多元线性回归概述
多元线性回归模型
第三章多元线性回归模型一、名词解释1、多元线性回归模型:在现实经济活动中往往存在一个变量受到其他多个变量影响的现象,表现在线性回归模型中有多个解释变量,这样的模型被称做多元线性回归模型,多元是指多个解释变量2、调整的可决系数R2:又叫调整的决定系数,是一个用于描述多个解释变量对被解释变量的联合影响程2 2-2 2 门度的统计量‘克服了R随解释变量的增加而增大的缺陷,与R的矢系为R2=1 -(1 -R2)-n — k —1 3、偏回归系数:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该变量增加1单位对被解释变量带来的平均影响程度。
4、正规方程组:采用OLS方法估计线性回归模型时,对残差平方和矢于各参数求偏导,并令偏导数为0后得到的方程组,其矩阵形式为XX A XYo5、方程显著1•生检验:是针对所有解释变量对被解释变量的联合影响是否显著所作的检验,旨在对模型中被解释变量与解释变量之间的线性矢系在总体上是否显著成立作岀判断。
、单项选择题1、C : F统计量的意义2、A: F统计量的定义22 Z ei3、B :随机误差项方差的估计值:? ・n _k_14、A :书上P92和P93公式5、C: A参看导论部分内容;B在判断多重共线等问题的时候,很有必要;D在相同解释变量情况下可以衡量6、C :书上P99,比较F统计量和可决系数的公式即可7、A :书P818、D : A截距项可以不管它;B不考虑betaO ;C相矢矢系与因果矢系的辨析9、B :注意!只是在服从基本假设的前提下,统计量才服从相应的分布10、 D : AB不能简单通过可决系数判断模型好坏,还要考虑样本量、异方差等问题;三、多项选择题1、ACDE :概念性2、BD :概念性3、BCD :总体显著,则至少一个参数不为04、BC :参考可决系数和F统计量的公式5、AD :考虑极端情况,ESS=O,可发现CE错四、判断题、1 ' " 2、” 3 > X 4 > X:调整的可决系数5、”五、简答题1、答:多元线性回归模型与一元线性回归模型的区别表现在如下几个方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了个“解释变量之间不存在线性相矢尖系”的假定:三是多元线性回归模型的参数估计式的表达更为复杂。
多元线性回归模型
Cov( X ji , i ) 0
j 1,2, k
假设4,随机项满足正态分布
i ~ N (0, 2 )
上述假设的矩阵符号表示 式:
假设1,n(k+1)维矩阵X是非随机的,且X的秩=k+1,
即X满秩。
回忆线性代数中关于满秩、线性无关!
假设2,
E (μ)
E
1
E (1 )
0
n E( n )
X ki ) ) X 1i ) X 2i
Yi Yi X 1i Yi X 2i
(ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ) X ki Yi X ki
解该( k+1)个方程组成的线性代数方程组,即
可得到(k+1) 个待估参数的估计值
$ j
,
j
0,1,2, ,
k
。
□正规方程组的矩阵形式
en
二、多元线性回归模型的基本假定
假设1,解释变量是非随机的或固定的,且各X之间互不 相关(无多重共线性)。
假设2,随机误差项具有零均值、同方差及不序列相关 性。
E(i ) 0
i j i, j 1,2,, n
Var
(i
)
E
(
2 i
)
2
Cov(i , j ) E(i j ) 0
假设3,解释变量与随机项不相关
这里利用了假设: E(X’)=0
等于0,因为解释变 量与随机扰动项不相 关。
3、有效性(最小方差性)
ˆ 的方差-协方差矩阵为
Co(v ˆ) E{[ˆ E(ˆ)][ˆ E(ˆ)]}
E[(ˆ )(ˆ )]
E{([ X X)-1X ]([ X X)-1X ]}
计量经济学-多元线性回归模型
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断
多元线性回归logistic回归
20
(四)自变量的筛选
基本思路:尽可能将回归效果显著的自变量选入方程 中,作用不显著的自变量排除在外。 (1)全局择优法(all possible subsets selection): (2)逐步选择法
前进法(Forward selection) 后退法(Backward elimination) 逐步法(Stepwise)
Sum of Square s
1
Re g re ssi o n
13 3.71 1
df Me an Square
4
33 .4 28
F
S i g.
8.278 .000a
Re si dua l
88 .8 41
22
4.03 8
To tal
22 2.55 2
26
a. P redict ors: (Const ant ), 总 胆 固醇 x1, 胰 岛 素x3, 糖 化 血红 蛋 白 x4, 甘 油 三脂 x2
β0为回归方程的常数项(constant),表示各自变量均为0时y的平 均值;
m为自变量的个数; β1、β2、βm为偏回归系数(Partial regression coefficient)
意义:如β1 表示在X2、X3 …… Xm固定条件下,X1 每增减 一个单位对Y 的效应(Y 增减β个单位)。 e为去除m个自变量对Y影响后的随机误差,称残差(residual)。
Sig. .047 .701 .099 .036 .016
将总胆固醇(X1) 剔除。 注意:通常每次只剔除关系最弱的一个因素。
对于同一资料,不同自变量的t值可以相互比较,t的绝对
值越大,或P越小,说明该自变量对Y所起的作用越大。
多因变量的多元线性回归课件
contents
目录
• 引言 • 多因变量的多元线性回归模型 • 多因变量的多元线性回归的评估指标 • 多因变量的多元线性回归的实例分析 • 多因变量的多元线性回归的优缺点与改
进方向 • 多因变量的多元线性回归在实际应用中
的注意事项
01
引言
多元线性回归的定义与背景
多元线性回归的定义
模型选择
根据实际问题和数据特点,选择合适的多元线性回归模型,如普通多元线性回 归、岭回归、Lasso回归等。
评估指标选择
选择合适的评估指标对模型进行评估,如均方误差(MSE)、均方根误差( RMSE)、决定系数(R^2)等。
模型解释与应用场景
模型解释
对选定的多元线性回归模型进行详细解释,包括模型的假设条件、参数意义、适 用范围等方面。
改进方向
验证假设
在应用多元线性回归之前,需要对假设条件 进行验证,确保满足条件。
引入其他模型
如果多元线性回归不适用,可以考虑引入其 他模型,如支持向量机、神经网络等。
降维处理
如果自变量数量过多,可以考虑进行降维处 理,减少计算复杂度。
数据预处理
对数据进行预处理,如缺失值填充、异常值 处理等,以提高回归结果的准确性。
岭回归
当自变量之间存在多重共 线性时,可以使用岭回归 来估计模型的参数。
模型的假设检验
01
02
03
04
线性性检验
检验自变量和因变量之间是否 存在线性关系。
共线性检验
检验自变量之间是否存在多重 共线性。
异方差性检验
正态性检验
检验误差项是否具有相同的方 差。
检验误差项是否服从正态分布。
预测算法之多元线性回归
预测算法之多元线性回归多元线性回归是一种预测算法,用于建立多个自变量与因变量之间的关系模型。
在这种回归模型中,因变量是通过多个自变量的线性组合进行预测的。
多元线性回归可以用于解决各种问题,例如房价预测、销售预测和风险评估等。
多元线性回归的数学表达式可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1、X2、..、Xn是自变量,β0、β1、β2、..、βn是相应的回归系数,ε是误差项。
多元线性回归的主要目标是找到最佳的回归系数,以最小化预测误差。
这可以通过最小二乘法来实现,最小二乘法是一种优化方法,可以最小化实际值与预测值之间的误差平方和。
多元线性回归可以有多种评估指标,以衡量模型的拟合程度和预测效果。
其中,最常用的指标是R平方(R2),它表示因变量的变异中可以被自变量解释的比例。
R平方的取值范围在0和1之间,越接近1表示模型越好地解释了数据的变异。
多元线性回归的模型选择是一个关键问题,尤其是当面对大量自变量时。
一个常用的方法是通过逐步回归来选择最佳的自变量子集。
逐步回归是一种逐步加入或剔除自变量的方法,直到找到最佳的模型。
在应用多元线性回归进行预测时,需要注意以下几个方面。
首先,确保所有自变量和因变量之间存在线性关系。
否则,多元线性回归可能无法得到准确的预测结果。
其次,需要检查自变量之间是否存在多重共线性问题。
多重共线性会导致回归系数的估计不可靠。
最后,需要通过交叉验证等方法来评估模型的泛化能力。
这样可以确保模型对新数据具有较好的预测能力。
总结起来,多元线性回归是一种强大的预测算法,可以用于建立多个自变量与因变量之间的关系模型。
通过合理选择自变量和优化回归系数,可以得到准确的预测结果,并帮助解决各种实际问题。
但是,在应用多元线性回归时需要注意问题,如线性关系的存在、多重共线性问题和模型的泛化能力等。
多元线性回归
– C p 选择法
三、自变量选择
逐步选择法:基于偏回归平方和引入或剔
除一个自变量 前进法
– 可以去掉高度相关的自变量 – 后续变量的引入可能会使先进入的变量不 显著
后退法
– 考虑了自变量的组合作用 – 自变量较多或高度相关时,结果不准确
逐步回归法
多元线性回归的应用
影响因素分析
– 筛选、比较各因素对因变量的作用
总自由度 = 总样本数- 1
方差分析表中参数的计算(续)
F值 的自由度:
分子自由度:为回归自由度(p) 分母自由度:为误差(剩余)自由度
2) 回归方程的显著性检验及评价(二)
方程的评价 – 决定系数(R2) 说明自变量能解释Y变化的百分比,说 明模型对数据拟合程度,(0,1) – 复相关系数 用来度量Y与多个自变量间的线性相 关程度。
三、自变量选择
为什么要进行变量选择
– 自变量不一定都对因变量有显著意义(将不
重要的自变量引入方程,会降低模型的精度) – 变量之间存在共线性
目的
– 尽可能将回归效果显著的自变量选入方程,
作用不显著的自变量则排除在外。
三、自变量选择
全局择优法
– 对自变量各种不同的组合建立的方程
进行比较,从全部组合中找出“最优” 的方程。 2 R – 校正决定系数 c 选择法:
2. 方程的建立
1)方程中参数的求解 采用最小二乘法原理求解正规方程组, 得到b1 ,…, bm,进一步得到b0。
200 190 180 170 160 150 140 130 120 110 100 600 650 700 750 800 850 900 950 1000
多元线性回归 名词解释
多元线性回归名词解释多元线性回归(MultipleLinearRegression)是一种统计学模型,主要用来分析自变量和因变量之间的关系,它可以反映出某一种现象所依赖的多个自变量,从而更好地分析和捕捉它们之间的关系。
它是回归分析法的一种,是以线性方程拟合多个自变量和一个因变量之间的关系,是统计分析中用来探索和预测因变量之间自变量的变化情况的常用方法之一。
例如,可以利用多元线性回归来分析教育水平,收入水平和住房价格之间的关系,以及社会状况下的因素对收入水平的影响等等。
多元线性回归有两种形式:一种是多元普通最小二乘法(Ordinary Least Squares,OLS),另一种是多元最小平方根法(Root Mean Square)。
多元普通最小二乘法是将解释变量和因变量之间的关系用线性函数来拟合,从而求解最优模型参数;而多元最小平方根法是将解释变量和因变量之间的关系用一条曲线来拟合,从而求解最优模型参数。
多元线性回归可以用于描述一个变量与多个自变量之间的关系,并可以用来预测一个变量的变化情况。
它的优势在于可以计算出各自变量对因变量的相对贡献度,从而更有效地分析它们之间的关系,以及对复杂的数据更好地进行预测。
然而,多变量线性回归也存在一些缺点,其中最常见的是异方差假设,即解释变量和因变量之间观察值的方差相等。
此外,多元线性回归也受到异常值的干扰,存在多重共线性现象,可能引发过拟合或欠拟合等问题。
因此,在使用多元线性回归时,应该遵循良好的统计原则,如检验异方差假设、检验异常值以及检验多重共线性等,这样才能更准确地预测和分析数据。
总之,多元线性回归是一种分析多个自变量与一个因变量之间关系的统计学模型,可以有效地检验假设,从而预测和分析数据。
它可以反映出某一种现象所依赖的多个自变量,从而更好地分析和捕捉它们之间的关系。
它也有许多缺点,应该遵循良好的统计原则,如检验异方差假设、检验异常值以及检验多重共线性等,以准确地预测和分析数据。
2.1 多元线性回归
(Yi Y )
TSS
2
2 ( Y Y ) ( Y Y ) i i i 2
RSS n-k
ESS k -1
总离差平方和 = 残差平方和 +回归平方和 自由度: n-1
对以上自由度分解的说明
TSS
Y Y
i
2
1 受Y Yi 一个方程的约束, 所以df n
X X
11 12
X X
21 22
X X
X
1n
X
2n
k2 X kn
k1
5
参数的最小二乘估计
与简单回归类似,我们寻求参数B0、B1、B2和Bp的适
宜估计数值b0、b1、b2和bp,,使实际观察值和回归 方程估计值之间残差平方和最小,
即Q=
(yi -ŷi)2
第二章 统计分析
2.1 多元线性回归与Logistic回归
Ⅰ 多元线性回归
1
多元线性回归
多元线性回归是简单线性回归的直接推广,其包含一
个因变量和二个或二个以上的自变量。
简单线性回归是研究一个因变量(Y)和一个自变量
(X)之间数量上相互依存的线性关系。而多元线性回 归是研究一个因变量(Y)和多个自变量(Xi)之间数 量上相互依存的线性关系。
2
T
n 1
2
RSS Y Y Y ( 1 2 X 2i ... k X ki ) e e 而 ,..., 由 0,....., 0方程求出,共有k 个方程
i i 2 i 2 i 1 k
第二章 多元线性回归
第二章多元线性回归§2.1 基本概述一、回归的任务多元线性回归(MLR)(multiple linear regression)是分析一个随机变量与多个变量之间线性关系的统计方法。
回归(Regression)起源于19世纪生物学家F·高尔顿进行的遗传学研究。
其核心是“普通最小平方法”(Ordinary Least Squares)OLS。
多元回归将所研究的变量分为:确定自变量和因变量的关系是回归分析的主要任务:(1)根据实测数据求解某一模型的各个参数;(2)评价回归模型是否较好地拟合实例数据;(3)利用模型进行预测。
需要注意的是:(1) 因变量必须是间距测度等级以上的变量(有时也包含定性变量。
见《应用回归分析》)(也称为连续变量)。
自变量可以是任意等级的变量。
(2)既使模型正确通过检验,也不能确定X、Y之间的因果关系,而只能确认存在着统计关系。
[例] 不同地区的人均食品支出与人均收入的关系(图2–1);汽车重量与每加仑燃料行驶英里值的关系;(图2–2)。
图2–1图2–2二、一元线性回归的回顾1. 模型i i i x Y εββ++=10 (2.1)当获得n 组样本观测值(x 1 , y 1),(x 2 , y 2),…(x n ,y n )的数据时,如果符合2.1式,则有n i X Y iii,,2,11=++=εββ (2.2)2.1式称为理论回归模型;2.2式称为样本回归模型。
有时不加以区分地将两者称为一元线性回归模型。
通过n 组观测值,用OLS 法对10,ββ进行估计,得10ˆ,ˆββ,则称为Y 关于X 的一元线性方程。
其中: 1β 回归系数,说明X 与Y 之间的变化关系。
2.普通最小二乘法估计的统计性质(OLSE Estimation ) (1)残差:ii iY Y e ˆ-=,用来说明拟合效果,可以看作误差项εi 的估计值。
⎪⎩⎪⎨⎧==∑∑00ii i e x e 因为 )(ˆˆX X Y Y-+=β,所以 0)(ˆ)()ˆ(=---=-=∑∑∑∑X X Y Y Y Y e β 但∑=ni i e 1||很麻烦,经常用∑2i e 来说明。
多元线性回归分析简介
称
y ˆ0 ˆ1x1 ˆp xp
为 y 关于 x 的多元线性经验回归方程(函数),它表示 p+1 维空间中的一个超平面(经验回归平面)。
文档仅供参考,如有不当之处,请联系改正。
引进矩阵的形式:
设
y
y1
y2
,
X
1
1
x11 x21
有平方和分解公式 SS=SSR+SSE
文档仅供参考,如有不当之处,请联系改正。
定理 4.5'在 p 元回归分析问题中, SSR 与 SSE 相互独立,
且1
2
SSE
~
2(n
p
1)
;在原假设 H0 成立时,有
12ຫໍສະໝຸດ SSR~2(p)
。
因此取检验统计量 F=
SSR / p
H0成立时
F(p,n-p-1)
SSE / n p 1
( xi1, , xip , yi )( i 1,2,, n )到回归平面
y ˆ0 ˆ1x1 ˆp xp 的距离的大小。
文档仅供参考,如有不当之处,请联系改正。
一元回归分析中旳结论全部能够推广到多 元旳情形中来。
文档仅供参考,如有不当之处,请联系改正。
定理 4.2' 在 p 元回归分析问题中,(1) ˆ 服从 p+1 维正态分
min
0 ,1 , , p
Q(0,
1,
,p)
文档仅供参考,如有不当之处,请联系改正。
定理 4.1'在 p 元回归分析问题中, 的最小
二乘估计量为 ˆ X X 1 X Y 。
文档仅供参考,如有不当之处,请联系改正。
误差方差的估计:
第四章 多元线性回归模型(计量经济学,潘省初)
Y1 β 0 β 1 X 11 β 2 X 21 β 3 X 31 ... β K X K 1 u1 Y2 β 0 β 1 X 12 β 2 X 22 β 3 X 32 ... β K X K 2 u2 ...... Yn β 0 β 1 X 1n β 2 X 2 n β 3 X 3n ... β K X Kn un
ˆ 116.7 0.112 X 0.739 P Y (9.6) (0.003) (0.114)
R 2 0.99
Y和X的计量单位为10亿美元 (按1972不变价格计算).
食品价格平减指数 P 100,( 1972 100) 总消费支出价格平减指数
3
多元线性回归模型中斜率系数的含义
上述假设条件可用矩阵表示为以下四个条件:
9
(1) E(u)=0 (2)
由于
E (uu) 2 I n
u1 u2 uu u1 u2 ... u n
2
u12 u1u2 ...... u1un 2 u2u1 u2 ...... u2un ... un ................................. 2 unu1 unu2 ...... un
一.假设条件 (1)E(ut)=0, t=1,2,…,n (2)E(ui uj)=0, i≠j (3)E(ut2)=σ2, t=1,2,…,n (4)Xjt是非随机量, j=1,2, … k
t=1,2, … n
8
除上面4条外,在多个解释变量的情况下,还有 两个条件需要满足: (5)(K+1)< n; 即观测值的数目要大于待估计的参数的个数 (要有足够数量的数据来拟合回归线)。 (6)各解释变量之间不存在严格的线性关系。
多元线性回归的概念
多元线性回归的概念多元线性回归是一种统计学方法,用于建立一个包含多个自变量的线性方程,以预测一个连续的因变量。
它适用于研究多个变量对于某个因变量的影响。
多元线性回归的基本假设是因变量与自变量之间存在线性关系,并且自变量之间不存在显著的多重共线性。
多元线性回归的目标是通过最小化残差平方和来找到最佳拟合线,即将观测值与预测值之间的误差最小化。
多元线性回归模型的一般形式可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y是因变量,Xi是第i个自变量,β0是截距,βn是第n个自变量的回归系数,ε是误差项。
通过拟合多元线性回归模型,可以得到各个自变量的系数估计值和截距项的估计值。
这些系数可以用来解释自变量与因变量之间的关系。
多元线性回归的参数估计通常使用最小二乘法来进行。
最小二乘法采用OLS (Ordinary Least Squares)估计,通过最小化残差平方和来找到最佳拟合线。
多元线性回归的假设包括线性关系、多重共线性、误差项的独立同分布和零均值。
如果这些假设得到满足,多元线性回归的结果将是无偏和一致的。
多元线性回归的模型诊断可以通过检查残差来进行。
残差是观测值与预测值之间的差异。
如果残差不符合正态分布、具有异方差性或存在自相关等问题,可能需要采取相应的调整或转换。
多元线性回归还可以通过添加交互项来考虑变量之间的交互作用。
交互项可以在模型中增加一个自变量和因变量之间的乘积项,用于捕捉变量之间的非线性关系。
在实际应用中,多元线性回归可以用于许多领域,如经济学、金融学、社会科学等。
它可以帮助研究人员了解变量之间的关系,并预测某一变量的值。
总之,多元线性回归是一种用于预测连续因变量的统计方法。
它建立一个包含多个自变量的线性方程,通过最小化残差平方和来找到最佳拟合线。
多元线性回归可以帮助我们了解自变量与因变量之间的关系,并预测因变量的值。
计量经济学 詹姆斯斯托克 第3章 多元线性回归模型
i 2 i
10 21500 21500 53650000
1 X Y X1
1 X2
Y1 1 Y2 Yi 15674 X n X iYi 39468400 Yn
i i
638 1122 1155 1408 1595 1969 2078 2585 2530
ˆ 1
x y x
2 i
5769300 0.777 7425000
ˆ Y ˆ X 1567 0.777 2150 103 .172 0 0
因此,由该样本估计的回归方程(样本回归函数) 为:
i 1
n
2
ˆ ˆ X ˆ X ˆ X ))2 Q (Yi ( 0 1 1i 2 2i k ki
i 1
n
于是得到关于待估参数估计值的正规方程组:
ˆ ˆ X ˆ X ˆ X ) Y ( 0 1 1i 2 2i k ki i ˆ ˆ X ˆ X ˆ X ) X Y X ( 0 1 1i 2 2i k ki 1i i 1i ˆ ˆ X ˆ X ˆ X ) X Y X ( 0 1 1i 2i 2i k ki 2i i 2i ˆ ˆ ˆ ˆ ( 0 1 X 1i 2 X 2 i k X ki ) X ki Yi X ki
习惯上:把常数项看成为一个虚变量的系 数,该虚变量的样本观测值始终取1。这样: 模型中解释变量的数目为(k +1)。
Yi 0 1 X 1i 2 X 2 i k X ki i
也被称为 总体回归函数 的 随机表达形式 。它的 非随机表达式为:
第二节多元线性回归
第二节 多元线性回归在许多实际问题中, 常常会遇到要研究一个随机变量与多个变量之间的相关关系,例如,某种产品的销售额不仅受到投入的广告费用的影响,通常还与产品的价格、消费者的收入状况以及其它可替代产品的价格等诸多因素有关系. 研究这种一个随机变量同其他多个变量之间的关系的主要方法是运用多元回归分析. 多元线性回归分析是一元线性回归分析的自然推广形式,两者在参数估计、显著性检验等方面非常相似. 本节只简单介绍多元线性回归的数学模型及其最小二乘估计.一、多元线性回归模型设影响因变量Y 的自变量个数为P ,并分别记为,21,,,p x x x 所谓多元线性模型是指这些自变量对Y 的影响是线性的,即p p x x x Y 22110,),0(~2 N其中p ,,,,210 ,2 是与p x x x ,,,21 无关的未知参数,称Y 为对自变量,21,,,p x x x 的线性回归函数.记n 组样本分别是),,,,(21i ip i i y x x x ),,2,1(n i ,则有n np p n n n p p p p x x x y x x x y x x x y 2211022222211021112211101, 其中n ,,,21 相互独立,且),0(~2 N i ,n i ,,2,1 ,这个模型称为多元线性回归的数学模型. 令Y =n y y y21, X =np n n p p x x x x x x x x x212222*********,p 10,n 21 则上述数学模型可用矩阵形式表示为 X Y其中 是n 维随机向量,它的分量相互独立。
X 称为设计矩阵或资料矩阵。
二、多元线性回归模型的基本假定1.解释变量是确定性的变量,不是随机变量,设计矩阵中要求列向量不能有密切的线性相关性,也称为多重共线性;2. 随机误差项具有0均值和同方差,且随机误差项相互独立,即:j i j i n i E j i i 0),cov(,2,10)(2 3.正态分布条件: 2(0,)N I :,其中I 表示单位矩阵。
多元线性回归
多元线性回归能⽤office07发布简直是太好了,这下⼦省了很多事。
1、多元线性回归模型假定被解释变量与多个解释变量之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型。
即(1.1)其中为被解释变量,为个解释变量,为个未知参数,为随机误差项。
被解释变量的期望值与解释变量的线性⽅程为:(1.2)称为多元总体线性回归⽅程,简称总体回归⽅程。
对于组观测值,其⽅程组形式为:(1.3)即其矩阵形式为=+即(1.4)其中为被解释变量的观测值向量;为解释变量的观测值矩阵;为总体回归参数向量;为随机误差项向量。
总体回归⽅程表⽰为:(1.5)多元线性回归模型包含多个解释变量,多个解释变量同时对被解释变量发⽣作⽤,若要考察其中⼀个解释变量对的影响就必须假设其它解释变量保持不变来进⾏分析。
因此多元线性回归模型中的回归系数为偏回归系数,即反映了当模型中的其它变量不变时,其中⼀个解释变量对因变量的均值的影响。
由于参数都是未知的,可以利⽤样本观测值对它们进⾏估计。
若计算得到的参数估计值为,⽤参数估计值替代总体回归函数的未知参数,则得多元线性样本回归⽅程:(1.6)其中为参数估计值,为的样本回归值或样本拟合值、样本估计值。
其矩阵表达形式为:(1.7)其中为被解释变量样本观测值向量的阶拟合值列向量;为解释变量的阶样本观测矩阵;为未知参数向量的阶估计值列向量。
样本回归⽅程得到的被解释变量估计值与实际观测值之间的偏差称为残差。
(1.8)2、多元线性回归模型的假定与⼀元线性回归模型相同,多元线性回归模型利⽤普通最⼩⼆乘法(OLS)对参数进⾏估计时,有如下假定:假定1 零均值假定:,即(2.1)假定2 同⽅差假定(的⽅差为同⼀常数):(2.2)假定3 ⽆⾃相关性:(2.3)假定4 随机误差项与解释变量不相关(这个假定⾃动成⽴):(2.4)假定5 随机误差项服从均值为零,⽅差为的正态分布:(2.5)假定6 解释变量之间不存在多重共线性:即各解释变量的样本观测值之间线性⽆关,解释变量的样本观测值矩阵的秩为参数个数k+1,从⽽保证参数的估计值唯⼀。
多元线性回归分析
求解后得 b1 0.1424 , b2 0.3515 , b3 0.2706 , b4 0.6382
各变量均值分别为: X1 5.8126 , X 2 2.8407 , X 3 6.1467 , X 4 9.1185 ,Y 11.9259 , 则常数项:
b0 11.9259 0.1424 5.8126 0.3515 2.8407 0.2706 6.1467 0.6382 9.1185
sY 123 m 表示。
公式为: sY123 m
MS剩余
SS剩余 n m 1
剩余标准差越小,说明回归效果越好
3、剩余标准差
剩余标准差除与剩余平方和有关外,还与自由度 有关,因此剩余标准差与决定系数对回归效果优 劣的评价结果有时不一致。研究者通常希望用尽 可能少的自变量来最大限度地解释因变量的变异, 从这个意义上来说,用剩余标准差作为评价回归 效果的指标比决定系数更好。
对 Y 变异的影响。 SS剩余 SS总 SS回归
1、对模型的假设检验—F检验
SS总=lyy=222.5519;ν总=n-1=26 SS剩余= SS总- SS回归=222.5519-133.7107=88.8412 ν剩余=n-m-1=22
= = MS回归 SS回归/ν回归; MS剩余 SS剩余/ν剩余;
标准化偏回归系数b’j
0.07758 0.30931 -0.33948 0.39774
bj b j
l jj lYY
bj
l jj /(n 1) lYY /(n 1)
bj
Sj SY
偏回归系数
偏回归系 数标准误
标准偏回归系数
(三)计算相应指标,对模型的拟合效果进行评价
多元的线性回归
多元线性回归模型一、多元线性回归模型的一般形式设随机变量y 与一般变量p x x x ,,,21 的线性回归模型为:εββββ+++++=p p x x x y 22110写成矩阵形式为:εβ+=X y 其中:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n y y y y 21 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X 212222********* ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p ββββ 10 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n εεεε 21 二、多元线性回归模型的基本假定1、解释变量p x x x ,,,21 是确定性变量,不是随机变量,且要求n p X r a n k <+=1)(。
这里的n p X rank <+=1)(表明设计矩阵X 中自变量列之间不相关,样本容量的个数应大于解释变量的个数,X 是一满秩矩阵。
2、随机误差项具有0均值和等方差,即:⎪⎩⎪⎨⎧⎩⎨⎧=≠====),,2,1,(,,0,),cov(,,2,1,0)(2n j i j i j i n i E j i i σεεε 0)(=i E ε,即假设观测值没有系统误差,随机误差i ε的平均值为0,随机误差iε的协方差为0表明随机误差项在不同的样本点之间是不相关的(在正态假定下即为独立),不存在序列相关,并且具有相同的精度。
3、正态分布的假定条件为:⎩⎨⎧=相互独立n i ni N εεεσε ,,,,2,1),,0(~212,矩阵表示:),0(~2n I N σε,由该假定和多元正态分布的性质可知,随机变量y 服从n 维正态分布,回归模型的期望向量为:βX y E =)(;n I y 2)var(σ= 因此有),(~2n I X N y σβ 三、多元线性回归方程的解释对于一般情况含有p 个自变量的回归方程p p x x x y E ββββ++++= 22110)(的解释,每个回归系数i β表示在回归方程中其他自变量保持不变的情况下,自变量i x 每增加一个单位时因变量y 的平均增加程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义:线性回归模型中的解释变量有多个。
一般表现形式:多元线性回归模型k :解释变量个数;i =1,2…,n
βj :回归参数(Regression Coefficient );j=1,2…,k 习惯上:把常数项看成为一虚变量的系数,该虚变量的样本观测值始终取1。
这样:
i ki k i i i X X X Y μββββ++⋅⋅⋅+++=22110虚变量
X 0=1模型中解释变量的数目为(k+1)
指2个或2个以上
多元线性回归模型总体回归函数的随机表达形式:
i ki k i i i X X X Y μββββ++⋅⋅⋅+++=22110总体回归函数非随机表达式:
ki k i i ki i i i X X X X X X Y E ββββ+⋅⋅⋅+++=2211021),,|( 偏回归系数βj :在其他解释变量保持不变的情况下,X j 每变化1个单位时,Y 的均值E(Y)的变化;或者说X j 的单位变化对Y 均值的“直接”或“净”(不含其他变量)影响。
方程表示:各变量X 值给定时Y 的平均响应。
总体回归模型n 个随机方程的矩阵表达式为
μ
X βY +=)1(212221212111111+⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=k n kn n n k k X X X X X X X X X X 121⨯⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎣⎡=n n Y Y Y Y 1)1(210⨯+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=k k ββββ β1
21⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n μμμ μ其中n :样本容量k :解释变量的个数
e i 称为残差或剩余项(Residuals),μi
的近似替代样本回归函数:
ki ki i i i X X X Y ββββˆˆˆˆˆ22110++++= 其随机表示式: i
ki ki i i i e X X X Y +++++=ββββˆˆˆˆ22110 βX Y ˆˆ=e βX Y +=ˆ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βββˆˆˆˆ10 β⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=n e e e 21e 其中
或样本回归函数的矩阵表达:
假设1,解释变量是非随机的或固定的,
且各X 之间互不相关(无多重共线性)。
假设2,随机误差项具有零均值、同方差及不序列相关性这是一元线性回归模型没有的0
)(=i E μ2
2)()(σμμ==i i E Var 0
)(),(==j i j i E Cov μμμμn
j i j i ,,2,1, =≠
假设3,解释变量与随机项不相关
假设4,随机项满足正态分布
0),(=i ji X Cov μk
j ,2,1 =)
,0(~2σμN i
假设1,n ⨯(k+1)矩阵X 是非随机的,X 的秩ρ=k+1,即X 满秩。
假设2,0)()()(11=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=n n E E E E μμμμ μ()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛='n n E E μμμμ 11)(μμ⎪⎪⎪⎭⎫ ⎝⎛=21121n n n E μμμμμμ I
222
11100)var(),cov(),cov()var(σσσμμμμμμ=⎪⎪⎪⎭
⎫
⎝⎛
=⎪⎪⎪⎭⎫ ⎝⎛= n n n 上述假设的矩阵符号表示式
假设3,E(X’μ)=0,即0
)()()(11=⎪⎪⎪⎪⎪
⎭
⎫
⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∑∑∑∑∑∑i Ki i i i i Ki i i i E X E X E X X E μμμμμμ 假设4,向量μ有一多维正态分布,即
)
,(~2I 0μσN 上述假设的矩阵符号表示式
假设5,样本容量趋于无穷时,各解释变量的方差趋于有界常数,即n →∞时,
j j ji ji Q X X n x n →-=∑∑22)(11或Q
x x →'n 1
其中:Q 为一非奇异固定矩阵,矩阵x 是由各解释变量的离差为元素组成的n ⨯k 阶矩阵
⎪⎪
⎪
⎭
⎫
⎝⎛=kn n k x x x x 1111x
假设6,回归模型的设定是正确的。
模型里面,该包含的所有解释变量,都应该放到模型里面,不应该遗漏。
X必须以正确的函数形式,引到模型里面。