圆锥曲线解题技巧窍门和方法综合(经典编辑)
圆锥曲线小题秒杀技巧
圆锥曲线小题秒杀技巧
1. 熟记基本公式:圆锥曲线的标准方程和一些常用的性质、参数等,熟练掌握焦点、顶点、准线等重要点的位置和特点。
2. 掌握图像特点:熟悉各种圆锥曲线的图像特点,如椭圆的中心、直径等特征,在解题时可以通过观察图像进行判断和推断。
3. 运用对称性:利用圆锥曲线的对称性质,有时可以通过简单的对称判定来确定图像的性质或参数。
4. 灵活运用参数方程:对于参数方程而言,可以通过修改参数值来调整图像的大小、形状等,在解题时可以根据需要进行参数变换。
5. 注意特殊情况:注意圆锥曲线的特殊情况,如离心率等于1
时的抛物线,离心率小于1时的椭圆,离心率大于1时的双曲线等。
6. 利用直线与曲线的交点性质:通过计算直线与曲线的交点,可以得到一些额外的信息,例如直线方程和曲线方程代入求交点来确定未知参数等。
7. 题目分类解题:根据题目类型进行分类处理,例如焦点、准线、离心率、离心点等性质的问题,可以根据不同性质的定义和关系进行解题。
8. 参照解法思路:多看一些相关的解题方法和步骤,可以借鉴
他人的解题思路,丰富自己的解题经验,提高解题效率。
以上是一些解题技巧供参考,通过理解和掌握这些技巧,可以帮助提高在圆锥曲线小题中的解题速度和准确性。
但重要的是,真正的提高需要不断练习,多做题目来加深对知识点和技巧的理解和掌握。
圆锥曲线解题十招全归纳
《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。
AB =21k =+2d k=21k +=k =053x =。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
圆锥曲线的解题方法(精选4篇)
圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
圆锥曲线解题技巧和方法综合方法(精心排版)
圆锥曲线的解题技巧一、常规七大题型: (1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()() (1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
圆锥曲线解题技巧归纳
圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。
本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。
1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。
当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。
2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。
通过选取合适的参数,可以将曲线表示为一系列点的集合。
这种方法可以简化问题,使得求解过程更加直观和方便。
3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。
通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。
这种方法在求解对称性等问题时非常有用。
4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。
通过将数据点与曲线进行比较,可以得出曲线的参数和特性。
这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。
5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。
通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。
6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。
通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。
这种方法在求解对称性、求交点等问题时非常有用。
7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。
根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。
8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。
例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。
9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。
高中数学圆锥曲线解题十招全归纳
高中数学圆锥曲线解题十招全归纳
1.熟悉圆锥曲线的基本概念,如焦点、准线、离心率等。
2. 对于椭圆和双曲线,要注意判断其是横向还是纵向,并掌握
其标准方程。
3. 解题时要注意转化,如通过平移、旋转等方式将方程转化为
标准方程。
4. 对于椭圆和双曲线的焦点、准线、离心率等参数要有清晰的
认识,能正确描绘出图形。
5. 注意判断椭圆和双曲线的类型,如是否为实心或空心图形等。
6. 对于椭圆和双曲线的对称性要有充分的认识。
7. 在解题过程中,注意运用对称性和几何意义,如面积公式、
周长公式等。
8. 对于椭圆和双曲线的渐近线,要了解其定义和性质,并掌握
其方程。
9. 在解题过程中,注意运用渐近线的性质,如过定点、过中心、垂直等。
10. 解题时要注意画出图形,有助于更好地理解题目和解题思路。
- 1 -。
圆锥曲线解题十招全归纳
《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。
AB =21k =+2d k=21k +=k =053x =。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
高中数学圆锥曲线解题技巧方法总结
圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F1,F2的距离的和等于常数2a,且此常数2a一定要大于F1F,当常数等于F1F2时,轨迹是线段F1F2,当常数小于F1F2时,无2轨迹;双曲线中,与两定点F1,F2的距离的差的绝对值等于常数2a,且此常数2a一定要小于|F1F2|,定义中的“绝对值〞与2a<|F 1F2|不可无视。
假设2a=|F1F2|,那么轨迹是以F1,F2为端点的两条射线,假设2a﹥|F 1F2|,那么轨迹不存在。
假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。
如方程2222(x6)y(x6)y8表示的曲线是_____〔答:双曲线的左支〕2.圆锥曲线的标准方程〔标准方程是指中心〔顶点〕在原点,坐标轴为对称轴时的标准位置的方程〕:方程2222xyyx〔1〕椭圆:焦点在x轴上时1〔ab0〕,焦点在y轴上时=1〔ab0〕。
2222abab22AxByC表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。
2y2假设x,yR,且3x26,那么xy的最大值是____,2y2x的最小值是___〔答:5,2〕2222xyyx〔2〕双曲线:焦点在x轴上:=1,焦点在y轴上:=1〔a0,b0〕。
方程2222abab 22AxByC表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。
如设中心在坐标原点O,焦点F、F2在坐标轴上,离心率e2的双曲线C过点P(4,10),1那么C的方程为_______〔答:226xy〕〔3〕抛物线:开口向右时22(0)ypxp,开口向左时22(0)ypxp,开口向上时22(0)xpyp,开口向下时22(0) xpyp。
3.圆锥曲线焦点位置的判断〔首先化成标准方程,然后再判断〕:〔1〕椭圆:由x 2,y2分母的大小决定,焦点在分母大的坐标轴上。
22xy如方程1m12m表示焦点在y轴上的椭圆,那么m的取值X围是__〔答:3(,1)(1,)〕2〔2〕双曲线:由x 2,y2项系数的正负决定,焦点在系数为正的坐标轴上;〔3〕抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
圆锥曲线解题方法技巧归纳(整理)
圆锥曲线解题方法技巧归纳一、知识储备:1. 直线方程的形式(1)直线方程的形式有五种:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离0022Ax By C d A B++=+③夹角公式:2121tan 1k k k k α-=+ ④两直线距离公式(3)弦长公式直线y kx b =+与圆锥曲线两交点1122(,),(,)A x y B x y 间的距离:2121AB k x x =+-221212(1)[()4]k x x x x =++-或12211AB y y k =+- (若A 点为交点,另一点不在圆锥曲线上,上式仍然成立。
) (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且2、圆锥曲线方程及性质(1)、椭圆的方程的形式(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且 距离式方程:2222()()2x c y x c y a +++-+= 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<参数方程:距离式方程:2222|()()|2x c y x c y a ++--+=(3)、三种圆锥曲线的通径22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义(5)、焦点三角形面积公式:122tan2F PF P b θ∆=在椭圆上时,S 122cot2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==∙=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题
圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题圆锥曲线是数学中的重要概念之一,在几何学和代数学领域都有广泛的应用。
通过直角坐标系解析法,我们可以用简洁而准确的方式解决与圆锥曲线相关的问题。
本文将介绍圆锥曲线的基本知识,并以解析法为重点,总结圆锥曲线解题的技巧与方法。
一、圆锥曲线的基本概念圆锥曲线是由平面与圆锥相交而形成的曲线。
常见的圆锥曲线包括椭圆、双曲线和抛物线。
这些曲线在直角坐标系中有各自的特点和方程。
1. 椭圆椭圆是圆锥和平面相交所形成的曲线。
在直角坐标系中,椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1其中,(h, k)为椭圆的中心坐标,a为椭圆长轴的一半长度,b为椭圆短轴的一半长度。
2. 双曲线双曲线同样是由圆锥和平面相交所形成的曲线。
在直角坐标系中,双曲线的标准方程为:(x-h)²/a² - (y-k)²/b² = 1其中,(h, k)为双曲线的中心坐标,a为双曲线长轴的一半长度,b为双曲线短轴的一半长度。
3. 抛物线抛物线是由圆锥和平面相交所形成的曲线。
在直角坐标系中,抛物线的标准方程为:y = ax² + bx + c其中,a、b、c为常数,决定了抛物线的形状和位置。
二、通过直角坐标系解析法解决圆锥曲线问题的技巧与方法通过直角坐标系解析法,我们可以通过曲线的方程和几何特征来解决与圆锥曲线相关的问题。
以下是一些解题的常用技巧与方法:1. 求解曲线的方程通过已知的几何信息,我们可以得到曲线的方程。
根据曲线的类型,选择合适的标准方程,并通过已知点或其他条件来确定方程中的参数。
2. 求解曲线的焦点和准线对于椭圆和双曲线,焦点和准线是重要的几何特征。
通过方程中的参数,我们可以计算焦点和准线的坐标。
3. 求解曲线的顶点和开口方向抛物线的顶点和开口方向也是重要的几何特征。
2024圆锥曲线大题计算方法
2024圆锥曲线大题计算方法圆锥曲线是高中数学中的重要内容,其相关题目在各类考试中频繁出现,尤其是大题部分,对考生的计算能力提出了较高要求。
本文将针对2024年圆锥曲线大题的计算方法进行详细解析,帮助考生掌握解题技巧,提高解题效率。
一、圆锥曲线方程求解方法1.椭圆方程求解:对于椭圆题目,首先要根据题目条件列出椭圆的标准方程。
在求解过程中,注意运用以下方法:(1)画图、特值法:通过观察图形,选取特殊点或线,简化计算过程;(2)变换主元与换元法:在化简方程时,可适当变换主元或进行换元,降低计算难度;(3)整体消元法:在求解过程中,注意整体消元,避免繁琐的计算。
2.双曲线方程求解:与椭圆类似,双曲线的求解也要注意运用画图、特值法、变换主元与换元法以及整体消元法。
二、直线与圆锥曲线交点求解方法1.代入法:将直线方程代入圆锥曲线方程,求解交点坐标。
注意在代入过程中,尽量简化计算,避免繁琐的运算。
2.联立方程组法:将直线方程与圆锥曲线方程联立,构成方程组,求解交点坐标。
在求解过程中,注意运用消元法、代入法等简化计算。
三、中点问题求解方法1.定点定值问题:通过画图、特值法或高观点,找出题目中的定点或定值,从而简化计算。
2.调和线束的中点性质:在涉及中点问题时,可运用调和线束的中点性质,快速判断中点位置。
四、实例解析以2023-2024学年北京市朝阳区高三第一学期期末数学试卷第20题为例,题目要求求解椭圆方程,并判断点N是否为线段CM的中点。
1.椭圆方程求解:根据题目条件,列出椭圆的标准方程,并运用上述方法求解。
2.直线与椭圆交点求解:过点P(2, 1)的直线l与椭圆E交于不同的两点C、D,运用代入法或联立方程组法求解交点坐标。
3.中点判断:根据调和线束的中点性质,判断点N是否为线段CM的中点。
五、总结在解决圆锥曲线大题时,掌握以下方法有助于提高解题效率:1.熟练掌握圆锥曲线的标准方程及其性质;2.学会运用画图、特值法、变换主元与换元法、整体消元法等简化计算;3.熟悉中点问题的求解方法,特别是调和线束的中点性质;4.注重实际操作,多做题,积累解题经验。
(完整word版)圆锥曲线解题技巧方法总结(教师版)
圆锥曲线解题技巧方法总结1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件: 椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
例:方程2222(6)(6)8x y x y -+-++=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>),焦点在y 轴上时2222b x a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC≠0,且A ,B ,C 同号,A≠B )。
例: 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:5,2)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C+=表示双曲线的充要条件是什么?(ABC≠0,且A ,B 异号)。
例:设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
(完整版)圆锥曲线解题方法技巧归纳
圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容 ① 倾斜角与斜率k tan , [0,)② 点到直线的距离dA/ B y0_C tan(3) 弦长公式 直线 y kx b 上两点 A(x i , yj, B(X 2, y 2)间的距离:AB| J i k 2|x X 2J (1 k 2)[(X i X 2)2 4沁]或 AB J i *|y i y 2(4) 两条直线的位置关系 ① l 1 l 2 k 1k 2=-1② l 1 //12k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1) 、椭圆的方程的形式有几种?(三种形式)标准方程: 2 2—匚 1(m 0, n 0且 m n) m n 距离式方程:.(x c)2 y 2 . (x c)2 y 2 2a参数方程: x a cos , y bsin(2) 、双曲线的方程的形式有两种③夹角公式:k 2 12 2标准方程:—-1(m n 0)(3) 、三种圆锥曲线的通径你记得吗?椭圆:近;双曲线:玄;抛物线:2pa a(4) 、圆锥曲线的定义你记清楚了吗?b 2 tan —2P 在双曲线上时,S FP F 2 b 2 cot —,t| PF |2 | PF |2 4c 2 uur ujrn uur uimr(其中 F 1PF 2,COS 】1鳥尙,PF ?PF 2 |PF 1||PF 2|COS(6)、 记住焦 半 径公式: (1 )椭圆焦点在x 轴上时为a ex g ;焦点在y 轴上时为a ey °,可简记为“左加右减,上加下减”(2) 双曲线焦点在x 轴上时为e|x 01 a(3) 抛物线焦点在x 轴上时为| x , | 2,焦点在y 轴上时为| % | 2 (6)、椭圆和双曲线的基本量三角形你清楚吗? _ 第二、方法储备 1、点差法(中点弦问题)2B X 2,y 2,M a,b 为椭圆— 42 2 2 2 2222如: 已知F ,、 2 2F 2是椭圆勻七1的两个焦点,平面内一个动点 M足MF !MF 22则动点M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式:P 在椭圆上时,S F1p F2设 A x ,, y ,2仝1的弦AB 中点则有3仝生1,空空1 ;两式相减得二竺上上04 3 4 3 4 3x i X2 捲X2 y i y2 y i y2 3a4 3 k AB一不2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0,以及根与系数的关系,代入弦长公式,设曲线上的两点A(X!, y i), B(X2, y2),将这两点代入曲线方程得到①②两个式子,然后①-②,整体消元..................... ,若有两个字母未知数,贝S要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。
圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(完整版)圆锥曲线解题技巧和方法综合(经典)
圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容①倾斜角与斜率 k tan , [0, )② 点 到 直 线 的 距 离 d Ax 0 By 0 CA 2B 2tan3)弦长公式直线 y kx b 上两点 A(x 1, y 1), B( x 2 , y 2 )间的距离: AB 1 k 2 x 1 x 2(1 k 2 )[( x 1 x 2)2 4x 1x 2] 或 AB 1 k 12 y 1 y 2 (4)两条直线的位置关系①l 1 l 2 k 1k 2=-1 ② l 1 //l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:22x y1(m 0,n 0且 m n) mn 距离式方程:(x c)2 y 2 (x c)2 y 22a 参数方程:x acos ,y bsin(2)、双曲线的方程的形式有两种③夹角公式:k21222标准方程:x y1(m n 0)mn距离式方| (x c)2 y 2 (x c) 2 y 2 | 2a(3) 、三种圆锥曲线的通径你记得吗?椭圆:2b;双曲线:2b;抛物线:2 p aa(4) 、圆锥曲线的定义你记清楚了吗?b 2tan2 P 在双曲线上时, S F PF b cot| PF |2 | PF |2 4c 2 uuur uuuur uuur uuuur 其中 F 1PF 2,cos |PF 1||PF 1||P |F P 2F |2 | 4c ,u P u F ur1?u P u Fuur 2|u P uu F r 1 ||uu P u Fur2|cos(6) 、 记 住 焦 半 径 公 式 : ( 1 )椭圆焦点在 x 轴上时为 a ex 0 ;焦点在 y 轴上时为 a ey 0,可简记为“左加右减,上加下减”(2)双曲线焦点在 x 轴上时为 e|x 0 | a(3) 抛物线焦点在 x 轴上时为 | x 1 | 2p ,焦点在 y 轴上时为 | y 1 | 2p(6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备1、点差法(中点弦问题)2y1的弦 AB 中点则有3如: 已知 F 1、 22F2是椭圆 x4 y3 1的两个焦点, 平面内一个动点 M 足 MF 1MF 2 2 则动点 M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式: P 在椭圆上时, S F 1PF 2设 A x 1, y 1B x 2,y 2 , M a,b 为椭圆 x42 2 2 2 2 2 2 2 x 1 y 1 1, x 2 y 2 1;两式相减得 x 1 x 2y 1 y 24 3 4 3 4 3x 1 x 2 x 1 x 2y 1 y 2 y 1 y 23a4 3kAB =4b2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到 一个二次方程, 使用判别式 0,以及根与系数的关系, 代入弦 长公式,设曲线上的两点 A( x 1, y 1), B(x 2 , y 2 ) ,将这两点代入曲线方 程得到 ○1 ○2 两个式子,然后 ○1-○2 ,整体消元······,若有两个 字母未知数, 则要找到它们的联系, 消去一个,比如直线过焦点, 则可以利用三点 A 、B 、 F 共线解决之。
圆锥曲线解题技巧
圆锥曲线一概念、方法、题型、及应试技巧总结1. 圆锥曲线的两个定义(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,,F 2的距离 的和等于常数2a ,且此常数2a 一定要大于 F ,F 2,当常数等于 F ,F 2时,轨迹是线段F 1F 2,当常数小于F l F 2时,无轨迹;双曲线中,与两定点F l ,F 2的距离的差的绝对值 等于常数2a ,且此常数2a 一定要小于|卩汙2丨,定义中的“绝对值”与2a V |F 1F 2|不 可忽视。
若2a = |F 1F 2|,则轨迹是以 F 1 , F 2为端点的两条射线,若 2a > |F 1F 2 |,则 轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点F 1(;,0),F 2(3,0),在满足下列条件的平面上动点 P 的轨迹中是椭圆 的是 A -PF1I + PF 2 =4 B •|PF 1 +|PF 2〔 =6 C •PF 1 +|PF 2 =1022D • PF 1 +|PF 2| =12 (答:C );方程J (x -6)2+y 2—J (x +6)2+y 2=8表示的曲线是 ______ (答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义, 给出了圆锥曲线上的点到焦点距 离与此点到相应准线距离间的关系,要善于 运用第二定义对它们进行相互转化 。
2如已知点Q (2j2,0)及抛物线y=』上一动点P (x,y ),则y+|PQ|的最小值是4(答: 2)2. 圆锥曲线的标准方程 (标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标 准位置的方程):2 2(1)椭圆:焦点在x 轴上时—y 2 =1 ( a b 0 )= a b2 2 y x=1 ( a b 0)。
方程Ax 2 By^C 表示椭a b1 1(-3,=)U ( ,2));2 2222 2圆的充要条件是什么?(ABC 工 0, 且 A , B , C 同号,A 工 B )。
(完整版)高中数学圆锥曲线解题技巧总结,推荐文档
AQP BFH2 2 2 21、定义法解圆锥曲线问题的常用方法大全(1) 椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1r 2=ed 2。
(2) 双曲线有两种定义。
第一定义中, r 1- r 2 = 2a ,当 r 1>r 2 时,注意 r 2 的最小值为 c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3) 抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题, 最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦 AB 中点为 M(x 0,y 0),将点 A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关 系,这是一种常见的“设而不求”法,具体有:x 2 y 2x y (1) + = 1(a > b > 0) 与直线相交于 A 、B ,设弦 AB 中点为 M(x 0,y 0),则有 0 + 0 k = 0 。
a 2b 2 a 2 b 2(2) x 2 - y 2 = 1(a > 0, b > 0) 与直线 l 相交于 A 、B ,设弦 AB 中点为 M(x ,y )则有 x y - 0 = 00 00 k a 2 b 2 a 2 b 2(3) y 2=2px (p>0)与直线 l 相交于 A 、B 设弦 AB 中点为 M(x 0,y 0),则有 2y 0k=2p,即 y 0k=p.【典型例题】例 1、(1)抛物线 C:y 2=4x 上一点 P 到点 A(3,4 )与到准线的距离和最小,则点 P 的坐标为(2)抛物线 C: y 2=4x 上一点 Q 到点 B(4,1)与到焦点 F 的距离和最小,则点 Q 的坐标为 。
高中数学圆锥曲线解题技巧总结
解圆锥曲线问题的常用方法大全1、定义法〔1〕椭圆有两种定义。
第一定义中,r 12=2a 。
第二定义中,r 11 r 22。
〔2〕双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为:第二定义中,r 11,r 22,尤其应注意第二定义的应用,常常将 半径与“点到准线距离〞互相转化。
〔3〕抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要无视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法〞。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法〞,即设弦的两个端点A(x 11)(x 22),弦中点为M(x 00),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求〞法,具体有: 〔1〕与直线相交于A 、B ,设弦中点为M(x 00),那么有。
〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦中点为M(x 00)那么有〔3〕y 2=2〔p>0〕与直线l 相交于A 、B 设弦中点为M(x 00),那么有2y 02p,即y 0.【典型例题】例1、(1)抛物线2=4x 上一点P 到点A(3,42)与到准线的距离和最小,那么点 P 的坐标为(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)Q 的坐标为。
分析:〔1〕A 在抛物线外,如图,连,那么PH =易发现,当A 、P 、F 三点共线时,距离和最小。
圆锥曲线解题技巧综合运用不同解题方法
圆锥曲线解题技巧综合运用不同解题方法圆锥曲线是高中数学中的一个重要内容,经常在各类考试中出现。
掌握圆锥曲线的解题技巧,可以帮助我们高效解答题目。
本文将介绍几种常见的圆锥曲线解题方法,并综合运用它们来解决各类题目。
一、直接法直接法是最常用的解题方法之一,它适用于给定了圆锥曲线的方程,要求我们找出特定点或确定一些性质的情况。
以二次曲线为例,我们可以通过将方程标准化,然后研究其各项系数的符号、平方项的系数与常数项的关系等来推导出特定点的坐标、曲线的类型等信息。
二、参数法参数法常用于求解曲线上的点的坐标或曲线的方程。
当我们遇到较复杂的曲线方程,难以直接分析时,可以通过引入参数的方法,将曲线的方程转化为参数方程进行处理。
例如,对于椭圆和双曲线,我们可以通过引入参数来表示曲线上的点的坐标。
设参数为θ,则椭圆的参数方程为x=acosθ,y=bsinθ;双曲线的参数方程为x=asecθ,y=btanθ。
通过选取不同的参数值,我们可以得到曲线上的不同点,进而求解问题。
三、几何法几何法是通过几何图形的性质来解决问题的方法。
在圆锥曲线的学习过程中,我们会学到各种曲线的几何性质,如椭圆的离心率、焦点定理、双曲线的渐近线等。
利用这些性质,我们可以通过绘制几何图形,运用几何关系来解决问题。
四、导数法导数法常用于求解曲线的切线、法线以及曲率等问题。
对于给定的曲线方程,我们可以通过求导数来得到曲线的斜率,从而得到切线或法线的方程。
同时,导数还可以帮助我们研究曲线的凸凹性、极值等性质,进一步推导出曲线的特点。
五、解析法解析法是一种基于代数分析的方法,适用于较复杂的曲线方程求解。
通过对方程进行代数运算、化简等操作,我们可以得到曲线的一些基本性质或特定点的坐标。
在解析法中,我们常用的技巧包括配方法、消元法、代入法等,根据方程的特点和题目要求来灵活选择合适的方法。
此外,还需要注意方程中的各项系数和常数项之间的关系,以便得到准确的解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d =③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-= 或12AB y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122tan 2F PF P b θ∆=在椭圆上时,S122cot 2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅u u ur u u u u r u u u r u u u u r )(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。
若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。
一旦设直线为y kx b =+,就意味着k 存在。
例1、已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).(1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程. 分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。
第二问抓住角A 为090可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程;解:(1)设B (1x ,1y ),C(2x ,2y ),BC 中点为(00,y x ),F(2,0)则有11620,1162022222121=+=+y x y x 两式作差有16))((20))((21212121=+-+-+y y y y x x x x 04500=+ky x (1) F(2,0)为三角形重心,所以由2321=+x x ,得30=x ,由03421=++y y 得20-=y ,代入(1)得56=k 直线BC 的方程为02856=--y x2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2) 设直线BC方程为8054,22=++=y x b kx y 代入,得080510)54(222=-+++b bkx x k2215410kkbx x +-=+,222154805k b x x +-= 2222122154804,548k k b y y k k y y +-=+=+ 代入(2)式得0541632922=+--k b b ,解得)(4舍=b 或94-=b 直线过定点(0,)94-,设D (x,y ),则1494-=-⨯+xy x y ,即016329922=--+y x y所以所求点D 的轨迹方程是)4()920()916(222≠=-+y y x 。
4、设而不求法例2、如图,已知梯形ABCD 中CDAB2=,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点当4332≤≤λ时,求双曲线离心率e 的取值范围。
分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合运用数学知识解决问题的能力。
建立直角坐标系xOy ,如图,若设C ⎪⎭⎫⎝⎛h c , 2,代入12222=-b y a x ,求得h =L,进而求得,,E E x y ==L L 再代入12222=-b y a x ,建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,此运算量可见是难上加难.我们对h 可采取设而不求的解题策略,建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,化繁为简.解法一:如图,以AB 为垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xOy ,则CD ⊥y 轴因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称依题意,记A ()0 ,c -,C ⎪⎭⎫ ⎝⎛h c , 2,E ()00 ,y x ,其中||21AB c =为双曲线的半焦距,h 是梯形的高,由定比分点坐标公式得()()122120+-=++-=λλλλc cc x , λλ+=10h y设双曲线的方程为12222=-by a x ,则离心率a ce =由点C 、E 在双曲线上,将点C 、E 的坐标和ac e =代入双曲线方程得14222=-b h e , ①11124222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-bh e λλλλ ②由①式得14222-=e b h , ③将③式代入②式,整理得()λλ214442+=-e ,故 1312+-=e λ由题设4332≤≤λ得,43231322≤+-≤e解得 107≤≤e所以双曲线的离心率的取值范围为[]10, 7分析:考虑,AE AC 为焦半径,可用焦半径公式, ,AE AC 用,E C 的横坐标表示,回避h 的计算, 达到设而不求的解题策略. 解法二:建系同解法一,(),E C AE a ex AC a ex =-+=+,()()22121E cc c x λλλλ-+-==++,又1AE AC λλ=+,代入整理1312+-=e λ,由题设4332≤≤λ得,43231322≤+-≤e 解得107≤≤e所以双曲线的离心率的取值范围为[]10, 75、判别式法 例3已知双曲线122:22=-x yC ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:()10)2(:<<-=k x k y lk k kx y l 2222:'-++=的值解得k解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:简解:设点)2,(2x x M +为双曲线C 上支上任一点,则点M 到直线l 的距离为:212222=+-+-k kx kx()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有把直线l ’的方程代入双曲线方程,消去y ,令判别式0=∆直线l ’在l 的上方且到直线l 的距离为2.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x ⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k k kx k k k x k由10<<k 可知:方程()()()022)1(22)1(22122222=--++-++-k k x k k k x k 的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.例4已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程.分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。