高一数学人教版必修四复习资料

合集下载

高一数学必修4复习资料

高一数学必修4复习资料

高中数学必修4复习资料知识清单:1、任意角的概念、象限角、终边相同的角。

2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 二象限{}36090360180,k k k α⋅+<⋅+∈Z 第三象限{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z 4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域. 5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠.10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:(口诀:奇变偶不变,符号看象限.)()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y xω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()m a x m i n 12y y A =-,()max min 12y y B =+,()21122x x x x T =-<.15、正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R 最值当22x kππ=+()k∈Z时,max1y=;当22x kππ=-()k∈Z时,min1y=-.当()2x k kπ=∈Z时,max1y=;当2x kππ=+()k∈Z时,min1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦()k∈Z上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦()k∈Z上是减函数.在[]()2,2k k kπππ-∈Z上是增函数;在[]2,2k kπππ+()k∈Z上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭()k∈Z上是增函数.对称性对称中心()(),0k kπ∈Z对称轴()2x k kππ=+∈Z对称中心(),02k kππ⎛⎫+∈Z⎪⎝⎭对称轴()x k kπ=∈Z对称中心(),02kkπ⎛⎫∈Z⎪⎝⎭无对称轴16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非函数性质零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭. 23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向baCBAa b C C-=A -AB =B时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:(1)sin22sin cos ααα=. (2) (3)22tan tan 21tan ααα=-(4)2222cos2cossin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=). 26、()sin cos αααϕA +B =+,其中tan ϕB =A. 基础训练题一.选择题1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°2、角α的终边落在区间(-3π,-52 π)内,则角α所在象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 3、已知角α的终边过点P (-1,2),cos α的值为 ( ) A .-55 B .- 5 C .552 D .25 21sin 2(sin cos )ααα±=±2572518257-2518-4、如果).cos(|cos |π+-=x x 则x 的取值范围是( )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5、函数)3x 2sin(3y π+=的图象可看作是函数x 2sin 3y =的图象,经过如下平移得到的,其中正确的是( ).A.向右平移3π个单位 B.向左平移3π个单位 C.向右平移6π个单位 D.向左平移6π个单位 6、与函数tan(2)4y x π=+的图象不相交的一条直线是( ).A .2x π=B .2y π=C .8x π=D .8y π=7、α是第四象限角,则下列数值中一定是正值的是 ( ) A .sin α B .cos α C .tan α D .tan 1α 8、已知sin αcos α = 18 ,则cos α-sin α的值等于 ( )A .±34B .±23C .23D .-239、如果角θ满足2cos sin =+θθ,那么1tan tan θθ+的值是 ( ) A .1- B .2-C .1D .210、sin34π·cos 625π·tan 45π的值是( )A .-43B .43 C .-43D .4311、已知,)1514tan(a =-π那么=︒1992sin ( )A .21||aa + B .21aa +C .21aa +-D .211a+-12、已知 53sin )cos(cos )sin(=---αβααβα ,那么cos2β的值为 ( ) A. B. C. D. 13、)24tan 1)(20tan 1)(21tan 1(ooo+++的值是( ) A.2 B.4 C.8 D.16 14、函数y = ).A .},222{Z k k x k x ∈+<≤πππ B .},2{},222{Z k k x x Z k k x k x ∈+=∈+<≤πππππC. },222{Z k k x k x ∈+≤<πππ D .|222x k x k πππ⎧≤<+⎨⎩且}2,x k k Z ππ≠+∈二.填空题 15、函数)42sin(π+-=x y 的周期是________________________. 16、与1991°终边相同的最小正角是_________,绝对值最小的角是__________.17、若3tan =α,则αααα3333cos 2sin cos 2sin -+的值为____________. 18、已知sin αtan α≥0,则α的取值集合为 . 19、函数)32sin(2π+=x y 的图象的对称轴方程是20、函数xxy 2tan 1tan 2-=的最小正周期是 21、已知sin θ+cos θ=22(0<θ<π),则cos2θ的值为 22、记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数), 若2009)2009(=f ,则)2010(f = 1---7:BCACDCB 8---14:BDACABB 15、π4。

高一年级数学必修四复习知识点

高一年级数学必修四复习知识点

高一年级数学必修四复习知识点1.高一年级数学必修四复习知识点篇一函数与导数导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

2.高一年级数学必修四复习知识点篇二函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f (x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:a.首先确定函数的定义域,并判断其是否关于原点对称;b.确定f(-x)与f(x)的关系;c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.3.高一年级数学必修四复习知识点篇三1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

高一数学人教版必修四复习资料

高一数学人教版必修四复习资料

Cos Sintan Sec Csc⌧221 21 rr l S rl αα===弧度度弧度弧度弧度度 180180118012360.ππππ====︒︒Ⅲ 诱导公式◆ 终边相同的角的三角函数值相等()()()zk , tan 2tan z k , 2zk , 2∈=+∈=+∈=+απααπααπαk Cos k Cos Sin k Sin轴对称关于与角角x αα-()()()ααααααtan tan -=-=--=-Cos Cos Sin Sin♦ 轴对称关于与角角y ααπ-()()()ααπααπααπt a n t a n -=--=-=-C o s C o s S i n S i n⌧ 关于原点对称与角角ααπ+()()()ααπααπααπt a n t a n=+-=+-=+C o s C o s S i n S i n⍓对称关于与角角x y =-ααπ2ααπααπααπcot 2tan 22=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-Sin Cos Cos Sin ααπααπααπc o t 2t a n 2-=⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+S i n C o s C o s S i n上述的诱导公式记忆口诀:“奇变偶不变,符号看象限”Ⅳ 周期问题◆()()()()()()ωπωϕωωπωϕωωπωϕωωπωϕωωπωϕωωπωϕω2T , 0b , 0 , 0A , b 2T , 0 b , 0 , 0A , b T , 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , =≠>>++==≠>>++==>>+==>>+==>>+==>>+=xACosy xASin y x ACos y xASin y x ACos y x ASin y()()()()ωπωϕωωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+==>>+=T , 0 , 0A , cot T , 0 , 0A , tan T , 0 , 0A , cot T , 0 , 0A , tan x A y x A y x A y x A yⅤ三角函数的性质()k x A S i ny S i n x y ++==ϕω变化为怎样由 ? 振幅变化:Sinx y = A S i n x y = 左右伸缩变化:x A S i n y ω= 左右平移变化 )(ϕω+=x A S i n y 上下平移变化 k x A S i n y ++=)(ϕωⅥ平面向量共线定理:一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ.,a b λλ=使得那么又且只有一个实数Ⅶ 线段的定比分点↔ ↓当1=λ时 ↓当1=λ时Ⅸ一般地,设向量()()a a y x b y x a 如果且,0,,,2211≠==∥01221=-y x y x b 那么 反过来,如果a y x y x 则,01221=-∥b .Ⅹ 一般地,对于两个非零向量b a , 有 θb a =∙,其中θ为两向量的夹角。

高一数学必修四必背知识点

高一数学必修四必背知识点

高一数学必修四必背知识点第一章二次函数与图像变换1. 顶点式和一般式的相互转换:二次函数的顶点式为:y = a(x - h)² + k二次函数的一般式为:y = ax² + bx + c2. 二次函数的图像变换:a) 向上、向下平移:顶点的纵坐标加减常数k,若k > 0向上平移,若k < 0向下平移。

b) 左右平移:顶点的横坐标加减常数h,若h > 0向左平移,若h < 0向右平移。

c) 上下翻折:纵坐标乘以-1。

d) 左右翻折:横坐标乘以-1。

3. 二次函数的最值与零点:a) 最值:当a > 0时,二次函数的最小值为k,无最大值;当a < 0时,二次函数的最大值为k,无最小值。

b) 零点:二次函数与x轴交点的横坐标。

第二章数列与数列的运算1. 等差数列的通项公式:a) 通项公式:an = a₁ + (n - 1)d,其中an为第n个数,a₁为首项,d为公差,n为项数。

b) 前n项和公式:Sn = (a₁ + an)n/2,其中Sn为前n项和。

2. 等比数列的通项公式:a) 通项公式:an = a₁q^(n - 1),其中an为第n个数,a₁为首项,q为公比,n为项数。

b) 前n项和公式:Sn = a₁(1 - q^n)/(1 - q),其中Sn为前n项和。

3. 递推数列的通项公式:a) 递推公式:an = f(an₋₁, an₋₂, ...),其中f为递推函数,an 为第n个数。

b) 已知初始项求通项公式:根据已知的前几项,通过观察求得递推函数。

第三章三角函数1. 基本三角函数:a) 正弦函数:y = sin(x)b) 余弦函数:y = cos(x)c) 正切函数:y = tan(x)d) 余切函数:y = cot(x)2. 三角函数的性质:a) 周期性:正弦函数和余弦函数的周期都为2π;正切函数和余切函数的周期为π。

b) 奇偶性:正弦函数和正切函数为奇函数,余弦函数和余切函数为偶函数。

高一年级数学必修四知识点复习

高一年级数学必修四知识点复习

高一年级数学必修四知识点复习(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一年级数学必修四知识点复习本店铺为各位同学整理了《高一年级数学必修四知识点复习》,希望对你的学习有所帮助!1.高一年级数学必修四知识点复习篇一等比数列求和公式(1)等比数列:a(n+1)/an=q(n∈n)。

高一数学必修四所有知识点

高一数学必修四所有知识点

高一数学必修四所有知识点一、集合与函数1. 集合的基本概念与运算- 集合的定义和表示方法- 基本集合运算(并、交、差、补)- 集合的相等和包含关系- 子集与真子集的概念- 幂集的概念2. 函数的概念与性质- 函数的定义与表示- 定义域、值域和对应关系- 单射、满射和双射的概念- 基本函数类型(一次函数、二次函数、指数函数、对数函数等)- 函数的运算与复合3. 一次函数与二次函数- 一次函数的表示与性质 - 平移、伸缩与翻折变换 - 一次函数的应用- 二次函数的表示与性质 - 抛物线的性质与图像二、平面向量1. 平面向量的概念与运算 - 向量的定义与表示方法 - 向量的加法与减法- 向量的数乘与数量积 - 向量的模长与单位向量2. 向量的共线与垂直- 向量的共线与共面判定- 向量的夹角与垂直判定- 向量的投影与正交投影3. 向量的应用- 向量的平移与变换- 向量的几何问题解决- 张量与力的合成三、导数与微分1. 导数的概念与性质- 函数的导数定义- 导数与函数的关系- 导数的性质(四则运算、复合函数、反函数等)2. 导数的应用- 函数的极值与最值- 曲线的凹凸性与拐点- 切线与法线的问题3. 微分的概念与运算- 微分的定义与性质- 微分的应用(近似计算、局部线性化等)四、三角函数与解三角形1. 三角函数的定义与性质- 弧度制的概念与性质- 正弦、余弦、正切等三角函数的定义- 三角函数的周期性与图像2. 三角函数的运用- 三角函数的性质与恒等式- 三角函数的平移与周期变换- 三角函数的综合应用(测量、建模等)3. 解三角形- 解直角三角形的基本方法- 解任意三角形的基本方法- 三角形的面积与海伦公式五、概率1. 随机事件与概率- 随机事件的概念与表示- 样本空间与事件的关系- 概率的定义与性质2. 概率的计算- 等可能事件的概率计算- 互斥事件与对立事件的概率计算 - 条件概率与乘法规则3. 概率的应用- 排列与组合问题- 抽样与抽样分布- 概率统计与统计推断全文整洁美观,内容通俗易懂,将高一数学必修四的知识点进行了系统的介绍,希望对你的学习有所帮助。

高中数学必修四全册专题复习

高中数学必修四全册专题复习

专题一:三角函数【知识脉络】:第一块:函数性质与图像形状定义函数性质图像平移伸缩定值奇单周对义偶调称域域性性期性教课目的:1、正弦、余弦、正切函数的性质,要点掌握[0,2 ] 上的函数的性质;2、定义域、值域,要点能求正切函数的定义域;3、能从图象上认识函数的各种性质,能用自己的语言把函数性质描绘清楚,能写出来。

4、理解平移与伸缩第二块:同角基本关系和引诱公式同角基本关系就掌握好三个公式:sin2cos21,tan sin,cos21cos 1 tan2特别需要说明的是:平方关系中的开方运算,易错!引诱公式的记忆方法很简单,联系两角和与差来记就行!如:333cos() cos cos sin sin sin222引诱公式的理解上,需从两角终边的地点关系来认识,如:tan() tan中波及两个角是和,它们的地点是对于原点对称,象限对应关系是一、三或二、四,因此正切符号相同,直接取等号。

其余近似。

第三块:三角变换和差公式:cos()cos cos sin sin sin()sin cos cos sin cos()cos cos sin sin sin()sin cos cos sintan()tan tan1tan tan sin 22sin costan()tan tan cos 2cos2sin 22cos 211 2sin 2 1tan tan2tantan21 tan2注意:( 1)、倍半关系是相对的,如: sin2sin cos, sin 42sin 2 cos2,22cos2cos2112sin 2cos22sin2等,依据题目的需要来确立倍角仍是半222角;( 2)几个常用的变式:1sin 2(sin cos)2 ,1cos2 2 cos2,1cos 2 2 sin 2tan sin1cos1cos sin2a, 的范围依据需要来确立a cosxb sin x a2b2 sin( x) ,此中 tanb或 a cosx b sin x a2b2 cos(x) ,此中 tan b ,的范围依据需要来确立acos( x4)2(cos x sin x), sin( x4)2(sin x cos x) 22【题型示例】:第一部份“三角函数的图象与性质”熟记定义、定义域、三角值的符号1、若角的终边过点P(2 a,3 a)( a 0) ,则以下不等式正确的选项是()A 、sin tan0B 、sin cos0C、cos tan0 D 、sin cos02、若角终边上有一点 P(sin 30 ,cos30) ,则为(此中 k Z )A 、2kB 、2k C、6k D、k6333、若sin cos0,cos tan0 ,则位于2A 、一、三象限B、二、四象限C、一、二象限D、三、四象限4终边上一点P(x,2),且cos2x,则 x=、已知角45、函数y tan(2x4) 的定义域为单一性:求单一区间是要点,三角的单一区间的求法是比较特别的,掌握好例题所示的方法;另一类题型为比较大小,但都比较简单。

人教数学必修四知识点

人教数学必修四知识点

人教数学必修四知识点人教数学必修四是高中数学的一门重要课程,涵盖了许多基础的数学知识点。

本文将以“step by step thinking”的方式,逐步介绍这门课程的知识点。

一、二次函数与一元二次方程1.二次函数的定义和性质:介绍了二次函数的概念以及它的图像特征,如顶点、对称轴、开口方向等。

2.一元二次方程的解法:通过一些例题,介绍了解一元二次方程的方法,如因式分解、配方法和求根公式。

3.二次函数与一元二次方程的关系:通过图像和方程之间的转换,说明了二次函数与一元二次方程之间的联系。

二、三角函数与图形的性质1.三角函数的定义与性质:介绍了正弦函数、余弦函数和正切函数的定义以及它们的图像和周期性。

2.三角函数的基本变换与性质:介绍了三角函数的平移、伸缩和反转等基本变换,以及它们对图像的影响。

3.三角函数的图像与方程的关系:通过图像和方程之间的转换,说明了三角函数与三角方程之间的联系。

三、数列与数学归纳法1.数列的定义与性质:介绍了数列的概念和常见的数列类型,如等差数列和等比数列。

2.数列的通项公式与求和公式:介绍了如何根据数列的特点来确定通项公式和求和公式。

3.数学归纳法的应用:通过一些例题,介绍了数学归纳法在证明数学命题中的应用。

四、立体几何1.空间几何体的性质:介绍了常见的几何体,如立方体、正方体、棱柱和棱锥等的定义和性质。

2.空间几何体的表面积和体积:介绍了如何计算立体几何体的表面积和体积,以及一些常见立体几何体的计算公式。

3.空间几何体的投影和截面:介绍了立体几何体在投影和截面时的特点和计算方法。

以上是人教数学必修四的一些重要知识点,通过“step by step thinking”的方式,逐步介绍了每个知识点的基本概念、性质和应用。

通过学习这些知识点,可以帮助我们更好地理解和应用数学的基本原理,提高解决问题的能力。

希望本文对您的学习有所帮助。

高一数学人教版必修四复习资料8页word文档

高一数学人教版必修四复习资料8页word文档

Ⅲ 诱导公式 终边相同的角的三角函数值相等上述的诱导公式记忆口诀:“奇变偶不变,符号看象限” Ⅳ 周期问题Ⅴ 三角函数的性质振幅变化:Sinx y =ASinx y = 左右伸缩变化:x ASin y ω= 左右平移变化 )(ϕω+=x ASin y 上下平移变化 k x ASin y ++=)(ϕωⅥ平面向量共线定理:一般地,对于两个向量 ()如果有,,0,b a a ≠ Ⅶ 线段的定比分点点P 分有向线段21P P 所成的比的定义式21PP P λ=.↓当1=λ时 ↓当1=λ时Ⅸ一般地,设向量()()y x y x 如果且,,,,2211≠==∥01221=-y x y x 那么 反过来,如果y x y x 则,01221=-∥.Ⅹ 一般地,对于两个非零向量, 有 θb a =∙,其中θ为两向量的夹角。

222221212121y x y x y y x x Cos +++==θ三角形中的三角问题正弦定理:SinCSinB SinA cb a R SinCc SinB b SinA a ++++====2 余弦定理:2 2 , 2222222222abCosC b a c acCosB c a b bcCosA c b a -+=-+=-+=变形:abcb a CosC acb c a CosB bc a c b CosA 22,2 222222222-+=-+=-+= 三角公式以及恒等变换两角的和与差公式:()())()(S , S ,βαβαβαβαβαβαβαβα-+-=-+=+Sin Cos Cos Sin Sin Sin Cos Cos Sin Sin二倍角公式:ααααααααααα22222tan 1tan 22tan 2112222-=-=-=-==Sin Cos Sin Cos Cos Cos Sin Sin半角公式:212212ααααCos Cos Cos Sin+±=-±=αααααααSin Cos Cos Sin Cos Cos -=+=+-±=11112tan降幂扩角公式:221 , 22122ααααCos Sin Cos Cos -=+= 积化和差公式:()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=Cos Cos Sin Sin Cos Cos Cos Cos Sin Sin Sin Cos Sin Sin Cos Sin 21212121和差化积公式:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=+222222222222βαβαβαβαβαβαβαβαβαβαβαβαSin Sin Cos Cos Cos Cos Cos Cos Sin Cos Sin Sin Cos Sin Sin Sin (SSC C CC C C CS S S SC S S 2222-=-=+=-=+)万能公式:2tan 12tan 12tan 12tan2222αααααα+-=+=Cos Sin ( +--+C T S )2tan 12tan2tan 2ααα-=三倍角公式:θθθθθθCos Cos Cos Sin Sin Sin 34343333-=-= θθθθ23t a n 31t a n t a n 33t a n --= “三四立,四立三,中间横个小扁担”♣ 补充: 1. 由公式 ()())()(T , tan tan 1tan tan tan T , tan tan 1tan tan tan βαβαβαβαβαβαβαβα-++-=--+=+ 可以推导 :()()2tan 1tan 1 , z , 4=++∈+=+βακπκπβα时当在有些题目中应用广泛。

高中数学必修四期末复习(人教版)

高中数学必修四期末复习(人教版)

2
2
(2 sinxcos cosx sin )
3
3
2sin(x )
3
若sinx与cosx前面的系数是1:3 ,提取2
题型:化简与求值 例:复习卷第1题
D
1 2
例:复习卷第2题
D
例:早练1第1题 根据角的范围判断符号的正负
1、已知 cos 12 , a (3π ,2π), 则cos( π ) (
sin( ) sin cos cos sin
正弦:
正余 余正 符号同
cos( ) cos cos sin sin
cos( ) cos cos sin sin
余弦:
余余 正正 符号反
tan( ) tan tan
必修四 数学总复习
第一部分 角的概念与表示
1、任意角的概念 2、弧度制 3、扇形的相关计算
1、角的概念
(1)角的概念的推广 y 的终边
(,)
正角
o
负角
零角 x
的终边 (2)在坐标系中讨论角 轴线角与象限角
(3)终边相同的角 若a与β 终边相同,则β =α+2kπ,k∈Z
(4)终边在同一直线上的角
16
例2:(04 湖南)

tan( ) 2 ,则
4
1
2sin cos
cos2

2 3
分析: 从已知
tan( ) 2
4
可求出 tan 1
3
sin 2 cos2 原式可化为 2sin cos cos2
同除以 cos2 得
11
例:

高一数学第四册重点知识点

高一数学第四册重点知识点

高一数学第四册重点知识点一、平面向量1. 平面向量的定义与性质平面向量是具有大小和方向的量,可以用有向线段表示。

向量的大小称为向量的模,记作|AB|或AB,表示向量的长度。

向量的方向可以用箭头表示,从起点指向终点。

2. 向量的加法与减法向量的加法满足交换律和结合律,即A + B = B + A和(A + B) + C = A + (B + C)。

向量的减法可以转化为加法操作,即A - B = A + (-B),其中-A表示与向量A大小相等,方向相反的向量。

3. 数量积与向量积数量积(又称点积或内积)是两个向量的乘积,结果是一个实数。

向量积(又称叉积或外积)是两个向量的乘积,结果是一个向量。

4. 向量的共线与垂直两个向量共线意味着它们的方向相同或相反。

两个向量垂直意味着它们的数量积为0。

二、数列与数列的表示1. 数列的基本概念数列是按照一定规律排列的数的集合。

数列中的每个数称为数列的项。

2. 数列的通项公式数列可以通过通项公式来表示,通项公式可以通过观察数列的规律或使用递推关系等方法得到。

3. 等差数列与等比数列等差数列是指数列中的相邻两项之差都相等的数列。

等比数列是指数列中的相邻两项之比都相等的数列。

4. 数列的求和数列求和可以使用求和公式进行计算,求和公式依赖于数列的类型及已知条件。

三、三角函数1. 三角函数的定义三角函数包括正弦函数、余弦函数和正切函数,它们是在直角三角形中定义的。

2. 三角函数的基本关系三角函数之间存在一系列基本关系,比如正弦函数与余弦函数的平方和等于1,正切函数等于正弦函数除以余弦函数等。

3. 三角函数的性质与图像特点三角函数具有一些特殊的性质与图像特点,比如正弦函数的值范围在-1到1之间,余弦函数的值范围也在-1到1之间。

4. 三角函数的应用三角函数在数学中有广泛的应用,比如用于解决三角形的边长和角度等问题,还可以在物理、工程等领域中应用。

四、平面几何1. 二维图形的性质与判定二维图形的性质与判定是研究平面几何中各种图形的基本特征及其相互关系的内容,比如三角形的内角和为180度等。

数学必修4复习资料

数学必修4复习资料

数学必修4复习资料### 数学必修4复习资料#### 一、函数与方程1. 函数的概念:- 函数的定义:设A、B是两个非空数集,如果存在一个法则f,使得对于A中的每个x,都有B中唯一确定的y与之对应,那么就称f:A→B为从集合A到集合B的一个函数。

- 函数的三要素:定义域、值域、对应法则。

2. 函数的性质:- 单调性:函数在某个区间内,随着自变量的增大,函数值也增大或减小的性质。

- 奇偶性:定义在对称区间上的函数,满足f(-x) = f(x)为偶函数;满足f(-x) = -f(x)为奇函数。

3. 方程的根:- 零点:函数f(x) = 0的根称为函数的零点。

- 根的存在性定理:如果函数在区间[a, b]上连续,且f(a)和f(b)异号,则在(a, b)内至少存在一个零点。

#### 二、三角函数1. 三角函数的定义:- 正弦函数:sin(x) = 对边/斜边- 余弦函数:cos(x) = 邻边/斜边- 正切函数:tan(x) = 对边/邻边2. 三角函数的周期性:- 正弦函数和余弦函数的周期为2π。

- 正切函数的周期为π。

3. 三角函数的图像:- 正弦函数和余弦函数的图像是周期性的波动曲线。

- 正切函数的图像是周期性的折线。

#### 三、解析几何1. 直线的方程:- 点斜式:y - y1 = m(x - x1)- 斜截式:y = mx + b2. 圆的方程:- 标准式:(x - h)² + (y - k)² = r²- 一般式:x² + y² + Dx + Ey + F = 03. 椭圆、双曲线、抛物线:- 椭圆:(x - h)²/a² + (y - k)²/b² = 1- 双曲线:(x - h)²/a² - (y - k)²/b² = 1 - 抛物线:y² = 4px 或 x² = 4py#### 四、数列1. 等差数列:- 通项公式:an = a1 + (n - 1)d- 求和公式:Sn = n/2 * (a1 + an)2. 等比数列:- 通项公式:an = a1 * r^(n - 1)- 求和公式:Sn = a1 * (1 - r^n) / (1 - r),其中|r| < 13. 数列的极限:- 数列极限的定义:如果数列{an}随着n趋向无穷大,an趋向于一个确定的值L,则称L为数列的极限。

高一数学必修四期末复习资料

高一数学必修四期末复习资料

高一数学必修四期末复习资料一、基本三角函数2、与角终边相同的角的集合为:1)终边落在x轴上的角的集合:2)终边落在y轴上的角的集合:3)终边落在坐标轴上的角的集合:4、长度等于半径长的弧所对的圆心角叫做弧度、5、半径为的圆的圆心角所对弧的长为,则、6、弧度制与角度制的换算公式:7、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则,,8、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正。

“一全正,二正弦,三两切,四余弦”Pvx y A O M T9、三角函数线:,,、10、同角三角函数的基本关系:,;、u11、诱导公式1)终边相同的角的三角函数值相等2)3)4)5)6)上述的诱导公式记忆口诀:“奇变偶不变,符号看象限”12、五点作图法:步骤:列表、描点、连线13、三角函数的性质图象定义域值域[-1,1][-1,1]R最值当时,;当时,、当时,;当时,、既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上增;在上减在上增;在上减在上是增函数、对称性对称中心对称轴对称中心对称轴对称中心无对称轴14、函数的性质:①振幅:决定函数的最值,最大值,最小值;②周期:;③频率:;④相位:;⑤初相:(左加右减)、15、由的图象变换出的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

途径一:先平移变换再周期变换(伸缩变换)先将的图象向左(>0)或向右(<0)平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),再将图像上各点的纵坐标变为原来的A倍,便得的图象。

途径二:先周期变换(伸缩变换)再平移变换。

先将的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0)平移个单位,再将图像上各点的纵坐标变为原来的A倍,便得的图象。

16、已知三角函数值求角:二、平面向量1、向量加法运算:1)三角形法则的特点:首尾相连、2)平行四边形法则的特点:共起点、3)运算性质:①交换律:;②结合律:;③、4)坐标运算:设,,则、2、向量减法运算:1)三角形法则的特点:共起点,连终点,方向指向被减向量、2) 坐标运算:设,,则、3)设、两点的坐标分别为,,则。

人教版高中数学必修四知识点归纳总结

人教版高中数学必修四知识点归纳总结

人教版高中数学必修四知识点归纳总结1.1.1 任意角1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.1.1.2弧度制(一)1.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 弧度制的性质:①半圆所对的圆心角为;ππ=r r②整圆所对的圆心角为.22ππ=rr ③正角的弧度数是一个正数. ④负角的弧度数是一个负数.⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒.②将弧度化为角度:︒=3602π;︒=180π;815730.57)180(1'︒=︒≈︒=πrad ;︒=) 180 (πn n .5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角顶点AOαα⋅=⇒=r l rl弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.4-1.2.1任意角的三角函数(三)1. 三角函数的定义2. 诱导公式)Z (tan )2tan()Z (cos)2cos()Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、.~①我们‖打〈败〉了敌人。

②我们‖〔把敌人〕打〈败〉了。

高一新课标人教版必修4公式总结复习指南1.注重基础和通性通法在平时的学习中,应立足教材,学好用好教材,深入地钻研教材,挖掘教材的潜力,注意避免眼高手低,偏重难题,搞题海战术,轻视基础知识和基本方法的不良倾向,当然注重基础和通性通法的同时,应注重一题多解的探索,经常利用变式训练和变式引申来提高自己的分析问题、解决问题的能力。

2.注重思维的严谨性平时学习过程中应避免只停留在“懂”上,因为听懂了不一定会,会了不一定对,对了不一定美。

即数学学习的五种境界:听——懂——会——对——美。

我们今后要在第五种境界上下功夫,每年的高考结束,结果下来都可以发现我们宿迁市的考生与南方的差距较大,这就是其中的一个原因。

另外我们的学生的解题的素养不够,比如仅仅一点“规范答题”问题,我们老师也强调很多遍,但作为学生的你们又有几人能够听进去!希望大家还是能够做到我经常所讲的做题的“三观”:1. 审题观2. 思想方法观3. 步骤清晰、层次分明观3. 注重应用意识的培养注重培养用数学的眼光观察和分析实际问题,提高数学的兴趣,增强学好数学的信心,达到培养创新精神和实践能力的目的。

4.培养学习与反思的整合建构主义学习观认为知识并不是简单的由教师或者其他人传授给学生的,而只能由学生依据自身已有的知识、经验,主动地加以建构。

学习是一个创造的过程,一个批判、选择、和存疑的过程,一个充满想象、探索和体验的过程。

你不想学,老师强行的逼迫是不容易的或者说是作用不大,俗话说“强扭的瓜不甜”嘛!数学学习不但要对概念、结论和技能进行记忆,积累和模仿,而且还要动手实践,自主探索,并且在获得知识的基础上进行反思和修正。

(这也就是我们经常将让大家一定要好好预习,养成自学的好习惯。

)记得有一位中科院的教授曾经给“科学”下了一个定义:科学就是以怀疑和接纳新知识作为进步的标准的一门学问,仔细想来确实很有道理!所以我们在平时学习中要注意反思,只有这样才能使内容得到巩固,知识的得到拓展,能力得到提高,思维得到优化,创新能力得到真正的发展,希望大能够让数学反思成为我们的自然的习惯!5.注重平时的听课效率听课效率高不仅可以让自己深刻的理解知识,而且事半功倍,可以省好多的时间。

而有些同学则认为上课时听不到什么,索性就不听,抓紧课堂上的每一点时间做题,多做几道题心里就踏实。

这种认识是不科学的,想象如果上课没有用的话,国家还开办学校干嘛?只要印刷课本就足够了,学生买了书就可以自己学习到时候参加考试就行了。

想想好多东西还是在课堂上聆听的,听听老师对问题的分析和解题技巧,老师是如何想到的,与自己预习时的想法比较。

课堂上记下比较重要的东西,更重要的是跟着老师的思路,注重老师对题目的分析过程。

课后宁愿花时间去整理笔记,因为整理笔记实际上是一种知识的整合和再创造!回忆课堂上老师是怎样讲的,自己在整理时有比较好的想法,就记下来,抓住自己思维的火花,因为较为深刻的思维火花往往是稍纵即逝的。

在这里我再一次强调听课要做到“五得”◆ 听得懂 ❖ 想得通 ♦ 记得住 ⌧ 说得出 ⍓ 用得上 6. 注重思想方法的学习学习数学重再学习数学思想方法,它是数学知识在更高层次上的抽象和概括,它蕴含于数学知识发生、发展和应用的过程中,也是历年来高考数学命题的特点之一。

不少学者认为:“传授知识”是数学的一种境界,加上“能力培养”是稍高的境界,再加上“方法渗透”是较高的境界,而再加上“提高修养(指数学文化和非智力引力的介入)”则是最高境界。

作为学生一定要深刻理解数学的思想方法,它是数学的精髓,只有运用数学思想方法,才能把数学的知识和技能转化为分析问题和解决问题的能力,才能体现数学的学科特点,才能形成数学素养。

即使在以后我们走上社会,在工作岗位上我们的这种数学素养就会内化为自身的较深的修养,从而使得自己的气质得以升华,它对于我们今后的做人和处事有很大的指导意义,再加上我们的人文素养就可以造就自己哲学修养。

真心希望我的这些忠告能够对你今后的学习有所帮助,果真如此,也就聊以欣慰了!基本三角函数ⅠⅡ ◆ 终边落在x 轴上的角的集合:{}z ∈=κκπαα, ❖ 终边落在y 轴上的角的集合:⎭⎬⎫⎩⎨⎧∈+=z κπκπαα,2♦ 终边落在坐标轴上的角的集合:⎭⎬⎫⎩⎨⎧∈=z κπκαα,2⌧ 221 21 rr l S rl αα=== 弧度度弧度弧度弧度度 18018011801 2360.ππππ====︒︒倒数关系:111cot tan ===ααααααSec Cos Csc Sin 正六边形对角线上对应的三角函数之积为1平方关系:αααααα222222111tan Csc Cot Cos Sin Sec =+=+=+乘积关系:αααCos Sin tan = , 顶点的三角函数等于相邻的点对应的函数乘积Ⅲ 诱导公式◆ 终边相同的角的三角函数值相等()()()zk , tan 2tan z k ,2zk , 2∈=+∈=+∈=+απααπααπαk Cos k Cos Sin k Sin❖ 轴对称关于与角角x αα-()()()ααααααtan tan -=-=--=-Cos Cos Sin Sin♦ 轴对称关于与角角y ααπ-()()()ααπααπααπtan tan -=--=-=-Cos Cos Sin Sin⌧ 关于原点对称与角角ααπ+()()()ααπααπααπtan tan =+-=+-=+Cos Cos Sin Sin⍓对称关于与角角x y =-ααπ2ααπααπααπcot 2tan 22=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-Sin Cos Cos Sin ααπααπααπcot 2tan 2-=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+Sin Cos Cos Sin 上述的诱导公式记忆口诀:“奇变偶不变,符号看象限”Ⅳ 周期问题◆()()()()()()ωπωϕωωπωϕωωπωϕωωπωϕωωπωϕωωπωϕω2T , 0b , 0 , 0A , b 2T , 0 b , 0 , 0A , b T , 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , =≠>>++==≠>>++==>>+==>>+==>>+==>>+=x ACos y x ASin y x ACos y x ASin y x ACos y x ASin y❖ ()()()()ωπωϕωωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+==>>+=T , 0 , 0A , cot T , 0 , 0A , tan T , 0 , 0A , cot T , 0 , 0A , tan x A y x A y x A y x A yⅤ 三角函数的性质性 质 x Sin y =x Cos y =定义域 RR值 域 []1,1-[]1,1-周期性 π2π2奇偶性 奇函数偶函数单调性减函数增函数,,232,22,,22,22z k k k z k k k ∈⎥⎦⎤⎢⎣⎡++∈⎥⎦⎤⎢⎣⎡+-ππππππππ[][]减函数增函数,,2,2,,2,2z k k k z k k k ∈+∈-ππππππ 对称中心()z k k ∈,0,πz k k ∈⎪⎭⎫ ⎝⎛+,0,2ππ对称轴z k k x ∈+=,2ππz k k x ∈=,π图 像性 质 x y tan =x y cot =定义域⎭⎬⎫⎩⎨⎧∈+≠z x x κπκπ,2{}z x x ∈≠κκπ,值 域 R R 周期性 π π 奇偶性 奇函数奇函数单调性增函数,,2,2z k k k ∈⎪⎭⎫ ⎝⎛+-ππππ()增函数,,,z k k k ∈+πππ对称中心 ()z k k ∈,0,πz k k ∈⎪⎭⎫ ⎝⎛+,0,2ππ对称轴无无()k x ASin y Sinx y ++==ϕω变化为怎样由 ?振幅变化:Sinx y = ASinx y = 左右伸缩变化:x ASin y ω= 左右平移变化 )(ϕω+=x ASin y 上下平移变化 k x ASin y ++=)(ϕωⅥ平面向量共线定理:一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ .,a b λλ=使得那么又且只有一个实数Ⅶ 线段的定比分点P P 所成的比的定义式PP P P ↔↓当1=λ时 ↓当1=λ时Ⅷ 向量的一个定理的类似推广向量共线定理:()0≠=a a b λ↓推广平面向量基本定理: ⎪⎪⎭⎫ ⎝⎛+=不共线的向量为该平面内的两个其中212211, , e e e e a λλ ↓推广空间向量基本定理: ⎪⎪⎭⎫ ⎝⎛++=不共面的向量为该空间内的三个其中321332211,,, e e e e e e a λλλ Ⅸ一般地,设向量()()a a y x b y x a 如果且,0,,,2211≠==∥01221=-y x y x b 那么 反过来,如果a y x y x 则,01221=-∥b .Ⅹ 一般地,对于两个非零向量b a , 有θb a =•,其中θ为两向量的夹角。

222221212121y x y x y y x x b a Cos +++==θ特别的, 2a a a ===•Ⅺ()()0, , 0 , , , 212121212211=+⇔⊥+=•≠==y y x x b a y y x x b a a y x b y x a 特别的则且如果Ⅻ 0O , 2121=+⋅⋅⋅++⋅⋅⋅n n OA OA A O A A A n 则的中心为边形若正三角形中的三角问题◆2- 22, 22, C B A C B A C B A πππ=+=++=++ ()()()()⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-=+=+22Cos 2Cos 2 C Cos Cos C Sin B A C B A Sin B A C Sin B A Sin❖ 正弦定理:SinCSinB SinA cb a R SinCc SinB b SinA a ++++====2 余弦定理:2 2 , 2222222222abCosC b a c acCosB c a b bcCosA c b a -+=-+=-+=变形:abcb a CosC acb c a CosB bc a c b CosA 22,2 222222222-+=-+=-+= ♦ C B A C B A tan tan tan tan tan tan =++三角公式以及恒等变换◆ 两角的和与差公式:()())()(S , S ,βαβαβαβαβαβαβαβα-+-=-+=+Sin Cos Cos Sin Sin Sin Cos Cos Sin Sin()()()())()()()(T , tan tan 1tan tan tan T , tan tan 1tan tan tan C , C , βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβα-+-++-=--+=++=--=+Sin Sin Cos Cos Cos Sin Sin Cos Cos Cos 变形: ()()()()为三角形的三个内角其中χβαχβαχβαβαβαβαβαβαβα,,tan tan tan tan tan tan tan tan 1tan tan tan tan tan 1tan tan tan =+++-=--+=+❖ 二倍角公式:ααααααααααα22222tan 1tan 22tan 2112222-=-=-=-==Sin Cos Sin Cos Cos Cos Sin Sin♦ 半角公式:212212ααααCos Cos Cos Sin+±=-±=αααααααSin Cos Cos Sin Cos Cos -=+=+-±=11112tan⌧ 降幂扩角公式:221 , 22122ααααCos Sin Cos Cos -=+= ⍓ 积化和差公式:()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=Cos Cos Sin Sin Cos Cos Cos Cos Sin Sin Sin Cos Sin Sin Cos Sin 21212121和差化积公式:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=+222222222222βαβαβαβαβαβαβαβαβαβαβαβαSin Sin Cos Cos Cos Cos Cos Cos Sin Cos Sin Sin Cos Sin Sin Sin ( SSC C CC C C CS S S SCS S 2222-=-=+=-=+)万能公式:2tan12tan 12tan 12tan2222αααααα+-=+=Cos Sin ( +--+C T S )2tan 12tan2tan 2ααα-=三倍角公式:θθθθθθCos Cos Cos Sin Sin Sin 34343333-=-= θθθθ23tan 31tan tan 33tan --= “三四立,四立三,中间横个小扁担”❝()()()()()()()().., ., 1. , .,,:tan , tan ,y .4tan ,tan , y .3tan , tan , .2tan , .12222222222222222比较容易理解和掌握与差的与弦来靠项是余弦的就用两角和第一的正弦来靠正弦的就用两角和与差一般是表达式第一项是的就可以直接写出其它的推导即表达技巧只要记忆不需要死记公式求解最值问题进而可以化归相同的形式也有不同的归不同的形式有不同的化注其中其中其中其中其中其中其中abCos b a b aSin b a Sin b a bSin aCos baCos b a a bSin b a bCos aSin a bCos b a b aSin b a bSin aCos y a bSin b a bCos aSin y =++==-+-=-+=-==++-==-+=-==-+==++=+==++=+=ϕαϕϕϕααϕααϕϕαϕϕαααϕϕαϕϕαααϕϕααα♣ 补充: 1. 由公式 ()())()(T , tan tan 1tan tan tan T , tan tan 1tan tan tan βαβαβαβαβαβαβαβα-++-=--+=+ 可以推导 :()()2tan 1tan 1 , z , 4=++∈+=+βακπκπβα时当在有些题目中应用广泛。

相关文档
最新文档