圆锥曲线解题技巧和方法综合(全)

合集下载

圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。

高中数学圆锥曲线解题十招全归纳

高中数学圆锥曲线解题十招全归纳

高中数学圆锥曲线解题十招全归纳
1.熟悉圆锥曲线的基本概念,如焦点、准线、离心率等。

2. 对于椭圆和双曲线,要注意判断其是横向还是纵向,并掌握
其标准方程。

3. 解题时要注意转化,如通过平移、旋转等方式将方程转化为
标准方程。

4. 对于椭圆和双曲线的焦点、准线、离心率等参数要有清晰的
认识,能正确描绘出图形。

5. 注意判断椭圆和双曲线的类型,如是否为实心或空心图形等。

6. 对于椭圆和双曲线的对称性要有充分的认识。

7. 在解题过程中,注意运用对称性和几何意义,如面积公式、
周长公式等。

8. 对于椭圆和双曲线的渐近线,要了解其定义和性质,并掌握
其方程。

9. 在解题过程中,注意运用渐近线的性质,如过定点、过中心、垂直等。

10. 解题时要注意画出图形,有助于更好地理解题目和解题思路。

- 1 -。

圆锥曲线解题十招全归纳

圆锥曲线解题十招全归纳

《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于0。

设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。

由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。

则线段AB 的中点为22211(,)22k k k--。

线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。

AB =21k =+2d k=21k +=k =053x =。

【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

圆锥曲线解题技巧与方法综合如何通过直线的切线与法线求解抛物线方程

圆锥曲线解题技巧与方法综合如何通过直线的切线与法线求解抛物线方程

圆锥曲线解题技巧与方法综合如何通过直线的切线与法线求解抛物线方程在解题过程中,圆锥曲线是一个常见的数学问题。

其中,抛物线是圆锥曲线中最为常见且重要的一种。

本文将介绍通过直线的切线与法线求解抛物线方程的技巧与方法。

一、切线与法线的定义和性质切线:在直角坐标系中,给定一点P(x,y)在曲线上,如果曲线在该点的切线存在且为一直线L,则称L为曲线在P点的切线。

法线:在直角坐标系中,给定一点P(x,y)在曲线上,如果曲线在该点的法线存在且垂直于切线L,则称L为曲线在P点的法线。

性质1:切线和曲线在切点处的切线斜率相等。

性质2:切线和曲线在切点处的法线斜率互为相反数。

二、求解抛物线方程的步骤步骤1:确定抛物线的顶点和对称轴。

抛物线的顶点即为对称轴上的点,可以通过解方程组或者利用对称性质求得。

步骤2:求解抛物线的切线方程。

在求解切线方程时,需要利用切点的坐标和切线的斜率。

根据抛物线的性质,切线的斜率和抛物线的斜率函数有关。

步骤3:求解抛物线的法线方程。

法线与切线垂直,因此法线的斜率可以通过切线斜率的倒数得到。

在求解法线方程时,同样需要利用法线的切点坐标。

步骤4:得到抛物线的方程。

通过切线和法线的求解,可以得到一组方程。

根据抛物线的性质,可以将这组方程化简为一元一次方程或者二次方程,从而求解抛物线的方程。

三、示例分析以一道具体的例题为例,来说明如何通过直线的切线与法线求解抛物线方程。

例题:已知抛物线的顶点为V(-4,3),且经过点A(-1,5),求解抛物线的方程。

解题过程:步骤1:确定抛物线的顶点和对称轴。

已知抛物线的顶点为V(-4,3),由于顶点即为对称轴上的点,因此对称轴的方程为x=-4。

步骤2:求解抛物线的切线方程。

因为已知经过点A(-1,5),所以切点的坐标为(-1,5)。

首先求解抛物线在切点处的斜率,可以利用导数的概念求得。

抛物线的一般方程为y=ax²+bx+c,对其进行求导得到y'=2ax+b。

圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题

圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题

圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题圆锥曲线是数学中的重要概念之一,在几何学和代数学领域都有广泛的应用。

通过直角坐标系解析法,我们可以用简洁而准确的方式解决与圆锥曲线相关的问题。

本文将介绍圆锥曲线的基本知识,并以解析法为重点,总结圆锥曲线解题的技巧与方法。

一、圆锥曲线的基本概念圆锥曲线是由平面与圆锥相交而形成的曲线。

常见的圆锥曲线包括椭圆、双曲线和抛物线。

这些曲线在直角坐标系中有各自的特点和方程。

1. 椭圆椭圆是圆锥和平面相交所形成的曲线。

在直角坐标系中,椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1其中,(h, k)为椭圆的中心坐标,a为椭圆长轴的一半长度,b为椭圆短轴的一半长度。

2. 双曲线双曲线同样是由圆锥和平面相交所形成的曲线。

在直角坐标系中,双曲线的标准方程为:(x-h)²/a² - (y-k)²/b² = 1其中,(h, k)为双曲线的中心坐标,a为双曲线长轴的一半长度,b为双曲线短轴的一半长度。

3. 抛物线抛物线是由圆锥和平面相交所形成的曲线。

在直角坐标系中,抛物线的标准方程为:y = ax² + bx + c其中,a、b、c为常数,决定了抛物线的形状和位置。

二、通过直角坐标系解析法解决圆锥曲线问题的技巧与方法通过直角坐标系解析法,我们可以通过曲线的方程和几何特征来解决与圆锥曲线相关的问题。

以下是一些解题的常用技巧与方法:1. 求解曲线的方程通过已知的几何信息,我们可以得到曲线的方程。

根据曲线的类型,选择合适的标准方程,并通过已知点或其他条件来确定方程中的参数。

2. 求解曲线的焦点和准线对于椭圆和双曲线,焦点和准线是重要的几何特征。

通过方程中的参数,我们可以计算焦点和准线的坐标。

3. 求解曲线的顶点和开口方向抛物线的顶点和开口方向也是重要的几何特征。

圆锥曲线定直线问题解题方法与技巧

圆锥曲线定直线问题解题方法与技巧

圆锥曲线定直线问题解题方法与技巧标题:圆锥曲线定直线问题的解题方法与技巧一、引言在解析几何中,圆锥曲线是重要的研究对象,其中涉及到的定直线问题要求我们找出经过特定点或者满足特定条件的直线方程。

这类问题通常需要综合运用直线与圆锥曲线的位置关系、参数方程、极坐标方程以及代数运算等知识。

以下将详细介绍解决此类问题的一些基本方法和实用技巧。

二、基本解题方法1. 利用位置关系确定直线方程:当已知直线过某定点或与圆锥曲线相切、相交于两点等情况时,可以利用圆锥曲线的标准方程(例如椭圆、双曲线、抛物线)与直线的一般方程联立,通过求解方程组得到交点坐标,进而确定直线方程。

2. 参数法:圆锥曲线的参数方程能直观地反映点与曲线的关系,当直线与圆锥曲线有特殊关系(如切线、法线)时,可先将直线写成参数形式,然后与圆锥曲线的参数方程联立求解参数,从而得出直线的方程。

3. 极坐标法:在某些情况下,若圆锥曲线或直线在极坐标下表达更为简便,可直接在极坐标系中建立方程,求解后转换为直角坐标系下的直线方程。

三、解题技巧1. 明确题目条件:解决定直线问题时,首先要明确直线需要满足的条件,如是否过定点、是否为圆锥曲线的切线、斜率是否存在等,这些信息对于选择合适的解题方法至关重要。

2. 判断直线与圆锥曲线的位置关系:通过计算判别式,可以判断直线与圆锥曲线的位置关系,如相离、相切、相交等,进一步决定如何设定直线方程。

3. 巧妙应用韦达定理:在处理直线与圆锥曲线交点问题时,韦达定理是一个非常有力的工具。

它可以快速给出两交点横坐标的乘积和和关系,帮助简化计算过程。

4. 充分利用对称性:圆锥曲线具有良好的对称性,有时可以根据对称性简化问题,比如已知直线过原点或与坐标轴平行的情况。

总结,解决圆锥曲线定直线问题需灵活运用解析几何的基础理论,结合具体情况选择最适宜的解题策略,同时注重培养观察问题的能力和逻辑推理能力,以提升解题效率与准确性。

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳1.球面坐标系与圆锥曲线:在球面坐标系中,圆锥曲线可以看作是一个直线在球面上的投影。

通过利用球面坐标系的相关性质,可以简化圆锥曲线的解题过程。

2.圆锥曲线的标准方程:圆锥曲线的标准方程是通过平移和旋转的方式将一般方程转化成一种特殊形式的方程。

通过将一般方程转化成标准方程,可以方便地研究圆锥曲线的性质。

3.圆锥曲线的分类与特点:根据圆锥曲线的二次项和四次项的系数可以将圆锥曲线分为椭圆、双曲线和抛物线三类。

每一类圆锥曲线都有其特有的性质和特点,熟悉这些特点可以帮助我们更好地解题。

4.圆锥曲线的参数方程:圆锥曲线的参数方程是通过引入一个参数来表示曲线上的点的坐标。

通过使用参数方程,可以简化圆锥曲线的分析和解题过程。

5.圆锥曲线的对称性:圆锥曲线具有多种对称性,包括关于坐标轴、原点和直线的对称性。

利用这些对称性可以简化问题的分析和解题过程。

6.圆锥曲线的焦点与准线:焦点和准线是圆锥曲线的两个重要特点。

了解焦点和准线的性质可以帮助我们理解圆锥曲线的形状和性质,并解决相关的问题。

7.圆锥曲线的参数化方程:圆锥曲线的参数化方程是通过引入一个或多个参数来表示曲线上的点的坐标。

通过使用参数化方程,可以更灵活地处理圆锥曲线上的点和相关的问题。

8.圆锥曲线的极坐标方程:圆锥曲线的极坐标方程是通过将直角坐标系中的变量用极坐标表示来得到的。

利用极坐标方程,可以方便地研究圆锥曲线的性质,并解决相关的问题。

9.圆锥曲线的参数方程与极坐标方程的转换:圆锥曲线的参数方程和极坐标方程可以相互转换。

通过掌握参数方程和极坐标方程之间的转换关系,可以灵活地处理圆锥曲线的问题,并得到更加深入的理解。

2024圆锥曲线大题计算方法

2024圆锥曲线大题计算方法

2024圆锥曲线大题计算方法圆锥曲线是高中数学中的重要内容,其相关题目在各类考试中频繁出现,尤其是大题部分,对考生的计算能力提出了较高要求。

本文将针对2024年圆锥曲线大题的计算方法进行详细解析,帮助考生掌握解题技巧,提高解题效率。

一、圆锥曲线方程求解方法1.椭圆方程求解:对于椭圆题目,首先要根据题目条件列出椭圆的标准方程。

在求解过程中,注意运用以下方法:(1)画图、特值法:通过观察图形,选取特殊点或线,简化计算过程;(2)变换主元与换元法:在化简方程时,可适当变换主元或进行换元,降低计算难度;(3)整体消元法:在求解过程中,注意整体消元,避免繁琐的计算。

2.双曲线方程求解:与椭圆类似,双曲线的求解也要注意运用画图、特值法、变换主元与换元法以及整体消元法。

二、直线与圆锥曲线交点求解方法1.代入法:将直线方程代入圆锥曲线方程,求解交点坐标。

注意在代入过程中,尽量简化计算,避免繁琐的运算。

2.联立方程组法:将直线方程与圆锥曲线方程联立,构成方程组,求解交点坐标。

在求解过程中,注意运用消元法、代入法等简化计算。

三、中点问题求解方法1.定点定值问题:通过画图、特值法或高观点,找出题目中的定点或定值,从而简化计算。

2.调和线束的中点性质:在涉及中点问题时,可运用调和线束的中点性质,快速判断中点位置。

四、实例解析以2023-2024学年北京市朝阳区高三第一学期期末数学试卷第20题为例,题目要求求解椭圆方程,并判断点N是否为线段CM的中点。

1.椭圆方程求解:根据题目条件,列出椭圆的标准方程,并运用上述方法求解。

2.直线与椭圆交点求解:过点P(2, 1)的直线l与椭圆E交于不同的两点C、D,运用代入法或联立方程组法求解交点坐标。

3.中点判断:根据调和线束的中点性质,判断点N是否为线段CM的中点。

五、总结在解决圆锥曲线大题时,掌握以下方法有助于提高解题效率:1.熟练掌握圆锥曲线的标准方程及其性质;2.学会运用画图、特值法、变换主元与换元法、整体消元法等简化计算;3.熟悉中点问题的求解方法,特别是调和线束的中点性质;4.注重实际操作,多做题,积累解题经验。

圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题

圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题

圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题解析几何是数学中的一个重要分支,它通过运用几何图形和代数方法解决各种问题。

而在解析几何中,圆锥曲线是一个特别重要的概念,包括椭圆、双曲线和抛物线。

在解析几何问题中,我们可以运用平移与旋转变换的方法,来简化解答问题的过程。

本文将介绍圆锥曲线解题技巧与方法,并探讨如何通过平移与旋转变换来简化解析几何问题。

一、椭圆的解析几何问题对于椭圆的解析几何问题,我们可以运用平移与旋转变换的方法来简化解答问题的过程。

首先,我们将椭圆的中心平移到坐标原点上,这样可以将椭圆的方程形式简化为标准方程。

对于椭圆的标准方程,可以通过旋转变换来使其长轴与坐标轴重合。

通过变换后的方程,我们可以更加方便地求解椭圆的焦点、顶点、离心率等重要参数。

二、双曲线的解析几何问题对于双曲线的解析几何问题,同样可以通过平移与旋转变换来简化解答问题的过程。

首先,我们可以将双曲线的中心平移到坐标原点上,使其方程形式变为标准方程。

通过旋转变换,我们可以将双曲线的方程转化为标准方程,使其对称轴与坐标轴重合。

这样,我们就可以更方便地求解双曲线的焦点、渐近线等重要参数。

三、抛物线的解析几何问题对于抛物线的解析几何问题,同样可以利用平移与旋转变换来简化解答问题的过程。

将抛物线的焦点平移到坐标原点上,将其方程形式转化为标准方程,从而更便捷地求解抛物线的顶点、焦点、直径等重要参数。

通过旋转变换,使抛物线的方程转化为标准方程,使其对称轴与坐标轴重合,进一步简化计算过程。

四、通过平移与旋转变换简化解析几何问题的优势通过平移与旋转变换来简化解析几何问题,可以将图形的方程形式转化为标准方程,从而更方便地计算图形的重要参数。

这种方法的优势在于能够减少问题的复杂度,简化计算过程,提高解题的效率。

通过合理运用平移与旋转变换,可以将解析几何问题转变为更加简单直观的形式,使问题更易于理解和解答。

总结:对于解析几何问题中的圆锥曲线,我们可以运用平移与旋转变换的方法来简化解答问题的过程。

圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型一、解圆锥曲线问题常用的八种方法:1.直线的交点法:利用直线与圆锥曲线的交点来解题,求出直线与曲线的交点坐标,从而得到问题的解。

该方法适用于直线与圆锥曲线有交点的情况。

2.过顶点的直线法:通过过顶点的直线与圆锥曲线的交点性质来解题。

一般情况下,过顶点的直线与圆锥曲线有两个交点,利用这两个交点可以得到问题的解。

3.平行线法:对于平行线与圆锥曲线的交点性质进行分析,可以得到问题的解。

一般情况下,平行线与圆锥曲线有两个交点,通过求解这两个交点可以得到问题的解。

4.切线法:利用切线与圆锥曲线的交点性质来解题。

一般情况下,切线与圆锥曲线有一个交点,通过求解这个交点可以得到问题的解。

5.对称法:通过对称性质,将圆锥曲线转化为标准形式或特殊形式,从而简化问题的求解过程。

6.几何平均法:利用几何平均的性质,将圆锥曲线的方程进行变换,从而得到问题的解。

7.参数方程法:通过给定的参数方程,求解参数,从而得到与曲线相关的问题的解。

8.解析几何法:通过解析几何的方法,将问题抽象为代数方程,从而求解问题。

二、解圆锥曲线问题常规题型:1.已知曲线方程,求曲线的性质:如给定椭圆的方程,求椭圆的长短轴、焦点、离心率等。

2.已知曲线性质,求曲线方程:如给定一个椭圆的长短轴、焦点、离心率等,求椭圆的方程。

3.已知曲线方程和一个点,判断该点是否在曲线上:如给定一个椭圆的方程和一个点P,判断点P是否在椭圆上。

4.已知曲线方程和一个直线,判断该直线是否与曲线有交点:如给定一个椭圆的方程和一条直线L,判断直线L是否与椭圆有交点。

5.已知曲线方程和一个点,求该点到曲线的距离:如给定一个椭圆的方程和一个点P,求点P到椭圆的距离。

6.已知曲线方程和一个点,求该点在曲线上的切线方程:如给定一个椭圆的方程和一个点P,求点P在椭圆上的切线方程。

7.已知曲线方程和两个点,求该曲线上两点之间的弧长:如给定一个椭圆的方程和两个点A、B,求椭圆上从点A到点B的弧长。

(完整版)圆锥曲线解题技巧和方法综合(经典)

(完整版)圆锥曲线解题技巧和方法综合(经典)

圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。

(2) 与直线相关的重要内容①倾斜角与斜率 k tan , [0, )② 点 到 直 线 的 距 离 d Ax 0 By 0 CA 2B 2tan3)弦长公式直线 y kx b 上两点 A(x 1, y 1), B( x 2 , y 2 )间的距离: AB 1 k 2 x 1 x 2(1 k 2 )[( x 1 x 2)2 4x 1x 2] 或 AB 1 k 12 y 1 y 2 (4)两条直线的位置关系①l 1 l 2 k 1k 2=-1 ② l 1 //l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:22x y1(m 0,n 0且 m n) mn 距离式方程:(x c)2 y 2 (x c)2 y 22a 参数方程:x acos ,y bsin(2)、双曲线的方程的形式有两种③夹角公式:k21222标准方程:x y1(m n 0)mn距离式方| (x c)2 y 2 (x c) 2 y 2 | 2a(3) 、三种圆锥曲线的通径你记得吗?椭圆:2b;双曲线:2b;抛物线:2 p aa(4) 、圆锥曲线的定义你记清楚了吗?b 2tan2 P 在双曲线上时, S F PF b cot| PF |2 | PF |2 4c 2 uuur uuuur uuur uuuur 其中 F 1PF 2,cos |PF 1||PF 1||P |F P 2F |2 | 4c ,u P u F ur1?u P u Fuur 2|u P uu F r 1 ||uu P u Fur2|cos(6) 、 记 住 焦 半 径 公 式 : ( 1 )椭圆焦点在 x 轴上时为 a ex 0 ;焦点在 y 轴上时为 a ey 0,可简记为“左加右减,上加下减”(2)双曲线焦点在 x 轴上时为 e|x 0 | a(3) 抛物线焦点在 x 轴上时为 | x 1 | 2p ,焦点在 y 轴上时为 | y 1 | 2p(6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备1、点差法(中点弦问题)2y1的弦 AB 中点则有3如: 已知 F 1、 22F2是椭圆 x4 y3 1的两个焦点, 平面内一个动点 M 足 MF 1MF 2 2 则动点 M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式: P 在椭圆上时, S F 1PF 2设 A x 1, y 1B x 2,y 2 , M a,b 为椭圆 x42 2 2 2 2 2 2 2 x 1 y 1 1, x 2 y 2 1;两式相减得 x 1 x 2y 1 y 24 3 4 3 4 3x 1 x 2 x 1 x 2y 1 y 2 y 1 y 23a4 3kAB =4b2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到 一个二次方程, 使用判别式 0,以及根与系数的关系, 代入弦 长公式,设曲线上的两点 A( x 1, y 1), B(x 2 , y 2 ) ,将这两点代入曲线方 程得到 ○1 ○2 两个式子,然后 ○1-○2 ,整体消元······,若有两个 字母未知数, 则要找到它们的联系, 消去一个,比如直线过焦点, 则可以利用三点 A 、B 、 F 共线解决之。

数学圆锥曲线题解题技巧方法总结

数学圆锥曲线题解题技巧方法总结

数学圆锥曲线题解题技巧方法总结圆锥曲线最值问题从方程与曲线着手,反映了数学问题中的数与形的密切关系,这类问题涉及的数学知识较多,解题方法灵活。

下面是小编为大家整理的关于数学圆锥曲线解题技巧,希望对您有所帮助!圆锥曲线解题技巧题型一:求曲线方程<1>曲线形状已知,待定系数法解决<2>曲线形状未知,求轨迹方程题型二:直线和圆锥曲线关系把直线方程代入到曲线方程中,解方程,进而转化为一元二次方程后利用判别式、韦达定理,求根公式等来处理(应该特别注意数形结合的思想)题型三:两点关于直线对称问题求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。

题型四:两直线垂直斜率相乘等于-1题型五:中点弦问题点差法:设曲线上两点为(X1,Y1),(X2,Y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(注意斜率不存在D的情况讨论),从而消去四个参数。

题型六:焦点三角形椭圆或双曲线上一点和其两个焦点构成三角形,多用正余弦定理解决问题。

题型七:最值问题(求范围)<1>若命题条件和结论有几何意义,可用图形性质来解答。

<2>若命题条件和结论有函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

圆锥曲线大题解题技巧首先,我们要知道直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用。

其次当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”。

典型例题1:研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解。

圆锥曲线解题技巧

圆锥曲线解题技巧

圆锥曲线一概念、方法、题型、及应试技巧总结1. 圆锥曲线的两个定义(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,,F 2的距离 的和等于常数2a ,且此常数2a 一定要大于 F ,F 2,当常数等于 F ,F 2时,轨迹是线段F 1F 2,当常数小于F l F 2时,无轨迹;双曲线中,与两定点F l ,F 2的距离的差的绝对值 等于常数2a ,且此常数2a 一定要小于|卩汙2丨,定义中的“绝对值”与2a V |F 1F 2|不 可忽视。

若2a = |F 1F 2|,则轨迹是以 F 1 , F 2为端点的两条射线,若 2a > |F 1F 2 |,则 轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如(1)已知定点F 1(;,0),F 2(3,0),在满足下列条件的平面上动点 P 的轨迹中是椭圆 的是 A -PF1I + PF 2 =4 B •|PF 1 +|PF 2〔 =6 C •PF 1 +|PF 2 =1022D • PF 1 +|PF 2| =12 (答:C );方程J (x -6)2+y 2—J (x +6)2+y 2=8表示的曲线是 ______ (答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。

圆锥曲线的第二定义, 给出了圆锥曲线上的点到焦点距 离与此点到相应准线距离间的关系,要善于 运用第二定义对它们进行相互转化 。

2如已知点Q (2j2,0)及抛物线y=』上一动点P (x,y ),则y+|PQ|的最小值是4(答: 2)2. 圆锥曲线的标准方程 (标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标 准位置的方程):2 2(1)椭圆:焦点在x 轴上时—y 2 =1 ( a b 0 )= a b2 2 y x=1 ( a b 0)。

方程Ax 2 By^C 表示椭a b1 1(-3,=)U ( ,2));2 2222 2圆的充要条件是什么?(ABC 工 0, 且 A , B , C 同号,A 工 B )。

高考圆锥曲线解题技巧总结

高考圆锥曲线解题技巧总结

第五篇 高考解析几何万能解题套路解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到。

第一部分:基础知识1.概念特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+。

2.圆锥曲线的几何性质:(1)椭圆(以12222=+by a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c=±; ⑤离心率:c e a=,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。

(2)双曲线(以22221x y a b-=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c=±; ⑤离心率:c e a=,双曲线⇔1e >,等轴双曲线⇔e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a=±。

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题技巧总结

解圆锥曲线问题的常用方法大全1、定义法〔1〕椭圆有两种定义。

第一定义中,r 12=2a 。

第二定义中,r 11 r 22。

〔2〕双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为:第二定义中,r 11,r 22,尤其应注意第二定义的应用,常常将 半径与“点到准线距离〞互相转化。

〔3〕抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要无视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法〞。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法〞,即设弦的两个端点A(x 11)(x 22),弦中点为M(x 00),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求〞法,具体有: 〔1〕与直线相交于A 、B ,设弦中点为M(x 00),那么有。

〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦中点为M(x 00)那么有〔3〕y 2=2〔p>0〕与直线l 相交于A 、B 设弦中点为M(x 00),那么有2y 02p,即y 0.【典型例题】例1、(1)抛物线2=4x 上一点P 到点A(3,42)与到准线的距离和最小,那么点 P 的坐标为(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)Q 的坐标为。

分析:〔1〕A 在抛物线外,如图,连,那么PH =易发现,当A 、P 、F 三点共线时,距离和最小。

高中数学圆锥曲线解题方法归纳

高中数学圆锥曲线解题方法归纳

高中数学圆锥曲线解题方法归纳圆锥曲线是高中数学中的一个重要部分,包括椭圆、双曲线和抛物线。

这些曲线通常通过平面截取圆锥的不同部分来形成。

为了更好地理解和解决这类问题,我们需要掌握一些基本的解题方法。

1. 定义法:根据圆锥曲线的定义来解题。

例如,椭圆和双曲线的定义是两个焦点到曲线上任一点的距离之和或差为一个常数。

抛物线的定义是一个点到固定点(焦点)和固定直线(准线)的距离相等。

2. 参数方程法:对于一些复杂的圆锥曲线问题,我们可以使用参数方程来表示曲线上点的坐标。

这样可以将几何问题转化为代数问题,便于计算。

3. 切线法:对于一些与圆锥曲线切线相关的问题,我们可以使用切线性质来解题。

例如,切线到曲线上任一点的距离在切点处达到最小值。

4. 极坐标法:将问题转化为极坐标形式,利用极坐标的性质来解题。

例如,在极坐标下,距离和角度的关系可以简化为数学表达式。

5. 几何法:利用圆锥曲线的几何性质来解题。

例如,椭圆的焦点到椭圆中心的距离等于椭圆上任一点到椭圆中心的距离减去椭圆半径。

6. 代数法:通过代数运算来解题。

例如,解联立方程来找到满足多个条件的点的坐标。

7. 数形结合法:结合图形和数学表达式来解题。

通过观察图形,可以更好地理解问题的本质,从而找到合适的解题方法。

以上是高中数学中圆锥曲线解题的一些基本方法。

需要注意的是,每种方法都有其适用的范围和局限性,需要根据具体问题选择合适的方法。

同时,这些方法也不是孤立的,有时需要综合运用多种方法来解决一个复杂的问题。

通过大量的练习和总结,我们可以提高解决圆锥曲线问题的能力。

【高中数学】圆锥曲线解题技巧+7大题型汇总+常用公式推论!

【高中数学】圆锥曲线解题技巧+7大题型汇总+常用公式推论!

【高中数学】圆锥曲线解题技巧+7大题型汇总+常用公式推论!学好圆锥曲线的几个关键点1、牢记核心知识点核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。

2、计算能力与速度计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。

后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。

当然也要掌握一些解题的小技巧,加快运算速度。

3、思维套路拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。

老师建议:山重水复疑无路,没事你就算两步。

大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。

一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。

二联立:通过快速计算或者口算得到联立的二次方程。

三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。

走完三部曲之后,在看题目给出了什么条件,要求什么。

例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。

4、题型总结圆锥曲线中常见题型总结这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。

这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。

弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得这类常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.轨迹问题一般方法有三种:定义法,相关点法和参数法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。

(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。

(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。

y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

(1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。

或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。

最值问题的处理思路:1、建立目标函数。

用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x 、y 的范围;2、数形结合,用化曲为直的转化思想;3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;4、借助均值不等式求最值。

典型例题已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B , |AB|≤2p(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。

(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。

典型例题已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。

2.曲线的形状未知-----求轨迹方程 典型例题已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1, 动点M 到圆C 的切线长与|MQ|的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明它是什么曲线。

(6)存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。

(当然也可以利用韦达定理并结合判别式来解决)典型例题 已知椭圆C 的方程x y 22431+=,试确定m 的取值范围,使得对于直线y x m =+4,椭圆C 上有不同两点关于直线对称(7)两线段垂直问题圆锥曲线两焦半径互相垂直问题,常用k k y y x x 1212121···==-来处理或用向量的坐标运算来处理。

典型例题已知直线l 的斜率为k ,且过点P (,)-20,抛物线C y x :()241=+,直线l与抛物线C 有两个不同的交点(如图)。

(1)求k 的取值范围;(2)直线l 的倾斜角θ为何值时,A 、B 与抛物线C 的焦点连线互相垂直。

四、解题的技巧方面:在教学中,学生普遍觉得解析几何问题的计算量较大。

事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。

下面举例说明:(1)充分利用几何图形解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。

典型例题 设直线340x y m ++=与圆x y x y 2220++-=相交于P 、Q 两点,O 为坐标原点,若OP OQ ⊥,求m 的值。

(2)充分利用韦达定理及“设而不求”的策略我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。

典型例题 已知中心在原点O ,焦点在y 轴上的椭圆与直线y x =+1相交于P 、Q 两点,且OP OQ ⊥,||PQ =102,求此椭圆方程。

(3)充分利用曲线系方程利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。

典型例题 求经过两已知圆C x y x y 122420:+-+=和C x y y 22224:+--=0的交点,且圆心在直线l :2410x y +-=上的圆的方程。

(4)充分利用椭圆的参数方程椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。

典型例题 P 为椭圆22221x y a b+=上一动点,A 为长轴的右端点,B 为短轴的上端点,求四边形OAPB 面积的最大值及此时点P 的坐标。

(5)线段长的几种简便计算方法①充分利用现成结果,减少运算过程一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 20++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·||12a k △·+,若直接用结论,能减少配方、开方等运算过程。

例求直线x y -+=10被椭圆x y 22416+=所截得的线段AB 的长。

②结合图形的特殊位置关系,减少运算 在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。

例 F 1、F 2是椭圆x y 222591+=的两个焦点,AB 是经过F 1的弦,若||AB =8,求值||||22B F A F +③利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离例 点A (3,2)为定点,点F 是抛物线y x 24=的焦点,点P 在抛物线y 2=4x 上移动,若||||PA PF +取得最小值,求点P 的坐标。

圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。

(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d =③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-= 或12AB y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ②212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a =(3)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122tan 2F PF P b θ∆=在椭圆上时,S122cot2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。

(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22pp x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。

相关文档
最新文档