能熟练的利用线段的垂直平分线和角平分线来做题适用对象:成绩中等偏下的学生注意事项:熟练掌握线段的垂直平分线以及角平分线的性质重点选讲:①线段的垂直平分线性质的几何应用②角平分线性质的几何应用③线段的垂直平分线和角平分线性质的解答题应用知识梳理知识梳理1:线段的垂直平分线线段的垂直平分线:定理:线段垂直平分线上的点到这条线段上的两个端点的距离相等。

(北师版)八年级数学下册 第一章 三角形的证明 辅导讲义

(北师版)八年级数学下册 第一章 三角形的证明 辅导讲义

第一阶梯三角形证明基础巩固训练一.角平分线的性质(共1小题)1.如图,已知∠A=90°,BD平分∠ABC,AD=1cm,BC=6cm,则△BDC的面积为()A.1cm2B.6cm2C.3cm2D.12cm2二.线段垂直平分线的性质(共5小题)2.△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9B.8C.7D.63.到平面上三点A、B、C距离相等的点有()A.只有一个B.有两个C.有三个或三个以上D.有一个或没有4.△ABC中,∠C=90°,AB的垂直平分线交AB于E,交BC于点D,若CD:BD=1:2,BC=6cm,则点D到点A的距离为()A.1.5cm B.3cm C.2cm D.4cm5.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③6.如果一个三角形一边上的中线和这边上的高重合,那么这个三角形是三角形.三.等腰三角形的性质(共9小题)7.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cm C.11cm,11cm或10cm,12cm D.不能确定8.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm9.一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A.9B.6C.7D.310.等腰三角形的周长为22cm,其中一边的长是8cm,则其余两边长分别为.11.顶角为60°的等腰三角形,两个底角的平分线相交所成的角是°.12.AB边上的中线CD将△ABC分成两个等腰三角形,则∠ACB=度.13.如果等腰三角形一腰上的高与腰的夹角为30°,则该三角形的顶角的度数为.14.如图,△ABC中,AB=AC,O是△ABC内一点,且∠OBC=∠OCB,求证:AO⊥BC.15.如图,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=∠A.四.等腰三角形的判定与性质(共1小题)16.△ABC中,AB=AC,∠ABC=36°,D,E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形有个.五.等边三角形的性质(共2小题)17.如图,等边△ABC中,E,D在AB,AC上,且EB=AD,BD与EC交于点F,则∠DFC=度,18.如图所示,△ABC、△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是.六.等边三角形的判定(共2小题)19.三角形中有两条中线分别平分它的两个内角,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形20.已知a,b,c是△ABC的三边,且a2+b2+c2=ab+ac+bc,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形第二阶梯三角形证明能力提升训练一.直角三角形全等的判定(共1小题)1.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.角平分线的性质(共1小题)2.如图,已知∠A=90°,BD平分∠ABC,AD=1cm,BC=6cm,则△BDC的面积为()A.1cm2B.6cm2C.3cm2D.12cm2三.线段垂直平分线的性质(共3小题)3.已知△ABC中,AD⊥BC于点D,且BD=CD,若AB=3,则AC=.4.M、N、A、B是同一平面上的四个点,如果MA=MB,NA=NB,则点、在线段的垂直平分线上.5.△ABC中,AB比AC大2cm,BC的垂直平分线交AB于D,若△ACD的周长是14cm,则AB=,AC=.四.等腰三角形的性质(共6小题)6.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm7.一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A.9B.6C.7D.38.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是.9.如图:△ABC中,∠B=∠C,E是AC上一点,ED⊥BC,DF⊥AB,垂足分别为D、F,若∠AED=140°,则∠C=度,∠A=度,∠BDF=度.10.分别以等腰三角形的腰与底边向三角形外作正三角形,其周长为24和36,求等腰三角形的周长.11.在△ABC中,AB=AC,它的两条边分别为3cm,4cm,那么它的周长为多少.五.等腰三角形的判定与性质(共5小题)12.如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F.过点F作DF∥BC,交AB于点D,交AC于点E.若BD=4,DE=9,则线段CE的长为()A.3B.4C.5D.613.如图,在△ABC中,AB=AC=10,点D为BC上一点,过点D分别作DF∥AC交AB于点F,DE∥AB交AC于点E.求四边形AFDE的周长.14.在△ABC中,AB≠AC,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)如图1,写出图中所有的等腰三角形.猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图2,△ABC中∠ABC的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.图中还有等腰三角形吗?如果有,分别指出它们.写出EF与BE、CF关系,并说明理由.15.如图,AD是△ABC的角平分线,过点D作直线DF∥BA,交△ABC的外角平分线AF于点F,DF与AC交于点E.求证:DE=EF.16.如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.六.等边三角形的性质(共3小题)17.如图,等边三角形ABC的边长为2,则它的高为.18.△ABC是等腰三角形,AB=AC,分别以两腰为边向外作等边△ADB和等边△ACE,若∠DAE=∠DBC,则∠BAC的度数为.19.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.七.等边三角形的判定(共1小题)20.三角形中有两条中线分别平分它的两个内角,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形第三阶梯三角形的证明综合训练(一)一、填空题1.如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB的长度为80米,那么点B 离水平面的高度BC的长为米.2.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是三角形.3.如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是或.4.命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).5.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.6.在△ABC中,已知AB=AC,AD是中线,∠B=70°,BC=15cm,则∠BAC=,∠DAC=,BD=cm.7.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC 于E,若BC=10 cm,则△ODE的周长cm.第7题图第8题图8.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.9.如图,△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若DC=7,则点D到AB的距离DE=.10.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.二、选择题11.等腰三角形底边上的高与底边的比是1:2,则它的顶角等于()A.60°B.90°C.120°D.150°12.下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形13.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点14.△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于点D,若BC=a,则AD等于()A.B.C.D.15.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°三、解答题16.如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC的度数;(2)AD、CD的长.17.已知:如图,△ABC中,AB=AC,∠A=120度.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.四、证明题18.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.19.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.五、阅读下面的题目及分析过程,并按要求进行证明.20.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB =CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.第四阶梯三角形的证明综合训练(二)一、填空题:1.三角形三个角的度数之比为1:2:3,它的最大边长等于16cm,则最小边长是cm.2.已知等腰三角形的一个角是36°,则另两个角分别是.3.Rt△ABC中,锐角∠ABC和∠CAB的平分线交于点O,则∠BOA=.4.如图,在△ABC中,∠B=115°,AC边的垂直平分线DE与AB边交于点D,且∠ACD:∠BCD=5:3,则∠ACB的度数为度.第4题图第5题图5.如图,已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,则BC=.6.如图,将矩形纸片ABCD沿BD对折,使点C落在E处,BE与AD相交于点O,写出一组相等线段、相等角(不包括矩形的对边、对角).7.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为.8.命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).9.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.10.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.二、选择题:11.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B =∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个12.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点13.如图,在等边三角形ABC中,BD⊥BC,过A作AD⊥BD于D,已知△ABC周长为M,则AD=()A.B.C.D.14.在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,AB=a,则DB等于()A.B.C.D.15.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm216.如图,在△ABC中,AB=AC,AB的垂直平分线交BC的延长线于E,交AC于F,∠A=50°,AB+BC =16cm,则△BCF的周长和∠EFC分别为()A.16cm,40°B.8cm,50°C.16cm,50°D.8cm,40°17.如图所示,已知△ABC中,AB=AC,∠BAC=90°,直角△EPF的顶点P是BC中点,两边PE、PF 分别交AB、AC于点E,F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的有()A.①④B.①②C.①②③D.①②③④18.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°三、解证题:19.如图,在△ABC中,AB=AC,BC=12,∠BAC=120°,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N.(1)求△AEN的周长.(2)求∠EAN的度数.(3)判断△AEN的形状.20.已知:如图,D是等腰△ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF,当D点在什么位置时,DE=DF?并加以证明.21.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.已知:.求证:.证明:22.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)求证:∠PCD=∠PDC;(2)求证:OP是线段CD的垂直平分线.23.已知:如图,△ABC中,AB=AC,∠A=120度.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.24.如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.参考答案第一阶梯三角形证明基础巩固训练一.角平分线的性质(共1小题)1.C;二.线段垂直平分线的性质(共5小题)2.A;3.D;4.D;5.B;6.等腰;三.等腰三角形的性质(共9小题)7.C;8.B;9.C;10.7cm、7cm或8cm、6cm;11.60或120;12.90;13.120°或60°;四.等腰三角形的判定与性质(共1小题)16.6;五.等边三角形的性质(共2小题)17.60;18.15;六.等边三角形的判定(共2小题)19.C;20.C;第二阶梯三角形证明能力提升训练一.直角三角形全等的判定(共1小题)1.B;二.角平分线的性质(共1小题)2.C;三.线段垂直平分线的性质(共3小题)3.3;4.M;N;AB;5.8cm;6cm;四.等腰三角形的性质(共6小题)6.B;7.C;8.0<x<25;9.50;80;40;五.等腰三角形的判定与性质(共5小题)12.C;六.等边三角形的性质(共3小题)17.;18.20°;七.等边三角形的判定(共1小题)20.C;第三阶梯三角形的证明综合训练(一)一、填空题1.40;2.等腰;3.∠ABC=∠DCB;AC=DB;4.对应角相等的三角形是全等三角形;假;5.220;6.40°;20°;7.5;7.10;8.10;9.7;10.2;二、选择题11.B;12.C;13.B;14.C;15.B;第四阶梯三角形的证明综合训练(二)一、填空题:1.8;2.72°,72°或36°,108°;3.135°;4.40;5.6;6.DE=DC,∠OBD=∠ODB等.;7.;8.对应角相等的三角形是全等三角形;假;9.10;10.2;二、选择题:11.D;12.B;13.B;14.A;15.A;16.A;17.C;18.B;三、解证题:21.在△ABD和△ACE中,AB=AC,AD=AE,BD=CE;∠1=∠2;。

北师大版数学八年级下册:第一章《三角形的证明》含详细答案

北师大版数学八年级下册:第一章《三角形的证明》含详细答案

北师大版八年级下册数学第一章三角形的证明一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.52.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到A.1B.2C.D.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.北师大版八年级下册数学第一章三角形的证明参考答案与试题解析一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。

北师大版八年级数学下册 线段的垂直平分线---知识讲解(基础) 含答案解析

北师大版八年级数学下册 线段的垂直平分线---知识讲解(基础)  含答案解析

线段的垂直平分线----知识讲解(基础)责编:杜少波【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题.【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9 B.8 C.7 D.6【思路点拨】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD 的周长=BC+BD+CD即可进行解答.【答案】A;【解析】因为BD=AD,所以△BCD的周长=BD+CD+BC=AD+CD+BC=5+4=9.【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知直线是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离相等,从而把三角形的边进行转移,进而求得三角形的周长.举一反三:【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【答案】D;提示:根据等边对等角、三角形内角和定理及线段垂直平分线的性质定理即可推得选项A、B、C正确;所以选D,另外,注意排除法在解选择题中的应用.【变式2】(2015秋•江阴市校级月考)如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.【答案】解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.类型二、线段的垂直平分线的逆定理2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC的垂直平分线.A【答案与解析】证明:∵ AB=AC(已知)∴∠ABC=∠ACB (等边对等角)又∵∠ABD=∠ACD (已知)∴∠ABD-∠ABC =∠ACD-∠ACB (等式性质)即∠DBC=∠DCB∴DB=DC (等角对等边)∵AB=AC(已知)DB=DC(已证)∴点A和点D都在线段BC的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD是线段BC的垂直平分线。

北师版八年级数学下册优秀作业课件(BS) 第一章 三角形的证明 角平分线 第1课时 角平分线

北师版八年级数学下册优秀作业课件(BS) 第一章 三角形的证明 角平分线 第1课时 角平分线

9.(宝丰期中)如图,在△ABC中,AB=AC,AD是角平分线,DE⊥AB于点E, DF⊥AC于点F,则下列四个结论:①DE=DF;②AD是线段EF的垂直平分线;
③∠BDE=∠CDF;④BD=CD,AD⊥BC.其中正确的个数有( D ) A.1个 B.2个 C.3个 D.4个
10.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P, 作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距 D.OC=PC
3.(4分)(德州中考)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4, 则点C到射线OA的距离为_3___.
4.(4分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D, 若AB=5,DC=2,则△ABD的面积为_5___.
6.(4分)如图,∠AOB=70°,QC⊥OA于点C,QD⊥OB于点D, 若QC=QD,则∠AOQ=3_5_°__.
7.(4分)如图,在△ABC中,∠ABC=120°,∠C=26°,且DE⊥AB, DF⊥AC,DE=DF,则∠ADC的度数为1_3_7_°_.
8.(8分)如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F, AE=AF.
证明:∵OD平分∠AOB,∴∠AOD=∠BOD. 又∵OA=OB,OD=OD,∴△AOD≌△BOD(SAS),∴∠BDO=∠ADO. 又∵PM⊥DB,PN⊥DA,∴PM=PN
13.(14分)如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE, DN和EM相交于点C.求证:点C在∠AOB的平分线上.
证明:过点 C 作 CG⊥OA 于点 G,CF⊥OB 于点 F,如图,在△MOE 和△NOD 中, OM=ON,∠MOE=∠NOD,OE=OD,∴△MOE≌△NOD(SAS), ∴S△MOE=S△NOD,∴S△MOE-S 四边形 ODCE=S△NOD-S 四边形 ODCE, ∴S△MDC=S△NEC.∵OM=ON,OD=OE,∴MD=NE. 由三角形面积公式得12 DM·CG=12 EN·CF,∴CG=CF. 又∵CG⊥OA,CF⊥OB,∴点 C 在∠AOB 的平分线上

北师大版八年级下册数学第一章 三角形的证明含答案(预热题)

北师大版八年级下册数学第一章 三角形的证明含答案(预热题)

北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、如图,四边形是菱形,对角线,相交于点O,,,点E是上一点,连接,若,则的长是()A.2B.C.3D.42、在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°或30°C.25°或40°D.50°3、如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于( )A.17B.18C.19D.204、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中符合题意的个数是()①点D到∠BAC的两边距离相等;②点D在AB的中垂线上;③AD=2CD④AB=2CDA.1B.2C.3D.45、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cmB.8cmC.7cm或3cmD.3cm6、在平面直角坐标系xOy中,已知点A(0,3),点B(5,0),有一动点P 在直线AB上,△APO是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个7、等腰三角形的底角是顶角的2倍,则底角度数为()A. B. C. D.8、如图所示,在第1个中,;在边上任取一点,延长到,使,得到第2个;在边上任取一点,延长到,使,得到第3个…按此做法继续下去,则第个三角形中以为顶点的底角度数是()A. B. C. D.9、如图,在中,,过点作交于点.若,则的度数为()A.18°B.20°C.30°D.36°10、若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9B.12C.7或9D.9或1211、如图,在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC上一点,AB=BD,DE⊥BC,交AC于E,则图中的等腰三角形的个数有()A.3个B.4个C.5个D.6个12、如图,△ABC 中,AB=AC,AD 是∠BAC 的平分线,已知 AB=5,AD=3,则BC的长为()A.5B.4C.10D.813、在等腰△ABC和等腰△DEF中,∠A与∠D是顶角,下列判断正确的是()①∠A=∠D时,两三角形相似;②∠A=∠E时,两三角形相似;③时,两三角形相似;④∠B=∠E时,两三角形相似。

八年级数学下三角形的证明1.4角平分线第1课时角平分线的性质与判定习题北师大

八年级数学下三角形的证明1.4角平分线第1课时角平分线的性质与判定习题北师大

【点拨】如图,作 DH⊥AB,DH 交 BA 的延长线于点 H. ∵BD 平分∠ABC,∠BCD=90°,∴DH=CD=4. ∴S 四边形 ABCD=S△ABD+S△BCD=12AB·DH+12BC·CD =12×6×4+12×9×4=30.
【答案】B
*4.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,DE⊥AB 于点 E.有下列结论: ①CD=ED;②AC+BE=AB; ③∠BDE=∠BAC;④DA 平分∠CDE. 其中正确结论的个数是( ) A.1 B.2 C.3 D.4
证明:过点 G 作 GH⊥AC 于点 H,如图所示. 方法一:∵AE∥CF,BD⊥AE,且 BD 交 CF 于点 D,∴GD⊥CF. ∵AG,CG 分别平分∠EAC 和∠FCA, ∴∠BAG=∠GAH,∠GCH=∠GCD. 易得∠BGA=∠HGA,∠HGC=∠DGC. 又由 CD⊥GD,CH⊥GH,AH⊥GH,AB⊥GB,易得 CD=CH, AB=AH.∴AB+CD=AH+CH=AC.
【答案】B
10.如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠CAB, 且 AD 交 BC 于点 D,DE⊥AB 于点 E.若 AB=6 cm,求△DEB 的周长.
解:∵AD 平分∠CAB,∠C=90°,DE⊥AB, ∴CD=DE,∠C=∠DEA=90°.
在 Rt△ACD 和 Rt△AED 中,CADD= =EADD, , ∴Rt△ACD≌Rt△AED(HL).∴AC=AE. ∵CD=DE,∴BC=CD+DB=DE+DB. 又∵AC=BC,∴AE=AC=DE+DB. ∴DE+DB+BE=AB=6 cm.∴△DEB 的周长为 6 cm.
13.(中考·长春)感知:如图①,AD 平分∠BAC,∠B+∠C=180°, ∠B=90°.易知 DB=DC. 探究:如图②,AD 平分∠BAC,∠ABD+∠ACD=180°, ∠ABD<90°.求证: DB=DC.

数学八年级下册北师大版第1章 3. 第2课时 三角形三边垂直平分线的性质

数学八年级下册北师大版第1章  3.  第2课时 三角形三边垂直平分线的性质
解:同理得∠M=40°.
18
18
(3)你发现了怎样的规律?试证明;
解:规律是:等腰三角形一腰的垂直平分线与底边相
交所成的锐角等于顶角的一半,
证明:设∠A=α,
则有∠B=12(180°-α). ∠M=90°-12(180°-α)=12α.
19
19
(4)将(1)中的∠A 改为钝角,(3)中的规律仍成立吗?若不成立, 应怎样修改.
第一章 三角形的证明
3.线段的垂直平分线
第2课时 三角形三边垂直平分线的性质
1
1
2
2
学点一 三角形三边垂直平分线的性质
三角形三边垂直平分线的交点到 三三个个顶顶点点 的距离相等.
3
3
如图,某公园的三个出口 A、B、C 构成△ABC,想要 在公园内修建一个公共厕所,要求到三个出口距离都相等,则公
12
12
解:如图,连接 BD,CD. 由题意:DA=DB=DC, ∴∠DAB=∠DBA,∠DBC=∠DCB,∠DAC=∠DCA, ∵∠AEC=3∠BAE=3α,∠AEC=∠BAE+∠ABE, ∴∠ABE=2α, ∴∠DAB=∠DBA=∠DBC=∠DCB=α, ∴∠EAC=12(180°-4α)=90°-2α.
15
15
5.在△ABC 中,AB=AC,AB 的垂直平分线交 AB 于 N,交 BC 的延长线于 M,∠A=40°.
16
16
(1)求∠M 的度数;
解:∵∠B=12(180°-∠A)=70°, ∵MN 垂直平分 AB, ∴∠BNM=90°,,∴∠M=20°.
17
17
(2)若将∠A 的度数改为 80°,其余条件不变,再求∠M 的大 小;
A.AC、BC 两边高线的交点处

北师大版八年级下册数学课件1.3线段的垂直平分线第1课时线段垂直平分线的性质与判定

北师大版八年级下册数学课件1.3线段的垂直平分线第1课时线段垂直平分线的性质与判定
∴∠EAC=∠C,∴∠FAC=∠EAC+∠FAE=∠EAC+19°=∠C+19°. 3 线段的垂直平分线
证明:∵GB=GC,AB=AC, 【点拨】如图所示,已知点P在线段AB外,且PA=PB.
【点拨】如图所示,已知点P在线段AB外,且PA=PB. ∴点B在线段AF的垂直平分线上.
又(2)∵点两D点在确AG定上一,条求直∴证线:,点DBG=D,C. 点A在BC的垂直平分线上.
探究培优
13.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点 N,交BC的延长线于点M. (1)若∠A=40°,求∠NMB的度数.
解:∵AB=AC,∠A=40°, ∴∠B=∠ACB=180°- 2 40°=70°. 又∵MN⊥AB, ∴∠NMB=90°-∠B=90°-70°=20°.
探究培优
(2)点D在AG上,求证:DB=DC.
A中作∠APB的平分线PC交AB于点C,只需再证明AC=BC 13.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M.
选项A中作∠APB的平分线PC交AB于点C,只需再证明AC=BC及PC⊥AB即可得到PC是线段AB的垂直平分线.故作法正确;
夯实基础
*4.如图,在△ABC中,∠B=32°,∠C=48°,AB 和AC的垂直平分线分别交BC于点D,E,且点D在 点E的左侧,BC=6 cm,则△ADE的周长是( D ) A.3 cm B.12 cm C.9 cm D.6 cm
【点拨】∵AB,AC的垂直平分线分别交BC于点 D,E,∴BD=AD,AE=EC,∴△ADE的周长 =AD+DE+AE=BD+DE+EC=BC=6 cm.
整合方法
(2)点D在AG上,求证:DB=DC. 解:∵AG垂直平分BC,点D在AG上, ∴DB=DC.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:线段垂直平分线的定理及其逆定理的内容分别是什么
答:
线段垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等;
线段垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
问题2:角平分线定理及其逆定理的内容分别是什么
答:
角平分线定理:角平分线上的点到这个角的两边的距离相等;
角平分线的逆定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上.
问题3:什么是反证法
答:
反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或者已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.
问题4:你能用反证法证明等腰三角形的底角必为锐角吗
答:
证明:假设等腰三角形ABC的底角是钝角或直角,
①妨设∠B和∠C是钝角,即∠B=∠C90°,
∴∠A+∠B+∠C180°
这与三角形内角和定理相矛盾,因此“∠B和∠C是钝角”的假设不成立;
②妨设∠B和∠C是直角,即∠B=∠C=90°,
∴∠A+∠B+∠C=90°+90°+∠C180°
这与三角形内角和定理相矛盾,因此“∠B和∠C是直角”的假设不成立;
∴等腰三角形的底角必为锐角.
三角形的证明(垂直平分线,角平分线)(北师版)
一、单选题(共11道,每道9分)
1.三条公路两两相交,交点分别为A,B,C,现计划建一个加油站,要求到三条公路的距离相等,则满足要求的加油站地址有( )种情况.
答案:D
解题思路:
试题难度:三颗星知识点:角平分线的性质定理
2.如图,已知△ABC,求作一点P,使点P到∠BAC两边的距离相等,且PA=PB,下列确定点P的方法正确的是( )
是∠BAC与∠B两角平分线的交点
是∠BAC的角平分线与AB的垂直平分线的交点
是AC,AB两边上的高的交点
是AC,AB两边的垂直平分线的交点
答案:B
解题思路:
试题难度:三颗星知识点:角平分线的性质定理
3.如图,在△ABC中,AB=10,BC=15,AC=20,点O是△ABC内角平分线的交点,则△ABO,△BCO,△CAO 的面积比是( )
:1:1 :2:3
:3:4 :4:5
答案:C
解题思路:
试题难度:三颗星知识点:角平分线的性质定理
4.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
答案:B
解题思路:
试题难度:三颗星知识点:全等三角形的判定和性质
5.已知△ABC,(1)如图1,若点P是∠ABC和∠ACB的角平分线的交点,则;(2)如图2,若点P是∠ABC和外角∠ACE的角平分线的交点,则;
(3)如图3,若点P是外角∠CBF和∠BCE的角平分线的交点,则.
上述结论正确的有( )个.
答案:C
解题思路:
试题难度:三颗星知识点:角平分线的性质定理6.如图,AC=AD,BC=BD,则有( )
垂直平分CD 垂直平分AB
与CD互相垂直平分平分∠ACB
答案:A
解题思路:
试题难度:三颗星知识点:线段垂直平分线的判定定理
7.如图,在△ABC中,AB的垂直平分线分别交BC,AB于点D,E,AE=4cm,△ADC的周长
为9cm,则△ABC的周长是( )
答案:D
解题思路:
试题难度:三颗星知识点:线段垂直平分线的性质
8.已知:如图,在△ABC中,∠BAC=110°,DF,EG分别是AB,AC的垂直平分线,则∠DAE等于( )
°°
°°
答案:B
解题思路:
试题难度:三颗星知识点:线段垂直平分线的性质
9.如图,在△DAE中,∠DAE=30°,线段AE,AD的中垂线分别交直线DE于B,C两点,则∠BAC的度数是( )
°°
°°
答案:D
解题思路:
试题难度:三颗星知识点:线段垂直平分线的性质
10.已知A,B两点在线段EF的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB等于( )
°°
°或15°°或30°
答案:C
解题思路:
试题难度:三颗星知识点:线段垂直平分线的性质
11.如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交AB于F,交BC的延长线于E.下列说法:①∠EAD=∠EDA;②DF∥AC;③AD=AE;④∠EAC=∠B.其中正确的有( )
A.①②
B.③④
C.①②③
D.①②④
答案:D
解题思路:
试题难度:三颗星知识点:线段垂直平分线的性质。

相关文档
最新文档