电压互感器与电流互感器的作用原理两者区别
为什么电压互感器不能短路,电流互感器不得开路
为什么电压互感器不能短路,电流互感器不得开路
无论是电流互感器还是电压互感器其原理和变压器都是一样的,区别在于电流互感器二次侧出来的是一次电流成正比的二次电流,其电压很低;而电压互感器二次侧出来的是与一次电压成正比的二次电压,其电流很小,所以电流互感器用于保护和测量一次侧的电流、电压互感器用于保护和测量一次侧的电压。
电压互感器不能短路:
因为电压互感器二次侧线圈匝数本身很少,而且接入阻抗也比较小。
如果短路会产生比较大的短路电流烧坏互感器的绕组。
电流互感器不能开路:
电流互感器二次侧线圈线圈匝数比较多,检测元件提供部分电流产生和一次侧想反的磁通量来抵消铁芯中的磁动势和励磁电流。
如果二次侧线圈开路,则一次侧电流全部成为励磁电流,使铁芯中磁通量增大,铁芯饱和引起发热损坏。
而且二次侧线圈匝数比较多会产生感应电动势,形成高压,危及操作人员和检测设备的安全。
电压互感器及电流互感器的作用、原理及两者区别
电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进展直接测量。
互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。
电流互感器作用及工作原理电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流〔我国标准为5安倍〕,以供测量和继电保护只之用。
大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。
则为了能够对这些线路的电路进展监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。
有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个"钳〞便是穿心式电流互感器。
电流互感器的构造如下列图所示,可用它扩大交流电流表的量程。
在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。
电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。
原线圈串接在待测电路中时,它两端的电压降极小。
副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。
由于I1/I2=Ki〔Ki称为变流比〕所以I1=Ki*I2由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比Ki之乘积。
如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。
电流互感器次级电流最大值,通常设计为标准值5A。
不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。
电流互感器、电压互感器和变压器的区别
电流互感器、电压互感器和变压器的区别
电流互感器和电压互感器原理差不多,在构造上也基本一样,都是两个绕组:一个匝数多、线径细,另外一个匝数少、线径粗。
电压互感器:若匝数多、线径细的绕组是作为一次绕组与被测量的电路并联连接,而匝数少、线径粗的绕组接测量仪表(电压表),则该变压器就是一个电压互感器。
电压互感器实际上是一台工作在空载状态下的降压变压器(因为电压表是高阻表,电流很小,所以是空载。
又因为一次绕组匝数多、二次绕组匝数少,所以是降压)。
电压互感器二次侧不允许短路运行。
电流互感器:若匝数少、线径粗的绕组作为一次绕组与被测量的电路串联连接,而匝数多、线径细的绕组接测量仪表(电流表),则该变压器就是一个电流互感器。
电流互感器实际上是一台工作在短路状态下的升压变压器(因为电流表是低阻表,电流很大,所以相当于短路。
又因为一次绕组匝数少、二次绕组匝数多,所以是升压,而之所以实际电流互感器的二次绕组电压没有升压,是因为它工作在短路状态)。
电流互感器二次侧不允许开路运行:
电流互感器在正常运行时,二次侧电流产生的磁通对一次侧电流产生的磁通起去磁作用,励磁电流很小,铁心中的总磁通也很小,二次侧绕组的感应电动势一般几十伏。
如果二次侧没有形成回路,二次侧电流的去磁作用消失,一次侧电流完全变为励磁电流,引起铁心内磁通剧增,铁心处于高度饱和状态,加之二次侧绕组的匝数很多,根据电磁感应定律,就会在二次侧绕组开路的两端产生很高的电压,其峰值可达数千伏甚至上万伏。
这么高的电压将严重威胁工作人员和设备的安全。
再者,由于铁心磁感应强度剧增,使铁心损耗大大增加而严重发热,甚至烧坏绝缘。
因此,通常在电流互感器二次侧串联一较小的电阻。
电压互感器和电流互感器在作用原理上有什么区别
电压互感器主要用于测量电压,电流互感器用于测量电流。
(1)电流互感器二次侧可以短路,但不能开路;电压互感器二次侧可以开路,但不能短路。
(2)相对于二次侧的负载来说,电压互感器的一次内阻抗较小,以至可以忽略,可以认为电压互感器是一个电压源;而电流互感器的一次内阻很大,以至认为是一个内阻无穷大的电流源。
(3)电压互感器正常工作时的磁通密度接近饱和值,系统故障时电压下降;磁通密度下降,电流互感器正常工作时磁通密度很低,而系统发生短路时一次侧电流增大,使磁通密度大大增加,有时甚至远远超过饱和值,会造成二次输出电流的误差增加。
因此,尽量选用不易饱和的电流互感器。
电流互感器和电压互感器
在瞬态过程中,由于电场和磁场的能量发生较大的变化,可能会使绕组中的电 压和电流超过额定值许多倍,即出现所谓过电压和过电流现象,虽然瞬态过程 持续的时间很短,但却可能使变压器遭到破坏,因此,对这些问题应进行分析 研究,找出它的变化规律,对变压器的设计、制造、保护和运行都是十分必要 的。
变压器的瞬态过程
图5-3 变比和联结组相同时两台 变压器并联时的简化等效电路
§5-3变比相同而短路阻抗标么值不相等的变压器并联运行时的负载分配
Z uk 2 1 I S 2 I S Z uk 1
* 1 * 2 * 1 * 2 * k2 * k1
由此可知:负载系数和短路阻抗标幺值(或短路电压)成反比。 若为多台变压器并联,则
§6-2变压器空载合闸时的瞬态过程
变压器空载合闸时的瞬态过程
变压器在稳态运行时.空载激磁电流是额定电流的(1~10)%。但在空载接通
电源的瞬间,由于变压器铁心存在饱和现象,可能出现很大的冲击电流,如不
采取适当的措施,则可能使开关跳闸,以致变压器不能顺利投入电网。
i0
u1
r1 w1
w2
图6-1 变压器空载接通电源
联运行情况,要求各变压器满足联结组相同、变比相等,以及
短路阻抗标么值相等。变比相等和联结组相同保证空载时不产 生环流,是变压器能否并联的前提。短路阻抗标么值相等则保 证了负载按变压器容量成比例分配,若短路阻抗标么值不相等, 则负荷系数与短路阻抗标么值成反比。
互感器
• TV的一次内阻很大,可以认为是电压源。 TA的一次内阻很小,可以认为是电流源。 ( × )P109 • 电流互感器的角度误差与二次所接负载的 大小和功率因数有关。 ( √ ) • 当电流互感器10%误差不满足时,可以采 取并联备用电流互感器使允许负载增加1倍。 ( × )P110
• 电流互感器测量误差分为数值(变比)误差和相 位(角度)误差两种。 ( √ )P110 • 电流互感器在运行和使用中造成的测量误差过大 是电流互感器铁芯饱和或二次负载过大所致。 ( √ )P110 • CT无论在什么情况下都能接近于一个恒流源。 ( × )P111 • 电流互感器二次接成三角形比接成完全星型的负 载能力强。 ( × ) • 变比相同、型号相同的电流互感器,其二次接成 星型时比接成三角型所允许的二次负荷要大。 ( √ )P114
• • • • • •
互感器有哪些异常情况下应立即停止运行? 1、内部有放电声; 2、有焦臭味或冒烟、喷油; 3、套管破裂、闪络放电; 4、温度升高并不断发展; 5、严重漏油。
互感器在安装、更换和检修后 应验收哪些项目?
• 一个10kV变比为200/5,容量是6VA的电 流互感器,它可带10Ω的负荷 ( × )p78 • 下列( )措施可以满足电流互感器10%误 差的要求。 ( acd ) • ( A ) 增大二次侧电缆截面 ( B ) 并接备 用电流互感器 ( C ) 改用容量较高的二次 侧绕组 ( D ) 提高电流互感器变化
• 变电站的CT距继保室较远时,应采用额定 二次电流为1A的CT。 ( √ ) P116 • CT的容量是根据电缆长度、额定电流以及 接线方式、负载功耗等来计算出来的 • 500kV变电站CT额定电流一般选择1A,主 要考虑CT距离保护、测控装置的距离较远, 如果选择5A的额定电流,同样情况下,该 CT的容量=25×额定电流1A的CT的容量。
简述电压互感器和电流互感器的工作原理
简述电压互感器和电流互感器的工作原理
电压互感器和电流互感器是电力系统中常用的测量设备,用于测量电压和电流的变化。
它们的工作原理如下所述。
电压互感器(Voltage Transformer,简称VT)是一种将高电压转换为低电压的测量设备。
它由一个一次绕组和一个二次绕组组成。
一次绕组通常连接到高电压系统,而二次绕组则连接到测量仪表或保护装置。
在正常运行时,一次绕组将高电压引入,通过互感作用,使电压在二次绕组上产生一个相应的降压信号。
因此,可以使用二次绕组上的低电压进行准确测量和保护操作。
电流互感器(Current Transformer,简称CT)是一种测量电流的设备,它将高电流转换为低电流。
它由一个一次绕组和一个二次绕组组成,类似于电压互感器。
一次绕组通过其所连接的导线,使电流通过。
通过互感作用,电流在二次绕组上产生一个相应比例的减小。
因此,可以使用二次绕组上的低电流进行精确的测量和保护。
电压互感器和电流互感器的工作原理基于互感现象。
互感是指两个绕组通过电磁感应相互耦合,导致一个绕组上的信号在另一个绕组上产生感应电动势。
根据法拉第定律,互感电动势的大小与绕组之间的转数比例成正比,并与主导线上的电流或电压成正比。
总结一下,电压互感器和电流互感器是测量电压和电流的关键设备。
它们利用互感作用将高电压和高电流转换为低电压和低电流,以便用于测量和保护。
这种原理确保了精确和可靠的测量结果,对于电力系统的运行和维护至关重要。
电气工程知识:电压互感器和电流互感器的区别是什么.doc
电气工程知识:电压互感器和电流互感器的区别是什么答:主要区别是正常运行时工作状态大不相同,主要表现为: 1)电流互感器二次可以短路,但是不得开路;电压互感器二次可以开路,但是不得短路2)对于二次侧的负荷来说,电压互感器的一次内阻抗较小甚至可以忽略不计,大可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。
3)电压互感器正常工作时的磁通密度接近饱和值,故障时候磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值。
4)电压互感器是用来测量电网高电压的特殊变压器,它能将高电压按规定比例转换为较低的电压后,再连接到仪表上去测量。
电压互感器,原边电压无论是多少伏,而副边电压一般均规定为100伏,以供给电压表、功率表及千瓦小时表和继电器的电压线圈所需要的电压。
把大电流按规定比例转换为小电流的电气设备,称为电流互感器。
电流互感器副边的电流一般规定为5安或1安,以供给电流表、功率表、千瓦小时表和继电器的电流线圈电流。
电压互感器与电流互感器作用区别完整版
电压互感器与电流互感器作用区别Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】电流互感器与电压互感器的区别电流互感器的作用:电流互感器是电力系统中很重要的一个一次设备,其原理是根据电磁感应原理而制造的.它的一次线圈匝数很少,通常采用单匝线圈,即一根铜棒或一根铜排.二次线圈主要接测量仪表或继电器的线圈.电流互感器的二次侧不能开路运行,当二次侧开路时,一次侧的电流主要用于激磁,这样会在二次侧感应出很高的电压,从而危及二次设备和人身的安全,也会造成电流互感器烧毁. 其主要作用是:1、将很大的一次电流转变为标准的5安培;2、为测量装置和继电保护的线圈提供电流;3、对一次设备和二次设备进行隔离。
电压互感器和电流互感器在作用原理上的区别主要区别是正常运行时工作状态大不相同,主要表现为:1)电流互感器二次可以短路,但是不得开路;电压互感器二次可以开路,但是不得短路2)对于二次侧的负荷来说,电压互感器的一次内阻抗较小甚至可以忽略不计,大可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。
3)电压互感器正常工作时的磁通密度接近饱和值,故障时候磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值.4)电压互感器是用来测量电网高电压的特殊变压器,它能将高电压按规定比例转换为较低的电压后,再连接到仪表上去测量。
电压互感器,原边电压无论是多少伏,而副边电压一般均规定为100伏,以供给电压表、功率表及千瓦小时表和继电器的电压线圈所需要的电压。
把大电流按规定比例转换为小电流的电气设备,称为电流互感器。
电流互感器副边的电流一般规定为5安或1安,以供给电流表、功率表、千瓦小时表和继电器的电流线圈电流。
电压互感器的作用是:把高电压按比例关系变换成100V或更低等级的标准二次电压,供保护、计量、仪表装置使用。
电压互感器与电流互感器作用区别
电压互感器与电流互感器作用区别————————————————————————————————作者:————————————————————————————————日期:电流互感器与电压互感器的区别电流互感器的作用:电流互感器是电力系统中很重要的一个一次设备,其原理是根据电磁感应原理而制造的.它的一次线圈匝数很少,通常采用单匝线圈,即一根铜棒或一根铜排.二次线圈主要接测量仪表或继电器的线圈.电流互感器的二次侧不能开路运行,当二次侧开路时,一次侧的电流主要用于激磁,这样会在二次侧感应出很高的电压,从而危及二次设备和人身的安全,也会造成电流互感器烧毁.其主要作用是:1、将很大的一次电流转变为标准的5安培;2、为测量装置和继电保护的线圈提供电流;3、对一次设备和二次设备进行隔离。
电压互感器和电流互感器在作用原理上的区别主要区别是正常运行时工作状态大不相同,主要表现为:1)电流互感器二次可以短路,但是不得开路;电压互感器二次可以开路,但是不得短路2)对于二次侧的负荷来说,电压互感器的一次内阻抗较小甚至可以忽略不计,大可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。
3)电压互感器正常工作时的磁通密度接近饱和值,故障时候磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值.4)电压互感器是用来测量电网高电压的特殊变压器,它能将高电压按规定比例转换为较低的电压后,再连接到仪表上去测量。
电压互感器,原边电压无论是多少伏,而副边电压一般均规定为100伏,以供给电压表、功率表及千瓦小时表和继电器的电压线圈所需要的电压。
把大电流按规定比例转换为小电流的电气设备,称为电流互感器。
电流互感器副边的电流一般规定为5安或1安,以供给电流表、功率表、千瓦小时表和继电器的电流线圈电流。
电压互感器的作用是:把高电压按比例关系变换成100V或更低等级的标准二次电压,供保护、计量、仪表装置使用。
电压互感器、电流互感器原理
电压互感器、电流互感器原理电压互感器、电流互感器是电力系统中常用的测量装置,用于测量高电压和大电流。
本文将分别从电压互感器和电流互感器的原理进行介绍。
一、电压互感器原理电压互感器,简称VT,又称电压互感器、电压互感器、电压互感器等,是一种用于测量高压电缆和高压设备中电压的测量装置。
其工作原理基于互感器的原理,即利用磁感应现象。
电压互感器的主要组成部分包括铁芯、一次绕组、二次绕组和外壳。
一次绕组与高压设备并联连接,二次绕组与测量仪表相连。
当高压设备通电时,一次绕组中产生的磁场会通过铁芯传递到二次绕组中,从而在二次绕组中诱导出一个与一次绕组中电压成正比的电压。
这样,通过测量二次绕组中的电压,就可以得到高压设备中的电压值。
二、电流互感器原理电流互感器,简称CT,又称电流互感器、电流互感器等,是一种用于测量高电流的测量装置。
其工作原理也是基于互感器的原理。
电流互感器的主要组成部分包括铁芯、一次绕组、二次绕组和外壳。
一次绕组与高电流设备串联连接,二次绕组与测量仪表相连。
当高电流通过一次绕组时,会在铁芯中产生一个磁场,这个磁场会通过铁芯传递到二次绕组中,从而在二次绕组中诱导出一个与一次绕组中电流成正比的电流。
通过测量二次绕组中的电流,就可以得到高电流设备中的电流值。
三、电压互感器和电流互感器的特点1. 测量范围广:电压互感器和电流互感器能够测量较大范围内的电压和电流,适用于不同电力系统和设备的测量需求。
2. 高精度:电压互感器和电流互感器具有较高的测量精度,可以满足电力系统对精确测量的要求。
3. 绝缘性能好:电压互感器和电流互感器在设计和制造过程中,采用了一系列的绝缘措施,确保了其在高电压和大电流环境下的安全可靠性。
4. 动态性能好:电压互感器和电流互感器响应速度快,能够准确测量瞬态和稳态下的电压和电流。
四、电压互感器和电流互感器的应用电压互感器和电流互感器广泛应用于电力系统中的各种测量和保护装置中,如电能计量、保护继电器、故障录波器等。
电压互感器与电流互感器的区别
电压互感器与电流互感器的区别本文总结了电压互感器与电流互感器之间的区别,供大家学习参考。
互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。
基本区别:常用的电压互感器,一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/√3 两种;而常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。
1工作的区别相同之处:隔离保护;扩大仪表及继电器等功能;基本组成都是铁芯、绕组外壳和二次部分都必须可靠接地。
不同之处:电流互感器:变换电流;电压互感器:变换电压。
2接线方式的区别电流互感器:一次绕55组串联接在一条线路中,二次接电流表或电流线圈,不许开路。
电压互感器:一次绕组并联接在两条线路中,二次接电压表或电压线圈,不许短路。
3原理区别电压互感器的原理:电压互感器的原理与变压器相似,如图1所示。
一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。
根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为:电压互感器原理电流互感器的原理:在原理上也与变压器相似,如图2所示。
与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。
即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。
电流互感器的原理4绕组端子和极性差异:电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。
常见的用A和X 分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。
电压互感器(pt)和电流互感器(ct)区别原理
电压互感器(pt)和电流互感器(ct)区别原理
电压互感器(pt)和电流互感器(ct)在原理上是⼀样的,它们都是利⽤了电磁转换的原理,不同的是磁路不同,其中电压互感器的⼀次和⼆次流过的磁通是相同的,两侧的电势合匝数成正⽐,所以根据这个原理制作的电压互感器可以测量电压,电压互感器是并在要测的电压上,⼆次就可以感应出相应的电压,电压⽐和匝数⽐倒数;⽽电流互感器是让待测电流流过互感器的线圈内部,从⽽在⼆次产⽣相应电流,⼀次电流*⼀次匝数=⼆次电流*⼆次匝数,根据磁通可以分析出电压互感器不能短路,短路回产⽣过流,电流互感器不能开路,开路会产⽣⾼压,电压互感器的等级有220kv/110v,110kv/110V,10kv/100v等各个电压等级,电流互感器有⼆次为1A和5A两⼤类,如100/5,100/1,200/1等多种型号。
互感器专业的企业⽣产制造商,⼭东探索智能科技有限公司办公室地址位于沂蒙⼭⾰命⽼区--临沂,⼭东省临沂⾼新区宝⼭
路156,于2016年05⽉09⽇在临沂⾼新技术产业开发区市场监督管理局注册成⽴,注册资本为300万,在公司发展壮⼤的3年⾥,我们始终为客户提供好的产品和技术⽀持、健全的售后服务,我公司主要经营智能电⼦产品、智能电⽓产品、磁性材料及应⽤产品、半导体材料及应⽤产品的技术开发及⽣产
美国,中国,俄罗斯,⽇本等国都有合作,质量过硬,技术⼀流值得选择合作。
联系⼈:王增发158- ------0655--------5098。
电压互感器与电流互感器的作用原理及两者区别
电压互感器与电流互感器的作用原理及两者区别Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。
互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。
电流互感器作用及工作原理电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。
大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。
那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。
有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。
电流互感器的结构如下图所示,可用它扩大交流电流表的量程。
在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。
电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。
原线圈串接在待测电路中时,它两端的电压降极小。
副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。
由于I1/I2=Ki(Ki称为变流比)所以I1=Ki*I2由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比Ki之乘积。
如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。
电流互感器和电压互感器
图4-43是户内高压LQJ-10型电流互感器的外形图。它有两个铁心和两个二次绕组,分别为0.5级和3级、 0.5级用于测量,3级用于继电保护。
图4-44是户内低压LMZJI-0 5型(500~800/SA)的外形图。它不含一次绕组,穿过其铁心的母线就是其 一次绕组(相当于1匝)。它用于500V及以下的配电装置中。
或者加大二次接线的截面。电流互感器 二次接线的铜芯截面不得小于1.5mm2,铝 芯截面木得小于2.5 mm2(通常采用钢芯 线)。
• 关于电流互感器短路稳定度的校验,现在有的 新产品如LZZB6-10等直接给出了动稳定电流 峰值和1s热稳定电流有效值,因此其动稳定度 可按式(3-51)校验,其热稳定度可按式3- 62)校验。但电流互感器的大多数产品是给出 动稳定倍数和热稳定倍数。
I0 N1
• 突然增大几十倍,因而会产生如下严重后果:
• ①铁心由于磁通剧增而过热,并产生剩磁,降 低铁心准确度级。
• ②由于电流互感器二次绕组匝数远比一次绕组 多,所以可感应出危险的高电压,危及人身和 设备安全。
• 因此电流互感器在工作时二次侧不允许开路。 在安装时,其二次接线要求牢靠,且不允许接 入熔断器和开关。
2.电流互感器的二次侧有一端必须接地
• 互感器二次侧一端接地,是为了防止其 一、二次绕组间绝缘击穿时,一次侧的 高电压窜入二次侧,危及人身和设备的 安全。
3.电流互感器在连接时,要注意其端子的极性
• 按照规定,我国互感器和变压器的绕组 端子,均采用“减极性”标号法。
• 所谓“减极性”标号法,就是互感器按 图4-46所示接线时,一次绕组接上电压, 二次绕组感应出电压。
第六节电流互感器和电压互感器
一、概述 二、电流互感器 三、电压互感器
电压互感器与电流互感器知识点比较
14.
使用特征
要求二次侧所接元件具有高阻抗
要求二次侧所接元件是低阻抗元次侧所接元件阻抗大则准确度降低
16.
使用特征
二次回路编号为6**
二次回路编号4**
17.
使用特征
二次线导线截面为1.5平方毫米
二次线导线截面不低于4平方毫米
3.
原理特征
一次侧线圈流过的电流值与其二次侧的负载大小有关
一侧的电流与二次侧负载大小无关
4.
产品特征
可制成单相或三相的为一体的产品
只做成单相的一体的产品
5.
产品特征
同一电压等级的产品只有一种变比
同一电压等级产品有多种变比
6.
型号特征
型号的第一个字母是J
型号的第一个字母是l
7.
结构特征
一次绕组匝数多
一次绕组匝数少,甚至只是一匝(一次线路直接穿过)
电压互感器与电流互感器知识点比较
曹大涌
一、相同点
原理相同,均为电磁感应(电容电压抽取装置除外);二次侧线圈均要接地。
二、电压互感器与电流互感器的不同点
序号
分类
电压互感器
电流互感器
1.
作用
将高电压转变为标准的低电压(100V)
将大电流转变为标准的小电流(5A或1A)
2.
原理特征
相当于空载运行的变压器
相当于短路运行的变压器
8.
结构特征
二次匝数少
二次匝数多
9.
使用特征
一次绕组并联于回路
一次绕组串联于回路
10.
使用特征
二次绕组与二次回路元件并联
二次绕组与二次回路元件串联
11.
电流互感器与电压互感器的主要区别详解
电流互感器与电压互感器的主要区别详解华天电力介绍主要区别1.将高电流值转换为低值的变压器称为电流互感器,而将高电压值转换为低值的变压器称为电压互感器。
2.电流互感器没有其他名称。
另一方面,电压互感器也称为电压互感器。
3.电流互感器与电路串联连接。
反之,电压互感器与电路并联。
4.电流互感器的初级回路匝数很少。
另一方面,电压互感器的初级回路匝数较多。
5.电流互感器二次回路匝数多,电压互感器二次回路匝数少。
6.电流互感器的初级绕组传输要测量的电流。
另一方面,电压互感器的初级绕组传输要测量的电压。
7.电流互感器的二次绕组与仪表的电流绕组相连,而电压互感器的二次绕组与仪表或仪表相连。
8.电流互感器的量程为5A或1A。
另一方面,电压互感器的范围是110v。
9.电流互感器变比高,电压互感器变比低。
10.电流互感器在其输入端具有恒定电流。
另一方面,电压互感器的输入端是恒压。
11.电流互感器与次级负载没有联系。
相反,电压互感器取决于次级负载。
12.电流互感器采用低阻抗。
另一方面,电压互感器具有高阻抗。
13.在电流互感器中,磁通密度和励磁电流在很宽的范围内变化,而在电压互感器中,磁通密度和励磁电流在很窄的范围内变化。
14.电流互感器有闭铁心和绕线铁心两种。
另一方面,电压互感器也有电磁式和电容电压式两种。
15.通过使用电流互感器,5 安培的电流表可用于测量200 安培等高电流。
另一方面,在电压互感器的帮助下,120 V 的电压表可用于测量高电位或11 kV 等电压。
16.电流互感器是一种升压变压器,而电压互感器是一种降压变压器。
17.电流互感器用于计算电流和功率,操作保护继电器和监控电网运行等,而电压互感器用于测量,作为电源和操作保护继电器等。
电流互感器原理和电压互感器原理
电流互感器原理和电压互感器原理互感器原理在供电用电的线路中电流电压大大小小相差悬殊从几安到几万安都有。
为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。
电流互感器就起到变流和电气隔离作用。
较早前,显示仪表大部分是指针式的电流电压表,所以电流互感器的二次电流大多数是安培级的(如5A等)。
现在的电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5 V、4-20mA等)。
微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。
微型电流互感器也有人称之为“仪用电流互感器”。
(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。
)电流互感器原理线路图微型电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而微型电流互感器变换的是电流罢了。
如图绕组N1接被测电流,称为一次绕组(或原边绕组、初级绕组);绕组N2接测量仪表,称为二次绕组(或副边绕组、次级绕组)。
微型电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。
微型电流互感器在额定工作电流下工作时的电流比叫电流互感器额定电流比,用K n表示。
K n=I1n/I2n微型电流互感器大致可分为两类,测量用电流互感器和保护用电流互感器。
测量用电流互感器测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。
测量用微型电流互感器主要要求:1、绝缘可靠,2、足够高的测量精度,3、当被测线路发生故障出现的大电流时互感器应在适当的量程内饱和(如500%的额定电流)以保护测量仪表。
保护用电流互感器保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。
保护用微型电流互感器的工作条件与测量用互感器完全不同,保护用互感器只是在比正常电流大几倍几十倍的电流时才开始有效的工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别
电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。
互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。
电流互感器作用及工作原理
电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。
大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。
那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。
有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。
电流互感器的结构如下图所示,可用它扩大交流电流表的量程。
在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。
电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。
原线圈串接在待测电路中时,它两端的电压降极小。
副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。
由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2
由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。
如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。
电流互感器次级电流最大值,通常设计为标准值5A。
不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。
为了安全起见,电流互感器副线圈的一端和铁壳必须接地。
电流互感器规格型号识别方法
电流互感器的型号是由2~4位拼音字母及数字组成。
通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。
横线后面的数字表示绝缘结构的电压等级(4级)。
电流互感器型号中字母的含义如下:
L:在第一位,表示电流互感器;
D:在第二位,表示单匝贯穿式,在型号的最后一个字母时表示差动保护用(部分生产厂用B或C标出)
F:在第二位,表示复匝贯穿式
Q:在第二位,表示线圈型,在第四位,表示加强型;
M:在第二位,表示母线式;
R:在第二位,表示装入式;
A:在第二位,表示穿墙式;
C:在第二位,表示瓷套式,在第三位,表示瓷绝缘;
Z:在第三位,表示浇注绝缘;
J:在第三位,表示加大容量加强型,在第四位,表示加大容量;
G:在第三位,表示改进型;
W:在第三位,表示户外型;
电压互感器的作用及工作原理
电压互感器基本型式包括两组绕有导线之线圈,并且彼此以电感方式称合一起。
当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。
电压互感器简称PT,其工作原理和变压器很相像,都是用来变换线路上的电压。
在测量交变电流的大电压时,为能够安全测量在火线和
地线之间并联一个变压器(接在变压器的输入端),这个变压器的输出端接入电压表,由于输入线圈的匝数大于输出线圈的匝数,因此输出电压小于输入电压,电压互感器就是降压变压器。
电压互感器的作用:
1、把高电压按比例关系变换成100V或更低等级的标准二次电压,供保护、计量、仪表装置使用。
2、使用电压互感器可以将高电压与电气工作人员隔离。
3、当二次负载阻抗减小时,二次电流增大,使得一次电流自动增大一个分量来满足一二次侧之间的电磁平衡关系。
电压互感器接线图:
1.一个单相电压互感器的接线
这种接线方式在三相线路上,只能测量某两相之间的线电压,用于连接电压表、频率表及电压继电器等。
2.两个单相这种接线方式又称不完全星形接线,可以用来测量三个线电压,供仪表、继电器接于三相三线制电路的各个线电压。
这种接线方式又称不完全星形接线,可以用来测量三个线电压,供仪表、继电器接于三相三线制电路的各个线电压。
3.三个单相电压互感器Y。
/Y。
形接线
这种接线方式能满足仪表和微机保护装置选用相电压和线电压的要求。
在一次绕组中点接地情况下,也可装用绝缘监察电压表。
4.三个单相三绕组电压互感器或一个三相五芯柱三绕组电压互感器Y。
/Y。
/
这种接线方式在10kV中性点不接地系统中应用广泛,它既能测量线电压、相电压并能组成绝缘监察装置和供单相接地保护用。
接成Y。
形的二次绕组称为基本二次绕组,用来接仪表、继电器及绝缘监察电压表;接成(开口三角形)的二次绕组,称为辅助二次绕组,用来连接监察绝缘用的电压继电器。
在系统正常运行时,开口三角形两端的电压接近于零,当系统发生一相接地时,开口三角形两端出现零序电压,使电压继电器吸合,发出接地预告信号。
电压互感器与电流互感器的区别
电压互感器与电流互感器的主要区别是正常运行时工作状态很不相同,表现为:
1)电流互感器二次可以短路,但不得开路;电压互感器二次可以开路,但不得短路;
2)相对于二次侧的负荷来说,电压互感器的一次内阻抗较小以至可以忽略,可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。
3)电压互感器正常工作时的磁通密度接近饱和值,故障时磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值。
知识小课堂:如何使用电压互感器测量交流电路线电压经过电压互感器测量单相电压电路:在交流电路中,测量电压往往采用电压互感器和量程为100V的交流电压表,这样既扩大了仪表量程,又比较安全。
使用电压互感器测量单相电压的电路如下:
经过电压互感器测量单相电压电路
使用电压互感器时应注意:
电压互感器不允许短路,因此,一、二次绕组都接有熔断器。
为了安全,二次绕组的一端必须可靠接地。
经过两个单相电压互感器测量三相线电压电路:
经过两个单相电压互感器测量三相线电压电路经三相电压互感器测三相线电压电路:
经三相电压互感器测三相线电压电路。