人教版高一数学必修4知识点总结
高一必修4数学知识点总结

高一必修4数学知识点总结高一数学是学生们进入高中的起点,也是数学知识体系的基础,对于后续学习、应用都具有重要的作用。
必修4是高一数学教材中的一部分,涉及到不少重要的数学知识点。
本文将对其中的一些重要知识点进行总结和归纳。
一、集合集合是数学中一个基础概念,它是由一些特定对象组成的整体。
在高一必修4中,集合的表示方法、运算法则和性质都是必须掌握的。
集合的表示方法包括列举法、描述法和特点法,我们需要根据具体情况选择合适的表示方法。
集合的运算法则包括交集、并集、差集和补集,熟悉这些运算法则能够方便我们解决集合相关的问题。
此外,我们还需要了解集合的基本性质,如交换律、结合律、分配律等。
二、函数与映射函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。
在高一必修4中,我们学习了函数的定义、性质和图像。
函数的定义包括自变量、函数值和定义域等概念,我们需要准确地描述函数的定义。
函数的性质包括奇偶性、单调性、周期性等,熟悉这些性质能够帮助我们分析函数的特点。
此外,我们还需要学习如何绘制函数的图像,掌握绘制图像的方法和技巧。
三、数列与数列的极限数列是一系列按照一定规律排列的数的集合。
在高一必修4中,我们学习了数列的概念、通项公式和极限。
数列的概念包括等差数列、等比数列和等差中项数列等,我们需要了解数列的特点和性质。
数列的通项公式是指数列中第n个数的表达式,它能够帮助我们计算数列中任意一项的值。
数列的极限是指数列中随着项数趋向无穷大时的极限值,我们需要明确数列是否存在极限,以及如何求解数列的极限。
四、平面向量平面向量是具有大小和方向的量,它在几何中起着重要的作用。
在高一必修4中,我们学习了平面向量的定义、线性运算和数量积。
平面向量的定义包括向量的模、方向和表示等,我们需要了解向量的几何意义。
平面向量的线性运算包括加法、减法和数量乘法,熟练掌握这些运算可以帮助我们进行向量的计算。
数量积是两个向量的乘积,它具有重要的几何和物理意义,我们需要掌握数量积的定义和计算方法。
高一年级数学必修四知识点整理

高一年级数学必修四知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一年级数学必修四知识点整理本店铺为你整理的《高一年级数学必修四知识点整理》,希望你不负时光,努力向前,加油!1.高一年级数学必修四知识点整理指数函数(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
高一数学必修四总结知识点

高一数学必修四总结知识点高一是学习数学的关键年级,学生开始接触更复杂的数学知识,必修四是高中数学的一门重要课程。
在这门课程中,学生将学习各种各样的数学概念、定理和解题方法。
本文将总结高一数学必修四中一些重要的知识点,以帮助学生复习和理解这门课程。
一、二次函数与一元二次方程1. 二次函数的定义和性质:二次函数是形如 y = ax^2 + bx + c的函数,其中a、b、c 是实数,a ≠ 0。
二次函数的图像是抛物线,开口方向由 a 的正负决定。
2. 二次函数的图像和性质:a 的值决定了抛物线的开口方向和是否对称于 y 轴。
抛物线的顶点坐标为 (-b/2a, f(-b/2a))。
3. 一元二次方程的解法:一元二次方程是形如 ax^2 + bx + c = 0 的方程,其中 a、b、c 是实数,a ≠ 0。
解一元二次方程有三种方法:因式分解、配方法和求根公式。
4. 因式分解法:对一元二次方程进行因式分解,使方程两边同时为零,得到方程的解。
5. 配方法:通过将一元二次方程写成平方的形式,使方程两边同时为零,解方程得到解。
6. 求根公式:根据二次方程的常用公式,利用求根公式计算方程的解。
求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)。
二、三角函数1. 弧度与角度:弧度是角度的一种度量方式,表示扫过的弧长与半径的比值。
1 弧度等于约 57.3°。
2. 三角函数的概念和性质:正弦、余弦和正切是常见的三角函数。
它们的定义和性质可用单位圆的坐标来解释和证明。
3. 周期性:三角函数都具有周期性,即 f(x + T) = f(x),其中 T 为函数的周期。
4. 三角函数的图像和性质:正弦函数、余弦函数和正切函数都有特定的图像和性质。
正弦函数和余弦函数的值域是 [-1, 1],而正切函数的值域是全体实数。
5. 三角函数的图像变换:通过改变振幅、周期、相位等参数,可以对三角函数进行图像变换。
高一必修4数学知识点

高一必修4数学知识点在高中数学课程中,必修4是一门重要的数学课程,其中涵盖了许多重要的数学知识点。
本文将讨论一些高一必修4的数学知识点,并对其应用和重要性展开探讨。
一、函数与方程函数与方程是高一必修4中的重要主题之一。
函数是数学中的一种关系,它将一个自变量映射到一个因变量上。
函数可以用来描述许多现实世界中的问题,如物体的运动、经济学中的供求关系等。
方程则是数学中的等式,它描述了两个表达式之间的平衡关系。
通过解方程,我们可以求解未知数的取值,用于解决实际问题。
二、二次函数二次函数也是高一必修4的重点内容。
二次函数是一个以自变量的平方项为最高次的多项式函数。
它具有拱形或下凹形状,其中顶点是函数的最值点。
二次函数在几何学中有广泛的应用,如抛物线、碗的形状等。
另外,二次函数还能用于解决实际问题,如炮弹的抛物线轨迹、汽车的制动距离等。
三、指数与对数指数与对数也是高一必修4中的重要知识点。
指数是数学中的一种表示方式,它用于表示重复乘法。
指数函数具有一个变化率恒大于0的特征,经常用于描述增长或衰减的过程。
对数则是指数的逆运算,它描述了一个数在指数函数中的幂次。
指数与对数在科学领域中有广泛的应用,如生物学中的指数增长模型、物理学中的衰减模型等。
四、平面向量与立体几何平面向量与立体几何也是高一必修4的重要内容。
平面向量是有大小和方向的量,它在几何学和物理学领域中被广泛运用。
平面向量可以用于描述物体的位移、速度、力等。
立体几何则研究的是三维空间中的图形和其性质。
几何学是应用最广泛的数学学科之一,它在设计、建筑、工程等领域都有重要的应用。
五、概率与统计概率与统计也是高一必修4中的一部分。
概率是数学中研究不确定性的重要工具,它运用概率模型来描述事物发生的可能性。
统计则是收集、整理和分析数据的方法,并通过推断从总体中得出结论。
概率与统计在现实生活中有广泛的应用,如市场调查、风险评估等。
综上所述,高一必修4中的数学知识点涵盖了函数与方程、二次函数、指数与对数、平面向量与立体几何、概率与统计等内容。
人教数学必修四知识点

人教数学必修四知识点人教数学必修四是高中数学的一门重要课程,涵盖了许多基础的数学知识点。
本文将以“step by step thinking”的方式,逐步介绍这门课程的知识点。
一、二次函数与一元二次方程1.二次函数的定义和性质:介绍了二次函数的概念以及它的图像特征,如顶点、对称轴、开口方向等。
2.一元二次方程的解法:通过一些例题,介绍了解一元二次方程的方法,如因式分解、配方法和求根公式。
3.二次函数与一元二次方程的关系:通过图像和方程之间的转换,说明了二次函数与一元二次方程之间的联系。
二、三角函数与图形的性质1.三角函数的定义与性质:介绍了正弦函数、余弦函数和正切函数的定义以及它们的图像和周期性。
2.三角函数的基本变换与性质:介绍了三角函数的平移、伸缩和反转等基本变换,以及它们对图像的影响。
3.三角函数的图像与方程的关系:通过图像和方程之间的转换,说明了三角函数与三角方程之间的联系。
三、数列与数学归纳法1.数列的定义与性质:介绍了数列的概念和常见的数列类型,如等差数列和等比数列。
2.数列的通项公式与求和公式:介绍了如何根据数列的特点来确定通项公式和求和公式。
3.数学归纳法的应用:通过一些例题,介绍了数学归纳法在证明数学命题中的应用。
四、立体几何1.空间几何体的性质:介绍了常见的几何体,如立方体、正方体、棱柱和棱锥等的定义和性质。
2.空间几何体的表面积和体积:介绍了如何计算立体几何体的表面积和体积,以及一些常见立体几何体的计算公式。
3.空间几何体的投影和截面:介绍了立体几何体在投影和截面时的特点和计算方法。
以上是人教数学必修四的一些重要知识点,通过“step by step thinking”的方式,逐步介绍了每个知识点的基本概念、性质和应用。
通过学习这些知识点,可以帮助我们更好地理解和应用数学的基本原理,提高解决问题的能力。
希望本文对您的学习有所帮助。
高一数学必修四课本知识点

高一数学必修四课本知识点数学是一门抽象而又具体的学科,作为高中学习的一部分,数学的理论体系将会在高一必修四课本中得到全面展示。
本文将围绕高一数学必修四课本的知识点展开讨论。
1. 数列与数列的极限:数列是由一系列按照一定规律排列的数所组成的序列。
数列的极限是指数列中的项在无限接近某一数值时,该数就是数列的极限。
对于数列的极限的初步研究,高一必修四课本中给出了详细的定义和计算方法,通过数列的极限计算,学生可以更好地理解数列的发展趋势和推导规律,从而提高对数学的抽象思维能力。
2. 二次函数与一元二次方程:二次函数是高一数学必修四课本中一个重要的章节。
通过学习二次函数的图像、性质以及相关的一元二次方程,可以帮助学生了解二次函数在现实生活中的应用。
教材中分析了二次函数的开口方向、顶点坐标等内容,而一元二次方程的求解部分,主要是通过配方法、因式分解、求根公式等方法进行展示。
这些方法的学习可以帮助学生提高解决实际问题的能力,同时也为高中阶段数学的进一步学习奠定了基础。
3. 三角函数与立体几何:三角函数是高一数学必修四课本中较为复杂的一部分。
教材中详细介绍了正弦、余弦、正切等三角函数的性质与关系,并给出了计算方法。
通过学习三角函数,学生可以理解三角函数的几何意义以及在实际问题中的应用。
此外,立体几何也是本课本中非常重要的内容之一,通过学习多面体的性质、体积和表面积等,可以帮助学生培养几何思维和空间想象力。
4. 概率与统计:概率与统计是高一必修四课本的最后一个章节,它是数学与实际生活结合最紧密的一部分。
通过学习概率与统计,学生可以了解到随机事件的发生规律及其计算方法,并能够运用统计学方法对数据进行分析。
这能帮助学生在实际生活中更好地分析问题、做出决策,并从数据中得出合理的结论。
总结起来,高一数学必修四课本的知识点包括数列与数列的极限、二次函数与一元二次方程、三角函数与立体几何、概率与统计等。
这些知识点是高中数学学习中的基础,扎实的掌握对于后续学习、提高数学思维能力和应用能力都非常重要。
高中数学人教版必修4知识点汇总

1”作巧
妙的变形,
1. 3 诱导公式
1、诱导公式(五)
sin(
ห้องสมุดไป่ตู้) cos
2
cos(
) sin
2
2、诱导公式(六)
sin(
) cos
2
总结为一句话:函数正变余,符号看象限
小结:
①三角函数的简化过程图:
cos(
) sin
2
任意负角的 三角函数
公式一或三 任意正角的 三角函数
公式一或二或四 00~3600 间角 的三角函数
..
..
1.1 . 1 任意角
1.角的有关概念: ①角的定义:
角可以看成平面一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
始边 B
终边
③角的分类:
O
A
顶点
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下, “角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0 °; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念: ①定义:若将角顶点与原点重合, 角的始边与 x 轴的非负半轴重合, 那么角的终边 ( 端点除外 ) 在第几象限,我们就说这个角是第几象限角.
tan cot
1(
k ,k
Z) ;
2
③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用) ,如:
cos
1 sin2
,
2
sin
2
1 cos
,
cos
sin 等。
人教高一必修四数学知识点

人教高一必修四数学知识点在高中数学必修四课程中,学生将接触到许多重要的数学知识点。
这些知识点包括代数、函数、几何和概率等方面。
下面将对其中一些关键的知识点进行简要介绍。
一、代数1. 等式与方程:学生需要掌握等式的性质和解一元一次方程的方法。
这包括使用加减消元法、乘除消元法和配方法等来解方程。
2. 二次函数与一元二次方程:学生将学习二次函数的图像、顶点、轴对称以及一元二次方程的解法和判别式。
3. 不等式与不等式组:学生需要理解和应用不等式的性质,掌握不等式组的解法和图像表示。
二、函数1. 函数概念与性质:学生需要了解函数的定义、自变量、因变量以及函数图像的性质。
同时还需要学会根据已知条件来确定函数的值域、定义域和解函数方程。
2. 一次函数与一次函数方程:学生将学习掌握一次函数的图像、截距、斜率和一次函数方程的解法。
3. 幂函数、指数函数和对数函数:学生需要了解这些函数的定义、性质和图像特点,并学会求解相关的方程和不等式。
4. 复合函数与反函数:学生将学习复合函数和反函数的概念,以及如何求解复合函数和反函数的问题。
三、几何1. 向量与平面向量:学生将学习向量的概念、运算和向量的线性运算法则。
此外,还需要了解平面向量的共线、共面和向量的数量积。
2. 三角函数与三角方程:学生需要了解正弦、余弦和正切函数的定义、性质和图像特点。
同时,还需要学会求解三角方程。
3. 三角恒等式与三角变换:学生将学习三角恒等式的证明和应用,以及三角函数的和差化积、倍角公式和半角公式等。
四、概率1. 随机事件与概率:学生将学习随机事件的概念和性质,掌握概率的计算方法,并运用概率解决实际问题。
2. 排列与组合:学生需要了解排列和组合的概念、计算方法和应用。
以上仅仅是高中数学必修四课程中部分重要的数学知识点。
通过对这些知识点的学习和掌握,学生将能够在应用数学的各个领域中灵活运用数学方法和工具,提高解决问题的能力和思维能力。
因此,对于每一个高中生来说,深入理解和掌握这些数学知识点是非常重要的。
高一数学必修四知识点归纳

高一数学必修四知识点归纳(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修四知识点归纳本店铺为你加油!1.高一数学必修四知识点归纳(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
高中数学必修4第一章知识点总结

高中数学必修4第一章知识点总结一、数列的定义与表示方法:1.数列的定义:由一列按照一定规律排列的有序数构成的集合称为数列。
2.数列的表示方法:可以通过用元素的代号表示每一项,如a₁,a₂,a₃,...,aₙ表示数列的前n项;或者使用通项公式表示数列的一般项。
二、数列的分类:1.根据数列的前后项之间的关系,可以将数列分为等差数列、等比数列和等差数列的和。
2.等差数列:若一个数列中任意两项之差都相等,则称该数列为等差数列。
等差数列的通项公式为aₙ=a₁+(n-1)d,其中a₁为首项,d为公差,n为项数。
3.等比数列:若一个数列中任意两项之比都相等,则称该数列为等比数列。
等比数列的通项公式为aₙ=a₁*q^(n-1),其中a₁为首项,q为公比,n为项数。
4.等差数列的和:等差数列的和是等差数列前n项和,记为Sₙ,可由通项公式推导出来。
三、常用的数列公式:1.前n项和公式:-等差数列的前n项和公式为Sₙ=(a₁+aₙ)*n/2-等比数列的前n项和公式为Sₙ=a₁*(1-q^n)/(1-q),其中q≠12.末项公式:-等差数列的末项公式为aₙ=a₁+(n-1)d。
-等比数列的末项公式为aₙ=a₁*q^(n-1)。
四、数列的性质:1.数列的递增和递减性:若数列的相邻两项之差为正数,称该数列为递增数列;若相邻两项之差为负数,称该数列为递减数列。
2.数列的有界性:若数列的所有项都不小于一个常数M,称该数列是下有界的;若数列的所有项都不大于一个常数N,称该数列是上有界的。
3.数列的单调性:若数列的前后项之间的关系始终保持一致,称该数列是单调数列。
4.数列的极限:如果数列中的项无限增大或无限逼近一些常数,那么这个常数称为该数列的极限。
五、常见的数列应用问题:1.求等差数列的前n项和、末项或项数的方法。
2.求等比数列的前n项和、末项或项数的方法。
3.判断数列的递增性、递减性、有界性或单调性。
4.使用数列的公式解决实际问题,如等差电费问题、等比人口增长问题等。
数学高一必修四几何知识点总结

数学高一必修四几何知识点总结一、知识概述《高一必修四几何知识点》①基本定义:高一必修四几何主要涉及平面向量等知识。
平面向量就是既有大小又有方向的量,可以把它想象成既有长度又有指向的箭头。
像在生活里,力和速度就是典型的向量,力有大小并且朝着一定方向推或者拉东西,速度也是有快慢并且朝着某个方向运动。
②重要程度:它是高中数学的重要内容,在数学的各个领域,像物理学研究物体运动中力和加速度等关系、解析几何里可以用来解题等都有重要意义。
算是桥梁类的知识,连接了代数和几何。
③前置知识:需要一些初中的平面几何基础知识,比如三角形、平行四边形等图形的性质等知识,还要有一定的运算能力。
④应用价值:在很多实际场景有用。
比如在建筑工程中计算物体受力情况,力就是向量,如果知道几个力向量就可以合成算出总的作用力方向和大小。
二、知识体系①知识图谱:在高中数学体系里,平面向量这部分知识是独立又与其他知识联系紧密的分支。
它上承初中几何知识,下启高中很多数学分支的解题思路。
②关联知识:与平面几何紧密联系,就像三角形的三条边如果看成向量的话,很多性质可以通过向量来体现。
还和三角函数也有关联,通过向量的坐标等可以和三角函数结合起来。
③重难点分析:重难点在于向量的概念和运算规则的理解和运用。
向量运算有加法、减法、数乘、点积等,这些运算既有坐标形式又有几何形式,得理解清楚。
理解向量的方向和它与其他向量的夹角等很关键。
④考点分析:考试里分量很重,会以选择题考查向量概念,填空题考查向量的简单运算,解答题经常会综合其他知识考查向量在几何或者物理中的应用。
三、详细讲解【理论概念类】①概念辨析:平面向量概念关键在于有方向和大小。
比如从家到学校的位移就是向量,位移的距离是大小,从家指向学校这个方向就是方向。
②特征分析:向量可以平移,只要方向和大小不变,那么就是同一个向量。
它可以用有向线段表示。
③分类说明:分零向量(大小为0,方向任意)、单位向量(大小为1的向量)、平行向量(方向相同或者相反的向量)、相等向量(大小和方向都相同的向量)等。
人教版高中数学必修四常见公式及知识点总结(完整版)

必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。
高中数学必修4知识点总结(精华实用版)

第一章 三角函数{1、任意角正角: 负角: 零角:2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 如:-1350( )1350( )950( )-950( )-6300( )6300( )-7000( )7000( )第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为3、与角α终边相同的角的集合为 4 、1弧度的角:半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是α= .5、弧度制与角度制的换算公式:π=( )0,180157.3π⎛⎫=≈ ⎪⎝⎭.1800= rad ,10= rad 如:150= rad, 512π= 06、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l = ,2C r l =+,S = = .7、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()r r =>,则sin α= ,cos α= ,()tan 0x α=≠ .8、三角函数在各象限的符号:9、同角三角函数的基本关系:()221sin cos 1αα+=(变式: , );()sin 2tan cos ααα=.(变式: , )10、三角函数的诱导公式:(口诀:函数名称不变,符号看象限.)()()1sin 2k πα+= ,()cos 2k πα+= ,()tan 2k πα+= . ()()2sin πα+= ,()cos πα+= ,()tan πα+= . ()()3sin α-= ,()cos α-= ,()tan α-= . ()()4sin πα-= ,()cos πα-= ,()tan πα-= .()5sin 2πα⎛⎫-=⎪⎝⎭ ,cos 2πα⎛⎫-= ⎪⎝⎭ .()6sin 2πα⎛⎫+= ⎪⎝⎭ ,cos 2πα⎛⎫+= ⎪⎝⎭ .1112、(课本52页第二段)关于ωϕA 、、对()()sin 0,0y x ωϕω=A +A >>的影响 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅A ;②周期2πωT =;③频率12f ωπ==T;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为m in y ;当2x x =时,取得最大值为max y ,则()m ax m in 12y y A =-,()m axm in12y y B =+,()21122x x x x T =-<第二章 平面向量1、向量: 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.如:A B 记作零向量:长度为 的向量.记作 单位向量:长度等于1个单位的向量. 平行向量(共线向量): 的非零向量.零向量与任一向量 .记作 相等向量: . 2、向量加法运算:⑴三角形法则的特点:首尾相连.首尾连⑵平行四边形法则的特点:共起点.共起点之对角线⑶三角形不等式: a b a b a b -≤+≤+r r r r r r⑷运算性质:①交换律: a b b a +=+r r r r ;②结合律: ()()a b c a b c ++=++r r r r rr ;③00a a a +=+=r r r r r⑸坐标运算:设()11,a x y =r ,()22,b x y =r ,则a b +=rr ( ).3、向量减法运算:⑴减去一个向量相当于加上这个向量的相反向量。
高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案

21 24 7.9 11.1
经长期观察,函数 y = f (t) 的图象可以近似地看成函数 y = k + A sin (ωt + φ) 的图象.下面的函数 中,最能近似表示表中数据间对应关系的函数是 ( A.y = 11 + 3 sin (
)
π π t + ) , t ∈ [0, 24] 12 2 π B.y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C.y = 11 + 3 sin t , t ∈ [0, 24] 12 π D.y = 11 + 3 sin t , t ∈ [0, 24] 6
π π t + ) , t ∈ [0, 24] 12 2 π B. y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C. y = 11 + 3 sin t , t ∈ [0, 24] 6 π D. y = 11 + 3 sin t , t ∈ [0, 24] 12
3. 某城市一年中 12 个月的平均气温与月份的关系可近似地用三角函数 y = a + A cos
π (x − 6) ( 6
x = 1, 2, 3, ⋯ , 12 ) 来表示,已知 6 月份的月平均气温最高,为 28∘ C , 12 月份的月平均气温最
低,为 18∘ C ,则 10 月份的平均气温值为
B.[1, 7]
D.[0, 1] 和 [7, 12]
2π π π 弧度,从而经过 t 秒转了 = t 弧度. 12 6 6 1 √3 π 而 t = 0 时, 点 A ( , .经过 t 秒后点 A 的纵坐标为 ) ,则 ∠xOA = 2 2 3
高中数学必修四知识点总结归纳

高中数学必修四第一章:三角函数1.1任意角和弧度制考点1:任意角的概念考点2:终边相同的角考点3:象限角与轴线角1.1.2弧度制考点1:弧度制考点2:弧度制与角度制考点3:用弧度表示有关角考点4:扇形的弧长与面积1.2任意角的三角函数1.2.1任意角的三角函数考点1:任意角的三角函数的定义考点2:三角函数值的符号考点3:诱导公式(一)考点4:三角函数式的化简与证明考点5:三角函数线考点6:三角函数的定义域与值域1.2.2同角三角函数的基本关系考点1:同角三角函数的基本关系考点2:三角函数式的化简考点3:利用sinα,cosα,sinαcos α之间的关系求值考点4:三角函数恒等式的证明1.3三角函数的诱导公式考点1:诱导公式考点2:运用诱导公式化简、求值考点3:诱导公式的综合运用1.4三角函数的图像与性质1.4.1正弦函数、余弦函数的图像1.4.2正弦函数。
余弦函数的性质考点1:函数的周期性考点2:正弦函数与余弦函数的图像考点3:正弦函数与余弦函数的定义域和值域考点4:正弦函数与余弦函数的奇偶性考点5:正弦函数与余弦函数的单调性考点6:正弦函数与余弦函数的对称性1.4.3正切函数的性质与图像考点1:正切函数的图像考点2:正切函数的性质考点3:正切函数的综合问题1.5函数y=Asin(ωx+φ)的综合应用考点1:用“五点法”作函数y=Asin(ωx+φ)的图像考点2:用变换作图法作函数y=Asin(ωx+φ)的图像考点3:由函数y=Asin(ωx+φ)的部分图像确定其解析式考点4:简谐运动的有关概念考点5:函数y=Asin(ωx+φ)的综合应用1.6三角函数模型的简单应用考点1:利用三角函数定义建立三角函数模型考点2:用拟合法建立三角函数模型考点3:三角函数模型应用的综合问题考法整合:考法1:任意角三角函数定义的灵活运用考法2:山脚函数图像的对称性考法3:三角函数的值域与最值问题考法4:利用图像解题第二章:平面向量2.1平面向量的事件背景及基本概念考点1:平面向量的概念考点2:平行向量(共线向量)、相等向量与相反向量考点3:平面向量的应用2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其集合意义考点1:向量的加法考点2:向量的减法考点3:向量的化简考点4:响亮的加减法应用2.2.3向量数乘运算及其集合意义考点1:向量的数乘运算考点2:向量的线性运算考点3:向量的共线问题考点4:利用向量解决平面几个问题2.3平面向量的基本定理及坐标表示2.3.1平面向量的基本定理考点1:平面向量的基本定理考点2:平面向量基本定理的应用考点3:两个平面向量的夹角2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示考点1:平面向量的坐标表示考点2:平面向量的坐标运算考点3:平面向量贡献的坐标表示考点4:线段的定比分点考点5:平面向量坐标表示的应用2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义考点1:平面向量的数量积考点2:数量积的性质及其运算律考点3:两向量的夹角考点4:数量积的应用2.4.2平面向量数量积的坐标表示。
(完整版)人教版高一数学必修4知识点总结,推荐文档

⑶三角形不等式:
a
b
a
b
a
b
.
⑷运算性质:①交换律:
a
b
b
a
;②结合律:
a
b
c
a
b
c
;③
a
0
0
a
a
.
⑸坐标运算:设
a
x1,
y1
,
b
x2
,
y2
,则
a
b
x1
x2
,
y1
y2
.
18、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量.
4sin sin , cos cos , tan tan .
口诀:函数名称不变,符号看象限.
5sin
2
cos
,
cos
2
sin
.
6sin
2
cos
,
cos
2
sin
.
口诀:奇变偶不变,符号看象限.
14、函数 y sin x 的图象上所有点向左(右)平移 个单位长度,得到函数 y sin x 的图象;再将函数 y sin x 的
⑵性质:设
a
和
b
都是非零向量,则①
a
b
a
b
0
.②当
a
与
b
同向时,
a
b
a
b
;当 a 与 b 反向时,
a
b
a
b
;
a
a
a
2
a
2
或
a
a
a
.③
a
b
a
b
人教版高中数学必修四知识点归纳总结

人教版高中数学必修四知识点归纳总结1.1.1 任意角1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.1.1.2弧度制(一)1.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 弧度制的性质:①半圆所对的圆心角为;ππ=r r②整圆所对的圆心角为.22ππ=rr ③正角的弧度数是一个正数. ④负角的弧度数是一个负数.⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒.②将弧度化为角度:︒=3602π;︒=180π;815730.57)180(1'︒=︒≈︒=πrad ;︒=) 180 (πn n .5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角顶点AOαα⋅=⇒=r l rl弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.4-1.2.1任意角的三角函数(三)1. 三角函数的定义2. 诱导公式)Z (tan )2tan()Z (cos)2cos()Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修4知识点⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z ;第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z ; 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z ; 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z ;终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z ;终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z ; 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭.8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122Slr r α==. 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y rα=,cos x r α=,()tan 0yx xα=≠.10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=-⎪⎝⎭. 口诀:奇变偶不变,符号看象限. 14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. 15、正弦函数、余弦函数和正切函数的图象与性质16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b-≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c++=++;③00a a a +=+=.⑸坐标运算:设()11,ax y =,()22,b x y =,则()1212,a b x x y y +=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,ax y =,()22,b x y =,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.19、向量数乘运算:baC BAa b C C-=A -AB =B⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+.⑶坐标运算:设(),ax y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,ax y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122ae e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭. 23、平面向量的数量积:⑴()cos 0,0,0180a ba b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b同向时,a b a b⋅=;当a 与b 反向时,a ba b⋅=-;22a a a a⋅==或a a a=⋅.③a b a b⋅≤.⑶运算律:①a bb a ⋅=⋅;②()()()a b a b a bλλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅.⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+.若(),ax y =,则222a x y =+,或2a x y =+()11,ax y =,()22,b x y =,则12120a b x x y y ⊥⇔+=;设a 、b 都是非零向量,()11,ax y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.24、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sinsin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-). 25、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos2sin 2αα-=).⑶22tan tan 21tan ααα=-.26、()sin cos αααϕA +B =+,其中tan ϕB =A. 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。