人教版高一数学必修四最全三角函数公式含正弦余弦正切

合集下载

高一数学三角函数公式大全

高一数学三角函数公式大全

高一数学三角函数公式大全1500字高一数学三角函数公式大全(1500字)1. 正弦函数(sine function):- 基本关系:sin A = 对边 / 斜边- 余割函数(cosec function):csc A = 1 / sin A- 反正弦函数(arcsine function):sin^-1 x 或 asin x2. 余弦函数(cosine function):- 基本关系:cos A = 邻边 / 斜边- 余切函数(cot function):cot A = 1 / tan A- 反余弦函数(arccos function):cos^-1 x 或 acos x3. 正切函数(tangent function):- 基本关系:tan A = 对边 / 邻边- 反正切函数(arctan function):tan^-1 x 或 atan x4. 正割函数(secant function):- 基本关系:sec A = 1 / cos A5. 反余切函数(arccot function):cot^-1 x 或 acot x6. 双曲正弦函数(hyperbolic sine function):sinh x = (e^x - e^(-x)) / 27. 双曲余弦函数(hyperbolic cosine function):cosh x = (e^x + e^(-x)) / 28. 双曲正切函数(hyperbolic tangent function):tanh x = sinh x / cosh x9. 双曲余切函数(hyperbolic cotangent function):coth x = 1 / tanh x10. 双曲正割函数(hyperbolic secant function):sech x = 1 / cosh x11. 双曲余割函数(hyperbolic cosecant function):csch x = 1 / sinh x12. 三角和差化积:- sin(A + B) = sin A cos B + cos A sin B- sin(A - B) = sin A cos B - cos A sin B- cos(A + B) = cos A cos B - sin A sin B- cos(A - B) = cos A cos B + sin A sin B- tan(A + B) = (tan A + tan B) / (1 - tan A tan B)- tan(A - B) = (tan A - tan B) / (1 + tan A tan B)13. 二倍角公式:- sin(2A) = 2 sin A cos A- cos(2A) = cos^2 A - sin^2 A- tan(2A) = 2 tan A / (1 - tan^2 A)14. 半角公式:- sin(A/2) = ±√[(1 - cos A) / 2]- cos(A/2) = ±√[(1 + cos A) / 2]- tan(A/2) = ±√[(1 - cos A) / (1 + cos A)]15. 和差化积:- sin A + sin B = 2 sin((A + B) / 2) cos((A - B) / 2) - sin A - sin B = 2 cos((A + B) / 2) sin((A - B) / 2) - cos A + cos B = 2 cos((A + B) / 2) cos((A - B) / 2) - cos A - cos B = -2 sin((A + B) / 2) sin((A - B) / 2)16. 和差化积的扩展:- sin A + sin B = 2 sin((A + B) / 2) cos((A - B) / 2) - sin A - sin B = 2 cos((A + B) / 2) sin((A - B) / 2) - cos A + cos B = 2 cos((A + B) / 2) cos((A - B) / 2) - cos A - cos B = -2 sin((A + B) / 2) sin((A - B) / 2) - tan A + tan B = (sin(A + B) / cos A cos B)- tan A - tan B = (sin(A - B) / cos A cos B)17. 倍角公式(角度):- sin(2A) = 2 sin A cos A- cos(2A) = cos^2 A - sin^2 A- tan(2A) = (2 tan A) / (1 - tan^2 A)18. 倍角公式(弧度):- sin(2x) = 2 sin x cos x- cos(2x) = cos^2 x - sin^2 x- tan(2x) = (2 tan x) / (1 - tan^2 x)19. 三倍角公式:- sin(3A) = 3 sin A - 4 sin^3 A- cos(3A) = 4 cos^3 A - 3 cos A- tan(3A) = (3 tan A - tan^3 A) / (1 - 3 tan^2 A)20. 平方和差化积:- sin^2 A + sin^2 B = 2 sin^2((A + B) / 2) cos^2((A - B) / 2)- sin^2 A - sin^2 B = sin(A + B) sin(A - B)- cos^2 A + cos^2 B = 2 cos^2((A + B) / 2) cos^2((A - B) / 2)- cos^2 A - cos^2 B = -sin(A + B) sin(A - B)以上是高一数学中常用的三角函数公式大全,掌握并理解这些公式对于解决三角函数问题非常有帮助。

2024高中三角函数公式大全

2024高中三角函数公式大全

2024高中三角函数公式大全
1、三角函数的定义
三角函数是建立在三角形中的特殊关系上,用于表示角度和边长之间的函数。

三角函数的基本定义如下:
(1)正弦函数sinθ:表示角θ的对边和斜边的比值,即sinθ = y/r。

(2)余弦函数cosθ:表示角θ的邻边和斜边的比值,即cosθ = x/r。

(3)正切函数tanθ:表示角θ的对边和邻边的比值,即tanθ = y/x。

(4)反正弦函数arcsinα:表示α对应的角度θ,即arcsinα = θ。

(5)反余弦函数arccosα:表示α对应的角度θ,即arccosα = θ。

(6)反正切函数arctanα:表示α对应的角度θ,即arctanα = θ。

2、三角函数的基本公式
(1)正弦定理:(a,b,C)为θ对应的三边,则
a/sinθ=b/sinθ=c/sinθ。

(2)余弦定理:(a,b,C)为θ对应的三边,则a^2=b^2+c^2-
2bc*cosθ。

(3)正切定理:(a,b,C)为θ对应的三边,则tanθ=b/a=c/b。

(4)反正弦定理:arcsinα=θ,其中θ的范围在(-π/2,π/2)
之间。

(5)反余弦定理:arccosα=θ,其中θ的范围在(0,π)之间。

(6)反正切定理:arctanα=θ,其中θ的范围在(-π/2,π/2)
之间。

3、三角函数的关系和性质
(1)正弦定理:sin2θ+cos2θ=1
(2)正弦定理的奇偶周期性:sin(-θ)= -sinθ;cos(-θ)= cosθ。

三角函数公式大全

三角函数公式大全

三角函数公式大全三角函数是数学中非常重要的一个分支,广泛应用于物理学、工程学、计算机科学等多个领域。

下面为大家带来一份三角函数公式大全。

一、基本三角函数1、正弦函数(sin):在直角三角形中,一个锐角的正弦是它的对边与斜边的比值。

即 sinA = a / c (其中 A 为锐角,a 为 A 的对边,c 为斜边)。

2、余弦函数(cos):一个锐角的余弦是它的邻边与斜边的比值。

即 cosA = b / c (其中 b 为 A 的邻边)。

3、正切函数(tan):一个锐角的正切是它的对边与邻边的比值。

即 tanA = a / b 。

二、同角三角函数基本关系1、平方关系:sin²A + cos²A = 1 。

2、商数关系:tanA = sinA / cosA 。

三、诱导公式1、终边相同的角的三角函数值相等:sin(2kπ + A) = sinA ,cos(2kπ + A) = cosA ,tan(2kπ + A) = tanA (k ∈ Z)。

2、关于 x 轴对称:sin(A) = sinA ,cos(A) = cosA ,tan(A) =tanA 。

3、关于 y 轴对称:sin(π A) = sinA ,cos(π A) = cosA ,tan(π A) = tanA 。

4、关于原点对称:sin(π + A) = sinA ,cos(π + A) = cosA ,tan(π + A) = tanA 。

5、 90°相关:sin(π/2 A) = cosA ,cos(π/2 A) = sinA 。

四、两角和与差的三角函数公式1、两角和的正弦:sin(A + B) = sinAcosB + cosAsinB 。

2、两角差的正弦:sin(A B) = sinAcosB cosAsinB 。

3、两角和的余弦:cos(A + B) = cosAcosB sinAsinB 。

4、两角差的余弦:cos(A B) = cosAcosB + sinAsinB 。

最全的三角函数公式

最全的三角函数公式

最全的三角函数公式三角函数是数学中一个重要的概念,广泛应用于几何、物理和工程等领域。

在本文中,我将为您介绍最全的三角函数公式,包括基本公式、倒数公式、和角公式、和差公式、倍角公式、半角公式、和积公式、和商公式以及其他一些特殊的三角函数公式。

一、基本公式1. 正弦公式:sinθ = 对边/斜边2. 余弦公式:cosθ = 邻边/斜边3. 正切公式:tanθ = 对边/邻边二、倒数公式1. 余切公式:cotθ = 邻边/对边2. cosec公式:cscθ = 1/sinθ3. sec公式:secθ = 1/cosθ三、和角公式1. 正弦和:sin(α+β) = sinαcosβ + cosαsinβ2. 余弦和:cos(α+β) = cosαcosβ - sinαsinβ3. 正切和:tan(α+β) = (tanα + tanβ)/(1 - tanαtanβ)四、差角公式1. 正弦差:sin(α-β) = sinαcosβ - cosαsinβ2. 余弦差:cos(α-β) = cosαcosβ + sinαsinβ3. 正切差:tan(α-β) = (tanα - tanβ)/(1 + tanαtanβ)五、倍角公式1. 正弦倍角:sin2θ = 2sinθcosθ2. 余弦倍角:cos2θ = cos²θ - sin²θ3. 正切倍角:tan2θ = 2tanθ/(1 - tan²θ)六、半角公式1. 正弦半角:sin(θ/2) = ±√[(1 - cosθ)/2]2. 余弦半角:cos(θ/2) = ±√[(1 + cosθ)/2]3. 正切半角:tan(θ/2) = ±√[(1 - cosθ)/(1 + cosθ)] (其中分母不等于0)七、和积公式1. 正弦和积:sin(α+β) = 2sin(α/2)cos(β/2)2. 余弦和积:cos(α+β) = 2cos(α/2)cos(β/2)3. 正切和积:tan(α+β) = (tanα + tanβ)/(1 - tanαtanβ)八、和商公式1. 正弦和商:sin(α+β) = sinαcosβ + cosαsinβ/cosαcosβ - sinαsinβ2. 余弦和商:cos(α+β) = cosαcosβ - sinαsinβ/cosαcosβ + sinαsinβ3. 正切和商:tan(α+β) = (tanα + tanβ)/(1 - tanαtanβ)九、其他特殊公式1. 倍角余弦1:cos2θ = 1 - 2sin²θ2. 倍角余弦2:cos²θ = (1 + cos2θ)/23. 倍角正弦:sin2θ = 2sinθcosθ4. 差角正切:tan(α-β) = (tanα - tanβ)/(1 + tanαtanβ)这些三角函数公式是三角学中最基本且最重要的公式。

(完整版)三角函数三角函数公式表

(完整版)三角函数三角函数公式表

(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。

公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。

公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。

公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。

公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。

公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。

高一数学三角函数公式大全 (2)

高一数学三角函数公式大全 (2)

高一数学三角函数公式大全1500字高一数学三角函数公式大全1. 三角函数的定义:正弦函数:sinA = 对边/斜边余弦函数:cosA = 邻边/斜边正切函数:tanA = 对边/邻边余切函数:cotA = 邻边/对边正割函数:secA = 斜边/邻边余割函数:cscA = 斜边/对边2. 三角函数的基本性质:①周期性:sin(A+2πn) = sinAcos(A+2πn) = cosAtan(A+πn) = tanAcot(A+πn) = cotA②正弦函数与余弦函数的和差关系:sin(A±B) = sinAcosB ± cosAsinB③正切函数与余切函数的和差关系:tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)④正弦函数与余弦函数的积化和差关系:sinAsinB = [cos(A-B) - cos(A+B)] / 2cosAcosB = [cos(A-B) + cos(A+B)] / 2⑤通解公式:sinA = sinB那么:A = nπ + (-1)^nB 或 A = π - nπ - (-1)^nB其中n为整数3. 三角函数的特殊值:sin30° = 1/2,cos30° = √3/2,tan30° = 1/√3,cot30° = √3,sec30° = √3/2,csc30° = 2sin45° = cos45° = 1/√2,tan45° = 1,cot45° = 1,sec45° = √2,csc45° = √2sin60° = √3/2,cos60° = 1/2,tan60° = √3,cot60° = 1/√3,sec60° = 2,csc60° = √34. 三角函数的倍角公式:sin2A = 2sinAcosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan2A = (2tanA) / (1 - tan^2A)cot2A = (cot^2A - 1) / (2cotA)sec2A = (sec^2A + 1) / (secA + 1)csc2A = (csc^2A - 1) / (2cscA)5. 三角函数的半角公式:sin(A/2) = ±√[(1 - cosA) / 2]cos(A/2) = ±√[(1 + cosA) / 2]tan(A/2) = ±√[(1 - cosA) / (1 + cosA)] 6. 三角函数的和差积化简公式:sinA + sinB = 2sin[(A+B)/2]cos[(A-B)/2] sinA - sinB = 2cos[(A+B)/2]sin[(A-B)/2] cosA + cosB = 2cos[(A+B)/2]cos[(A-B)/2] cosA - cosB = -2sin[(A+B)/2]sin[(A-B)/2]7. 三角恒等式:①倍角公式:sin2A = 2sinAcosAcos2A = cos^2A - sin^2Atan2A = (2tanA) / (1 - tan^2A)cot2A = (cot^2A - 1) / (2cotA)sec2A = (sec^2A + 1) / (secA + 1)csc2A = (csc^2A - 1) / (2cscA)②半角公式:sin(A/2) = ±√[(1 - cosA) / 2]cos(A/2) = ±√[(1 + cosA) / 2]tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]③和差化积公式:sinA + sinB = 2sin[(A+B)/2]cos[(A-B)/2]sinA - sinB = 2cos[(A+B)/2]sin[(A-B)/2]cosA + cosB = 2cos[(A+B)/2]cos[(A-B)/2]cosA - cosB = -2sin[(A+B)/2]sin[(A-B)/2]以上是高一数学三角函数公式的一些基本内容,希望对你的学习有所帮助!。

高中数学必修四三角函数公式大全

高中数学必修四三角函数公式大全

高中三角函数公式大全三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a -cosa+cosb = 2cos2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +-tana=2)2(tan 12tan2a a- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinαcos (π+α)= -co sαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosαcos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)2009-07-08 16:13公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。

数学必修四所有三角函数公式

数学必修四所有三角函数公式

数学必修四所有三角函数公式在数学中,三角函数是一类重要的运算工具,可以用来描述图形的形状、大小和关系,也可以解决一些复杂的实际问题,是必学的基本知识。

数学必修四是高中阶段数学课程中最重要的一门课程,其中涉及三角函数的知识十分重要,下面就来回顾一下数学必修四中所有的三角函数公式。

一、正弦函数公式正弦函数的定义为y=sinx,其中x为弧度,y为正弦值。

正弦函数的图像是一条波浪线,其最大值为1,最小值为-1,两个极值出现的位置和周期T为2π,表示的公式为:sinx=sin(x+2kπ)。

此外,正弦函数的反函数也重要,其公式为:arcsinx=x+2kπ,其中k为任意整数。

二、余弦函数公式余弦函数的定义为y=cosx,其中x为弧度,y为余弦值。

余弦函数的图像是一条类似V的波浪线,其最大值为1,最小值为-1,两个极值出现的位置和周期T为2π,表示的公式为:cosx=cos(x+2kπ)。

此外,余弦函数的反函数也重要,其公式为:arccosx=x+2kπ,其中k为任意整数。

三、正切函数公式正切函数的定义为y=tanx,其中x为弧度,y为正切值。

正切函数的图像是一条锯齿状的曲线,其最大值变化不定,但一般不大于3,最小值变化不定,但一般不小于-3,表示的公式为:tanx=tan(x+2kπ),其中k为任意整数。

此外,正切函数的反函数也重要,其公式为:arctanx=x+2kπ,其中k为任意整数。

四、反正弦函数公式反正弦函数的定义为y=arcsinx,其中x为正弦值,y为对应的弧度值,表示的公式为:arccosx=cosx+2kπ,其中k为任意整数。

五、反余弦函数公式反余弦函数的定义为y=arccosx,其中x为余弦值,y为对应的弧度值,表示的公式为:arccosx=cosx+2kπ,其中k为任意整数。

六、反正切函数公式反正切函数的定义为y=arctanx,其中x为正切值,y为对应的弧度值,表示的公式为:arctanx=tanx+2kπ,其中k为任意整数。

高中生必备实用三角函数公式总表

高中生必备实用三角函数公式总表

高中生必备实用三角函数公式总表高中数学中,三角函数是一个非常重要的概念。

通过掌握三角函数的相关公式和性质,可以解决许多与角度和三角形相关的问题。

本文将为高中生提供一个实用的三角函数公式总表,以帮助他们更好地学习和理解这一领域。

一、基本三角函数公式:1. 正弦函数(Sine function):sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinB2. 余弦函数(Cosine function):cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinB3. 正切函数(Tangent function):tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)二、和差公式:1. 正弦函数公式:sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinBsin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinBcos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB) tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)三、倍角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan2A = (2 · tanA) / (1 - tan2A)四、半角公式:1. 正弦函数公式:sin(A/2) = ±√((1 - cosA) / 2)2. 余弦函数公式:cos(A/2) = ±√((1 + cosA) / 2)3. 正切函数公式:tan(A/2) = ±√((1 - cosA) / (1 + cosA))五、和角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosA2. 余弦函数公式:cos2A = cos2A - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)六、其他常见公式:1. 正切与余切的关系:tanA = 1 / cotAcotA = 1 / tanA2. 正弦与余弦的关系:sin2A + cos2A = 13. 正切与正弦、余弦的关系:tanA = sinA / cosA通过掌握这些三角函数的公式,高中生可以更好地解决与角度和三角形相关的问题。

数学必修四所有三角函数公式

数学必修四所有三角函数公式

数学必修四所有三角函数公式“三角函数”是从古希腊数学家凯撒伯罗的一篇论文中来的,它开始于一个环状几何图形的旋转动作,因此他们又被称为“旋转函数”。

三角函数在数学必修四中有着广泛的应用,其基本公式包括正弦函数公式、余弦函数公式、正切函数公式,以及余切函数公式等。

正弦函数公式:sin x=y/r其中,x为角度值(单位为弧度),y为三角形直角边,r为斜边。

此函数表示,角度X对应的正弦值为y/r。

余弦函数公式:cos x=a/r其中,x为角度值(单位为弧度),a为三角形的邻边,r为斜边。

此函数表示,角度X对应的余弦值为a/r。

正切函数公式:tan x=y/a其中,x为角度值(单位为弧度),y为三角形的直角边,a为邻边。

此函数表示,角度X对应的正切值为y/a。

余切函数公式:cot x=a/y其中,x为角度值(单位为弧度),a为三角形的邻边,y为直角边。

此函数表示,角度X对应的余切值为a/y。

此外,还有一些特殊的三角函数,比如正割函数sec x、余割函数csc x、双曲正切函数tanh x和双曲余切函数coth x等。

正割函数公式:sec x=r/a其中,x为角度值(单位为弧度),r为三角形的斜边,a为邻边。

此函数表示,角度X对应的正割值为r/a。

余割函数公式:csc x=r/y其中,x为角度值(单位为弧度),r为三角形的斜边,y为直角边。

此函数表示,角度X对应的余割值为r/y。

双曲正切函数公式:tanh x=y/(ar)其中,x为角度值(单位为弧度),y为三角形的直角边,a为邻边,r为斜边。

此函数表示,角度X对应的双曲正切值为y/(ar)。

双曲余切函数公式:coth x=ar/y其中,x为角度值(单位为弧度),a为三角形的邻边,r为斜边,y为直角边。

此函数表示,角度X对应的双曲余切值为ar/y。

三角函数的基本运算法则是:1.sin(-x)=-sin x2.cos(-x)=cos x3.tan(-x)=-tan x4.sec(-x)=sec x5.csc(-x)=csc x6.cot(-x)=-cot x7.sin(π/2+x)=cos x8.cos(π/2+x)=-sin x9.tan(π/2+x)=-cot x10.sec(π/2+x)=-csc x11.csc(π/2+x)=-sec x12.cot(π/2+x)=tan x因此,数学必修四中所有的三角函数公式可以总结如下:正弦函数公式:sin x=y/r余弦函数公式: cos x=a/r正切函数公式:tan x=y/a余切函数公式:cot x=a/y正割函数公式:sec x=r/a余割函数公式:csc x=r/y双曲正切函数公式:tanh x=y/(ar)双曲余切函数公式:coth x=ar/y以上就是数学必修四中所有三角函数的基本公式及其基本运算法则了。

高中数学必修四三角函数

高中数学必修四三角函数

高中数学必修四三角函数
高中数学必修四中的三角函数主要包括正弦函数、余弦函数、正切函数及其逆函数。

下面是这些函数的定义和性质:
1. 正弦函数(sin):对于任意实数θ,定义其正弦值为
y=sinθ,其中y满足-1≤y≤1。

正弦函数是一个周期为2π
的周期函数,其图像呈现波浪形状。

2. 余弦函数(cos):对于任意实数θ,定义其余弦值为
y=cosθ,其中y满足-1≤y≤1。

余弦函数也是一个周期为
2π的周期函数,其图像呈现山峰和谷底的形状。

3. 正切函数(tan):对于任意实数θ,定义其正切值为
y=tanθ,其中y为实数。

正切函数在一些特定值上无定义,例如tan(π/2)和tan(3π/2)等。

正切函数的图像呈现周期性,并且在某些点上会趋近于无穷大。

4. 逆正弦函数(arcsin):对于任意实数y,定义其反正弦值为θ=arcsin(y),其中θ满足-π/2≤θ≤π/2。

逆正弦函数的定义域是[-1, 1],值域是[-π/2, π/2]。

5. 逆余弦函数(arccos):对于任意实数y,定义其反余弦值为θ=arccos(y),其中θ满足0≤θ≤π。

逆余弦函数的定义域是[-1, 1],值域是[0, π]。

6. 逆正切函数(arctan):对于任意实数y,定义其反正切值为θ=arctan(y),其中θ满足-π/2<θ<π/2。

逆正切函数的定义域是实数集R,值域是(-π/2, π/2)。

三角函数及其逆函数在数学中具有广泛的应用。

在数学的计算中,可以通过这些函数相互转化,借助其性质求解各种数学问题。

三角函数公式大全表格高中

三角函数公式大全表格高中

三角函数公式大全表格高中
三角函数是高中数学中非常重要的内容,这里为大家提供了三角函数的公式大全表格,方便大家参考。

一、正弦函数sin(x)
正弦函数的定义:对于任意角x,它对应的正弦值为x所对的直角边与斜边的比值。

正弦函数的公式为:sin(x) = y/r
二、余弦函数cos(x)
余弦函数的定义:对于任意角x,它对应的余弦值为x所对的邻边与斜边的比值。

余弦函数的公式为:cos(x) = x/r
三、正切函数tan(x)
正切函数的定义:对于任意角x,它对应的正切值为x所对的直角边与邻边的比值。

正切函数的公式为:tan(x) = y/x
四、反正弦函数arcsin(x)
反正弦函数的定义:如果y/r = x,则arcsin(x) = y。

五、反余弦函数arccos(x)
反余弦函数的定义:如果x/r = y,则arccos(x) = y。

六、反正切函数arctan(x)
反正切函数的定义:如果y/x = x,则arctan(x) = y。

三角函数的公式大全表格就介绍到这里,希望对大家学习三角函数有所帮助。

高中必背三角函数公式表

高中必背三角函数公式表

高中必背三角函数公式表高中必背三角函数公式表作为高中数学的重要部分,三角函数是很多学生所苦恼的部分,需要反复理解和重复记忆才能掌握好。

今天,我们就来看一下高中必背的三角函数公式表,相信对你的学习有所帮助。

I. 基本三角函数公式1. 正弦函数(sin)sinA = 对边 / 斜边sin A = a/c2. 余弦函数(cos)cos A = 邻边 / 斜边cos A = b/c3. 正切函数(tan)tan A = 对边 / 邻边tan A = a/b4. 正割函数(sec)sec A = 斜边 / 邻边sec A = c/b5. 余割函数(csc)csc A = 斜边 / 对边csc A = c/a6. 割正切函数(cot)cot A = 邻边 / 对边cot A = b/aII. 商数与余数公式1. 正弦函数的商数与余数公式sin (A ± B) = sin A cos B ± cos A sin Bsin 2A = 2sin A cos Asin (π/2 - A) = cos Asin (π + A) = -sin Asin (π - A) = sin Asin (2π - A) = -sin A2. 余弦函数的商数与余数公式cos (A ± B) = cos A cos B ∓ sin A sin B cos 2A = cos² A - sin² Acos (π/2 - A) = sin Acos (π + A) = -cos Acos (π - A) = -cos Acos (2π - A) = cos A3. 正切函数的商数与余数公式tan (A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B) tan² A + 1 = sec² AIII. 其他常用公式1. 三角函数同角变换公式sin (-A) = -sin Acos (-A) = cos Atan (-A) = -tan A2. 三角函数的平方和差公式sin² (A ± B) = sin² A ± 2sin A sin B + sin² B cos² (A ± B) = cos² A ∓ 2cos A cos B + cos² B 3. 三角函数的倍角公式sin 2A = 2sin A cos Acos 2A = cos² A - sin² Atan 2A = (2tan A) / (1 - tan² A)4. 半角公式sin (A/2) = ± √[(1 - cos A) / 2]cos (A/2) = ± √[(1 + cos A) / 2]tan (A/2) = ± √[(1 - cos A) / (1 + cos A)]总结高中数学中,三角函数是考试不可避免的一部分,而掌握好三角函数公式,则是解题的必要条件。

高中数学三角函数公式大全(高一所有的三角函数公式)

高中数学三角函数公式大全(高一所有的三角函数公式)

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 余切:y x =αcot 正割:x r =αsec 余割:yr =αcsc 二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- 四、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -= αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-五、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。

万能公式告诉我们,单角的三角函数都可以用半角的正切..来表示。

六、和差化积公式2cos2sin 2sin sin βαβαβα-+=+ …⑴ 2sin 2cos 2sin sin βαβαβα-+=- …⑵2cos 2cos 2cos cos βαβαβα-+=+ …⑶2sin 2sin 2cos cos βαβαβα-+-=- …⑷ 2sin 2cos 2cos 2sin 22sin sin βαβαβαβαβαβαα-++-+=⎪⎭⎫ ⎝⎛-++= 2sin 2cos 2cos 2sin 22sin sin βαβαβαβαβαβαβ-+--+=⎪⎭⎫ ⎝⎛--+= 两式相加可得公式⑴,两式相减可得公式⑵。

高一数学三角函数公式的详尽归纳

高一数学三角函数公式的详尽归纳

高一数学三角函数公式的详尽归纳三角函数是高中数学中的重要组成部分,掌握三角函数的公式对于解决相关问题至关重要。

本文将对高一数学中涉及的三角函数公式进行详尽的归纳与整理。

1. 基本三角函数定义1.1 正弦函数(sin)正弦函数定义为直角三角形中对边与斜边的比值,即:\[ \sin(\theta) = \frac{\text{对边}}{\text{斜边}} \]1.2 余弦函数(cos)余弦函数定义为直角三角形中邻边与斜边的比值,即:\[ \cos(\theta) = \frac{\text{邻边}}{\text{斜边}} \]1.3 正切函数(tan)正切函数定义为直角三角形中对边与邻边的比值,即:\[ \tan(\theta) = \frac{\text{对边}}{\text{邻边}} \]2. 三角函数的周期性2.1 周期性公式三角函数的周期性可以通过以下公式表示:\[ \sin(x + 2k\pi) = \sin(x) \]\[ \cos(x + 2k\pi) = \cos(x) \]\[ \tan(x + \pi) = \tan(x) \]其中,\( k \) 是任意整数。

3. 三角函数的倍角公式3.1 正弦函数的倍角公式\[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \]3.2 余弦函数的倍角公式\[ \cos(2\theta) = 2\cos^2(\theta) - 1 \]\[ \cos(2\theta) = 1 - 2\sin^2(\theta) \]3.3 正切函数的倍角公式\[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \]4. 三角函数的和差公式4.1 正弦函数的和差公式\[ \sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm\cos(\alpha)\sin(\beta) \]4.2 余弦函数的和差公式\[ \cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp\sin(\alpha)\sin(\beta) \]4.3 正切函数的和差公式\[ \tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)} \]5. 三角函数的半角公式5.1 正弦函数的半角公式\[ \sin(\theta/2) = \pm \sqrt{\frac{1 - \cos(\theta)}{2}} \]5.2 余弦函数的半角公式\[ \cos(\theta/2) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}} \]5.3 正切函数的半角公式\[ \tan(\theta/2) = \frac{\sin(\theta)}{1 + \cos(\theta)} \]6. 三角恒等式6.1 和差化积公式\[ \sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha +\beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) \] \[ \cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha +\beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right) \]6.2 积化和差公式\[ \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) = \sin(\alpha + \beta) \]\[ \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) = \cos(\alpha - \beta) \]7. 三角函数的图像与性质7.1 正弦函数的图像与性质正弦函数的图像为周期波动曲线,最大值为1,最小值为-1。

高一数学必修四三角函数公式

高一数学必修四三角函数公式

倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α *cot α=1一个特殊公式(s ina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。

高中数学三角函数公式大全

高中数学三角函数公式大全

高中数学三角函数公式大全三角函数是数学中重要的概念之一,它在几何、物理、工程等领域广泛应用。

在高中数学中,学习三角函数的公式是不可或缺的一部分。

本文将为你介绍一些常用的高中数学三角函数公式,帮助你更好地掌握这个领域。

1. 正弦函数的公式正弦函数是三角函数中最基本的函数之一,它的公式如下:sin(α) = a / c其中,α为角度,a为直角三角形中的对边,c为斜边。

2. 余弦函数的公式余弦函数也是三角函数中常用的函数,它的公式如下:cos(α) = b / c其中,α为角度,b为直角三角形中的邻边,c为斜边。

3. 正切函数的公式正切函数是常用的三角函数之一,它的公式如下:tan(α) = a / b其中,α为角度,a为直角三角形中的对边,b为邻边。

4. 余切函数的公式余切函数是三角函数中的一种,它的公式如下:cot(α) = b / a其中,α为角度,b为直角三角形中的邻边,a为对边。

5. 正割函数的公式正割函数也是常见的三角函数之一,它的公式如下:sec(α) = c / b其中,α为角度,c为斜边,b为邻边。

6. 余割函数的公式余割函数是一种三角函数,它的公式如下:csc(α) = c / a其中,α为角度,c为斜边,a为对边。

7. 和差公式在处理三角函数的求和与差时,可以使用和差公式。

其中,正弦函数和余弦函数的和差公式为:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)其中,A、B为角度。

8. 倍角公式倍角公式用于求解一个角的两倍角的三角函数值。

其中,正弦函数的倍角公式为:sin(2α) = 2sin(α)cos(α)余弦函数的倍角公式为:cos(2α) = cos²(α) - sin²(α)正切函数的倍角公式为:tan(2α) = 2tan(α) / (1 - tan²(α))9. 平方和差公式平方和差公式用于求解三角函数的平方和差的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数诱导公式
设α为任意角,满足以下公式:公式一:sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
公式二:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
公式三:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
公式四:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
公式五:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
公式六:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
奇变偶不变,符号看象限
两角和与差的三角函数
sin(α+β)=sinα·cosβ+cosα·sinβ
sin(α-β)=sinα·cosβ-cosα·sinβ
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式
sin(2α)=2sinα·cosα
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan^2α) ·
三角形中三角函数基本定理
【正弦定理】
式中R为ABC的外接圆半径【余弦定理】
【勾股定理】在直角三角形(C为直角)中,勾方加股方等于弦方(图1.4),即
勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理.
【正切定理】

【半角与边长的关系公式】
式中,r为ABC的内切圆半径,且
式中S为ABC的面积. 三角函数的图形
各三角函数值在各象限的符号
sinα·cscα cosα·secα tanα·cotα。

相关文档
最新文档