初中八年级数学下册第十六章二次根式单元复习试题八(含答案) (68)

合集下载

初中八年级数学下册第十六章二次根式单元复习试题八(含答案) (59)

初中八年级数学下册第十六章二次根式单元复习试题八(含答案) (59)

初中八年级数学下册第十六章二次根式单元复习试题八(含答案)计算:)2÷×2;).【答案】(1)12;(2)(3);(4)-4【解析】【分析】根据二次根式的运算法则与整式的乘法法则依次计算即可.【详解】解2=(-2)2×2=12.÷(×=1×5×4×(2=102=3222-2+1])]2)2)=2【点睛】此题主要考察二次根式的运算.102.如图,长方形内两个相邻正方形的面积分别为6和9.(1).小正方形的边长在哪两个连续的整数之间?并说明理由;(2).求阴影部分的面积.【答案】(1)2和3,理由见解析;(2)6.【解析】【分析】(1)根据正方形的面积公式得到小正方形的边长=(2)根据正方形的面积公式得到大正方形的边长=3,阴影部分的面积等于长为3-的矩形面积.【详解】(1)小正方形的边长=∵4<6<9,∴23<<,∴小正方形的边长在2和3之间.(2)大正方形的边长==3,小正方形的边长=所以阴影部分的面积=(36.【点睛】本题考查了二次根式的应用:二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.103.计算(1)-(2)【答案】(1)3;(2)-1【解析】【分析】(1)直接利用平方差公式计算得出答案;(2)首先化简二次根式进而计算得出答案.【详解】解:(1)原式22=-=-633=;(2)原式===-.1故答案为:(1)3;(2)-1【点睛】本题考查二次根式的混合运算,正确化简二次根式是解题关键.104.实数b 在数轴上的位置如图所示,化简:|2|b -【答案】3-2b .【解析】【分析】根据数轴判断出b ﹣2、b ﹣1的正负情况,然后根据绝对值的性质以及二次根式的性质解答即可.【详解】由图可知:1<b <2,所以,b ﹣2<0,b ﹣1>0,原式=2﹣b ﹣(b ﹣1)=2﹣b ﹣b +1=3﹣2b .【点睛】本题考查了实数与数轴,绝对值的性质以及二次根式的性质,根据数轴判断出b ﹣2、b ﹣1的正负情况是解题的关键.105.海伦—秦九韶公式:如果一个三角形三边长分别为a ,b ,c ,设2a b c p ++=,则三角形的面积为S =角形的面积.【解析】试题分析:先求出p 的值,再代入公式即可. 试题解析:a b c 15p 22++==,S ===点睛:此题考查代数式求值以及二次根式的混合运算,读懂题意,弄清海伦公式的计算方法是解答此题的关键.106.按要求解决下列问题:(1)化简下列各式:= ,= ,= ,= ,… (2)通过观察,归纳写出能反映这个规律的一般结论,并证明.【答案】(1)2, , , ;(222= ,证明见解析.【解析】试题分析:(1)各式的分子和分母都乘以分母中含根号的式子,再化简;(2)根据(1)的答案总结规律.解:(1=2=6(2)由(122=.222nn == . 107.20152017(3(2(2-+++- 【答案】.【解析】【分析】原式利用平方差公式、积的乘方的运算法则及完全平方公式计算即可得到结果.【详解】解:原式=)((201522233222⎡⎤-++⋅⎣⎦=(9737-++ =.故答案为:.【点睛】本题考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算法则.108.计算:(1)- (2)((3)2(4(3+-- (4)已知1x =,则代数式256x x +-的值【答案】(1)(2)2-(3);(4)5 【解析】【分析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把括号内各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.(3)根据平方差公式和完全平方公式展开,然后合并即可;(4)把x 的值代入多项式进行计算即可.【详解】(1)原式24-+4;(2)原式==2-; (3)原式=224(92--+-=16511--+(4)当x =-1,x2+5x ﹣6=1)2+51)﹣6=5﹣5﹣65.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.109.已知一个正数的平方根是3m +和215m -(1)求这个正数是多少?(2)的平方根又是多少?【答案】(1)49,(2)±【解析】【分析】根据一个数的平方根互为相反数列方程求出m的值,即可求出这个正数.(2)把m的值代入求出其平方根.【详解】(1)∵m+3和2m-15是同一个正数的平方根,则这两个数互为相反数.即:(m+3)+(2m-15)=0解得m=4.则这个正数是(m+3)2=49.(2)∵m=4,∵=3,则它的平方根是±.考点:平方根。

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。

八年级下册数学二次根式单元试卷(含答案)

八年级下册数学二次根式单元试卷(含答案)

, x − 3 ≥ 0
{ 3−x ≥ 0
解得x=3,
将 代入 ,得 x=3
−−−−−
−−−−−
y = √x − 3 + √3 − x + 2
, y = 2 将x=3、y=2代入xy得 9,
所以xy=9.
13.使式子
−−−−− √m − 2
有意义的最小整数m是
.
【参考答案】
答案:2. 解:根据题意得,m-2≥0, 解得m≥2, 所以最小整数m是2.
−−−−−−−
−−−−−−−
已知 < < ,化简 14.
2x5
√(x

2
2)
+
√(x

2
5)
=
.
【参考答案】
答案:3.
−−−−−−−
−−−−−−−
解: , √(x − 2)2 + √(x − 5)2 = | x - 2 | + | x - 5 |
因为2<x<5,所以x-2>0,x-5<0,
所以|x-2|+|x-5|=x-2+5-x=3.
,宽为
2
−− √10
,则下列说法不正确的是().
A.大长方形的长为6
−− √10
B.大长方形的宽为5
−− √10
C.大长方形的周长为11
−− √10
D.大长方形的面积为300
【参考答案】
答案:C.
解:
由题意得大长方形的两边分别为 , , −−
−−
−−
3 √10 + 2 √10 = 5 √10
−−
−−
人教版数学八年级第十六章 二次根式单元卷
一、选择题

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。

初中八年级数学下册第十六章二次根式单元考试习题(含答案) (68)

初中八年级数学下册第十六章二次根式单元考试习题(含答案) (68)

初中八年级数学下册第十六章二次根式单元考试习题(含答案)阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式225a a -+的最小值.方法如下:∵()2222521414a a a a a -+=-++=-+,由()210a -≥,得()2144a -+≥; ∴代数式225a a -+的最小值是4.(1)仿照上述方法求代数式2107x x ++的最小值.(2)代数式2816a a --+有最大值还是最小值?请用配方法求出这个最值.【答案】(1)18-;(2)有最大值,最大值为32.【解析】【分析】(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可.【详解】解:(1)∵()222107102518518x x x x x ++=++-=+-,由()250x +≥, 得 ()251818x +-≥-; ∵代数式2107x x ++的最小值是18-;(2)()22281681632432a a a a a --+=---+=-++, ∵()240a -+≤,∵()243232a -++≤,∵代数式2816--+有最大值,最大值为32.a a【点睛】本题考查的是配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.102.计算:(1)-|1|(2)4(2x-1)2=16【答案】(1)-4;(2)x=-0.5,x=1.5【解析】【分析】(1)分别计算立方根、绝对值,再合并即可.(2)先变形为(2x-1)2=4,再利用平方根的定义求出x;【详解】(1) 1-1(2) 4(2x-1)2=16∴(2x-1)2=4∴2x-1是4的平方根∴2x-1=2或2x-1=-2∴x=1.5或x=-0.5【点睛】(1)本题考查了二次根式的化简、立方根的性质、绝对值的性质,正确掌握相关性质是解题的关键.(2)本题考查用平方根的定义,熟知若x 2=a,则x 是a 的平方根是解题的关键.103.观察下列各式:1121==-==等于什么? 你能得到什么样的规律?利用你得到的规律计算下面的题目:.......+++(n 为正整数)=1.【解析】【分析】 观察题目中已知算式特点:分子都是1,分母都是相邻两个自然数的算术平方根的和,结果是大数的算术平方根减去小数的算术平方根,即可得到规律,先【详解】1121==-====, 以此类推, 可得到的规律是:第n=;.......+++(n 为正整数) 1.......+1.=1. 【点睛】本题考查分母有理化,规律型:数字的变化类.104.(本题6分)计算:【答案】2【解析】试题分析:首先根据幂的计算法则、二次根式和三角函数的计算法则得出各式的值,然后进行计算.试题解析:原式=4﹣2+1﹣√3×√33=4﹣2+1﹣1=2考点:实数的计算.105.甲同学用如图方法作出C 点,表示数在△OAB 中,∠OAB=90°,OA=2,AB=3,且点 O ,A ,C 在同一数轴上,OB=OC ,(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示F.【答案】(1)点C (2)点A 表示的数为【解析】【详解】(1)在Rt△AOB 中,,∵OB=OC,∴∴点 C(2)如图所示:取OB=5,作BC⊥OB,取BC=2.由勾股定理可知:OC=∵∴点 A表示的数为.【点睛】本题主要考查的是实数与数轴、勾股定理的应用,掌握勾股定理是解题的关键.106.已知实数m,n满足n【答案】0【解析】【分析】根据二次根式有意义的条件即可求出答案.【详解】解:由题意可知:2240 4020 mmm⎧-≥⎪-≥⎨⎪-≠⎩∴m=﹣2,∴n=00 22 + --=0【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.107.计算:(1(2(30(1+ (4)2+【答案】(1);(2(3)6;(4)0 【解析】(1==(23==+=(3(01151 6.=+=+= (4)22225720.+=-+=-+=108.如图,五边形ABCDE 中,,,90AB a BC b B ︒==∠=.且236b =+.(1)求-a b 的平方根;(2)请在CD 的延长线上找一点G ,使得四边形ABCG 的面积与五边形ABCDE 的面积相等;(说明找到G 点的方法)(3)已知点F 在AC 上,//FH AB 交BC 于H ,若6FH =,则BH = .【答案】(1)-a b 的平方根为;(2)见解析;(3)32BH =【解析】【分析】(1)根据已知条件即可求a −b 的平方根;(2)连接AD ,过点E 作//EG AD 交CD 延长线于G 点,即为所求;(3)根据等面积法即可求线段BH 的长.【详解】()1由题知:22640640a a ⎧-≥⎨-≥⎩226464a a ⎧≥∴⎨≤⎩264a ∴=8a ∴=±80a +≠8a ∴≠-8a ∴=236b ∴=6b ∴=±0b BC =>6b ∴=∴a-b=2∵a-b 的平方根是()2如图∵连接AD∵过点E 作//EG AD 交CD 延长线于G 点理由:连接AG 交ED 于点O//AD EGAED AGD S S ∆∆∴=AOE GOD S S ∆∆∴=ABCDE AOE ABCDO GOD ABCDO S S S S S ∆∆∴=+=+ABCG S =∴所以四边形ABCG 的面积与五边形ABCDE 的面积相等;(3)连接FB ,FH ∥AB过点F 作FQ ⊥AB 于点Q ,则四边形FQBH 是矩形,∴FQ =BH ,ABC ABF FBC S S S ∆∆∆=+111222AB BC AB h BC FH ∴=+ 86866h ∴⨯=⨯+⨯32h ∴= 32BH h ∴== 故答案为:32.【点睛】本题考查了作图−应用与设计作图,综合运用平方根、二次根式有意义的条件、平行线的性质、三角形的面积等知识解决问题,解题关键是利用等面积法.109.已知:,+2,分别求下列代数式的值:(1)a2b-ab2(2)a2+ab+b2【答案】(1)4 (2)13【解析】试题分析:(1)由a、b的值先计算出ab、a﹣b,再代入原式=ab(a﹣b)可得答案;(2)将a﹣b、ab代入原式(a﹣b)2+3ab计算可得.试题解析:解:(1)∵a2,b,∴ab=﹣2))=3﹣4=﹣1,a﹣b﹣22=﹣4,则a2b﹣ab2=ab(a﹣b)=4;(2)原式=(a﹣b)2+3ab=16﹣3=13点睛:本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和法则.110.计算(1)-(2)2+--(71)(3(4)×【答案】(1)2-2)45-+3(4)+6【解析】分析:(1)先将二次根式化为最简,然后再进行二次根式的除法及减法运算.(2) 运用平方差及完全平方式解答即可.(3) 将二次根式化为最简,然后再进行同类二次根式的合并即可.(4) 先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)原式=2-(2)原式=45-+(3)原式=2﹣2+﹣=﹣;(4)(+3﹣2)×2=(+)×2=6+6.点睛:本题考查了二次根式的计算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.。

人教版初中八年级数学下册第十六章《二次根式》经典复习题(含答案解析)

人教版初中八年级数学下册第十六章《二次根式》经典复习题(含答案解析)

一、选择题1.下列是最简二次根式的是( )A B CD2.下列说法:①带根号的数是无理数;③实数与数轴上的点是一一对应的关系;④两个无理数的和一定是无理数;⑤已知a =2b =2a 、b 是互为倒数.其中错误的个数有( )A .1个B .2个C .3个D .4个3.下列计算正确的是( )A =±B .=C =D 2=4.x 的取值范围为( )A .x 2≥B .x 2≠C .x 2>D .x 2<5.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 6.当x在实数范围内有意义( ) A .1x > B .1≥x C .1x < D .1x ≤7.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤18.( )A .B .C .D .无法确定 9.下列式子中无意义的是( )A .B .C .D . 10.下列算式中,正确的是( )A .3=B =C =D 4=11.下列计算正确的是( )A . 3B .1122+=C.3=D312.)A.1个B.2个C.3个D.4个13.下列各式中,一定是二次根式的个数为()10),232a a a⎫+<⎪⎭A.3个B.4个C.5个D.6个14.n为().A.2 B.3 C.4 D.515.)0a<得()A B.C D.二、填空题16.3+=__________.17.化简题中,有四个同学的解法如下:========他们的解法,正确的是___________.(填序号)18.________________.19.已知b>0=_____.20.23()a-=______(a≠0),2-=______,1-=______.21.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为6,则图中阴影部分的面积是__________.22.已知5ab =,则b a a b=__. 23.比较大小:310524.已知223y x x =--,则()x x y +的值为_________. 25.已知8817y x x =--,则x y +的平方根为_________.26.(1031352931643-⎛⎫++= ⎪⎝⎭__________. 三、解答题27.计算:(183(26)27+(211513(1)(0.5)2674÷; (3)52311x y x y +=⎧⎨+=⎩; (4)4(2)153123x y y x +=-⎧⎪+⎨=-⎪⎩. 28.(1232;(2)计算:122729.计算(1)3222(2333 30.计算:(11850(2)73)(73)。

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。

有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。

合并的是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

4.下列各式计算正确的是()A.错误!未找到引⽤源。

+错误!未找到引⽤源。

=错误!未找到引⽤源。

B.4错误!未找到引⽤源。

-3错误!未找到引⽤源。

=1C.2错误!未找到引⽤源。

×3错误!未找到引⽤源。

=6错误!未找到引⽤源。

D.错误!未找到引⽤源。

÷错误!未找到引⽤源。

=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2B.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2C.错误!未找到引⽤源。

=x-1D.错误!未找到引⽤源。

=错误!未找到引⽤源。

·错误!未找到引⽤源。

6.已知a=错误!未找到引⽤源。

+1,b=错误!未找到引⽤源。

,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。

÷错误!未找到引⽤源。

×错误!未找到引⽤源。

的结果为()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。

+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。

-1,ab=错误!未找到引⽤源。

八年级数学下册第十六章《二次根式》测试题-人教版(含答案)

八年级数学下册第十六章《二次根式》测试题-人教版(含答案)

八年级数学下册第十六章《二次根式》测试题-人教版(含答案)一.选择题(每小题 3 分,共 30 分)1.代数式24x -在实数范围内有意义,则 x 的取值范围是()A .x ≥2B .x ≠2C .x >2D .x ≤2 2.化简16的结果为( ) A .2 B .-4 C .4D .±43. 下列二次根式是最简二次根式的是()A .13B . 8C . 14D .12 4. 下列计算正确的是( ) A .822-= B .(25)(25)1-+= C 945 D 22=5. 设 x 、y 为实数,且 y =45x -5x - |y − x | 的值是( )A .1B .9C .4D .56.2(21)a -=1-2a ,则()A .a >12B . a <12C . a ≥12D . a ≤127. 已知 ab <02a b 后的结果为()A .bB .-bC .b -D .-b -8. 化简二次根式-1a a-后的结果是( )A aB a -C aD a -9. 已知110a a +,则1a a-等于( ) A .±6 B 6 C 6 D 610.已知 a 、b 、c 为互不相等的有理数,满足2(2)(2)(2)b a c +=++, 则符合条件的a 、b 、c 共有( )A .0 组B .1 组C .2 组D .4 组二、填空题(每小题 3 分,共 18 分)11. 18_________,2(27)=__________43__________.13. 在实数范围内分解因式x 3-5x =________________. 14. 已知 x =5-1,则 x ²+2x -7=___________. 15. 已知实数 a 、b 在数轴上对应的点的位置如图所示,化简:2a + |a + b | +| −a +2|-2(2)b -=___________. 16.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++, 其中n 为正整数,则n a 的值为_______________.三、解答题(共 8 题,共 72 分) 17.(8 分)计算: (1) 118288-+; (2) 11(6)2()|32|2--⨯-+-; (3) 231(32)31+---; (4) 20202021(23)(23)-+.18. (8分)先化简,再求值: 3142y xx y x y +-+,其中 x =4,y =19.19.(8 分)如图,已知长方形内两相邻正方形的面积分别为 2 和 6,求长方形内阴影部分的面积S.20. (8分)已知实数23+的整数部分为x,小数部分为y,求224x yx y+-+的值.21. (8分)已知x3+1,y31,求:(1)代数式xy的值; (2)代数式x3+x2y+xy2+y3的值.22. (10分)(1) 已知:a32,b3+2,求代数式a2b-ab2 的值;(2)运用乘法公式计算:①2+.(32)(23)(32)(2233);②2(3)已知实数x、y满足x2+10x4y-=-25 ,则(x+y)2021的值是多少?23. (10分)743+743+7212+由于4+3=7,4×3=12, 即4)²+3)²=74×312 743+7212+22(4)243(3)+⨯+2(43)+=23.请解答下列问题:(1)423+________526-=__________;(2)进一步研究发现: 2m n ±的化简, 只要我们找到两个正数 a 、b (a > b ), 使 a +b =m ,ab =n ,即22)a b m +=ab n =2m n ±___________; (3)322+526+7212+9220+11230+13242+15256+17272+请写出化简过程).24.(12分)对于任意正实数a、b,均有2()a b≥0,∴a-ab b≥0,∴a+b≥ab当且仅当a=b时,等号成立. 结论:在a+b≥ab a、b均为正实数)中,若ab为定值p,只有当a=b时,a+b有最小值p根据上述内容,回答下列问题:(1)初步探究:若n>0,只有当n=_______ 时,n+1n有最小值;(2)深入思考:下列一组图是由 4 个全等的矩形围成的大正方形,中空部分是小正方形,矩形的长和宽分别为a、b . 试利用大正方形与四个矩形的面积的大小关系,验证a+b≥ab并指出等号成立时的条件;(3)拓宽延伸:如图,已知A(-6,0),B(0,-8),点P是第一象限内的一个动点,过P 点向坐标轴作垂线,分别交x轴和y轴于C、D两点,矩形OCPD的面积始终为 48,求四边形ABCD面积的最小值以及此时P点的坐标.……ABC yD O Px参考答案一.选择题(每小题 3 分,共 30 分)1.代数式24x -在实数范围内有意义,则 x 的取值范围是()A .x ≥2B .x ≠2C .x >2D .x ≤2 【答案】A .2.化简16的结果为( ) A .2 B .-4 C .4 D .±4【答案】C .3. 下列二次根式是最简二次根式的是()A .13B . 8C . 14D .12 【答案】C .4. 下列计算正确的是( ) A .822-= B .(25)(25)1-+= C 945 D 22=【答案】A .5. 设 x 、y 为实数,且 y =45x -5x - |y − x | 的值是( )A .1B .9C .4D .5【答案】A .6.2(21)a -=1-2a ,则()A .a >12B . a <12C . a ≥12D . a ≤12【答案】D .7. 已知 ab <02a b 后的结果为()A .bB .-bC .b -D .-b -【答案】B .8. 化简二次根式-1a a-后的结果是( )A aB a -C aD a -【答案】B . 9. 已知110a a +,则1a a-等于( ) A .±6 B 6 C 6 D 6【答案】D . 提示:2211()()4a a aa-=+-=10-4=6,∴1a a-=±6.10.已知 a 、b 、c 为互不相等的有理数,满足2(2)(2)(2)b a c +=++, 则符合条件的a 、b 、c 共有( )A .0 组B .1 组C .2 组D .4 组【答案】A . 提示:由已知等式,得b 2+22b =ac +(a +c )2,∵a 、b 、c 为有理数, 比较上述等式的两边,得:b 2=ac ,2b =a +c .由2b =a +c ,得4b 2=(a +c )2,把b 2=ac 代入,得4ac =(a +c )2,∴(a -c )2=0, ∴a =c ,与题设a ≠c 不符,故选A .二、填空题(每小题 3 分,共 18 分)11. 计算:18=_________,2(27)=__________,43=__________. 【答案】32, 28,233.12. 若45n 是整数,则正整数 n 的最小值为___________. 【答案】5.13. 在实数范围内分解因式x 3-5x =________________.【答案】x (x +5)(x -5). 提示:原式=x (x 2-5)=x (x +5)(x -5). 14. 已知 x =5-1,则 x ²+2x -7=___________.【答案】-3. 提示:移项得:x +1=5,两边平方,得 x 2+2x +1=5,∴x 2+2x =4, 则x ²+2x -7=4-7=-3.15. 已知实数 a 、b 在数轴上对应的点的位置如图所示,化简:2a + |a + b | +| −a +2|-2(2)b -=___________.【答案】-3a . 提示: 由数轴,知a <b <0,∴a +b <0,-a +2>0,b -2<0, ∴原式=|a |+|a + b | +| −a +2|-|b -2|=-a -(a +b )+(-a +2)+(b -2)=-3a .16.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++, 其中n 为正整数,则n a 的值为_______________.【答案】1+1(1)n n +. 提示:22222222(1)(1)(1)(1)n n n n n a n n n n +++=+++=222222(1)(1)(1)n n n n n n +++++=22222(1)221(1)n n n n n n +++++=2222(1)2(1)1(1)n n n n n n +++++=222[(1)1](1)n n n n +++,∴a n =(1)1(1)n n n n +++=1+1(1)n n +.三、解答题(共 8 题,共 72 分) 17.(8 分)计算: 118288 (2) 11(6)2()32|2--+; (3) 231(32)31+- (4) 20202021(23)23). 【答案】(1)原式=2124711247 (2)原式=-32+(23=-3(3)原式=(3-34)2(31)(31)(31)+-+7-3423+=7-3235-3(4)原式=20202020(23)(23)(23)=2020(23)(23)-23.18. (8分)先化简,再求值: 3142y xy x ++,其中 x =4,y =19. 122x y x y 132x y当x =4,y =19114329=1+1=2.19.(8 分)如图,已知长方形内两相邻正方形的面积分别为 2 和 6, 求长方形内阴影部分的面积S .【答案】依题意,AM 2,DM =CD 6AD 26 ∴长方形ABCD 626, 则S 626-2-6=3 2. 方法2:S =AM ·AB -22·62=3 2.20. (8分)已知实数23+ 的整数部分为x ,小数部分为y ,求224x yx y +-+ 的值.23+23,∴023+1,∴x =0,y =23∴ 224x y x y +-+02(23)02(23)4+---+2(23)4234--++2(23)23-233-233-21. (8分)已知x 3+1,y 31,求:(1)代数式xy 的值; (2)代数式x 3+x 2y +xy 2+y 3的值. 【答案】(1) xy =33-1)=3-1=2. (2) x +y =31)+31)=3原式=x 2(x +y )+y 2(x +y )=(x +y )(x 2+y 2)=(x +y )[(x +y )2-2xy ] =332-2×2]=3-4)=322. (10分)(1) 已知: a 32,b 3+2,求代数式 a 2b -ab 2 的值; 【答案】a -b =-4,ab =332)=3-4=-1, ∴原式=ab (a -b )=-1×(-4)=4.(2)运用乘法公式计算:①2(2233); ②2(32)(23)(32)+. 【答案】①原式=8+627=35+6②原式=4-3+(3-62)=1+5-66-6(3)已知实数 x 、y 满足 x 2+10x 4y -=-25 ,则(x +y )2021的值是多少? 【答案】由已知条件,得 (x +5)24y -0,∵(x +5)2≥04y -0,∴(x +5)2=04y -0, ∴x =-5,y =4,∴(x +y )2021=(-5+4)2021=-1.23. (10分)743+743+7212+由于4+3=7,4×3=12, 即4)²+3)²=74×312 743+7212+22(4)243(3)+⨯+2(43)+=23.请解答下列问题:(2)进一步研究发现: 2m n ±的化简, 只要我们找到两个正数 a 、b (a > b ), 使 a +b =m ,ab =n ,即22)a b m +=ab n =2m n ±___________; (3)322+526+7212+9220+11230+13242+15256+17272+请写出化简过程).【答案】42331+52632-2m n ±2a b ab +±2()a b ±a b(3)∵32221+52632+721243+ 21+32+43+54+98+ =21)+32)+43+54+…+98) =-191+3=2.24.(12分)对于任意正实数 a 、b ,均有2()a b ≥0,∴a -ab b ≥0,∴a +b ≥ab 当且仅当 a =b 时,等号成立. 结论:在 a +b ≥ab a 、b 均为正实数)中,若 ab 为定 值p ,只有当a =b 时,a +b 有最小值p 根据上述内容,回答下列问题: (1)初步探究:若 n >0,只有当 n =_______ 时,n +1n有最小值; (2)深入思考:下列一组图是由 4 个全等的矩形围成的大正方形,中空部分是小正方形, 矩形的长和宽分别为 a 、b . 试利用大正方形与四个矩形的面积的大小关系,验证 a +b ≥ab 并指出等号成立时的条件;(3)拓宽延伸:如图,已知 A (-6,0),B (0,-8),点 P 是第一象限内的一个动点,过 P 点向坐标轴作垂线,分别交 x 轴和 y 轴于 C 、D 两点,矩形 OCPD 的面积始终为 48, 求四边形 ABCD 面积的最小值以及此时 P 点的坐标.【答案】(1) n =1. 提示: 根据a +b ≥ab 112n n nn+≥⋅当且仅当n =1n时成立,此时n =1.……ABCy DOP x(2) 大正方形的边长为a+b,中空小正方形的边长为b-a,由图形的面积,得:(a+b)2-4ab=(b-a)2≥0,∴(a+b)2-4ab≥0,∴(a+b)2≥4ab,则a+b≥ab显然,只有当a=b时,上述各式中等号成立.(3) 设P(x,y),则OC=x,OD=y,xy=48.∵A(-6,0),B(0,-8),∴OA=6,OB=8,∴四边形ABCD的面积为S=12AC·BE=12(x+6)(y+8)=12(xy+8x+6y+48)=12(48+8x+6y+48)=4x+3y+48≥43x y⋅+48=3xy48=348⨯48=96.取等号时,4x=3y,又xy=48,∴x=6,y=8,∴P(6,8).∴四边形ABCD面积的最小值为96,此时P点的坐标为P(6,8).。

人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)

人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)

人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)一、 选择题(本大题共10小题,每小题2分,共20分)1. 下列式子一定是二次根式的是( ) A. 2--x B. x C. 22+x D. 22-x2. 二次根式13)3(2++m m 的值是( ) A. 23 B. 32 C.22 D. 0 3. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( ) A. 0 B. -2 C. 0或-2 D. 25. 下列二次根式中属于最简二次根式的是( ) A. 14 B. 48 C. b a D. 44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数 7. 小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a a a a a=•=112;④a a a =-23。

做错的题是( )A. ①B. ②C. ③D. ④ 8. 化简6151+的结果是( ) A. 3011 B. 33030 C. 30330 D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( ) A. 43-=a B. 34=a C. 1=a D. 1-=a10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。

12. 2)52(-=__________。

13. 若m < 0,则332m m m ++=_______________。

14. 231-与23+的关系是____________。

15. 若35-=x ,则562++x x 的值为___________________。

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。

人教版数学八年级下册:第16章《二次根式》单元测试(附答案)

人教版数学八年级下册:第16章《二次根式》单元测试(附答案)

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念01 基础题知识点1 二次根式的定义1.下列式子不是二次根式的是( B )A . 5B .3-π C.0.5 D.132.下列各式中,一定是二次根式的是( C ) A .-7 B .3m C .1+x 2 D .2x3.已知a 是二次根式,则a 的值可以是( C )A .-2B .-1C .2D .-54.若-3x 是二次根式,则x 的值可以为答案不唯一,如:-1(写出一个即可).知识点2 二次根式有意义的条件5.x 取下列各数中的哪个数时,二次根式x -3有意义(D )A .-2B .0C .2D .46.(2017·广安)要使二次根式2x -4在实数范围内有意义,则x 的取值范围是(B)A .x >2B .x ≥2C .x <2D .x =27.当x 是怎样的实数时,下列各式在实数范围内有意义? (1)-x ;解:由-x ≥0,得x ≤0.(2)2x +6;解:由2x +6≥0,得x ≥-3.(3)x 2;解:由x 2≥0,得x 为全体实数.(4)14-3x; 解:由4-3x>0,得x<43.(5) x -4x -3. 解:由⎩⎪⎨⎪⎧x -4≥0,x -3≠0 得x ≥4.知识点3 二次根式的实际应用8.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为(B)A .1 dm B. 2 dmC. 6 dm D .3 dm9.若一个长方形的面积为10 cm 2,它的长与宽的比为5∶1,则它的长为,02 中档题10.下列各式中:①12;②2x ;③x 3;④-5.其中,二次根式的个数有(A ) A .1个B .2个C .3个D .4个11.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C)A .x ≥12B .x ≤12C .x =12D .x ≠12 12.使式子1x +3+4-3x 在实数范围内有意义的整数x 有(C ) A .5个B .3个C .4个D .2个13.如果式子a +1ab有意义,那么在平面直角坐标系中点A(a ,b)的位置在(A) A .第一象限B .第二象限C .第三象限D .第四象限 14.使式子-(x -5)2有意义的未知数x 的值有1个.15.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.16.要使二次根式2-3x 有意义,则x 的最大值是23. 17.当x 是怎样的实数时,下列各式在实数范围内有意义?(1)32x -1; 解:x>12.(2)21-x;解:x≥0且x≠1.(3)1-|x|;解:-1≤x≤1.(4)x-3+4-x.解:3≤x≤4.03综合题18.已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6+32-a,求此三角形的周长.解:∵3a-6≥0,2-a≥0,∴a=2,b=4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.∴此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 a ≥0(a ≥0)1.(2017·荆门)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为3.2.当x =2__017时,式子2 018-x -2 017有最大值,且最大值为2__018.知识点2 (a )2=a (a ≥0)3.把下列非负数写成一个非负数的平方的形式:(1)5 (2)3.4(3)16= (4)x ≥0). 4.计算:( 2 018)2=2__018.5.计算: (1)(0.8)2;解:原式=0.8.(2)(-34)2; 解:原式=34.(3)(52)2;解:原式=25×2=50.(4)(-26)2.解:原式=4×6=24.知识点3 a 2=a (a ≥0)6.计算(-5)2的结果是(B )A .-5B .5C .-25D .257.已知二次根式x 2的值为3,那么x 的值是(D)A .3B .9C .-3D .3或-38.当a ≥0时,化简:9a 2=3a .9.计算:(1)49;解:原式=7.(2)(-5)2;解:原式=5.(3)(-13)2; 解:原式=13.(4)6-2.解:原式=16.知识点4 代数式10.下列式子不是代数式的是(C )A .3xB .3xC .x>3D .x -311.下列式子中属于代数式的有(A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个02 中档题12.下列运算正确的是(A ) A .-(-6)2=-6B .(-3)2=9C .(-16)2=±16D .-(-5)2=-2513.若a <1,化简(a -1)2-1的结果是(D )A .a -2B .2-aC .aD .-a14.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是(A )A .-2a +bB .2a -bC .-bD .b15.已知实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,则m 的取值范围是(A)A .m >6B .m <6C .m >-6D .m <-616.化简:(2-5)217.在实数范围内分解因式:x 2-518.若等式(x -2)2=(x -2)2成立,则x 的取值范围是x ≥2.19.若a 2=3,b =2,且ab <0,则a -b =-7.20.计算:(1)-2(-18)2; 解:原式=-2×18=-14.(2)4×10-4;解:原式=2×10-2.(3)(23)2-(42)2; 解:原式=12-32=-20.(4)(213)2+(-213)2.解:原式=213+213=423.21.比较211与35的大小.解:∵(211)2=22×(11)2=44, (35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.22.先化简a +1+2a +a 2,然后分别求出当a =-2和a =3时,原代数式的值.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a =-2时,原式=-2+|-2+1|=-2+1=-1;当a =3时,原式=3+|3+1|=3+4=7.03 综合题23.有如下一串二次根式: ①52-42;②172-82;③372-122;④652-162…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式; (3)仿照①,②,③,④,⑤,写出第个二次根式,并化简.解:(1)①原式=9=3.②原式=225=15.③原式= 1 225=35.(3)第个二次根式为(4n2+1)2-(4n)2.化简:(4n2+1)2-(4n)2=(4n2-4n+1)(4n2+4n+1)=(2n-1)2(2n+1)2=(2n-1)(2n+1).16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 a·b =ab (a ≥0,b ≥0)1.计算2×3的结果是(B )A . 5B . 6C .2 3D .3 22.下列各等式成立的是(D ) A .45×25=8 5 B .53×42=20 5C .43×32=7 5D .53×42=20 63.下列二次根式中,与2的积为无理数的是(B )A .12B .12C .18D .32 4.计算:8×12=2. 5.计算:26×(-36)=-36.6.一个直角三角形的两条直角边分别为a =2 3 cm ,b =3 6 cm ,那么这个直角三角形的面积为2.7.计算下列各题:(1)3×5; (2)125×15; 解:原式=15. 解:原式=25=5.(3)(-32)×27; (4)3xy·1y. 解:原式=-62×7 解:原式=3x. =-614.知识点2 ab =a·b (a ≥0,b ≥0)8.下列各式正确的是( D )A .(-4)×(-9)=-4×-9B .16+94=16×94C .449=4×49D .4×9=4×9 9.(2017·益阳)下列各式化简后的结果是32的结果是( C ) A . 6 B .12 C .18 D .3610.化简(-2)2×8×3的结果是(D )A .224B .-224C .-4 6D .4 611.化简:(1)100×36=60;(2)2y312.化简:(1)4×225;解:原式=4×225=2×15=30.(2)300;解:原式=10 3.(3)16y;解:原式=4y.(4)9x2y5z.解:原式=3xy2yz.13.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.02中档题14.50·a的值是一个整数,则正整数a的最小值是(B)A.1 B.2 C.3 D.515.已知m=(-33)×(-221),则有(A)A.5<m<6 B.4<m<5C.-5<m<-4 D.-6<m<-5 16.若点P(a,b)在第三象限内,化简a2b2的结果是ab.17.计算:(1) 75×20×12;解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);=2×72×42=28 2.(3) -32×45×2;解:原式=-3×16×2 2=-96 2.(4)200a 5b 4c 3(a >0,c >0). 解:原式=2×102·(a 2)2·a ·(b 2)2·c 2·c=10a 2b 2c 2ac.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v =16df ,其中v 表示车速(单位:km /h ),d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦因数,在某次交通事故调查中,测得d =20 m ,f =1.2,肇事汽车的车速大约是多少?(结果精确到0.01 km /h ) 解:当d =20 m ,f =1.2时,v =16df =16×20×1.2=1624=326≈78.38.答:肇事汽车的车速大约是78.38 km /h .19.一个底面为30 cm ×30 cm 的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm 的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm ,铁桶的底面边长是多少厘米?解:设铁桶的底面边长为x cm ,则x 2×10=30×30×20,x 2=30×30×2,x =30×30×2=30 2.答:铁桶的底面边长是30 2 cm.03 综合题 20. (教材P 16“阅读与思考”变式)阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为a 、b 、c.记:p =a +b +c 2,则三角形的面积S =p (p -a )(p -b )(p -c ),此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得AB =7 m ,AC =5 m ,BC =8 m ,你能求出李大爷这块菜地的面积吗?试试看.解:∵AB =7 m ,AC =5 m ,BC =8 m ,∴p =a +b +c 2=7+5+82=10. ∴S =p (p -a )(p -b )(p -c )=10×(10-7)×(10-5)×(10-8)=10×3×5×2=10 3.∴李大爷这块菜地的面积为10 3 m 2.第2课时 二次根式的除法01 基础题知识点1 a b =a b (a ≥0,b >0)1.计算:10÷2=(A ) A . 5B .5C .52D .102 2.计算23÷32的结果是(B ) A .1B .23C .32D .以上答案都不对 3.下列运算正确的是(D )A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 4.计算:123=2. 5.计算:(1)40÷5; (2)322; 解:原式=8=2 2. 解:原式=4.(3)45÷215; (4)2a 3b ab(a>0). 解:原式= 6. 解:原式=2a.知识点2a b =a b(a ≥0,b >0) 6.下列各式成立的是(A ) A .-3-5=35=35 B .-7-6=-7-6C .2-9=2-9D .9+14=9+14=3127.实数0.5的算术平方根等于(C ) A .2B . 2C .22D .12 8.如果(x -1x -2)2=x -1x -2,那么x 的取值范围是(D )A .1≤x ≤2B .1<x ≤2C .x ≥2D .x >2或x ≤19.化简: (1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式10.(2017·荆州)下列根式是最简二次根式的是(C )A .13B .0.3C . 3D .2011.把下列二次根式化为最简二次根式:(1) 2.5;解:原式=52=102.(2)85; 解:原式=2510.(3)122; 解:原式=232= 3.(4)2340. 解:原式=232×20=13×20=13×25 =530.02 中档题12.下列各式计算正确的是(C ) A .483=16B .311÷323=1C .3663=22D .54a 2b 6a =9ab 13.计算113÷213÷125的结果是(A ) A .27 5B .27C . 2D .27 14.在①14;②a 2+b 2;③27;④m 2+1中,最简二次根式有3个.15.如果一个三角形的面积为15,一边长为3,那么这边上的高为16.不等式22x -6>0的解集是x >2 17.化简或计算:(1)0.9×121100×0.36; 解:原式=9×12136×10=32×11262×10=336110 =336×1010=111020.(2) 12÷27×(-18);解:原式=-12×1827 =-4×3×2×93×9=-2 2.(3)27×123; 解:原式=3×9×123 =3×2 3=6 3.(4)12x÷25y. 解:原式=(1÷25)12x÷y =5212xy y 2 =53xy y.18.如图,在Rt △ABC 中,∠C =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.解:∵S △ABC =12AC·BC =12AB·CD ,∴AC =2S △ABC BC =2183=26(cm ),CD =2S △ABCAB =21833=236(cm ).03 综合题19.阅读下面的解题过程,根据要求回答下列问题. 化简:a b -a b 3-2ab 2+a 2ba (b<a<0).解:原式=ab -a b (b -a )2a ①=a (b -a )b -a ba ②=a·1a ab ③=ab.④(1)上述解答过程从哪一步开始出现错误?请写出代号②;(2)错误的原因是什么?(3)请你写出正确的解法.解:(2)∵b<a ,∴b -a<0.∴(b -a)2的算术平方根为a -b.(3)原式=a b -ab (b -a )2a =a b -a ·(a -b)b a=-a·(-1aab) =ab.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.(2016·巴中)下列二次根式中,与3可以合并的是(B )A .18B .13C .24D .0.32.下列各个运算中,能合并成一个根式的是(B ) A .12- 2B .18-8C .8a 2+2aD .x 2y +xy 23.若最简二次根式2x +1和4x -3能合并,则x 的值为(C )A .-12B .34C .2D .54.若m 与18可以合并,则m 的最小正整数值是(D )A .18B .8C .4D .2知识点2 二次根式的加减5.(2016·桂林)计算35-25的结果是(A )A . 5B .2 5C .3 5D .6 6.下列计算正确的是(A )A .12-3= 3B .2+3= 5C .43-33=1D .3+22=5 27.计算27-1318-48的结果是(C ) A .1 B .-1 C .-3- 2 D .2- 38.计算2+(2-1)的结果是(A)A .22-1B .2- 2C .1- 2D .2+ 29.长方形的一边长为8,另一边长为50,则长方形的周长为10.三角形的三边长分别为20 cm ,40 cm ,45 cm ,. 11.计算:(1)23-32; 解:原式=(2-12) 3 =332.(2)16x +64x ;=(4+8)x=12x.(3) 125-25+45;解:原式=55-25+3 5 =6 5.(4)(2017·黄冈)27-6-1 3.解:原式=33-6-3 3=833- 6.02中档题12.若x与2可以合并,则x可以是(A) A.0.5 B.0.4C.0.2 D.0.1 13.计算|2-5|+|4-5|的值是(B) A.-2 B.2C.25-6 D.6-2 514.计算412+313-8的结果是(B)A.3+ 2B. 3C.33 D.3- 2习题解析15.若a ,b 均为有理数,且8+18+18=a +b 2,则a =0,b =214.16.已知等腰三角形的两边长分别为27和55,则此等腰三角形的周长为 17.在如图所示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为18.计算: (1)18+12-8-27;解:原式=32+23-22-3 3=(32-22)+(23-33) =2- 3.(2) b 12b 3+b 248b ;解:原式=2b 23b +4b 23b=6b 23b.(3)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(4) 34(2-27)-12(3-2). 解:原式=342-943-123+122 =(34+12)2-(94+12) 3 =542-114 3.19.已知3≈1.732,求(1327-413)-2(34-12)的近似值(结果保留小数点后两位). 解:原式=3-433-3+4 3 =833≈83×1.732≈4.62.03综合题20.若a,b都是正整数,且a<b,a与b是可以合并的二次根式,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.解:∵a与b是可以合并的二次根式,a+b=75,∴a+b=75=5 3.∵a<b,∴当a=3,则b=48;当a=12,则b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算1.化简2(2+2)的结果是(A )A .2+2 2B .2+ 2C .4D .3 22.计算(12-3)÷3的结果是(D )A .-1B .- 3C . 3D .13.(2017·南京)计算:12+8×6 4.(2017·青岛)计算:(24+16)×6=13.5.计算:40+55 6.计算:(1)3(5-2);解:原式=15- 6.(2)(24+18)÷2;解:原式=23+3.(3)(2+3)(2+2);解:原式=8+5 2.(4)(m +2n)(m -3n).解:原式=m -mn -6n.知识点2 二次根式与乘法公式7.(2017·天津)计算:(4+7)(4-7)的结果等于9. 8.(2016·包头)计算:613-(3+1)2=-4. 9.计算:解:原式=12.(2)(2+3)(2-3);解:原式=-1.(3)(5+32)2.解:原式=23+610.10.(2016·盐城)计算:(3-7)(3+7)+2(2-2).解:原式=9-7+22-2=2 2.02 中档题11.已知a =5+2,b =2-5,则a 2 018b 2 017的值为(B )A .5+2B .-5-2C .1D .-112.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是(C )A .14B .16C .8+5 2D .14+ 2 13.计算:(1)(1-22)(22+1);(2)12÷(34+233); 解:原式=12÷(3312+8312) =12÷11312=23×12113 =2411. (3)(46-412+38)÷22; 解:原式=(46-22+62)÷2 2=(46+42)÷2 2=23+2.(4)24×13-4×18×(1-2)0. 解:原式=26×33-4×24×1 =22- 2= 2.14.计算: (1)(1-5)(5+1)+(5-1)2;解:原式=1-5+5+1-2 5=2-2 5.(2)(3+2-1)(3-2+1).解:原式=(3)2-(2-1)2=3-(2+1-22)=3-2-1+2 2=2 2.15. 已知a =7+2,b =7-2,求下列代数式的值:(1)ab 2+ba 2;(2)a 2-2ab +b 2;(3)a 2-b 2. 解:由题意得a +b =(7+2)+(7-2)=27,a -b =(7+2)-(7-2)=4,ab =(7+2)(7-2)=(7)2-22=7-4=3.(1)原式=ab(b +a)=3×27=67.(2)原式=(a —b)2=42=16.(3)原式=(a +b)(a —b)=27×4=87.03综合题16.观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得13+2=3-2;③由(4+3)(4-3)=1,得14+3=4-3;…(1)通过观察你得出什么规律?用含n的式子表示出来;(2)利用(1)中你发现的规律计算:(12+1+13+2+14+3+…+12 017+ 2 016+12 018+ 2 017)×( 2 018+1).解:(1)1n+1+n=n+1-n(n≥0).(2)原式=(2-1+3-2+4-3+…+ 2 017- 2 016+ 2 018- 2 017)×( 2 018+1) =(-1+ 2 018)( 2 018+1)=2 017.小专题(一) 二次根式的运算类型1 与二次根式有关的计算1.计算: (1)62×136; 解:原式=(6×13)2×6 =212=4 3.(2)(-45)÷5145; 解:原式=-45÷(5×355) =-45÷3 5=-43.(3)72-322+218; 解:原式=62-322+6 2 =122-32 2 =212 2. (4)(25+3)×(25-3).解:原式=(25)2-(3)2=20-3=17.2.计算:(1)334÷(-12123); 解:原式=[3÷(-12)]34÷53 =-6920 =-69×520×5=-95 5.=32+15 2=18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115 =-348÷765=-3748×56 =-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2 =3+ 2.(5)(32-6)2-(-32-6)2.解:原式=(32-6)2-(32+6)2=18+6-123-(18+6+123)=-24 3.3.计算:(1)(2 018-3)0+|3-12|-63; 解:原式=1+23-3-2 3=-2.(2)(2017·呼和浩特)|2-5|-2×(18-102)+32. 解:原式=5-2-12+5+32 =25-1.类型2 与二次根式有关的化简求值4.已知a =3+22,b =3-22,求a 2b -ab 2的值.解:原式=a 2b -ab 2=ab(a -b).当a =3+22,b =3-22时,原式=(3+22)(3-22)(3+22-3+22) =4 2.5.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值. 解:由题意,得2★3= 3. ∴7★(2★3)=7★3=7-3=2.6.已知x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.解:当x =2+3时, 原式=(7-43)×(2+3)2+(2-3)×(2+3)+ 3=(7-43)×(7+43)+4-3+ 3=49-48+1+ 3=2+ 3.7.(2017·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2. 解:原式=2x (x +y )(x -y )·y(x +y) =2xy x -y . 当x =5+2,y =5-2时, 原式=2(5+2)(5-2)5+2-5+2=12.8.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一)(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn. ∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2.∴a =7或13.章末复习(一) 二次根式01 基础题知识点1 二次根式的概念及性质1.(2016·黄冈)在函数y =x +4x中,自变量x 的取值范围是(C) A .x >0 B .x ≥-4C .x ≥-4且x ≠0D .x >0且x ≠-42.(2016·自贡)下列根式中,不是最简二次根式的是(B) A.10 B.8C. 6D. 23.若xy <0,则x 2y 化简后的结果是(D )A .x yB .x -yC .-x -yD .-x y知识点2 二次根式的运算4.与-5可以合并的二次根式的是(C )A .10B .15C .20D .255.(2017·十堰)下列运算正确的是(C )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=3 6.计算5÷5×15所得的结果是1. 7.计算:(1)(2017·湖州)2×(1-2)+8; 解:原式=2-22+2 2=2.(2)(43+36)÷23;解:原式=43÷23+36÷2 3=2+322.(3)1232-275+0.5-3127; 解:原式=22-103+22-33=(2+12)×2+(-10-13)× 3 =52-31 3.=9×2-4×3=6.知识点3 二次根式的实际应用8.两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)解:d =50.243.14-25.123.14=16-8=4-2 2≈1.17.答:圆环的宽度d 约为1.17.02 中档题9.把-a -1a中根号外面的因式移到根号内的结果是(A ) A .-a B .- a C .--aD . a 10.已知x +1x =7,则x -1x的值为(C) A. 3B .±2C .± 3 D.711.在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为3.12.(2016·青岛)计算:32-82=2. 13.计算:(3+2)3×(3-2)3=-1. 14.已知x =5-12,则x 2+x +1=2. 15.已知16-n 是整数,则自然数n 所有可能的值为0,7,12,15,16.16.计算:(1)(3+1)(3-1)-16+(12)-1; 解:原式=3-1-4+2=0.(2)(3+2-6)2-(2-3+6)2.解:原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.17.已知x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.解:当x =3+7,y =3-7时,3x 2-5xy +3y 2=3(x 2-2xy +y 2)+xy=3(x -y)2+xy=3(3+7-3+7)2+(3+7)×(3-7)=3×28-4=80.18.教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm 2,另一张面积为450 cm 2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m 长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(2≈1.414,结果保留整数)解:正方形壁画的边长分别为800 cm ,450 cm . 镶壁画所用的金彩带长为4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小明的金彩带不够用,197.96-120=77.96≈78(cm).故还需买约78 cm长的金彩带.03综合题19.已知a,b,c满足|a-8|+b-5+(c-18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.解:(1)由题意,得a-8=0,b-5=0,c-18=0,即a=22,b=5,c=3 2.(2)∵22+32=52>5,∴以a,b,c为边能构成三角形.三角形的周长为22+32+5=52+5.。

八年级数学(下)第十六章《二次根式》基础测试题含答案

八年级数学(下)第十六章《二次根式》基础测试题含答案

八年级数学(下)第十六章《二次根式》基础测试题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x(4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。

初中八年级数学下册第十六章二次根式单元复习试题八(含答案) (118)

初中八年级数学下册第十六章二次根式单元复习试题八(含答案) (118)

初中八年级数学下册第十六章二次根式单元复习试题八(含答案)先化简再求值: ()()22313253a a a ---+,其中13a =- 【答案】95a -,-8【解析】【分析】原式去括号合并得到最简结果,把a 的值代入计算即可求出值.【详解】解:()()22313253a a a ---+ = ()229616159a a a a -+--+ = 95a - 当13a =-时, 原式19()53=⨯-- 35=--8=-【点睛】此题考查了整式的加减−−化简求值,熟练掌握运算法则是解本题的关键.102.计算:-【答案】13【解析】【分析】根据二次根式的运算法则计算即可.【详解】原式2=⨯-+=2(29=49-=.13【点睛】本题考查了二次根式的运算法则,熟记运算法则是解题关键. 103.计算:(1)-;(2)(3;(4)++【答案】(1-(2)(3;(4)16+【解析】【分析】(1)先化简,再去括号,再合并同类二次根式即可求解;(2)先算乘法,再化简,再合并同类二次根式即可求解;(3)先算乘除法,再算加減法;(4)先算平方差,乘法,再计算減法即可求解.【详解】(1)-=-(2)==(3-++3;3(4)+=1259-++=16+【点睛】考查了二次根式的混合运算,二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方,再乘除,最后加减,有括号的先算括号里面的;②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式”104.计算:(1)、(2)、【答案】3【解析】试题分析:(1)把二次根式进行化简后,再合并同类二次根式即可求出答案;(2)根据二次根式、绝对值、零次幂的意义进行计算即可求出答案.试题解析(1)原式=+(2)原式=213=+.考点: 1.二次根式的化简;2.实数的混合运算.105.()1计算:()2计算:(2(322-;()3解方程组:13x y122x y2⎧-=⎪⎨⎪+=⎩.【答案】(1(2)15+(3)1x2y1⎧=⎪⎨⎪=⎩【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式计算;(3)利用加减消元法解方程组.【详解】解:()1原式2==; ()2原式()9545=+--141=+15=+ ()1313222x y x y ①②⎧-=⎪⎨⎪+=⎩, 2⨯+①②得6x 2x 4+=, 解得1x 2=, 把1x 2=代入②得1y 2+=, 解得y 1=, 所以方程组的解为121x y ⎧=⎪⎨⎪=⎩. 【点睛】本题考查了二次根式的混合运算及二元一次方程组的解法,熟练掌握其运算法则和解法是解题的关键.106.已知:A =122x y -+,B =314x y --.求A ﹣2B . 【答案】13422x y -++ 【解析】【分析】直接去括号进而合并同类项得出答案.【详解】A ﹣2B =1322(1)24x y x y -+--- =1322222x y x y -+-++ =13422x y -++. 【点睛】本题考查了整式的加减,正确合并同类项是解题的关键.107 1.414≈,它是个无限不循环小数,也叫无理数,它的整数部分是11来表示.试题解析:已知8x y +=+,其中x 是一个整数,01y <<,求20172(x y +的值.【答案】17【解析】试题分析: 首先根据题意确定,x y 的值,然后再代入(20172x y +-进行计算即可.试题解析:∵12<<,∴9810<+<,∵x 是整数,∴9x =,∴(81y x =+-=,将x ,y 的值代入代数式,(20172x y + 2017291=⨯+- ()181=+- 17=.108.计算:2. 【答案】1-【解析】【分析】根据二次根式的运算法则即可求解.【详解】=1-【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.109=的值. 【答案】2a【解析】【分析】=12x a a=-+,从而求出12x a a +=+,进而求得()2212x a a ⎛⎫+=+ ⎪⎝⎭,即2214x x a a ⎛⎫+=- ⎪⎝⎭,然后代入求值,进行计算.【详解】解:=∴22= ∴12x a a =-+,即12x a a +=+ ∴()2212x a a ⎛⎫+=+ ⎪⎝⎭,即2214x x a a ⎛⎫+=- ⎪⎝⎭=∴1a a>11a a a a =-=- ∴原式21111a a a a a a a a a ++-==+-+ 【点睛】本题考查实数范围内灵活应用完全平方公式及二次根式的化简求值,分式的运算,熟记公式和运算法则是本题的解题关键.。

八年级数学下册《第十六章 二次根式》单元测试卷含答案(人教版)

八年级数学下册《第十六章 二次根式》单元测试卷含答案(人教版)

八年级数学下册《第十六章 二次根式》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.(−√5)2的值为( )A .5B .−5C .√5D .−√52.已知√18n 是整数,正整数n 的最小值为( )A .2B .0C .3D .43.下列式子中,属于最简二次根式的是( )A .√4B .√5C .√12D .√13 4.下列运算正确的是( )A .(13)−2=−19B .2√2×√2=3√2C .(−2x)3=−8x 3D .a 9÷a 3=a 3(a ≠0)5.代数式√x+1有意义时,x 应满足的条件为( )A .x ≠−1B .x >−1C .x <−1D .x ≤−1 6.下列计算正确的是( )A .√6+√2=√8B .√6−√2=2C .√6×√2=3√2D .√6÷√2=√37.已知x +y =√6+√10,xy =√15则x −y 的值为( )A .−4B .4C .±4D .±28.如图,在长方形ABCD 中无重叠放人面积分别为 16cm 2 和 12cm 2 的两张正方形纸片,则图中空白部分的面积为( )A .(−12+8√3)cm 2B .(16−8√3)cm 2C .(8−4√3)cm 2D .(4−2√3)cm 2二、填空题9.式子√x +3有意义,则x 的取值范围是 .10.计算:2√3×(−√6)= .11.把(a −1)√−1a−1中根号外的(a −1)移入根号内得 .12.已知√7.84=2.8,若√m =280,则m = .13.若√x −2023+√y +2023=2,其中x ,y 均为整数,则x +y = .三、解答题14.计算:(1)√−13+√(−2)2−|2−√3|(1)√(−3)33+√3(√3√3)15.已知:a +b =−2,ab =1求:b√b a +a √a b的值. 16.已知:a= √3+√2,b= √3−√2求a 2-ab+b 2的值.17.已知长方形的长是 3√5+2√3 宽是 3√5−2√3 ,求长方形的周长.18.如图,用两个边长为√18cm 的小方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片的长是宽的2倍,且面积为30cm 2?请说明理由.19.在解决数学问题时,我们一般先仔细阅读题干,找出有用信息作为已知条件,然后利用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件;而有的信息不太明显,需要结合图形、特殊式子成立的条件、实际问题等发现隐含信息作为条件,我们把这样的条件称为隐含条件;所以我们在做题时,要注意发现题目中的隐含条件.阅读下面的解题过程,体会如何发现隐含条件并回答下面的问题.化简:(√1−3x)2−|1−x|.解:隐含条件1−3x ≥0,解得x ≤13∴1−x >0∴原式=1−3x −(1−x)=1−3x −1+x =−2x .(1)试化简:√(x −3)2−(√2−x)2;(2)已知a 、b 满足√(2−a)2=a +3,√a −b +1=a −b +1,求ab 的值.参考答案1.A2.A3.B4.C5.B6.D7.C8.A9.x≥−310.−6√211.−√1−a12.7840013.2或414.(1)解:(1)原式=−1+2−(2−√3)=−1+2−2+√3=√3−1(2)原式=−3+3+1=1 15.解:∵a+b=−2∴a<0,b<0∴b√ba +a√ab=−ba√ab−ab√ab=(−ba−ab)√ab=−(a2+b2ab)√ab=−(a+b)2+2abab⋅√ab当a+b=−2,ab=1时,原式=−(−2)2+2×11×√1=−2.16.解:a2-ab+b2=(a+b)2-3ab∵a+b=2√3,ab=1∴原式=(a+b)2-3ab=(2√3)2-3×1=917.解: 2×[(3√5+2√3)+(3√5−2√3)]=2×(3√5+2√3+3√5−2√3)=2×6√5=12√5 .即长方形的周长是 12√5 .18.解:不能∵大正方形纸片的面积为(√18)2+(√18)2=36(cm 2) ∴大正方形的边长为6cm设截出的长方形的长为2bcm ,宽为bcm∴2b 2=30∴b=√15(取正值)∵2b=2√15=√60>√36=6∴不能截得长宽之比为2:1,且面积为30cm 2的长方形纸片.19.(1)解:∵2−x ≥0,则x ≤2∴x −3<0∴√(x −3)2−(√2−x)2=|x −3|−(2−x)=3−x −2+x=1(2)解:∵√(2−a)2=a +3,√a −b +1=a −b +1 ∴|2−a|=a +3≥0∴a ≥−3,a −b +1≥0∴当−3≤a ≤2时则2−a =a +3,解得:a =−12∵√a −b +1=a −b +1∴a −b +1=0或a −b +1=1解得:b =12或b =−12∴ab =−14或ab =14当a>2时,则a−2=a+3无解,舍去综上:ab=−14或ab=14。

【精品】人教版八年级下册 第十六章 二次根式单元复习卷(含答案)【3套】试题

【精品】人教版八年级下册  第十六章 二次根式单元复习卷(含答案)【3套】试题

人教版八年级下册第十六章二次根式单元复习卷(含答案)一、选择题1.实数a,b在数轴上的位置如图所示,则化简-+b的结果是()A.1B.b+1C.2aD.1-2a2.下列运算中错误的是()A.×=B.=C.2+3=5D.=-3.已知代数式+在实数范围内有意义,则x的取值范围是()A.x≥1B.0<x≤1C.x>0D.0≤x≤14.下列的式子一定是二次根式的是()A.B.C.D.5.计算×的结果是()A.B.4C.8D.±46.化简-(+2)得()A.-2B.-2C.2D.4-27.下列计算中,正确的是()A.2+3=5B.(+)·=·=10C.(3+2)(3-2)=-3D.(+)(+)=2a+b8.把(a-1)中的(a-1)因子移入根号内得()A.B.C.-D.-9.要使二次根式有意义,字母x必须满足的条件是()A.x≥1B.x>0C.x≥-1D.任意实数10.下列选项中,使根式有意义的a的取值范围为a<1的是()A.B.C.D.二、填空题11.若整数x满足|x|≤3,则使为整数的x的值是________(只需填一个).12.我们规定运算符号“△”的意义是:当a>b时,a△b=a+b;当a≤b时,a△b=a-b,其它运算符号的意义不变,计算:(△)-(2△3)=__________.13.直角三角形的两直角边长分别为cm,cm.则此三角形的面积为______ cm2.14.计算×结果是______________.15.已知实数a在数轴上的位置如图,则化简|1-a|+的结果为________.16.若实数a满足=2,则a的值为________.17.已知:最简二次根式与的被开方数相同,则a+b=________.18.已知=a,则5-+=________a.(用含a的代数式表示)19.在二次根式,,,,,,中,属于最简二次根式有________个.20.计算:÷=____________.三、解答题21.化简与求值.先化简a+,然后再分别求出a=-2和a=3时,原代数式的值.22.已知1<x<5,化简:-|x-5|.23.计算:(1)-4+÷;(2)(1-)(1+)+(1+)2.24.计算(1)(2+)(2-);(2)(-)-(+).25.已知a,b为等腰三角形的两条边长,且a,b满足b=++4,求此三角形的周长.26.判断下列各式,哪些是二次根式,哪些不是,为什么?,-,,,(a≥0),.27.计算:(1)×;(2)×;(3)×;(4)×(5)6×(-3);(6)6··3;(7)·.28.观察下列各式及其验证过程2=.验证:2=×====;3=.验证:3====.按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证.答案解析1.【答案】A【解析】由数轴可得:a-1<0,a-b<0,则原式=1-a+a-b+b=1.故选A.2.【答案】D【解析】A.原式==,所以A选项的计算正确;B.原式=,所以C选项的计算正确;C.原式=5,所以C选项的计算正确;D.原式=-,所以D选项的计错误.故选D.3.【答案】B【解析】由题意得1-x≥0,x>0,解得0<x≤1.故选B.4.【答案】C【解析】A.当x=0时,-x-2<0,无意义,错误;B.当x=-1时,无意义;故本选项错误;C.∵x2+2≥2,∴符合二次根式的定义;正确;D.当x=±1时,x2-2=-1<0,无意义;错误;故选C.5.【答案】B【解析】原式===4,故选B.6.【答案】A【解析】原式=2-2-2=-27.【答案】C【解析】A.2与3不是同类二次根式,不能合并,所以A选项错误;B.原式=×+×=+,所以B选项错误;C.原式=9-12=-3,所以C选项正确;D.原式=2a+2+b,所以D选项错误.故选C.8.【答案】D【解析】因为a-1≠0,由二次根式的意义,得->0,所以a-1<0,所以原式=(a-1)=-(1-a)=-=-,故选D.9.【答案】D【解析】依题意得x2+1≥0,∵x2+1≥1,∴字母x必须满足的条件是任意实数.故选D.10.【答案】D【解析】A.当a≥1时,根式有意义.B.当a≤1时,根式有意义.C.a取任何值根式都有意义.D.要使根式有意义,则a≤1,且分母不为零,故a<1,故选D.11.【答案】-2或3【解析】∵|x|≤3,∴-3≤x≤3,∴当x=-2时,==3,x=3时,==2.故,使为整数的x的值是-2或3(填写一个即可).12.【答案】-+4【解析】∵当a>b时,a△b=a+b;当a≤b时,a△b=a-b,>,2<3,∴(△)-(2△3)=+-(2-3)=-+4.13.【答案】【解析】∵直角三角形的两边长分别为cm,cm,∴此三角形的面积为××=(cm2).14.【答案】2【解析】原式===2.15.【答案】1-2a【解析】由数轴可得出:-1<a<0,∴|1-a|+=1-a-a=1-2a.16.【答案】5【解析】平方,得a-1=4.解得a=5.17.【答案】8【解析】由题意得解得∴a+b=8.18.【答案】a【解析】原式=-+3==a.19.【答案】5【解析】,,,,是最简二次根式.20.【答案】【解析】计算÷==.21.【答案】解a+=a+=a+|a+1|,当a=-2时,原式=-2+|-2+1|=-2+1=-1;当a=3时,原式=3+|3+1|=3+4=7.【解析】先把二次根式解析化简,再代入求值,即可解答.22.【答案】解∵1<x<5,∴原式=|x-1|-|x-5|=(x-1)-(5-x)=2x-6.【解析】直接利用x的取值范围,进而去绝对值以及化简二次根式进而得出答案.23.【答案】解(1)原式=3-2+=3-2+2=3;(2)原式=1-5+1+2+5=2+2.【解析】(1)先进行二次根式的除法运算,然后化简后合并即可;(2)利用完全平方公式和平方差公式计算.24.【答案】解(1)原式=(2)2-()2=20-3=17;(2)原式=2---=-.【解析】(1)利用平方差公式计算;(2)先把各二次根式化为最简二次根式,然后合并即可.25.【答案】解∵,有意义,∴∴a=3,∴b=4,当a为腰时,三角形的周长为3+3+4=10;当b为腰时,三角形的周长为4+4+3=11.【解析】根据二次根式有意义:被开方数为非负数可得a的值,继而得出b的值,然后代入运算即可.26.【答案】解,-,(a≥0),符合二次根式的形式,故是二次根式;,是三次根式,故不是二次根式;,被开方数小于0,无意义,故不是二次根式.【解析】根据形如(a≥0)的式子是二次根式,可得答案.27.【答案】解(1)×==;(2)×===3;(3)×==;(4)×===8;(5)6×(-3)=-18=-18=-18×9=-162;(6)6·3=6×3=18=18×6x3y=108x3y.(7)·=-·=-·=-·6b=-.【解析】本题主要运用二次根式的乘法公式来进行计算,有理式的乘法运算律及乘法公式对二次根式同样适用,注意最后结果要化为最简形式.28.【答案】解4=;理由:4====.【解析】观察上面各式,可发现规律如下规律:n=,按照规律计算即可人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中八年级数学下册第十六章二次根式单元复习试题八(含
答案)
已知最简二次根式
,则a=__,b=__.
【答案】1 1
【解析】

,
∴122534a a b a +⎧⎨++⎩
== 解得:11a b ==⎧⎨⎩
. 故答案是:1,1.
【点睛】同类二次根式的概念:同类二次根式是化为最简二次根式后,被开方数相同的二次根式.
71.当=-3a
_______
【答案】2
【解析】
【分析】
将a=-3代入已知二次根式,然后求被开方数的算术平方根即可.
【详解】
解:∵a =-3
故答案是:2.
【点睛】
本题考查了二次根式的定义.注意1-a是非负数.
72.1-______________.(写一个)
【答案】1+
【解析】
【分析】
根据有理化因式的定义即可求出.
【详解】
解:根据有理化因式的定义:1-1+
故答案为:1+
【点睛】
此题考查的是求一个式子的有理化因式,掌握平方差公式和有理化因式的定义是解决此题的关键.
73.若等式()2
-++=成立,那么x y的值为_______.
x y
210
【答案】1.
【解析】
【分析】
根据非负数的性质求出x、y的值,计算即可.
【详解】
()2
210
-++=,
x y
则:20,10.
-=+=
x y
解得:2, 1.
==-,
x y
则()2
1 1.x y =-= 故答案为:1.
【点睛】
考查非负数的性质,两个非负数的和为0,则它们分别为0.
74. 的结果是______,求得它的近似值为__ __.(结果精确到0.01
≈1.414≈1.732)
【答案】,5.20
【解析】
)=3 1.732 5.20--=≈⨯≈. 故答案为 ,5.20.
75的值是________.
【答案】6
【解析】
分析:根据二次根式乘法法则计算即可.
=
关运算中,结果都要化为最简二次根式.
76.当a=-2___________.
【答案】2
【解析】
【分析】
把a=-22.
故答案为:2.
【详解】
解:当a=-2=2.
【点睛】
本题主要考查二次根式的化简求值,比较简单.
77.若m =a m =_____.
【答案】1
【解析】
【分析】
先根据二次根式的意义求出a ,再求出m ,最后可求出结果.
【详解】
由已知可得
2010020100a a -≥⎧⎨-≥⎩
, 所以,a=2010,
所以,m=0,
所以,a m = 20100=1.
故答案为:1
【点睛】
本题考核知识点:二次根式. 解题关键点:理解二次根式有意义的条件.
78.在日常生活中如取款、上网等都需要密码..一种用“因式分解”法产
生的密码,方便记忆.原理是:对于多项式44x y -,因式分解的结果是
()22()()x y x y x y -++,若取9x =,9y =时,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码,
对于多项式324x xy -,取11x =,8y =时,用上述方法产生的密码是______(写
出一个即可).
【答案】113014或111430
【解析】
【分析】
对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.
【详解】
()322244x xy x x y -=-
(2)(2)x x y x y =+-
∵11x =,8y =
∴11x =,230x y +=,214x y -=
∴密码为113014或111430
故答案为:113014或111430(填写一个即可)
【点睛】
本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.
79.已知y 3=,则xy
2=_________.
【答案】18
【解析】
【分析】
根据被开方数大于等于0列式求出x 的值,再求出y 的值,然后相乘计算即可得解.
【详解】
根据题意得,x-2≥0且4-2x ≥0,
解得x ≥2且x ≤2,
所以,x=2,
y=3,
∴222318xy =⨯=.
故答案为:18.
【点睛】
此题主要考查了二次根式有意义的条件,正确得出x 、y 的值是解题的关键.。

相关文档
最新文档