人教版高一数学必修一至必修四公式完整版

合集下载

高一数学必修一公式大全

高一数学必修一公式大全

高一数学必修一公式大全1. 代数篇1.1 代数基本性质•加法交换律:$\\displaystyle a+b=b+a$;•加法结合律:$\\displaystyle (a+b)+c=a+(b+c)$;•加法单位元:$\\displaystyle a+0=a$;•加法逆元:$\\displaystyle a+(-a)=0$;•乘法交换律:$\\displaystyle a\\cdot b=b\\cdot a$;•乘法结合律:$\\displaystyle (a\\cdot b)\\cdot c=a\\cdot (b\\cdot c)$;•乘法单位元:$\\displaystyle a\\cdot 1=a$;•乘法逆元:$\\displaystyle a\\cdot \\frac{1}{a}=1$。

1.2 一次函数•一次函数的一般式:$\\displaystyle y=ax+b$;•一次函数的斜率:$\\displaystyle a$;•一次函数的截距:$\\displaystyle b$;•一次函数的图像为直线。

1.3 二次函数•二次函数的一般式:$\\displaystyle y=ax^2+bx+c$;•二次函数的顶点坐标:$\\displaystyle \\left( -\\frac{b}{2a},-\\frac{D}{4a}\\right)$,其中$\\displaystyle D=b^2-4ac$;•二次函数的对称轴方程为$\\displaystyle x=-\\frac{b}{2a}$;•二次函数的图像为抛物线。

1.4 指数与对数•指数运算的基本性质:–$\\displaystyle a^m\\cdot a^n=a^{m+n}$;–$\\displaystyle (a^m)^n=a^{mn}$;–$\\displaystyle \\left( \\frac{a}{b}\\right)^n=\\frac{a^n}{b^n}$;–$\\displaystyle \\left( ab\\right) ^n=a^nb^n$;–$\\displaystyle (a^n)^m=a^{nm}$;–$\\displaystyle a^{0}=1$;–$\\displaystyle a^{-n}=\\frac{1}{a^n}$。

高中数学必修1、3、4、5知识点归纳及公式大全

高中数学必修1、3、4、5知识点归纳及公式大全

必修 1 数学知识点第一章、会合与函数观点§、会合1、把研究的对象统称为元素,把一些元素构成的整体叫做会合。

会合三因素:确立性、互异性、无序性。

2、只需构成两个会合的元素是同样的,就称这两个会合相等。

3、常有会合:正整数会合:N *或 N ,整数会合: Z ,有理数会合:Q ,实数会合: R .4、会合的表示方法:列举法、描绘法.§、会合间的基本关系1、一般地,对于两个会合 A 、B ,假如会合 A 中随意一个元素都是会合 B 中的元素,则称会合A是会合 B的子集。

记作 A B .2、假如会合A B ,但存在元素x B ,且 x A ,则称会合A是会合B的真子集.记作:A B.3、把不含任何元素的会合叫做空集.记作:.并规定:空会合是任何会合的子集.4、假如会合 A 中含有 n 个元素,则会合 A有 2 n个子集.§、会合间的基本运算1、一般地,由所有属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与 B 的并集 .记作:2、一般地,由属于会合 A 且属于会合 B 的所有元素构成的会合,称为 A 与 B 的交集 .记作:3、全集、补集C U A { x | x U , 且 x U }§、函数的观点A B .A B .1、设 A 、 B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合 A 中的随意一个数x ,在会合 B 中都有唯一确立的数 f x 和它对应,那么就称 f : A B 为会合A到会合 B 的一个函数,记作:y f x , x A .2 、一个函数的构成因素为:定义域、对应关系、值域.假如两个函数的定义域同样,并且对应关系完整一致,则称这两个函数相等.§、函数的表示法1、函数的三种表示方法:分析法、图象法、列表法.§、单一性与最大(小)值1、注意函数单一性证明的一般格式:解:设 x1 , x2a, b 且 x1x2,则: f x1 f x2=§、奇偶性1、一般地,假如对于函数f x的定义域内随意一个x ,都有f x f x,那么就称函数f x.为偶函数偶函数图象对于y 轴对称.2 、一般地,假如对于函数f x 的定义域内随意一个x ,都有 f x f x ,那么就称函数f x 为奇函数.奇函数图象对于原点对称.第二章、基本初等函数(Ⅰ)§、指数与指数幂的运算1、一般地,假如x n a ,那么 x 叫做 a 的 n 次方根。

高中数学必修一公式整理精选全文

高中数学必修一公式整理精选全文

可编辑修改精选全文完整版高中数学必修一公式整理一、几何公式1、直线:(1) 直线的方程是y=kx+b,其中k为斜率,b为y轴截距;(2) 直线的斜率的计算公式:斜率K=(点1的纵坐标减去点2的纵坐标)除以(点1的横坐标减去点2的横坐标)。

2、平面图形(1) 三角形三边关系:任意一边长加上另外两边长,总长度要大于第三边。

(2) 三角形面积公式:面积 = (底边×高)÷2(3) 矩形的面积公式:面积 = 长×宽(4) 圆的面积公式:面积= π × 半径×半径二、代数公式1、平方差(1) 一元二次方程的解法:ax²+bx+c=0,解法为:x={-b±√(b²-4ac) }/2a(2) 二元二次方程的解法:ax²+bxy+cy²+dx+ey+f=0,解法为:x=(-be+√(b²-4ac)(-de+√(d²-4af))/(2a);y=(2a(-be+√(b²-4ac))/(-de+√(d²-4af))。

2、二次函数(1) 二次函数公式:y=ax²+bx+c,其中a不等于0(2) 二次函数的对称轴:x轴的方程为: x= -b/2a(3) 二次函数的极值的计算:极值的 x 值为: -b/2a , 极值的 y 值为:y=a(-b/2a)²+b(-b/2a)+c三、数列公式1、等差数列公式(1) 求和公式:Sn=n(a1+an)/2,其中n为项数,a1为首项,an为末项;(2) 首项公式:a1=Sn/n-(n-1)d,其中n为项数,Sn为该数列的前n项和,d为公差;(3) 末项公式:an=a1+(n-1)d,其中a1为首项,n为项数,d为公差;(4) 公差公式:d=(an-a1)/(n-1),其中an为末项,a1首项,n为项数;2、等比数列的公式(1) 求和公式:Sn=a1(1-qn)/(1-q),其中a1为首项,q为公比,n为项数;(2) 首项公式:a1=Sn(1-q)/(1-qn),其中Sn为该数列的前n项和,q为公比,n为项数;(3) 末项公式:an=a1q(n-1),其中a1为首项,q为公比,n为项数;(4) 公比公式:q=(an/a1)^(1/(n-1)),其中an为末项,a1首项,n 为项数;。

高一必修四数学公式总结

高一必修四数学公式总结

高一必修四数学公式总结高一必修四数学公式总结数学公式是数学中的重要工具和方法,它们能够帮助我们分析和解决各种数学问题。

高一阶段,学生们学习了必修四的数学课程,包括函数、三角函数、平面向量等内容。

下面是高一必修四数学公式的总结。

一、函数1. 一次函数的解析式:y = kx + b2. 二次函数的标准式:y = ax² + bx + c二次函数的顶点坐标:( -b/2a , -∆/4a )二次函数的对称轴方程: x = -b/2a3. 幂函数的定义:y = x^a (a ≠ 0, x > 0)4. 指数函数的定义:y = a^x (a > 0, a ≠ 1)5. 对数函数的定义:y = loga(x) (a > 0, a ≠ 1)6. 余弦函数的定义:y = cosx7. 正弦函数的定义:y = sinx8. 余割函数的定义:y = cosecx9. 正切函数的定义:y = tanx10. 周期性函数的表示:f(x + T) = f(x) (T > 0)11. 函数的奇偶性:奇函数:f(-x) = -f(x)偶函数:f(-x) = f(x)二、三角函数1. 基本三角函数关系:正弦和余弦函数的平方和为1:sin²x + cos²x = 12. 三角函数的定义:sinx = 直角三角形的对边 / 直角三角形的斜边 cosx = 直角三角形的邻边 / 直角三角形的斜边 tanx = sinx / cosx3. 三角函数的周期性:sin(x + 2π) = sinxcos(x + 2π) = cosxtan(x + π/2) = tanx4. 三角函数的诱导公式:sin(-x) = -sinxcos(-x) = cosxtan(-x) = -tanx5. 三角函数的和差化积公式:sin(x ± y) = sinx*cosy ± cosx*sinycos(x ± y) = cosx*cosy ∓ sinx*sinytan(x ± y) = (tanx ± tany) / (1 ∓ tanx*tany)三、平面向量1. 向量的定义:向量A = (x, y) 表示平面上的一个有向线段2. 向量的模长公式:|A| = √(x² + y²)3. 等距向量的性质:向量AB = 向量CD 当且仅当 ABCD是平行四边形4. 向量的夹角公式:向量A·向量B = |A||B|cosθ5. 向量的共线与垂直判断:向量共线:向量A = k*向量B (k为常数)向量垂直:向量A·向量B = 06. 向量的加法和减法:向量A + 向量B = (x1 + x2, y1 + y2)向量A - 向量B = (x1 - x2, y1 - y2)7. 向量的数量积(内积):向量A·向量B = x1x2 + y1y28. 向量的叉积(外积):向量A x 向量B = (0, 0, x1y2 - x2y1)9. 向量的投影:向量A在向量B上的投影:P = (|A|cosθ) * 单位向量B (单位向量B = 向量B / |B|)以上是高一必修四数学公式的总结,掌握这些公式可以帮助我们更好地理解和应用数学知识,解决各种数学问题。

人教版高一数学必修一和必修四公式

人教版高一数学必修一和必修四公式

人教版高中数学必修一至必修四公式(必会)初高中连接:和平方: a 2 b 2 (ab)(ab) 和、差平方: (a b)2 a 2 2ab b 2立方和、立方差: a 3 b 3(a b)(a 2 ab b 2 ) 和、差立方: (a b)3 a 3 b 3 3a 2b 3ab 2(a b c)2 a 2 b 2 c 2 2ab 2bc 2ac ; (a b c) 2 a 2 b 2 c 2 2ab 2bc 2ac (a bc) 2 a 2 b 2 c 22ab 2bc 2ac ; (ab c) 2 a 2 b 2c 2 2ab 2bc 2acx 1 x 2bx 1和x 2为ax 2bx c 0的两根,那么 a韦达定理:设cx 1 x 2a恒建立问题:ax 2 bx c 0( a 0)在 R 上恒建立的条件 a0且△ 0; ax 2bx c 0( a 0)在 R 上建立的条件为 a 0且△ 0指数函数:na , a 0 a m m an当 n 为奇数时:na na ;当 n 为偶数时:na n a; n 1 ( a 0, m 、 n N *,且 m 1)a , a 0 a mna mra sa r s(a, 、s ; r ) s a rs( a , 、 s ; ra rr( a,b ; Q)a 0 r Q ) (a0 r Q) ( ab)b 0 0 r对勾函数单一区间公式:对勾函数基本形式: yxp ,在 ( ,0)(0, 单一递加:( ,p ) ( p,)x) 上单一递减: ,)(,( p 0 0 p ) 对数函数 :log a a1,log a b ? log b a 1 ,log a 1, alog a N N ( N 、 a 0且 a 1),log a b1(a 、 b且 a 、 bddlog bclog ac log b 1) , log blog addaacbcablog a ( M ? N ) log a M log a Nlog a M log a M log a N (a 、 M 、 N>0, 且a ≠ 1)ln x log e x( x 0), ln e log e e 1Nlog a m nn log a m ( a 、 b 、 m 0, n R,且 a 1) , log a b log c b (a 、 b 、 c0,且 a 、 c 1) (换底公式 )nnlog a m blog a b log c am函数图像(一定熟)表1指数函数y a xa 0,a 1对数数函数ylog a x a0, a 11定义域值域图象人教版高中数学必修一至必修四公式(必会)x R x0,y 0,y R过定点 (0,1) 过定点 (1,0)减函数增函数减函数增函数x ( ,0)时, y (1, ) x ( ,0)时, y (0,1) 时,y (0, ) 时,x (0,1)x y ( ,0) x (0,时,(0,1)x (0, ) 时,y (1, ) (0,1)时,时,)yx (1, ( ,0)x (1, y (0, ))y )性质a b a b a ba b表 2 幂函数 y x ( R)p0 1 1 1qp为奇数奇函数q为奇数p为奇数q为偶数p为偶数偶函数q为奇数第一象限性增函数(01,)减函数质过定点2人教版高中数学必修一至必修四公式(必会)判断奇偶函数:若 f ( x) f ( x) 则为偶函数,若 f ( x)f ( x) 则为奇函数(奇函数 f (0) 0 )1x1 x2,化简 f (x1 ) f ( x2 ) ,若 f ( x1 ) f ( x2 ) 0即 f ( x1 ) f (x2 ) 则以为该函数在其判断单一函数:○ 在定义域内设定义域内单一递减,若 f ( x1 ) f ( x2 ) 0即f (x1 ) f (x2 ) 则以为该函数在其定义域内单一递加。

高一数学必修四公式

高一数学必修四公式

高一数学必修四公式1.二次根式与幂- 两个非负实数a和b满足√a * √b = √(ab)-(√a)^2=a-一个数的平方根不能是负数- 平方根的运算性质:√(ab) = √a * √b2.二次函数- 一般式:y = ax^2 + bx + c (a ≠ 0)- 顶点坐标:(xv, yv) = (-b/2a, f(xv))- 判别式:Δ = b^2 - 4ac (Δ > 0 时有两个不相等实根)-平移与伸缩:y=a(x-p)^2+q(a>0,(p,q)为顶点坐标)- 对称轴与焦点坐标:对称轴 x = -b/2a,焦点坐标 (xv, yv + 1/(4a))3.线性规律-等差数列通项公式:an = a1 + (n-1)d-等差数列求和公式:Sn = (a1 + an)n/2-等比数列通项公式:an = a1 * r^(n-1)-等比数列求和公式(无穷项):Sn=a1/(1-r)(,r,<1)-等比数列求和公式(有穷项):Sn=a1(1-r^n)/(1-r)(r≠1)4.三角函数与三角恒等式- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA- 正切定义:tanA = sinA/cosA- 三角恒等式:sin(A ± B) = sinAcosB ± cosAsinB- 三角恒等式:cos(A ± B) = cosAcosB - sinAsinB- 三角恒等式:tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB)5.复数- 笛卡尔复数:z = a + bi (a为实部,b为虚部)- 共轭复数:z的共轭记作z*,z* = a - bi- 复数的加减:(a + bi) + (c + di) = (a + c) + (b + d)i- 复数的乘法:(a + bi)(c + di) = (ac - bd) + (ad + bc)i6.概率统计-等可能概型中事件A发生的概率:P(A)=n(A)/n(S)- 乘法原理:从n1个事项中选一个事项,再从n2个事项中选一个事项,……,再从nk个事项中选一个事项,共有n1*n2*…*nk个事项-排列公式:An=n!-组合公式:C(n,k)=n!/(k!(n-k)!)-二项式定理:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,n)b^n。

高中数学必修1、2、3、4、5公式及知识点总结大全

高中数学必修1、2、3、4、5公式及知识点总结大全

1 2)(x 是偶函数; )(x f 是奇函数。

3).(0,1,0)a a N >≠>. 1a ≠,0m >,且1m ≠, 0N >).).).二、三角函数、三角变换、解三角形、平面向量4、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 5、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.6、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.7、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2xk k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴函 数性 质9、辅助角公式(化一公式))sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 10.正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=11.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.12.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.13、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 14、a 与b 的数量积(或内积)θcos ||||b a b a ⋅=⋅15、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (2)设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +. (3)设a =),(y x ,则22y x a +=16、两向量的夹角公式设a =11(,)x y ,b =22(,)x y ,且0≠b ,则121cos ||||x a ba b x θ⋅==⋅+a =11(,)x y ,b =22(,)x y ).17、向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0b a //⇔a b λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅b a 12120x x y y ⇔+=.*平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212x x y y +.三、数列18、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).19、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;20、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 21、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 22、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.四、不等式23、xy y x ≥+2。

高中人教版数学必修1,2,3,4,5的公式,结论

高中人教版数学必修1,2,3,4,5的公式,结论

高中人教版数学必修1,2,3,4,5的公式,结论1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

高一数学必修一所有公式归纳

高一数学必修一所有公式归纳

高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。

2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。

3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。

4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。

5、推导公式:tanα+cotα=2/sin2α。

数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。

2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。

3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。

5、-ctgA+ctgBsin(A+B)/sinAsinB。

数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时。

2、分数指数幂。

正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。

高一数学上册全部公式

高一数学上册全部公式

高一数学上册全部公式一、集合。

1. 集合的基本运算。

- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。

- 若A中的元素都在B中,则A⊆ B(A是B的子集);若A⊆ B且B⊆ A,则A = B。

二、函数。

1. 函数的概念。

- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

2. 函数的表示法。

- 解析法:用数学表达式表示两个变量之间的对应关系。

- 图象法:用图象表示两个变量之间的对应关系。

- 列表法:列出表格来表示两个变量之间的对应关系。

3. 函数的性质。

- 单调性。

- 设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

- 奇偶性。

- 对于函数y = f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于函数定义域内的任意一个x,都有f(-x)= - f(x),那么函数y = f(x)是奇函数。

4. 一次函数y = kx + b(k≠0)- 斜率k=(Δ y)/(Δ x),k决定函数的单调性,当k>0时,函数单调递增;当k<0时,函数单调递减。

- b为截距,是直线与y轴交点的纵坐标。

5. 二次函数y = ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 对称轴方程x =-(b)/(2a)- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。

人教版高一数学必修一至必修四公式

人教版高一数学必修一至必修四公式

初高中衔接:和平方:))((22b a b a b a -+=- 和、差平方:2222)(b ab a b a +±=±立方和、立方差:))((2233b ab a b a b a +±=± 和、差立方:2233333)(ab b a b a b a +±±=±ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=-- ac bc ab c b a c b a 222)(2222--+++=-+;ac bc ab c b a c b a 222)(2222+--++=+-韦达定理:设⎪⎩⎪⎨⎧=-=+=++a c x x a b x x c bx x x 21212210ax 的两根,那么为和 必修一:123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

新课标高中数学必修1公式大全

新课标高中数学必修1公式大全

新课标高中数学必修1公式大全数学必修1常用公式及结论一、集合1、含义与表示:集合中元素具有确定性、互异性和无序性。

集合可分为有限集和无限集。

集合的表示法有列举法、描述法和图示法。

2、集合间的关系:若对任意x∈A,都有x∈B,则称A 是B的子集,记作A⊆B。

若A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集,记作A⊂B。

若A⊆B且B⊆A,则A=B。

3.元素与集合的关系:元素属于集合,记作∈;不属于,记作∉。

空集记作∅。

4、集合的运算:并集由属于集合A或属于集合B的元素组成的集合,记为A∪B。

交集由集合A和集合B中的公共元素组成的集合,记为A∩B。

补集在全集U中,由所有不属于集合A的元素组成的集合,记为A的补集,记为A'。

5.集合{a1,a2.an}的子集个数共有2^n个;真子集有2^n–1个;非空子集有2^n–1个。

6.常用数集:自然数集:N;正整数集:N*;整数集:Z;有理数集:Q;实数集:R。

二、函数的奇偶性1、定义:若对于任意的x,有f(–x) =–f(x),则称函数f(x)为奇函数;若对于任意的x,有f(–x) =f(x),则称函数f(x)为偶函数。

2、性质:奇函数的图象关于原点成中心对称图形;偶函数的图象关于y轴成轴对称图形;如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数。

三、函数的单调性1、定义:对于定义域为D的函数f(x),若任意的x1.x2∈D,且x1f(x2)时,称函数f(x)是减函数。

2、复合函数的单调性:同增异减。

四、二次函数y=ax2+bx+c(a≠0)的性质1、顶点坐标公式:顶点坐标为(-b/2a。

4ac-b2/4a),对称轴为x=-b/2a,最大(小)值为4a。

2、二次函数的解析式的三种形式:一般式f(x)=ax2+bx+c(a≠0);顶点式f(x)=a(x-h)2+k(a≠0);两根式f(x)=a(x-x1)(x-x2)(a≠0)。

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

高一数学公式(必修一)

高一数学公式(必修一)

高一数学公式(必修一)高中数学背的话就是那些公式,但主要还是要理解吧,高中数学比较灵活,不是说你背了一定可以考好,关键还是要理解会用,今天小编在这给大家整理了高一数学公式总结,接下来随着小编一起来看看吧!高一数学必修一公式【和差化积】2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 【某些数列前n项和】1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式 l=axr a是圆心角的弧度数r >0 扇形面积公式 s=1/2xlxr 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1xX2=c/a 注:韦达定理【判别式】b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根【两角和公式】sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)【倍角公式】tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))【降幂公式】(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2【万能公式】令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)高中数学公式顺口溜一、《集合与函数》内容子交并补集,还有幂指对函数。

高一数学-必修一、四常用公式

高一数学-必修一、四常用公式

ylogc x ylogd x
3
系 指数函数与对数函 数的关系
y a x 与 y log a x ( a 0 且 a 1) 互为反函数,它们的图象关于直线 y x 对称
函数 y log a f ( x ) (a 0 ,且 a 1) 的单调性结论
当 a 1时 当 0 a 1时 6.幂函数

1 时,幂函数的图象下凸;当 0 1 时,幂函数的图象上凸; ③ 0 时, 幂函数的图象在区间 (0,) 上是减函数.在第一象限内, 当 x 从右边趋 向原点时,图象在 y 轴右方无限地逼近 y 轴正半轴,当 x 趋于 时,图象在 x 轴上方无
限地逼近 x 轴正半轴.
sin sin tan cos , cos tan
.
4
7.函数的诱导公式: (口诀:奇变偶不变,符号看象限.) (1) sin 2k sin , cos 2k cos , tan 2k tan k . (2) sin sin , cos cos , tan tan . (3) sin sin , cos cos , tan tan . (4) sin sin , cos cos , tan tan .
(5) sin cos , cos sin . 2 2 (6) sin cos , cos sin . 2 2
8.两角和与差的正弦、余弦和正切公式: (1)cos cos cos sin sin ; (2)cos cos cos sin sin ; (3) sin sin cos cos sin ; (4) sin sin cos cos sin ; (5) tan (6) tan

高中数学必修一公式大全

高中数学必修一公式大全

高中数学必修一公式大全全文共四篇示例,供读者参考第一篇示例:高中数学必修一公式大全高中数学是我们学习的一门基础学科,掌握好数学知识对我们的学习和未来的发展至关重要。

在高中阶段,数学被划分为必修一和必修二两部分,其中必修一主要包括代数、函数、数列和不等式等内容。

在这篇文章中,我们将为大家整理高中数学必修一的常用公式,希望对大家学习和复习数学知识有所帮助。

一、代数部分公式1. 二次函数一般式:y=ax^2+bx+c2. 一元二次方程求根公式:x=\frac{-b±\sqrt{b^2-4ac}}{2a}3. 重要恒等式:(a+b)^2=a^2+2ab+b^24. 二次方程判别式:Δ=b^2-4ac1. 定义域和值域的定义:- 定义域:函数能够取值的集合- 值域:函数所有可能的输出值的集合2. 奇函数和偶函数的性质:- 奇函数:f(-x)=-f(x)- 偶函数:f(-x)=f(x)3. 函数的复合与反函数:- 复合函数:(f◦g)(x)=f[g(x)]- 反函数:f(f^(-1)(x))=x4. 函数的性质之一致性与不一致性- 一致性:若f(x)=g(x),则等式两边分别代入相同的值时,结果相等- 不一致性:若f(x)=g(x),则一定存在某一值x使得f(x)≠g(x)1. 等差数列求和公式:Sn=\frac{n(a1+an)}{2}2. 等比数列求和公式:Sn=\frac{a1(1-q^n)}{1-q}3. 通项公式:- 等差数列:an=a1+(n-1)d- 等比数列:an=a1*q^(n-1)4. 递推公式:- 等差数列:an=an-1+d- 等比数列:an=an-1*q四、不等式部分公式1. 绝对值不等式的性质:- |a|<b等价于-b<a<b- |a|>b等价于a<-b或者a>b2. 一元一次不等式解法:- 含有绝对值的一元一次不等式:|ax+b|<c等价于-b<ax+b<c和-b>ax+b>-c3. 一元二次不等式解法:- 一元二次不等式ax^2+bx+c<0或者ax^2+bx+c>0的解法以上是高中数学必修一的部分公式,这些公式是我们学习数学时常用到的基础知识,希望大家能够掌握好这些知识,为学习和考试打下坚实的基础。

高一数学所有公式大全

高一数学所有公式大全

高一数学所有公式大全1. 代数1.1 一次方程- 一次方程的定义:- 形如 $ax + b = 0$ 的方程,其中 $a \neq 0$,$x$ 是未知数,$b$ 是常数。

- 一次方程的解法:- 将方程转化为标准形式,即 $x = \frac{-b}{a}$。

1.2 二次方程- 二次方程的定义:- 形如 $ax^2 + bx + c = 0$ 的方程,其中 $a \neq 0$,$x$ 是未知数,$b$ 和 $c$ 是常数。

- 二次方程的解法:- 使用公式 $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ 计算方程的根。

1.3 等差数列- 等差数列的定义:- 一个数列,其中任意两个相邻的项之差都相等。

- 等差数列的通项公式:- $a_n = a_1 + (n-1)d$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是首项,$d$ 是公差,$n$ 是项数。

1.4 等比数列- 等比数列的定义:- 一个数列,其中任意两个相邻的项之比都相等。

- 等比数列的通项公式:- $a_n = a_1 \cdot r^{(n-1)}$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是首项,$r$ 是公比,$n$ 是项数。

2. 几何2.1 直线与角- 直线与角的定义:- 直线是一个无限延伸的曲线,两个非相邻点可以唯一确定一条直线。

- 角是由两条相交的直线所形成的两个射线之间的空间部分。

- 直线与角的性质:- 两条相交直线所形成的相邻内角互补,即它们之和等于$180^\circ$。

2.2 三角形- 三角形的定义:- 有三条边和三个角的图形。

- 三角形的性质:- 三角形的内角和等于 $180^\circ$。

- 根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。

2.3 圆- 圆的定义:- 由与圆心距离相等的所有点组成的图形。

- 圆的性质:- 圆上的任意弧所对的圆心角等于该圆上的任意两条切线所夹的角。

高中数学必修1-5公式大全_

高中数学必修1-5公式大全_

必修2:一、直线与圆 1、斜率的计算公式:k = tanα=1212x x y y --(α ≠ 90°,x 1≠x 2)2、直线的方程(1)斜截式 y = k x + b,k 存在 ;(2)点斜式 y – y 0 = k ( x – x 0 ) ,k 存在; (3)两点式121121x x x x y y y y --=--(1212,x x y y ≠≠) ;4)截距式 1=+bya x (0,0ab ≠≠)(5)一般式0(,0Ax By c A B ++=不同时为) 3、两条直线的 位置关系:4、两点间距离公式:设P 1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则 | P 1 P 2 | =()()221221y y x x -+-5、点P ( x 0 , y 0 )到直线l :A x + B y + C = 0的距离:2200BA CBy Ax d +++=8.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =则 d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.9.直线与圆的位置关系(圆心到直线的距离为d)直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .10.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .11.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±二、立体几何 (一)、线线平行判定定理:1、平行于同一条直线的两条直线互相平行。

新人教高一上必修一、四数学公式大全加精.doc

新人教高一上必修一、四数学公式大全加精.doc

三角函数、向量公式结论'正角:按逆时针方向旋转形成的角1、任意角〈负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角Q的顶点与原点重合,角的始边与X轴的非负半轴重合,终边落在第几象限,则称。

为第几象限角.第一象限角的集合为360° <a<k-360° +90°,ke z}第二象限角的集合为同如360° + 90° <如360°+180°,沱z}终边在x轴上的角的集合为同口 =们180。

,沱Z}终边在y轴上的角的集合为回勿欤• 180。

+ 90。

,沱Z}3、与角。

终边相同的角的集合为[j3\j3 = k-360° + a,ke z}4、已知。

是第几象限角,确定-(ne N*)所在象限的方法:先把各象限均分〃等份,再从x轴的正ry半轴的上方起,依次将各区域标上一、二、三、四,则a原来是第几象限对应的标号即为竺终边所n落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为广的圆的圆心角a所对弧的长为/,则角a的弧度数的绝对值是|a| = 4.r7、弧度制与角度制的换算公式:2^ = 360°, 1°= —, l = f—«57.3\180 \ 71 )8、若扇形的圆心角为。

(。

为弧度制),半径为r,弧长为/,周长为C,面积为S ,则/ =「|用,C = 2r + l, S=-lr = -\a\ r~.2 21 19、设a是一个任意大小的角,a的终边上任意一点P的坐标是(x,y),它与原点的距离是r\r- y]x~ + y" > 0) - KO sin a = —, cosa- — , tan(z = — (x0).\ ' r r x10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11> 三角函数线:sin a = MP, cos a = OM, tan a - AT.1 一Cos a Sina 12、 同角三角函数的基本关系:(l )sin 2 cr+cos 2cr = l ; (2)'ina = tanacos a13、 三角函数的诱导公式:(1) sin (2A7T+cr ) = sina , COS (2A TT +。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高一数学必修一至必修四公式HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】初高中衔接:和平方:))((22b a b a b a -+=- 和、差平方: 2222)(b ab a b a +±=± 立方和、立方差:))((2233b ab a b a b a +±=± 和、差立方:2233333)(ab b a b a b a +±±=±ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=-- ac bc ab c b a c b a 222)(2222--+++=-+;ac bc ab c b a c b a 222)(2222+--++=+-韦达定理:设⎪⎩⎪⎨⎧=-=+=++a c x x a b x x c bx x x 21212210ax 的两根,那么为和 必修一:恒成立问题:指数函数:⎩⎨⎧<-≥===00n a a a a a a n a a nn n n ,,为偶数时:;当为奇数时:当;⎪⎪⎭⎪⎪⎬⎫==-m n mnm n mn a a a a1)10*>∈>m N n m a ,且、,( 对勾函数单调区间公式:对勾函数基本形式:xpx y +=,在),0()0,(+∞⋃-∞上⎪⎩⎪⎨⎧⋃-+∞⋃--∞)00(),(),(p p p p ,(),单调递减:单调递增:对数函数:1log =a a ,1log log =•a b b a ,01log =a ,)10(log ≠>=a a N N aNa 且、,)10(log 1log ≠>=b a b a a b b a 、且、,dcd c c d c d ba ab b a a b log log log log =-=-=⎪⎭⎪⎬⎫-=+=•N M N MN M N M a a a a a a log log log log log )(log (a 、M 、N>0,且a ≠1)1log ln ),0(log ln ==∴>=e e x x x e e ⎪⎭⎪⎬⎫==b m n b m n m a na a n a m log log log log )1,0(≠∈>a R n mb a 且,、、, )1,0(log log log ≠>=c a c b a abb c c a 、且、、(换底公式)判断奇偶函数:若)()(x f x f -=则为偶函数,若)()(x f x f -=-则为奇函数(奇函数0)0(=f )判断单调函数:○1在定义域内设21x x <,化简)()(21x f x f -,若)()(0)()(2121x f x f x f x f >>-即则认为该函数在其定义域内单调递减,若)()(0)()(2121x f x f x f x f <<-即则认为该函数在其定义域内单调递增。

○2若在定义域内设21x x >,化简)()(21x f x f -,若)()(0)()(2121x f x f x f x f >>-即则认为该函数在其定义域内单调递增,若)()(0)()(2121x f x f x f x f <<-即则认为该函数在其定义域内单调递减。

(具体情况具体定)函数的周期:若)()(x f T x f =+,则T 为函数周期。

必修二:一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表 当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

(6)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交 交点坐标即方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的一组解。

方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合 (8)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,则||AB(9)点到直线距离公式:一点)00,y x P 到直线0:1=++C By Ax l 的距离2200BA C By Ax d +++=(10)两平行直线距离公式○1在任一直线上任取一点,再转化为点到直线的距离进行求解。

○2设直线;,02211C By Ax l C By Ax l ++==++=则两点间的距离为都相等)、B A BA C C d (2221+-=二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;(2)一般方程022=++++F Ey Dx y x当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+= 当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。

(3)求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为∆,则有相离与C l ⇔<∆0;相切与C l ⇔=∆0;相交与C l ⇔>∆0注:如果圆心的位置在原点,可使用公式200r yy xx =+去解直线与圆相切的问题,其中()00,y x 表示切点坐标,r 表示半径。

(3)过圆上一点的切线方程:①圆222r y x =+,圆上一点为(x 0,y 0),则过此点的切线方程为200r yy xx =+ (课本命题).②圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2(课本命题的推广).4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+-两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

当r R d +>时两圆外离,此时有公切线四条;当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当r R d -=时,两圆内切,连心线经过切点,只有一条公切线; 当r R d -<时,两圆内含; 当0=d 时,为同心圆。

5、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) (3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24Rπ(5)关于平面的公理:公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

相关文档
最新文档