解三角形专项练习(含解答题)
2022年高考数学解三角形知识点专项练习含答案
专题19 解三角形一、单选题(本大题共10小题,共50分)1.在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosC=b,则△ABC的形状是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形2.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5√3,CD=5,BD=2AD,则AD的长为()A. 4B. 5C. 6D. 73.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A. 10√3海里B. 10√63海里 C. 5√2海里 D. 5√6海里4.在△ABC中,内角A、B、C所对的边分别为a、b、c,若角A、C、B成等差数列,角C的角平分线交AB于点D,且CD=√3,a=3b,则c的值为()A. 3B. 72C. 4√73D. 2√35.如图,要测量电视塔AB的高度,在C点测得塔顶A的仰角是π4,在D点测得塔顶A的仰角是π6,水平面上的,则电视塔AB的高度为()mA. 20B. 30C. 40D. 506.为测出小区的面积,进行了一些测量工作,所得数据如图所示,则小区的面积为( )A.B. 3−√64km2C.D. 6−√34km27.已知直三棱柱ABC−A1B1C1的底面是正三角形,AB=2√3,D是侧面BCC1B1的中心,球O与该三棱柱的所有面均相切,则直线AD被球O截得的弦长为()A. √1010B. √105C. 3√1010D. 3√1058.在△ABC中,角A,B,C所对的边分别为a,b,c,若直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰或者直角三角形9.海伦不仅是古希腊的数学家,还是一位优秀的测绘工程师.在他的著作《测地术》中最早出现了已知三边求三角形面积的公式,即著名的海伦公式S=√p(p−a)(p−b)(p−c),这里p=12(a+b+c),a,b,c分别为▵ABC的三个角A,B,C所对的边,该公式具有轮换对称的特点,形式很美.已知▵ABC中,p=12,c=9,cosA=23,则该三角形内切圆半径()A. √2B. √3C. √10D. √510.在ΔABC中,若1sinA +1sinB=2(1tanA+1tanB),则()A. C的最大值为π3B. C的最大值为2π3C. C的最小值为π3D. C的最小值为π6二、单空题(本大题共4小题,共20分)11.如图,在离地面高200m的热气球上,观测到山顶C处的仰角为15∘、山脚A处的俯角为45∘,已知∠BAC=60∘,则山的高度BC为______m.12. 在四边形ABCD 中,AB =6,BC =CD =4,DA =2,则四边形ABCD 的面积的最大值是______.13. 海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B 两点间的距离,现在珊瑚群岛上取两点C,D ,测得CD =45m ,∠ADB =135∘,∠BDC =∠DCA =15∘,∠ACB =120∘,则AB 两点的距离为______.14. 如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,若测得CD =4 km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离是_______km .三、解答题(本大题共4小题,共30分)15. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且ccosB +bcosC =3acosB .(1)求cos B 的值;(2)若|CA ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=2,△ABC 的面积为2√2,求边b .16. 在①2acosC +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sinB +sinC)2=sin 2A +3sinBsinC 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 . (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.17. 设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m⃗⃗⃗ =(cos C2,sin C2),n ⃗ =(cos C2,−sin C2),m ⃗⃗⃗ 与n ⃗ 的夹角为π3. (1)求角C 的大小;(2)已知c =72,△ABC 的面积S =3√32,求a +b 的值.18. 某农场有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,为迎接“五一”观光游,欲在边界BC 上选择一点P ,修建观赏小径PM 、PN ,其中M 、N 分别在边界AB 、AC 上,小径PM 、PN 与边界BC 的夹角都为60°,区域PMB 和区域PNC 内种植郁金香,区域AMPN 内种植月季花.(1)探究:观赏小径PM 与PN 的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区域内修建小径MN,当P点在何处时,三条小径(PM、PN、MN)的长度和最小?专题19 解三角形一、单选题(本大题共10小题,共50分)19.在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosC=b,则△ABC的形状是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形【答案】C解:∵b=2acosC,∴由正弦定理得sinB=2sinAcosC,∵B=π−(A+C),∴sin(A+C)=2sinAcosC,则sinAcosC+cosAsinC=2sinAcosC,sinAcosC−cosAsinC=0,即sin(A−C)=0,∵A、C∈(0,π),∴A−C∈(−π,π),则A−C=0,∴A=C,∴△ABC是等腰三角形.故选:C.20.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5√3,CD=5,BD=2AD,则AD的长为()A. 4B. 5C. 6D. 7【答案】B【解析】解:设AD=t,可得BD=2t,BC=√4t2−25,在直角三角形BCD中,可得cosB=√4t2−252t,在三角形ABC中,可得cosB=222⋅3t⋅√4t2−25,即为√4t2−252t =222⋅3t⋅√4t2−25,即2(4t2−25)=9t2−75,解得t=5,可得AD=5,故选:B.21.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A. 10√3海里B. 10√63海里 C. 5√2海里 D. 5√6海里【答案】D【解析】解:由题意可得,A=60°,B=75°,∠C=180°−60°−75°=45°根据正弦定理可得,BCsin60°=ABsin45°∴BC=10×√32√22=5√6故选D.22.在△ABC中,内角A、B、C所对的边分别为a、b、c,若角A、C、B成等差数列,角C的角平分线交AB于点D,且CD=√3,a=3b,则c的值为()A. 3B. 72C. 4√73D. 2√3【答案】C【解析】解:由题意,得由S△ABC=S△ACD+S△BCD,得,所以ab=a+b,(b=0舍去),所以3b2=4b,解得b=43故a=3b=4,故c=√a2+b2−2ab·cosC=4√73故选C.23.如图,要测量电视塔AB的高度,在C点测得塔顶A的仰角是π,在D点测得塔顶A4的仰角是π,水平面上的,则电视塔AB的高度为6()mA. 20B. 30C. 40D. 50【答案】A【解析】解:由题题意,设AB=x,则BD=√3x,BC=x在△DBC中,∠BCD=60°,CD=40,∴根据余弦定理,得BD2=BC2+CD2−2BC⋅CD⋅cos∠DCB即:(√3x)2=(40)2+x2−2×40⋅x⋅cos60°整理得x2+20x−800=0,解之得x=−40(舍去)或x=20即所求电视塔的高度为20米.故选A.24.为测出小区的面积,进行了一些测量工作,所得数据如图所示,则小区的面积为( )A.B. 3−√6km24C.D. 6−√34km2【答案】D【解析】解:如图连接AC,根据余弦定理可得AC2=AB2+BC2−2AB×BCcosB=3,即AC=√3,由于AC2+BC2=AB2,所以∠ACB=90°,∠BAC=30°,所以∠DAC=45°−30°=15°,∠DCA=105°−90°=15°,所以∠DAC=∠DCA所以△ADC为等腰三角形,设AD=DC=x,∠D=150°,由余弦定理x2+x2+√3x2=3⇒x2=3(2−√3),故所求面积为12×1×√3+12×3(2−√3)×12=6−√34.故选D.25.已知直三棱柱ABC−A1B1C1的底面是正三角形,AB=2√3,D是侧面BCC1B1的中心,球O与该三棱柱的所有面均相切,则直线AD被球O截得的弦长为()A. √1010B. √105C. 3√1010D. 3√105【答案】D【解析】解:因为球O与直三棱柱ABC−A1B1C1的所有面均相切,且直三棱柱ABC−A1B1C1的底面是正三角形,所以球心O为该三棱柱上、下底面三角形重心连线的中点,如图所示,设球O的球心为O,底面三角形ABC的重心为O′,连接OO′,则OO′⊥底面ABC.设BC的中点为E,连接AE,易知点O′在AE上,连接OD、DE,因为D是侧面BB1C1C的中心,所以四边形OO′ED为正方形,设球O的半径为r,则由AB=2√3,可得r=2√3×√32×13=1,易得AD=√3√32)=√10,连接OA,可得OA=√23)=√5,∴cos ∠ADO=DO2+AD2−AO22⋅DO⋅AD =3√1010,故所求弦长为2r⋅cos ∠ADO=3√105.故选D.26.在△ABC中,角A,B,C所对的边分别为a,b,c,若直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰或者直角三角形【答案】C【解析】解:∵直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,∴ba =cosAcosB,解得bcosB=acosA,∴利用余弦定理可得:b×a2+c2−b22ac =a×b2+c2−a22bc,整理可得:c2(b2−a2)=(b2+a2)(b2−a2),∴解得:c2=a2+b2或b=a,而当a=b时,两直线重合,不满足题意;则△ABC是直角三角形.故选C.27.海伦不仅是古希腊的数学家,还是一位优秀的测绘工程师.在他的著作《测地术》中最早出现了已知三边求三角形面积的公式,即著名的海伦公式S=√p(p−a)(p−b)(p−c),这里p=12(a+b+c),a,b,c分别为▵ABC的三个角A,B,C所对的边,该公式具有轮换对称的特点,形式很美.已知▵ABC中,p=12,c=9,cosA=23,则该三角形内切圆半径()A. √2B. √3C. √10D. √5【答案】D【解析】解:因为p=12(a+b+c),所以a+b+c=2p,因为p=12,c=9,所以a+b=15,三角形的内切圆半径r=2Sa+b+c,由余弦定理得cos A=b2+c2−a2 2bc =23,所以(b−a)(b+a)+81=12b,即b−5a=−27,所以a=7,b=8,所以S=√p(p−a)(p−b)(p−c)=√12×(12−7)(12−8)(12−9)=12√5,所以r=√5,故选D28.在ΔABC中,若1sinA +1sinB=2(1tanA+1tanB),则()A. C的最大值为π3B. C的最大值为2π3C. C的最小值为π3D. C的最小值为π6【答案】A【解析】解:因为1sin A +1sin B=2(1tan A+1tan B),所以1sin A +1sin B=2(cosAsinA+cosBsin B),所以sin A+sin Bsin Asin B =2·(sin BcosA+cosBsinA)sin Asin B=2·sin(A+B)sin Asin B =2·sinCsin Asin B,所以sinA+sinB=2sinC,由正弦定理得到:a+b=2c,所以cosC=a2+b2−c22ab =a2+b2−(a+b2)22ab=34a2+34b2−12ab2ab⩾34·2ab−12ab2ab=12,当且仅当a=b时“=”成立,所以,则C的最大值为π3.故选A.二、单空题(本大题共4小题,共20分)29.如图,在离地面高200m的热气球上,观测到山顶C处的仰角为15∘、山脚A处的俯角为45∘,已知∠BAC=60∘,则山的高度BC为______m.【答案】300【解析】解:根据题意,可得Rt△AMD中,∠MAD=45°,MD=200,∴AM=MDsin45°=200√2.∵△MAC中,∠AMC=45°+15°=60°,∠MAC=180°−45°−60°=75°,∴∠MCA=180°−∠AMC−∠MAC=45°,由正弦定理,得AC=MAsin∠AMCsin∠MCA =200√2×√32√22=200√3,在Rt△ABC中,BC=ACsin∠BAC=200√3×√32=300m.故答案为300.30.在四边形ABCD中,AB=6,BC=CD=4,DA=2,则四边形ABCD的面积的最大值是______.【答案】8√3【解析】解:如图所示,AB=6,BC=CD=4,DA=2,设BD=x,在△ABD中,由余弦定理可得x2=22+62−2×2×6cosA=40−24cosA,在△BCD中,由余弦定理可得x2=32−32cosC,联立可得3cosA−4cosC=1,①又四边形ABCD面积S=12×4×4sinC+12×2×6sinA,即4sinC+3sinA=12S,②①2+②2可得9+16+24(sinAsinC−cosAcosC)=1+14S2,化简可得−24cos(A+C)=14S2−24,由于−1≤cos(A+C)≤1,∴−24≤14S2−24≤24,∴0≤S2≤192,解得S≤8√3,当cos(A+C)=−1即A+C=π时取等号,∴S的最大值为8√3.故答案为:8√3.31.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B两点间的距离,现在珊瑚群岛上取两点C,D,测得CD=45m,∠ADB=135∘,∠BDC=∠DCA=15∘,∠ACB=120∘,则AB两点的距离为______.【答案】45√5【解析】解:易知在△ACD中,∠DAC=180°−∠ADB−∠BDC−∠ACD=15°,∴△ACD为等腰三角形,则AD=CD=45,在△BCD中,∠CBD=180°−∠BDC−∠ACD−∠ACB=30°,∠BCD=120°+15°= 135°,所以由正弦定理得,即45sin30°=BDsin135°,得BD=45√2,在△ABD中,由余弦定理得=452+(45√2)2−2×45×45√2×(−√22)=452×5,所以AB=45√5,即A,B两点的距离为45√5,故答案为45√5.32.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D,若测得CD=4km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离是_______km.【答案】2√2【解析】由于CD=4km,∠ADB=∠CDB=30∘,∠ACD=60∘,∠ACB=45∘,所以∠DAC=180°−30°−30°−60°=60°,∠DBC=180°−30°−60°−45°=45°,在三角形ADC 中,由正弦定理得4sin∠DAC =ADsin∠ACD ,所以AD =4sin60°sin60°=4,在三角形BCD 中,由正弦定理得BDsin∠BCD =4sin∠DBC , 所以BD =4×sin(60°+45°)sin45°=2√3+2,在三角形ABD 中由余弦定理得到AB 2=42+(2√3+2)2−2×4×(2√3+2)cos30°=8, 所以AB =2√2, 故答案为2√2.三、解答题(本大题共4小题,共30分)33. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且ccosB +bcosC =3acosB .(1)求cos B 的值;(2)若|CA⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=2,△ABC 的面积为2√2,求边b . 【答案】解:(1)由正弦定理asinA =bsinB =csinC , 即ccosB +bcosC =3acosB ,得sinCcosB +sinBcosC =3sinAcosB ,则有3sinAcosB =sin(B +C)=sin(π−A)=sinA . 又A ∈(0,π),则sinA >0,则.(2)因为B ∈(0,π),则sinB >0,.因为|CA ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=|BA ⃗⃗⃗⃗⃗ |=c =2,所以S =12acsinB =12a ×2×2√23=2√2,得a =3.由余弦定理,则b =3.34. 在①2acosC +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sinB +sinC)2=sin 2A +3sinBsinC 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 . (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值. 【答案】解:(1)选①,由正弦定理得2sin Acos C +sin C =2sin B ,所以2sin Acos C +sin C =2sin (A +C)=2(sin Acos C +cos Asin C),即sin C(2cos A −1)=0,又C ∈(0,π),所以sin C >0,所以cos A =12,又A ∈(0,π),从而得A =π3. 选②,因为cos 2 B−C 2−cosBcosC =1+cos (B−C )2−cosBcosC=1−cosBcosC+sinBsinC2=1−cos(B+C)2=34,所以cos(B +C)=−12,cosA =−cos(B +C)=12,又因为A ∈(0,π),所以A =π3. 选③因为(sinB +sinC)2=sin 2A +3sinBsinC , 所以sin 2B +sin 2C +2sinBsinC =sin 2A +3sinBsinC , 即sin 2B +sin 2C −sin 2A =sinBsinC , 所以由正弦定理得b 2+c 2−a 2=bc ,由余弦定理知cosA =b 2+c 2−a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)得A =π3,又a =2,由余弦定理得a 2=b 2+c 2−2bccos A =b 2+c 2−bc ⩾2bc −bc =bc , 所以bc ⩽4,当且仅当b =c =2时取得等号,,所以△ABC 面积的最大值为√3.35. 设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m ⃗⃗⃗ =(cos C2,sin C2),n ⃗ =(cos C2,−sin C2),m ⃗⃗⃗ 与n ⃗ 的夹角为π3. (1)求角C 的大小;(2)已知c =72,△ABC 的面积S =3√32,求a +b 的值.【答案】解:(1)由已知,得.又∵|m⃗⃗⃗ |=|n ⃗ |=1, .又∵0<C <π,∴C =π3.(2)由面积公式,得由余弦定理,得c 2=a 2+b 2−2abcosC , 即494=a 2+b 2−ab.② ①②联立,解得a +b =112.36. 某农场有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,为迎接“五一”观光游,欲在边界BC 上选择一点P ,修建观赏小径PM 、PN ,其中M 、N 分别在边界AB、AC上,小径PM、PN与边界BC的夹角都为60°,区域PMB和区域PNC内种植郁金香,区域AMPN内种植月季花.(1)探究:观赏小径PM与PN的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区域内修建小径MN,当P点在何处时,三条小径(PM、PN、MN)的长度和最小?【答案】解:(1)在三角形BPM中由正弦定理可得:PM sin45∘=PBsin75∘,化简得PM=(√3−1)PB,同理可得PN=(√3−1)PC,∴PM+PN=(√3−1)(PB+PC)=(√3−1)BC=(√3−1)×400为定值.(2)在三角形PMN中,由余弦定理得MN2=PM2+PN2−2PM⋅PNcos60°=(PM+ PN)2−3PM⋅PN=160000(√3−1)2−3PM⋅PN≥160000(√3−1)2−3×(PM+PN2)2=160000(√3−1)2−3×[400(√3−1)2]2=40000(√3−1)2,∴MN≥200(√3−1),当且仅当PM=PN,即P为BC的中点时,MN取得最小值200(√3−1),∴P为BC的中点时,三条小径(PM、PN、MN)的长度和最小,且最小值为600(√3−1).。
解三角形练习题(含答案)
一、选择题1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为()A、正三角形B、直角三角形C、等腰三角形或直角三角形D、等腰直角三角形2、已知中,,,则角等于A .B . C. D .3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞) B.(0,2)C.(2,) D.()4、,则△ABC的面积等于A . B. C .或 D .或5、在中,,则角C的大小为A.300B.450C.600D.12006、的三个内角、、所对边长分别为、、,设向量,,若,则角的大小为()A. B . C. D.7、若ΔABC的内角A、B、C所对的边a、b、c满足,则ab的值为()A. B. C.1 D.8、在中,若,且,则是( )A.等边三角形B.等腰三角形,但不是等边三角形C.等腰直角三角形D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则=A .B . C. D .10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ).A.等边三角形 B.直角三角形C.锐角三角形 D.钝角三角形11、在△中,,,,则此三角形的最大边长为()A. B. C. D.12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c2b2)tanB=ac,则角B=()A .B .C .或D .或13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则()A .B .C . D.14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为()A、1B、2C、3D、015、在钝角中,a,b,c分别是角A,B,C的对边,若,则最大边c的取值范围是( ) (A .B .C . D.16、(2012年高考(上海理))在中,若,则的形状是()A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定.17、在△ABC中,a=15,b=10, ∠A=,则()A. B . C. D .18、在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则角A= ()A. B . C . D .19、()A. B.C.D.20、给出以下四个命题:(1)在中,若,则;(2)将函数的图象向右平移个单位,得到函数的图象;(3)在中,若,,,则为锐角三角形;(4)在同一坐标系中,函数与函数的图象有三个交点;其中正确命题的个数是() A.1 B.2 C.3 D.421、若△ABC的对边分别为、、C且,,,则b=()A、5B、25C 、D 、22、设A、B、C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是()A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能23、设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定24、在中,若,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形25、在△ABC中,已知A=,BC=8,AC=,则△ABC的面积为▲A.B.16 C.或16 D .或26、在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足c sin A =a cos C,则sin A+sin B的最大值是( )A.1B. C. D.3二、填空题27、在△ABC中,角A、B、C的对边分别为a、b、c, 已知A=, a=, b=1,则c= .28、已知△ABC的面积 .29、在△ABC中,角A、B、C所对的对边分别为a、b、c ,若,则A= 。
(完整版)解三角形练习题(含答案)
一、选择题1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为()A、正三角形B、直角三角形C、等腰三角形或直角三角形D、等腰直角三角形2、已知中,,,则角等于A. B. C. D.3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞) B.(0,2)C.(2,) D.()4、,则△ABC的面积等于A. B. C.或 D.或5、在中,,则角C的大小为A.300B.450C.600D.12006、的三个内角、、所对边长分别为、、,设向量,,若,则角的大小为()A. B. C. D.7、若ΔABC的内角A、B、C所对的边a、b、c满足,则ab的值为()A. B. C.1 D.8、在中,若,且,则是( )A.等边三角形B.等腰三角形,但不是等边三角形C.等腰直角三角形D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则=A. B. C. D.10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ).A.等边三角形 B.直角三角形C.锐角三角形 D.钝角三角形11、在△中,,,,则此三角形的最大边长为()A. B. C. D.12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c2b2)tanB=ac,则角B=()A. B. C.或 D.或13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则()A. B. C. D.14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为()A、1B、2C、3D、015、在钝角中,a,b,c分别是角A,B,C的对边,若,则最大边c的取值范围是( ) ( A. B. C. D.16、(2012年高考(上海理))在中,若,则的形状是()A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定.17、在△ABC中,a=15,b=10, ∠A=,则()A. B. C. D.18、在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则角A= ()A. B. C. D.19、()A. B. C. D.20、给出以下四个命题:(1)在中,若,则;(2)将函数的图象向右平移个单位,得到函数的图象;(3)在中,若,,,则为锐角三角形;(4)在同一坐标系中,函数与函数的图象有三个交点;其中正确命题的个数是() A.1 B.2 C.3 D.421、若△ABC的对边分别为、、C且,,,则b=()A、5B、25C、 D、22、设A、B、C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是()A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能23、设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定24、在中,若,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形25、在△ABC中,已知A=,BC=8,AC=,则△ABC的面积为▲A.B.16 C.或16 D.或26、在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足c sin A=a cos C,则sin A+sin B的最大值是( )A.1 B. C. D.3二、填空题27、在△ABC中,角A、B、C的对边分别为a、b、c, 已知A=, a=, b=1,则c= .28、已知△ABC的面积 .29、在△ABC中,角A、B、C所对的对边分别为a、b、c,若,则A= 。
中考总复习解三角形三角函数专项练习(含解析)
第121讲解三角形微课锐角三角函数题一:在Rt△ABC中,∠C=90°,AC=12,cos A=1213,则tan A等于( )A.513B.1312C.125D.512题二:△ABC中,∠A和∠B均为锐角,AC=6,BC=33,且sin A=3,则cos B的值为______. 题三:计算:cos245º+tan30º·sin60º=______.题四:计算:sin30°+cos30°•tan60°.题五:如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°题六:如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tan B的值是( )教育选轻轻·家长更放心页1教育选轻轻·家长更放心 页 2A .45B .35C .34D . 43第122讲 解三角形微课 解直角三角形题一:如图,在Rt △ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长为 ( ) A .4 B .25C .181313D .121313题二:如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sin B 的值为( )A .12B .22C .32D .1题三:把两块含有30°的相同的直角尺按如图所示摆放,连接AE ,若AC =6cm ,则△ADE 的面积是______.教育选轻轻·家长更放心页 3题四:把两块含有30°的相同的直角尺按如图所示摆放,连接CE 交AB 于D .若BC =6cm ,则①AB =____cm ;②△BCD 的面积S =______.题五:如图,在△ABC 中,∠ACB =90º,CD ⊥AB ,BC =1.(1)如果∠BCD =30º,求AC ;(2)如果tan ∠BCD = 1 3,求CD .教育选轻轻·家长更放心页 4题六:如图,在△ABC 中,∠ACB =90°,BC = 4,AC= 5,CD ⊥AB ,则sin ∠ACD 的值是______,tan ∠BCD 的值是______.教育选轻轻·家长更放心 页 5第123讲 解三角形微课 锐角三角函数的应用题一:如图,在塔AB 前的平地上选择一点C ,测出塔顶的仰角为30º,从C 点向塔底B 走100m 到达D 点,测出塔顶的仰角为45º,则塔AB 的高为( )A .503mB .1003mC .1003+1m D .10031-m题二:在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,已知小明距假山的水平距离BD 为12m ,他的眼睛距地面的高度为1.6m ,李明的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60°刻度线,则假山的高度为( )A .(43+1.6)mB .(123+1.6)mC .(42+1.6)mD .43m教育选轻轻·家长更放心 页6题三:某时刻海上点P 处有一客轮,测得灯塔A 位于客轮P 的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行32小时到达B 处,那么tan ∠ABP =( ) A. 21 B.2 C. 55 D. 552 题四:如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A 、B 、C 在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.9063,cos65°≈0.4226,tan65°≈2.1445)教育选轻轻·家长更放心 页 7 第121讲解三角形微课 锐角三角函数题一:D详解:∵cos A =1213AC AB =,AC =12, ∴AB =13,BC =22AB AC -=5,∴tan A =512BC AC =. 故选D .题二:5. 详解:过点C 作CD ⊥AB 于点D .在Rt △ACD 中,AC =6,sin A =33, ∴CD =AC ×sin A =6×33=23. 在Rt △BCD 中,BC =33, ∴BD =22=15BC CD -.∴cos B =BD BC =53.题三:1教育选轻轻·家长更放心 页 8详解:cos 245º+tan30º·sin60º=223311122+⨯=+=(). 题四:2.详解:原式=131332222+⨯=+=. 题五:C.详解:由已知,根据锐角三角形函数定义对各选项作出判断:A 、由于在Rt △ABO 中∠AOB 是直角,所以B 到AO 的距离是指BO 的长. ∵AB ∥OC ,∴∠BAO =∠AOC =36°.在Rt △BOA 中,∵∠AOB =90°,AB =1,∴BO =AB sin36°=sin36°.故本选项错误.B 、由A 可知,选项错误.C 、如图,过A 作AD ⊥OC 于D ,则AD 的长是点A 到OC 的距离.在Rt △BOA 中,∵∠BAO =36°,∠AOB =90°,∴∠ABO =54°.∴AO =AB •sin54°= sin54°.在Rt △ADO 中, AD =AO •sin36°=AB •sin54°•sin36°=sin54°•sin36°.故本选项正确.D 、由C 可知,选项错误.故选C.题六:C.教育选轻轻·家长更放心页 9 详解:∵CD 是斜边AB 上的中线,CD =5,∴AB =2CD =10. 根据勾股定理,22221068BC AB AC -=-=. ∴63tan 84AC B BC ===.故选C. 第122讲 解三角形微课 解直角三角形题一:A.详解:∵cos B =23,∴23BC AB =. 又AB =6,∴2643BC=⨯=.故选A. 题二:C.详解:∵Rt △ABC 中,∠C =90°,AB =2BC ,∴sin A =122BC BC AB BC ==.∴∠A =30°.∴∠B =60°.∴sin B =o 3sin 602=.故选C. 题三:183cm 2.详解:∵AC =6cm ,∠ABC =30°,∴AB =12,∴BC 22126=63-=BE ,在△ADE 中,BE 是△ADE 的高,∴S △ADE =12×AD ×BE , ∵BD =6,AB =12,∴AD =6,∴S △ADE =12×AD ×BE =12×6×3=183cm 2.教育选轻轻·家长更放心页 10 题四:12; 63cm 2.详解:(1)∵△ABC 为直角三角形,∠BAC =30°,BC =6cm ,∴AB =sin BC BAC∠=12cm . (2)如图:过点D 作平行于AC 的直线交BC 于M ,交AE 于N .∵BC ∥AE ,∴△BCD ∽△AED ,△BDM ∽△ADN .∴BC AE =BD AD =DM DN =12, 又DM +DN =AC ,又AC 3DM 3∴△BCD 的面积S =12×BC ×DM =12×6×33cm 2. 题五:3310. 详解:(1)∵CD ⊥AB ,∴∠BDC =90°.∵∠DCB =30°,∴∠B =60°.在Rt △ACB 中,∠ACB =90°,∴tan60°=AC BC. ∵BC =1,∴31AC =,则AC =3(2)在Rt △BDC 中,tan ∠BCD =13BD CD =. 设BD = k ,则CD =3k ,教育选轻轻·家长更放心页 11 又BC =1,由勾股定理得:k 2+(3k )2=1,解得:k 10或k = 10(舍去). ∴CD =3k 310. 题六:54141;45详解:∵△ABC 中,∠ACB =90°,BC = 4,AC = 5,CD ⊥AB ,∴AB 2222=54=41AC BC ++在Rt △ABC 与Rt △ACD 中,∠A +∠B =90°,∠A +∠ACD =90°,∠ADC =∠ACB =90°. ∴∠B =∠ACD .Rt △ABC ∽Rt △ACD ,∠BCD =∠A .故sin ∠ACD =sin ∠B =AC AB =54141, tan ∠BCD = tan ∠A =BC AC =45. 第123讲 解三角形微课 锐角三角函数的应用题一:D详解:根据题意分析图形;本题涉及到两个直角三角形,由BC 3AB 和BC =AB +100求解即可求出答案在Rt △ABD 中,∵∠ADB =45°,∴BD =AB .在Rt △ABC 中,∵∠ACB =30°,∴BC 3AB .∵CD =100,∴BC =AB +100.∴AB 3AB ,解得AB 31-.故选D . 题二:A .教育选轻轻·家长更放心 页 12详解:如图,作AK ⊥CD 于点K ,∵BD =12米,李明的眼睛高AB =1.6米,∠AOE =60°,∴DB =AK =12米,AB =KD =1.6米,∠ACK =60°.∵tan AK ACK CK ∠=,∴o 121243tan tan 603AK CK ACK ====∠. ∴CD =CK +DK =43+1.6=(43+1.6)(米).故选A .题三:A .详解:∵灯塔A 位于客轮P 的北偏东30°方向,且相距20海里,∴PA =20.∵客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B 处, ∴∠APB =90° ,BP =60×23=40. ∴tan ∠ABP =201402AP BP ==.故选A .教育选轻轻·家长更放心页 13 题四:207米.详解:如图,作CD ⊥AB 交AB 的延长线于点D ,则∠BCD =45°,∠ACD =65°.在Rt △ACD 和Rt △BCD 中, 设AC =x ,则AD =x sin65°,BD =CD =x cos65°.∴100+x cos65°=x sin65°.∴o o100207sin 65cos65x =≈-(米). ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.。
解三角形(提升)练习题(含答案)
解三角形练习(提升)(含答案)一、选择题1、在△ABC 中,a, b, c 分别是内角 A , B , C 所对的边,若 c cos A b ,则△ABC 形状为 CA.一定是锐角三角形 B . 一定是钝角三角形C . 一定是直角三角形D . 可能是锐角三角形, 也可能是钝角三角形2、在△ABC 中,角A、B、C 的对边分别为a、b、c,若(a2+c2-b2)tanB= 3ac , 则角 B 的值为(D )A. B. C.或6 3 6 56D.3或233、在△ABC中,AB 3 ,A 45 ,C 75 ,则BC (A)A.3 3 B. 2 C.2D.3 34、在ABC 中,02 xA 60 ,且最大边长和最小边长是方程x 7 11 0的两个根,则第三边的长为( C )A.2 B.3 C.4 D.55、在△ABC中,根据下列条件解三角形,则其中有二个解的是 DA、b 10, A 45 ,C70B、a 60, c 48, B 60C、a 7,b 5,A 80D、a 14, b 16, A 456、长为5、7、8 的三角形的最大角与最小角之和为( B )A 90°B 120°C 135°D 150°二、填空题:7、如图,在△ABC 中,D 是边AC 上的点,且AB AD ,2 A B 3BD ,BC 2BD ,则s in C 的值为___________。
6 68、如图,△ABC 中,AB=AC=2 ,BC= 2 3 ,点D 在BC 边上,∠ADC=4°5,则AD 的长度等于______。
解析:在△ABC 中,AB=AC=2 ,BC= 2 3 中,ACB ABC 30 ,而∠ADC=4°5,AC ADsin 45 sin 30, AD 2 ,答案应填 2 。
9、在△ABC中,若tan1A ,C 150 ,BC 1,则AB .3110答案210、在锐角△ABC 中,BC=1,B=2A,则AC的值等于________,AC 的取值范围为________.cos A解析:由正弦定理BC=sin AAC,则sin BAC=cos ABC s in B=sin Acos A2BCsin Bsin 2A=2.由A+B+C=π得3A+C=π,即C=π-3A.π0< A<2由已知条件:π0<2 A<2,解得ππ<A< .由AC=2cos A 知2<AC< 3.6 4π 0<π-3A<2答案:2 ( 2,3)三、解答题:11、在△ABC 中,内角A,B,C 对边的边长分别是a,b,c ,已知c 2,C .3 (Ⅰ)若△ABC的面积等于 3 ,求a,b ;(Ⅱ)若sin B 2sin A,求△ABC的面积.解:(Ⅰ)由余弦定理得, 2 2 4a b ab ,又因为△ABC的面积等于 3 ,所以12ab sin C 3 ,得ab 4.联立方程组2 2 4a b ab,解得a 2,b 2.ab 4,(Ⅱ)由正弦定理,已知条件化为 b 2a,联立方程组2 2 4a b ab,解得b 2a,2 3a ,34 3b .3所以△ABC的面积 1 sin 2 3S ab C .2 312、在ABC中,若c osB b cosC 2a c(1)求角B的大小(2)若b 13 ,a c 4,求ABC的面积2 a2c2b解:(1)由余弦定理得2a 2ac2b2cb2a c2 2 2化简得: a c b ac2ab2∴2 2 2a cb ac 1cos B∴B=120°2ac 2ac 22 2 2(2)b a c 2ac cos B 2 ac ac1∴13 (a c) 2 2 ( )2∴ac=3 ∴S ABC 12ac sin B3 3413、某市电力部门某项重建工程中,需要在A、B 两地之间架设高压电线,因地理条件限制,不能直接测量A、B两地距离. 现测量人员在相距 3 km的C 、D 两地(假设A、B 、C 、D 在同一平面上),测得∠A CB 75 ,BCD 45 ,ADC 30 ,ADB 45 (如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度大约应该是A、B 距离的43倍,问施工单位至少应该准备多长的电线?A解:在ACD 中,由已知可得,CAD 30B 所以,AC 3km⋯⋯⋯754545在BCD 中,由已知可得,CBD 6030CDsin 75 sin(45 30 ) 6 2 4由正弦定理,BC 3 sin 75 6 2 sin 60 2cos 75 cos(45 30 ) 6 2 4在ABC中,由余弦定理 2 2 2 cosAB AC BC AC BC BCA2 6 2 2 6 23 ( ) 2 3 cos75 52 2所以,AB 5 施工单位应该准备电线长4 53.答:施工单位应该准备电线长435 km.3。
(完整版)解三角形练习题及答案
解三角形习题及答案一、选择题(每题5分,共40分)1、己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ). A .90° B .120° C .135° D .150°2、在△ABC 中,下列等式正确的是( ).A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin BC .a ∶b =sin B ∶sin AD .a sin A =b sin B3、若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ). A .1∶2∶3 B .1∶3∶2C .1∶4∶9D .1∶2∶34、在△ABC 中,a =5,b =15,∠A =30°,则c 等于( ).A .25B .5C .25或5D .10或55、已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小( ).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形 6、在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不能确定 7、)( 37sin 83sin 37cos 7sin 的值为︒︒-︒︒A.23- B 。
21- C 。
21D 。
238、化简1tan151tan15+-等于 ( )AB.2C .3D .1二、填空题(每题5分,共20分)9、已知cos α-cos β=21,sin α-sin β=31,则cos (α-β)=_______.10、在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .11、在△ABC 中,∠A =60°,a =3,则C B A cb a sin sin sin ++++= . 12、在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值等于 .班别: 姓名: 序号: 得分:9、10、11、12、 三、解答题13、(12分)已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.14、(14分)已知21)tan(=-βα,71tan -=β,求)2tan(βα-的值15、(16分)已知x x x x f cos sin 32cos 2)(2-=,(1)求函数)(x f 的取最小值时x 的集合; (2)求函数单调增区间及周期。
解三角形基础练习题(含答案)
解三角形基础练习题(含答案)解三角形基础练题(含答案)一、选择题:1.在△ABC中,已知a=8,B=60°,C=75°,则b的值为(C)32/32.在△ABC中,a=15,b=10,A=60°,则cosB=(B)43/463.在△ABC中,a-c+b=ab,则C=(A)60°4.在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=(B)235.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c。
若a=c=6+2且∠A=75°,则b=(D)6-26.若△ABC的内角A,B,C满足6sinA=4sinB=3sinC,则cosB=(D)11/167.在△ABC中,若sinA+sinB<sinC,则△ABC的形状是(A)钝角三角形二、填空题:8.在△ABC中,若a=3,b=3,∠A=π/3,则∠C的大小为90°。
9.在△ABC中,已知∠BAC=60°,∠ABC=45°,BC=3,则AC=2.10.设△ABC的内角A=π/4,B、C的对边分别为a、b、c,且a=1,b=2,则sinB=15/4.11.在三角形ABC中,角A,B,C所对应的长分别为a,b,c,若a=2,B=2,则c=3π/4(或135°)。
12.在△ABC中,三边a、b、c所对的角分别为A、B、C,若a+b-c+2ab=3π/4,则角C的大小为π/4(或45°)。
13.△ABC的三个内角A、B、C所对边的长分别为a、b、c,已知a=2,b=3,则sinA/2=sin(A+C)/3.14.若△ABC的面积为3,BC=2,C=60°,则边AB的长度等于2.解析:根据海伦公式,s=(a+b+c)/2,代入已知条件可得s=3.再根据面积公式,S=1/2×b×c×sinA,代入已知条件可得1/2×2×c×sin60°=3,解得c=4.由此可得边AB的长度为2.Ⅰ)将2sinBcosA sinAcosC cosAsinC化为sin2B=sinA(sinC+cosC),再利用正弦定理和余弦定理,得到:a/sinA=b/sinB=c/sinC=2R(R为△ABC的外接圆半径)代入sin2B=sinA(sinC+cosC)中,化简得cosA=1/2,即A=π/3.Ⅱ)由余弦定理可得cosA=(b²+c²-a²)/(2bc)=1/2,代入b=2,c=1中得a=√3.因为D为BC的中点,所以AD平分∠A,即AD垂直于BC,且AD=√3/2.。
经典解三角形练习题(含答案)
解三角形练习题一、选择题1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .60°或120°D . 30°或150° 4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( )A .无解B .一解C . 二解D .不能确定 5、在△ABC 中,已知bc c b a ++=222,则角A 为()A .3π B .6πC .32πD . 3π或32π 6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是()A .()10,8B .()10,8C .()10,8D .()8,108、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形9、在△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围是()A .2>xB .2<xC .3342<<x D . 3342≤<x 10、在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A 其中成立的个数是 ( ) A .0个 B .1个 C .2个 D .3个 11、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23B .43C .23或3 D .43 或23 12、已知△ABC 的面积为23,且3,2==c b ,则∠A 等于 ( )A .30°B .30°或150°C .60°D .60°或120°13、已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( )A . 14B .142C .15D .15214、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( )A . 450a 元B .225 a 元C . 150a 元D . 300a 元15、甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( )A .7150分钟 B .715分钟 C .21.5分钟 D .2.15分钟16、飞机沿水平方向飞行,在A 处测得正前下方地面目标C 得俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为( ) A . 5000米B .50002 米C .4000米D .24000 米17、在△ABC 中,10sin =a °,50sin =b °,∠C =70°,那么△ABC 的面积为( )A .641B .321 C .161 D .81 18、若△ABC 的周长等于20,面积是310,A =60°,则BC 边的长是( ) A . 5 B .6 C .7 D .819、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ) A .51<<x B .135<<x C .50<<x D .513<<x20、在△ABC 中,若cCb B a A sin cos cos ==,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形C .有一内角为30°的等腰三角形D .等边三角形 二、填空题21、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 22、在△ABC 中,===B c a ,2,33150°,则b =23、在△ABC 中,A =60°,B =45°,12=+b a ,则a = ;b = 24、已知△ABC 中,===A b a ,209,181121°,则此三角形解的情况是25、已知三角形两边长分别为1和3,第三边上的中线长为1,则三角形的外接圆半径为 26、在△ABC 中,()()()6:5:4::=+++b a a c c b ,则△ABC 的最大内角的度数是20米30米150°三、解答题27、在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
高三数学复习专题练习题:解三角形(含答案)
⾼三数学复习专题练习题:解三⾓形(含答案)⾼三数学复习专题练习:解三⾓形(含答案)⼀. 填空题(本⼤题共15个⼩题,每⼩题5分,共75分)1.在△ABC 中,若2cosBsinA=sinC,则△ABC ⼀定是三⾓形.2.在△ABC 中,A=120°,AB=5,BC=7,则CBsin sin 的值为 . 3.已知△ABC 的三边长分别为a,b,c,且⾯积S △ABC =41(b 2+c 2-a 2),则A= . 4.在△ABC 中,BC=2,B=3π,若△ABC 的⾯积为23,则tanC 为 . 5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.在△ABC 中,若∠C=60°,则c b a ++ac b+= . 9.如图所⽰,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km, 灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为 km.10.⼀船⾃西向东匀速航⾏,上午10时到达⼀座灯塔P 的南偏西75°距塔68海⾥的M 处,下午2时到达这座灯塔的东南⽅向的N 处,则这只船的航⾏速度为海⾥/⼩时. 11. △ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .12. 在△ABC 中,⾓A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则⾓B 的值为 . 13. ⼀船向正北航⾏,看见正西⽅向有相距10 海⾥的两个灯塔恰好与它在⼀条直线上,继续航⾏半⼩时后,看见⼀灯塔在船的南偏西600,另⼀灯塔在船的南偏西750,则这艘船是每⼩时航⾏________ 海⾥.14.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的⾯积为 .15.在△ABC 中,⾓A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .(资料由“⼴东考神”上传,如需更多⾼考复习资料,请上 tb ⽹搜“⼴东考神”)⼆、解答题(本⼤题共6个⼩题,共75分)1、已知△ABC 中,三个内⾓A ,B ,C 的对边分别为a,b,c,若△ABC 的⾯积为S ,且2S=(a+b )2-c 2,求tanC 的值. (10分)2、在△ABC 中,⾓A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (11分)(1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.3、在△ABC 中,a 、b 、c 分别是⾓A ,B ,C 的对边,且C B cos cos =-ca b+2. (12分)(1)求⾓B 的⼤⼩;(2)若b=13,a+c=4,求△ABC 的⾯积.4、△ABC 中,⾓A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (12分) (1)求⾓A 的⼤⼩;(2)若a=3,求bc 的最⼤值;(3)求cb C a --?)30sin(的值.5、已知△ABC 的周长为)12(4+,且sin sin B C A +=. (12分)(1)求边长a 的值;(2)若A S ABC sin 3=?,求A cos 的值.6、在某海岸A 处,发现北偏东 30⽅向,距离A 处)(13+n mile 的B 处有⼀艘⾛私船在A 处北偏西 15的⽅向,距离A 处6n mile 的C 处的缉私船奉命以35n mile/h 的速度追截⾛私船. 此时,⾛私船正以5 n mile/h 的速度从B 处按照北偏东 30⽅向逃窜,问缉私船⾄少经过多长时间可以追上⾛私船,并指出缉私船航⾏⽅向. (12分)ACB3015· ·参考答案:⼀、填空题:1、等腰;2、53;3、45°;4、33;5、60°;6、45°或135°;7、65π;8、1;9、3a ;10、2617;11、2;12、3π或32π;13、10;14、103;15、33。
解三角形练习(测试)题(含答案)
解三角形练习(测试)题1.R t △ABC 是一防洪大堤背水坡的截面图,斜坡AB 长为12m,,它的坡角为45°,为了提高防洪能力,现将背水坡AD 的坡度改为32,则BD 长为 2.如图,某市在城区改造中,计划在一块三角形的空地上种植某种草皮美化环境,已知这种草皮的售价为a 元/㎡,AB=20m,AC=24m,∠BAC=150°,则购买这种草皮至少得 元。
3.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB = 米.4.如图河对岸有一古塔AB ,小敏在C 处测得塔顶A 的仰角为30°,向塔前进20m到达D ,在D 处测得A 的仰角为45°,则塔高为 米。
5.一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西20º的方向行驶40海里到达C 地,则A 、C 两地相距 海里。
6.如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,则CD ∶DB= . 7.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP =2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°,cos15°) 8.如图,在Rt △ABC 中,∠ACB=900,CD ⊥AB 于D ,若BD :AD=1:3,则tan ∠BCD= 。
8.9.计算:sin60°+sin45°+︒-︒30tan 60tan 1= . 1sin 60cos302-= . 10.已知α为锐角,且tan (90°-α)=3,则α的度数为( )A .30°B .60°C .45°D .75°A CB D 第1题 CA B 第2题 A B C 第3题 _ A _ B _ D _ C 第4题 第5题 第6题第7题 第8题 C BD11.在Rt △ABC 中, ∠C =90︒,AB =4,AC =1,则cos A 的值是 ( )AB .14CD .4 12.如图是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,BC=1,则BB ’的长为( )A .4B .33 C .332 D .334 13.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点且AE :EB =4:1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于( )A BCD14.数学活动课上,小敏、小颖分别画了△ABC 和△DEF ,数据如图,如果把小敏画的三角形面积记作S △ABC ,小颖画的三角形面积记作S △DEF ,那么你认为( ).A .S △ABC >S △DEFB .S △ABC <S △DEF C .S △ABC =S △DEFD .不能确定15.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60 o , 又知楼房与大树的水平距离为10m ,楼高AB=24m ,则树高CD 为( )A .()31024-mB .⎪⎪⎭⎫ ⎝⎛-331024mC .()3524-m D .9m 16.计算:⑴cos 230°-tan60°·sin45°+sin 230° ⑵01)41.12(45tan 32)31(-++---⑶ 1tan 45-. 32cos458-+17.已知,如图,∠ABC=∠BCD=90°,AC=15,sinA=54,BD=20, 求∠D 的三个三角函数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形专练
1.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为
2.在ABC ∆中,若0
120,2==A b ,三角形的面积3=
S ,则三角形外接圆的半径为( )A
.
B .2 C
..4
3.边长为8,7,5的三角形的最大角与最小角的和是( ) A . 120 B . 135 C . 90 D . 150
4.在△ABC 中,已知a =4,b =6,C =120°,则边C 的值是( ) A .8 B
. C
. D
.
5.在三角形ABC 中,若1tan tan tan
tan ++=B A B A ,则C cos 的值是
B. 22
C. 21
D. 21-
6.在△ABC 中,若22
tan tan b a B A =,则△ABC 的形状是( )
A .直角三角形
B .等腰或直角三角形
C .不能确定
D .等腰三角形
7.在△ABC 中,角,,A B C 所对的边分别为,,a b c .若
2226
5b c a bc
+-=,则 sin()B C +=( )A .-45 B.45 C .-35 D.3
5
8.设△ABC 的三内角A 、B 、C 成等差数列,sinA 、sinB 、 sinC 成等比数列,则这个三角形的形状是( ) A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形
9.在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,若18=a ,24=b ,︒=45A ,则这样的三角形有( )A.0个 B. 两个 C. 一个 D. 至多一个
10.已知锐角A 是ABC ∆的一个内角,,,a b c 是三角形中各角的对应边,若221
sin cos 2A A -=
,则下列各式正确的是
( )
A. 2b c a +=
B. 2b c a +<
C. 2b c a +≤
D. 2b c a +≥
11.在ABC ∆中,已知
30,4,34=∠==B AC AB ,则ABC ∆的面积是
A .34
B .38 C
.34或38
D .3
12.在ABC ∆中,角角,,A B C 的对边分别为,,a b c ,若22
a b -=且sin C B =,则A 等于A .6π
B .4
π C .3π
D .2
3π
13.若∆ABC 的三角A:B:C=1:2:3
,则A 、B 、C 分别所对边a :b :c=( )
A.1:2:3
B.2 D. 1:2: 14.△ABC 的三个内角A,B,C 的对边分别a ,b ,c ,且a cosC,b cosB,c cosA 成等差数列,则角B 等于( )A 30
B .60
C 90 D.120
15.在∆ABC 中,三边a ,b,c 与面积S 的关系式为
2221
()
4S
a b c =+-,则角C 为
( )
A .30
B 45
C .60
D .90 16.△ABC 中,a b sin B =
2
,则符合条件的三角形有( ) A .1个 B .2个 C .3个
D .0个
17.设∆ABC 的内角A,B ,C 所对边的长分别为a,b,c ,若b+c= 2a,.3sinA=5sinB ,则角C=
( ) A .3π
B .23π
C .34π D.56π
18.若三角形ABC 中,sin(A +B)sin(A -B)=sin 2
C ,则此三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形
D .等腰直角三角形
19.已知两座灯塔A 、B 与C 的距离都是a ,灯塔A 在C 的北偏东20°,灯塔B 在C 的南偏东40°,则灯塔A 与灯塔B 的距离为 ( )
A .a B.2a
D
20.在△ABC 中,若
cos cos A b
B a =,则△AB
C 的形状( ) A .直角三角形 B .等腰或直角三角形
C .不能确定
D .等腰三角形
21.已知ABC ∆的内角A B C ,,的对边分别为a b c ,,,
且120c b B =
=︒,则ABC ∆的面积等于
________.
22.在△ABC 中,角A B C ,
,的对边分别为a b c ,,,且a b c <<
2sin b A =. 则角B 的大小为_______;
23.在△ABC 中,sin :sin :sin 3:2:4A B C =,则cos C 的值为________. 24.在ABC ∆中.若1b =
,c =23C π
∠=
,则a=___________。
1、在ABC ∆中,角,,A B C 所对的边分别为,,a b c
,且满足cos
2A =,3=⋅AB AC . (I )求ABC ∆的面积; (Ⅱ)若6b c +=,求a 的值.
2、在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=
,4
cos ,5
A b ==
(Ⅰ)求sin C 的值;(Ⅱ)求ABC ∆的面积. 3、(1)在ABC ∆中,A C AC BC sin 2sin ,3,5===.
(Ⅰ)求AB 的值;(Ⅱ)求)4
2sin(π
-A 的值.
4、
已知函数21()cos cos 2
f x x x x =-+,ABC ∆三个内角
,,A B C 的对边分别为,,,a b c 且()1f A =.
(I ) 求角A 的大小;
(Ⅱ)若7a =,5b =,求c 的值.
5、ABC ∆的内角,,A B C 所对的边分别为,,a b c
,向量()m a =与(cos ,sin )n A B =平行.
(Ⅰ)求A ;
(Ⅱ)若2a b ==求ABC ∆的面积.
6、
已知函数
2
()2cos cos 1f x x x x =+- (Ⅰ)求()f x 的最小正周期;
(Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若()22
C f =且2c ab =,试判断
△ABC 的形状.
7、在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足5
4
cos =B ,2=b . (I )若3
5
=
a 求角A 的度数; (II )求ABC ∆面积的最大值.
8、已知A 、B 、C 为△ABC 的内角,tanA 、tanB 是关于方程x 2-p +1=0(p ∈R )两个实根.
(Ⅰ)求C 的大小
(Ⅱ)若AB =3,AC ,求p 的值
9、在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4
A π
=
,求△ABC 的面积.
10、已知ABC ∆的三个内角分别为A,B,C,且22sin ()2.B C A += (Ⅰ)求A 的度数;(Ⅱ)若7,5,BC AC ==求ABC ∆的面积S .
11、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,.3
3
2=+C A cos (Ⅰ)求cos B 的值;
(II )若2-=⋅AB BC ,b =22,求a 和c 的值.
12、在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且cos2cos 0B B +=.
(Ⅰ)求角B 的值; (Ⅱ)若b =5a c +=,求△ABC 的面积.
13、在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且A c a sin 23=. (Ⅰ)确定角C 的大小; (Ⅱ)若c =7,且△ABC 的面积为2
3
3,求a +b 的值.
14、在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足3
1
cos =A .
(I )求A C
B 2cos 2
sin 2++的值; (II )若3=a ,求ABC ∆面积的最大值
15、在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos b A B =.
(Ⅰ)求角B ;(Ⅱ)若b =,求ac 的最大值.
试卷答案
1------5 DBADB 6------10 BBDBC
11-----15 CACBB 16----20 BBBDB 21.
2
3
22. 60 23. 24.1
解答题
1(1)2s = (2)a =
2(1)sin c =
(2)s =
3(1)AB =(2)10
4(1)3
A π
=
(2)8c =
5. (1)3
A π
=
(2)s =
6. (1)()2sin(2)6
f x x π
=+ T π= (2)等边三角形
7(1)030A = (2)3s =
8(1)060C = (2)1p =--
9(1)3
B π
=
(2)32s +=
10(1)060A = (2)s =
11(1)1
cos 3
B = (2)a c ==
12(1)3
B π
= (2)s =
13(1)3
C π
=
(2)5a b +=
14(1)1
9
- (2)4s =15(1)3
B π
= (2)12。