IPTG诱导原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E.coli的乳糖操纵子(元)含Z、Y及A三个结构基因,分别编码半乳糖苷酶、透酶和乙酰基转移酶,此外还有一个操纵序列O、一个启动序列P及一个调节基因I(图15-4)。I基因编码一种阻遏蛋白,后者与O序列结合,使操纵子(元)受阻遏而处于关闭状态。在启动序列P上游还有一个分解(代谢)物基因激活蛋白(CAP)结合位点。由P序列、O序列和CAP结合位点共同构成lac操纵子的调控区,三个酶的编码基因即由同一调控区调节,实现基因产物的协调表达。在没有乳糖存在时,lac操纵子(元)处于阻遏状态。此时,I 序列在PI启动序列操纵下表达的Lac阻遏蛋白与O序列结合,阻碍RNA聚合酶与P序列结合,抑制转录起动。当有乳糖存在时,lac操纵子(元)即可被诱导。在这个操纵子(元)体系中,真正的诱导剂并非乳糖本身。乳糖进入细胞,经b-半乳糖苷酶催化,转变为半乳糖。后者作为一种诱导剂分子结合阻遏蛋白,使蛋白构象变化,导致阻遏蛋白与O序列解离、发生转录。异丙基硫代半乳糖苷(IPTG)是一种作用极强的诱导剂,不被细菌代谢而十分稳定,因此被实验室广泛应用。
材料
1、诱导表达材料
( 1 ) LB (Luria—Bertani))培养基
酵母膏(Yeast extract) 5g 蛋白胨(Peptone) 10g
NaCl 10g 琼脂(Agar) 1-2%
蒸馏水(Distilled water) 1000ml pH 7.0
适用范围:大肠杆菌
( 2 ) IPTG 贮备液:2 g IPTG溶于10 mL 蒸馏水中,0 . 22 μm 滤膜过滤除菌,分装成1 mL /份,-20 ℃保存。
( 3 ) l×凝胶电泳加样缓冲液:
50 mmol / L Tris -CI ( pH 6 . 8 )
50 mmol / L DTT
2 % SDS (电泳级)
0.1 %溴酚蓝
10 %甘油
2、大肠杆菌包涵体的分离与蛋白纯化材料
1 )酶溶法
(1)裂解缓冲液:
50 mmol / L Tris-CI ( pH 8 . 0 )
1 mmol / L EDTA
100 mmol / LNaCI
(2)50 mmol / L 苯甲基磺酰氟(PMSF )。
(3)10 mg / mL 溶菌酶。
(4)脱氧胆酸。
(5)1 mg / mL DNase I。
2 )超声破碎法
( 1 ) TE 缓冲液。
( 2 ) 2×SDS -PAGE 凝胶电泳加样缓冲液:
100 mmol / L Tris-HCI ( pH 8 . 0 )
100 mmol / L DTT
4 %SDS
0.2 %溴酚蓝
20 %甘油
实验方案
1、外源基因的诱导表达
( 1 )用适当的限制性内切核酸酶消化载体DNA 和目的基因。
( 2 )按连接步骤连接目的基因和载体,并转化到相应的宿主菌。
( 3 )筛选出含重组子的转化菌落,提取质粒DNA 作限制性内切核酸酶图谱,DNA 序列测定,
确定无误后进行下一步。
( 4 )如果表达载体的原核启动子为PL 启动子,则在30 -32 ℃培养数小时,使培养液的OD600达0.4-0.6 ,迅速使温度升至42 ℃继续培养3 -5h ;如果表达载体的原核启动子为tac 等,则37 ℃培养细菌数小时达到对数生长期后加IPTG 至终浓度为1 mmol / L。继续培养3 -5h 。
( 5 )取上述培养液1 mL , 1000g 离心,1 min ,沉淀,加100 μL 聚丙烯酰胺凝胶电泳上样缓冲液后,作SDS -PAGE 检测。
2、大肠杆菌包涵体的分离与蛋白质纯化
1 )细菌的裂解
常用方法有:
①高温珠磨法;
②高压匀浆;
③超声破碎法;
④酶溶法;
⑤化学渗透等。
前三种方法属机械破碎法,并且方法①、②已在工业生产中得到应用,后三种方法在实验室研究中应用较为广泛。下面介绍酶溶法和超声破碎法的实验步骤。
(1)酶溶法。常用的溶解酶有溶菌酶;β-1,3 -葡聚糖酶;β-1,6 -葡聚糖酶;蛋白酶;壳多糖酶;糖昔酶等。溶菌酶主要对细菌类有作用,而其他几种酶对酵母作用显著。主要步骤为:①4 ℃,5000rpm 离心,15 min ,收集诱导表达的细菌培养液(100 mL )。弃上清,约每克湿菌加3 mL 裂解缓冲液,悬浮沉淀。
第一节基因表达调控基本概念
一、基因表达的概念及意义
1、基因表达的概念
一个细胞或病毒所携带的全部遗传信息或整
套基因,称为基因组。不同生物基因组所含基因
多少不同。在某一特定时期,基因组中只有一
部分基因处于表达状态。在个体不同生长时期、不同生活环境下,某种功能的基因
产物在细胞中的数量会随时间、环境而变化。基因表达就是基因转录及翻译的过程
(图15-1)。在一定调节机制控制下,大多数基因经历基因激活、转录及翻译等过
程,产生具有特异生物学功能的蛋白质分子。但并非所有基因表达过程都产生蛋白
质。rRNA、tRNA编码基因转录合成RNA的过程也属于基因表达。
2、基因表达调控的生物学意义
适应环境、维持生长和增殖生物体赖于生存的外环境是在不断变化的。有生
命体中的所有活细胞都必须对外环境变化作出适当反应,调节代谢,以使生物体能更好地适应变化着的外环境,维持生命。这种适应调节的能力总是与某种或某些蛋白质分子的功能有关,即与相关基因表达有关。生物体调节基因表达,适应环境是普遍存在的。原核生物、单细胞生物调节基因的表达就是为适应环境、维持生长和细胞分裂。高等生物也普遍存在适应性表达方式。经常饮酒者体内醇氧化酶活性高即与相应基因表达水平升高有关。
维持个体发育与分化在多细胞个体生长、发育的不同阶段,细胞中的蛋白质
分子种类和含量差异很大;即使在同一生长发育阶段,不同组织器官内蛋白质分子分布也存在很大差异,这些差异是调节细胞表型的关键。高等哺乳类动物各种组织、器官的发育、分化都是由一些特定基因控制的。当某种基因缺陷或表达异常时,则会出现相应组织或器官的发育异常。
二、基因表达的规律
病毒、细菌,乃至高等哺乳类动物及人,基因表达表现为严格的规律性,即时间、空间特异性。基因表达的时间、空间特异性由特异基因的启动子(序列)和/或增强子与调节蛋白相互作用决定。
时间特异性
噬菌体、病毒或细菌侵入宿主后,呈现一定的感染阶段。随感染阶段发展、生长环境变化,有些基因开启,有些基因关闭。按功能需要,某一特定基因的表达严格按特定的时间顺序发生,这就是基因表达的时间特异性(图15-2)。在多细胞生物从受精卵到组织、器官形成的各个不同发育阶段,相应基因严格按一定时间顺序开启或关闭,表现为与分化、发育阶段一致的时间性。因此,多细胞生物基因表达的时间特异性又称阶段特异性。
空间特异性
在多细胞生物个体某一发育、生长阶段,同一基因产物在不同的组织器官表达多少是不一样的;在同一生长阶段,不同的基因表达产物在不同的组织、器官分布也不完全相同。在个体生长全过程,某种基因产物在个体按不同组织空间顺序出现,这就是基因表达的空间特异性(图15-3)。基因表达伴随时间或阶段顺序所表现出的这种空间分布差异,实际上是由细胞在器官的分布决定的,因此基因表达的空间特异性又称细胞特异性或组织特异性。
三、基因表达的方式
不同种类的生物遗传背景不同,同种生物不同个体生活环境不完全相同,不同的基因功能和性质也不相同。因此,不同的基因其表达方式或调节类型存在很大差异。