汉诺塔问题实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.实验目的:
通过本实验,掌握复杂性问题的分析方法,了解汉诺塔游戏的时间复杂性和空间复杂性。
2.问题描述:
汉诺塔问题来自一个古老的传说:在世界刚被创建的时候有一座钻石宝塔(塔A),其上有64个金碟。所有碟子按从大到小的次序从塔底堆放至塔顶。紧挨着这座塔有另外两个钻石宝塔(塔B和塔C)。从世界创始之日起,婆罗门的牧师们就一直在试图把塔A 上的碟子移动到塔C上去,其间借助于塔B的帮助。每次只能移动一个碟子,任何时候都不能把一个碟子放在比它小的碟子上面。当牧师们完成任务时,世界末日也就到了。
3.算法设计思想:
对于汉诺塔问题的求解,可以通过以下三个步骤实现:
(1)将塔A上的n-1个碟子借助塔C先移到塔B上。
(2)把塔A上剩下的一个碟子移到塔C上。
(3)将n-1个碟子从塔B借助于塔A移到塔C上。
4.实验步骤:
1.用c++ 或c语言设计实现汉诺塔游戏;
2.让盘子数从2 开始到7进行实验,记录程序运行时间和递
归调用次数;
3.画出盘子数n和运行时间t 、递归调用次数m的关系图,
并进行分析。
5.代码设计:
Hanio.cpp
#include"stdafx.h"
#include
#include
#include
void hanoi(int n,char x,char y,char z)
{
if(n==1)
{
printf("从%c->搬到%c\n",x,z);
}
else
{
hanoi(n-1,x,z,y);
printf("从%c->%c搬到\n",x,z);
hanoi(n-1,y,x,z);
}
}
void main()
{
int m ;
printf("input the number of diskes:");
scanf("%d",&m);
printf("The step to moving %3d diskes:",m);
hanoi(m,'a','b','c');
}
自定义头文件
:#pragma once
#include"targetver.h"
#include
#include
结果如下:
6.递归应用中的Hanoi塔问题分析
1)Hanoi塔问题中函数调用时系统所做工作
一个函数在运行期调用另一个函数时,在运行被调用函数之前,系统先完成3件事:
①将所有的实参、返回地址等信息传递给被调用函数保存。
②为被调用函数的局部变量分配存储区;
③将控制转移到被调用函数的入口。
从被调用函数返回调用函数前,系统也应完成3件事:
①保存被调用函数的结果;
②释放被调用函数的数据区;
③依照被调用函数保存的返回地址将控制转移到调用函数。
当有多个函数构成嵌套调用时,按照“后调用先返回”的原则(LIFO),上述函数之间的信息传递和控制转移必须通过“栈”来实现,即系统将整个程序运行时所需的数据空间安排在一个栈中,每当调用一个函数时,就为其在栈顶分配一个存储区,每当从一个函数退出时,就释放其存储区,因此当前运行函数的数据区必在栈
顶。堆栈特点:LIFO,除非转移或中断,堆栈内容的存或取表现出线性表列的性质。正是如此,程序不要求跟踪当前进入堆栈的真实单元,而只要用一个具有自动递增或自动递减功能的堆栈计数器,便可正确指出最后一次信息在堆栈中存放的地址。
一个递归函数的运行过程类型于多个函数的嵌套调用,只是调用函数和被调用函数是同一个函数。因此,和每次调用相关的一个重要的概念是递归函数运行的“层次”。假设调用该递归函数的主函数为第0层,则从主函数调用递归函数为进入第1层;从第i层递归调用本函数为进入下一层,即i+1层。反之,退出第i层递归应返回至上一层,即i-1层。为了保证递归函数正确执行,系统需设立一个“递归工作栈”,作为整个递归函数运行期间使用的数据存储区。每一层递归所需信息构成一个“工作记录”,其中包括所有实参、所有局部变量以及上一层的返回地址。每进入一层递归,就产生一个新的工作记录压入栈顶。每退出一层递归,就从栈顶弹出一个工作记录,则当前执行层的工作记录必是递归工作栈栈顶的工作记录,称这个记录为“活动记录”,并称指示活动记录的栈顶指针为“当前环境指针”。
2)Hanoi塔问题递归程序的复杂度分析
① 运行hanoi程序的时间
程序 hanoi.c 在硬件环境为赛扬 400MHz、内存128M的计算平台(不同机器运行时间有一定差别)运行,可得出如下时间结果:
盘子数时间结果
<=12个 <=1秒
14个 2秒
16个 13秒
20个 204秒
② 时间复杂度
程序所花时间正比于所输出的信息行数目,而信息行的数目则等价于盘子的移动次数。考察程序,设盘子移动次数为moves(n),则:
moves(n)=
用迭代方法计算公式,得到结果moves(n)=2n-1。因此,hanoi函数的时间复杂度为O(2 n) 。
③ 空间复杂度
从每个塔上移走盘子时是按照LIFO进行,因此可以把每个塔表示成一个堆栈。3座塔在任何时候总共拥有的盘子都是n个。如果使用链表形式的堆栈,只需申请n个元素所需要的空间。如果使用的是基于公式化描述的堆栈,塔1和塔2的容量都必须是n,而塔3的容量是n-1,因此所需要的空间总数为3n-1。
Hanoi塔问题的复杂性是以n为指数的函数,因此在可以接受的范围内,只能解决n值比较小(n<=30)的hanoi问题。对于这个较小的n值,堆栈在空间需求上的差别相当小,可以随意使用。
7、结论
通过对上述递归在Hanoi塔问题上的应用分析,我们可以得出如下结论:
1、递归调用过程中,在程序执行之前无法知道控制这种调用栈的规模,因为这一规模取决于递归调用的次序。在这种情况下,程序的地址空间可能动态变化;
2、递归应用于程序设计时,结构清晰、程序易读,编制和调试程序很方便,不需要用户自行管理递归工作栈。但递归应用于计算机时需要占用大量系统资源(包括堆栈、软中断和存贮空间等),并消耗大量处理时间。因此,可以考虑采用并行计算进行处理,但
3、递归是串行的,其第n步运算依赖于第n-1步运算,所以在计算机软件理论上不存在递归问题并行计算的可能性。实际上是否存在并行递归计算有待进一步探讨。
8、总结